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ABSTRACT

Malicious website attacks, including phishing, malware, and

drive-by downloads have become a huge security threat to

today’s Internet. Various studies have been conducted to ex-

plore approaches to prevent users from being attacked by

malicious websites. However, no studies to date exist on the

prevalence of and temporal characteristics of such traffic. In

this paper, we developed the PhishLive system to study the

behavior of malicious website attacks on users and hosts of

the campus network of a large University by monitoring the

HTTP connections for malicious accesses (using the Google

safe browsing tool). During our experiment of one month,

we analyzed over 1 Billion URLs. Our analysis reveals sev-

eral interesting findings.

1. INTRODUCTION

The rapid development of the Web over the recent
few decades has made the Internet a hotbed for a wide
range of criminal activities. Numerous types of attacks
are hidden behind HTTP connections such as phish-
ing, cross-site scripting, malware, and botnet attacks.
The most commonly used solution to defend against
such attacks is using blacklisting. A blacklist-based de-
fense system contains a set of uniform resource locators
(URLs) that are identified as malicious or suspicious,
either through a human-vetting process or using other
such mechanisms. When users or software are trying
to connect to such web pages, these systems will pop
out warnings or block the web page directly. For ex-
ample, most modern browsers such as Mozilla Firefox,
Apple Safari, Internet Explorer warn users of accessing
malicious websites for phishing attacks.

Literature is ripe with several studies that focused
on documenting the effectiveness of such browser-based
techniques in thwarting phishing attacks. For exam-
ple, [5] discusses the effectiveness of passive and active
warnings to users. Similarly, [20] studies the efficacy
of different anti-phishing tools. There also exist several
papers (e.g., [13, 10, 14, 6]) proposing different solu-
tions for improving the attack detection and defense
using enhanced blacklisting techniques. Other content-

based techniques have also been proposed (e.g., [21, 4,
15, 7, 12, 16]) for detecting phishing.
Unfortunately, to date, there exists few studies that

focus on understanding temporal characteristics of phish-
ing or malware accesses in an edge network such as a
campus or an enterprise network comprising of a few
10s of thousand users. For example, to the best of our
knowledge, there exists no studies that clearly indicate
what fraction of URL accesses in a given campus or
edge network comprises phishing or malware hosting
sites (together referred to as malicious sites). Similarly,
it is not clear whether malicious sites are accessed just
once, or a few times, or are repeatedly accessed over
time across users, and whether these are hidden be-
tween HTTP redirects. While studies such as [6] exist,
they are mainly about the user interaction with phish-
ing websites. We believe a study to answer such ques-
tions is important for many reasons: First, it can help in
sizing the resource requirements of security middleboxes
that can be deployed to defend against them. Second,
the temporal characteristics can help generate insights
to inform future defense mechanisms.
In this paper, we focus on studying and understand-

ing the characteristics of HTTP accesses to malicious
sites as seen by the edge router of a large campus net-
work comprising upwards of 50,000 users. A key re-
quirement for our study is the ability to identify whether
a given access is to a malicious site or not, for which, we
leverage existing blacklisting tools such as the Google
Safe Browsing (GSB) back-end server. Thus, we do
not invent any new mechanism for detecting phishing
attacks, but merely use existing techniques to contin-
uously monitor the network for malicious accesses to
phishing/malware websites. Our system called Phish-
Live monitors the HTTP traffic going through the gate-
way of the campus network and captures malicious URLs
detected by Google Safe Browsing (GSB) database in
HTTP requests and redirect responses in real-time. It
analyzes the statistical characteristics of dataset off-line
including distribution of attacks over time, geolocation
distribution of attacking IP addresses, attacking host-
names clustering and malicious redirect chain analysis.
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We deployed PhishLive on the edge router of a large
university for about a month in which we captured and
verified about 1 Billion URLs. Some of our key findings
are as follows:

• The fraction of URLs that are identified as belonging
to phishing/malware sites is relatively small; in our
data, it is less than 0.038% of all URLs.

• There is a relatively higher number of malicious URLs
accessed during 11:00pm-5:00am compared to other
times.

• Most domains (almost 50%) typically existed for less
than 1 day. However, close to 10% of the domains
were accessed for more than 15 days.

• An extremely small fraction of all HTTP redirec-
tion chains contain malicious URLs; in our data less
than 2,000 URLs are part of redirection chains out
of about 50 million redirection chains.

The remainder of this paper is organized as follows.
Section 2 gives an overview of the PhishLive system.
In Section 3, we outline our major analysis from the
deployment of PhishLive at the university edge router.

2. SYSTEM OVERVIEW

In this section, we describe the design of our system
called PhishLive for monitoring the prevelance of and
characterizing HTTP traffic for phishing and malware
attacks. We envision PhishLive to be deployed at an
edge router, such as a campus gateway router, that can
track the various HTTP requests issued by a bunch of
users. We assume the presence of a standard high-speed
capture device (e.g., Endace 10Gbps monitoring card)
to collect each packet that is going through the gate-
way router to the outside world, from which we filter
the HTTP traffic (port 80) and extract the URLs from
HTTP requests. For verifying whether a given URL
is malicious or not, each URL is cross checked with the
Google Safe Browsing (GSB) database [1]. Since HTTP
redirects are also used to hide malicious content [17,
18, 9] in some attacks, the system is designed to also
track and analyze HTTP redirect chains. While access
to the outgoing sequence of URL requests is generally
sufficient, analyzing redirect chains require parsing the
HTTP responses as well which means the PhishLive
system requires access to both sides of traffic.
The PhishLive system comprises three components: a

capture module, a check module and an update module,
that are shown in Figure 1. We describe the function-
alities and implementations of these three components
in the remainder of this section.

2.1 Capture Module

The capture module of our system utilizes the libp-
cap library [3] to capture the HTTP requests from the
hosts inside the university and redirect responses from

� � � � � � � �� � � � � � � � � 	
 � � � � �  � � � � � � �
� � � � � � � � � � � � �� � � � � � �� � � � � � � � �  � ! �

� " � � # � �  � ! � $ �  � � � � �  � ! �% � � � !  � � � & � ' � � � � ( ! � ' � � ) � �* � � +� � , � � ' � '� � ! � � � � � '$ - % '
Figure 1: PhishLive system architecture.

the external hosts. As of now, the PhishLive system
supports up to 5 types of HTTP requests: GET, HEAD,
POST, PUT, DELETE, and 4 types of HTTP redirect
responses: 301, 302, 303, 307. The capture module also
uses network libraries and regular expressions to extract
the URLs from HTTP requests or the URLs in redirect
responses, as well as source IP addresses, destination
IP addresses, source port number and destination port
number. In order to protect the privacy information
of users, all user-facing IP addresses are hashed. Each
request URL is forwarded to the check module in the
form of “SIP DIP URL”.
As part of our analysis, we also wish to study the role

of HTTP redirects in phishing and malware attacks.
A redirect chain is a sequence of URLs starting from
the first requested URL, ending with the last requested
URL, that can be represented as follows: GET (URL1)
→ REDIRECT (URL2) ... → GET (URLn), where n

is the number of different requested URLs in the chain.
Although it appears simple, it is a little tricky to track
HTTP redirects in an online fashion, since it requires
correlation across TCP connections (since each GET re-
quest is to a different hostname). Thus, in PhishLive,
we build two hash tables (denoted as level-1 hash table
and level-2 hash table in Figure 2) to store HTTP redi-
rects. The level-1 hash table holds related information
of a HTTP request with a key of 〈SIP, SP,DIP,DP 〉,
where SIP/DIP are the source/destination IP addresses
and, SP/DP are the source/destination port numbers.
Because the request and the redirect packet belong to
the same TCP session, when a HTTP redirect response
is captured, the capture module checks if there is an
existing record in the level-1 hash table with the same
key (we just need to reverse the source and destina-
tion addresses and ports). If a match is found, it means
that this redirect is the response for the matched HTTP
request. Then this pair (HTTP request and redirect re-
sponse) is extracted from the level-1 hash table and in-
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serted into the level-2 hash table with the key of “SIP”.
The level-2 hash table keeps record of all HTTP redi-

rect chains observed. The data structure of a redirect
chain in the level-2 hash table is a linked list. Each
slot in the level-2 hash table corresponds to a user-
facing IP address (inside the network). When inserting
a pair (HTTP request and redirect response) into the
level-2 hash table, it checks if the URL in the HTTP
request matches the URL in the last record with the
same key. A match means the current request is the
HTTP request of the URL in the last redirect response.
Therefore, the redirect response is attached at the end
of the corresponding redirect chain, if the chain exists.
If no existing chain is found or if the URL in the cur-
rent HTTP request does not match any existing URL,
a new redirect chain is built with the current HTTP
request as the head and the current redirect response
as the second node. Therefore, one slot in the level-2
hash table may contain more than one redirect chain.
For instance, slot n in the level-2 hash table includes
redirect chains a→b→c and x→y. When a new pair of
HTTP redirect y→z is inserted, it searches for the first
linked list a→b→c and finds that y does not match c.
Then it moves to next linked list x→y. Since URL y is a
match, the new pair y→z is attached to the linked list.
The second chain becomes x→y→z. The operations of
the two hash tables are illustrated in Figure 2 .

IP j

RED

Mark Chain

as Malicious

Malicious URL

Malicious URL

Malicious URL

Hash table level 1 Hash table level 2
Pipe with check

module

IP2

GET RED

GET RED RED

GET REDIP i

GET RED

GET

GET

GET

RED

Figure 2: Operations on two hash tables.

The capture module also receives feedback which in-
cludes the malicious URL and the victim’s IP address
from the check module. It then compares the mali-
cious URL with the records in the level-2 hash table. If
the URL is found in the level-2 hash table, it will be
marked as malicious and dumped to a file later on. The
implementation of the capture module constitutes of
three threads: one thread captures and extracts URLs
from HTTP packets and feeds them to check module;
another thread receives results from check module and
scans level-2 hash table for a match; the last thread re-

freshes the two hash tables periodically to prevent them
from growing too large and a fatal memory drop-off.

2.2 Check Module and Update Module

The check module is based on the PHP API of Google
Safe Browsing database provided by Google. The check
module maintains a local database of malicious URLs
verified by GSB server and interacts with the capture
module through two pipes. Once it receives a URL from
capture module, it checks the URL against the local
database and feeds it back to capture module through
a pipe if the URL is identified as malicious. The check
module also produces general real-time statistics. The
update module updates the local database with Google
server periodically to ensure that the content of the local
database is up-to-date.

3. EXPERIMENTAL RESULTS

We deployed the PhishLive system at the edge router
of a large university network over 30 days from March
19, 2012 to April 19, 2012, during which the system
analyzed more than 1 Billion HTTP requests (as sum-
marized in Table 1). Out of the 1 Billion URLs, only
about 0.0381% of all HTTP requests were classified as
phishing requests. We also observed about 50 million
HTTP redirect chains out of which only about 7,500
included malicious URLs.

Experiment Duration 3/19/12-4/19/12

HTTP Requests 1,038,803,540
Malicious URLs 395,671 (0.0381%)

Table 1: Statistics of the Experiment.

Since PhishLive system only captures the HTTP re-
quests from hosts and HTTP redirect responses from
servers and verifies the URL by querying GSB database,
the accuracy of the dataset drawn from the experiment
largely depends on the accuracy of the GSB database.
Previous studies [19] indicate that GSB database has a
false negative rate of less than 10%; so we believe that
the results are more or less accurate.

3.1 Temporal and Location Analysis

The PhishLive system computes the number of HTTP
requests and number of malicious URLs observed per
hour. Host users behaves very differently at different
time. For instance, users usually make more HTTP re-
quests during daytime than night. So, it is possible that
more malicious website attacks may be observed during
daytime. However, it does not necessarily means that
the attacks are more active during daytime. Therefore,
we present our result in terms of the ratio of the num-
ber of malicious attacks to the total number of HTTP
requests, which is defined as the malicious ratio.

Figure 3(a) shows the malicious ratio over the entire
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Figure 3: Prevalence and location of malicious websites in our dataset. Subplot (a) shows the ratio
of malicious URLs to benign over the month. (b) shows per-hour average malicious ratio. (c) shows
the geolocation of attacker domains using IP Addresses.

experiment. We notice that the value of the malicious
ratio varies from 0.008% to 0.257% for different times.
But, generally, the malicious ratio is relatively higher
at night compared to daytime. From Figure 3(b) which
displays the average malicious ratio for 24 hours, we
observe that the malicious ratio is significantly higher
from 11 PM to 5 AM. During this time, it appears hosts
are more likely to be visit malicious websites. It is also
possible that nightly accesses are likely initiated by au-
tomatic actions such as malwares and bots.
We also studied the geographical location informa-

tion of the 1231 distinct IP addresses of the attackers
by utilizing the service of IPInfoDB [2]. From the re-
sults in Figure 3(c), we can see that these IP addresses
come from 41 countries, but only 10 countries have more
than 10 IP addresses. Among all these countries, Korea
covers 47.6% and United States covers 27.8% of the IP
addresses. Of course, we cannot generalize this to other
networks, but the fact that US itself hosts such a sig-
nificantly high fraction of malware is kind of surprising.

3.2 Access Characteristics of Victims

We now analyze the malicious URL access character-
istics. Specifically, we focus on the timing of the user
accesses to attacker domains (IP addresses) and the re-
lationship between victims (IP addresses) and attacker
domains.
Figure 4(a) displays the timing characteristic of when

the attacker domains have been accessed by users. The
y-axis represents distinct hostnames of attackers we ob-
served in our data, while the x-axis is the date, with
a resolution of one day. We can see that there are ap-
proximately three types of attacker domains. Type I
attacker domains are those that users access frequently
over a long period of time; such domains are appear
as a horizontal line in the figure. Attacker domains of
type II are those that may be intermittently accessed
by users. They appear as dashed horizontal line in the
figure. Type III attackers scatter attacks infrequently,
and mostly appear as sparse points in the figure.
Figure 4(b) shows the scatter plot between victims

(a) Attacker hostnames

(b) Victim Attacker scatter plot

Figure 4: Behavior of attacker’s hostnames over
time.

and attacker domains. From the figure, we can see that
a significant number of victims seem to have contacted a
few popular attacker IP addresses. Similarly, vertically,
a single user seems to have contacted many different
attacker IP addresses as well.

3.3 Persistence of Domain Names

The previous graphs used IP addresses; since a sin-
gle IP address could host many different domains, we
now switch to understanding the persistence character-
istics of the various domain names we observed. In Fig-
ure 5(a), we plot a histogram of the number of days a
particular domain name was observed in our dataset.
The x-axis is the number of days an attack domain was
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Figure 5: Temporal characteristics of malicious accesses. Subplot (a) shows distribution of domains
in terms of number of days a domain has been accessed. (b) shows the distribution of range, and (c)
shows distribution of number of accesses.

observed, while the y-axis shows the fraction of attacks.
Since we have collected only one month’s trace, we re-
strict ourselves to the URLs collected in the first 15
days, so each domain has the same chance of appearing
in the next 15 days from the first time a domain ap-
pears. In other words, we eliminate the fringe bias in
our data set by focusing on domains seen in the first 15
days. In Figure 5(a), we found that almost 50% of the
attack domains were present for less than 1 day, which
confirms the fast-flux like behavior observed in previ-
ous studies [8]. But there are a non-trivial number of
domains that were accessed persistently for a number
of days. Close to 10% of the domains were accessed for
the whole period of 15 days; due to lack of data be-
yond, we cannot conclusively determine how long these
campaigns persisted.
A similar behavior can be observed in Figure 5(b),

where we plot the range of the days between which we
observed the domain. For example, if a domain was
seen on day x, and we observe the domain last on day
y, within the x + 15 days, we categorize this domain
as having a range of y − x days. While this plot (in
Figure 5(b) has similar characteristics as the previous
one (Figure 5(a)), the bar for 15 days is significantly
taller (almost 30% compared to only 5%). Note that
we included all domains that were active for greater
than 15 days in the 30% corresponding to x = 15. This
shows that even though the number of domains that
were active for all 15 days was small (<10%), a signifi-
cant number of domains were active for a much amount
of time (>15 days). Finally, we plot the distribution
of the number of HTTP accesses to particular domains
in Figure 5(c). From this figure, we can observe that
most domains are accessed relatively infrequently. Al-
most 70% of domains were seen only less than 10 times
in our dataset, and 90% of domains were seen less than
100 times in our dataset. A small number of domains
seem to be accessed a lot of times, almost as high as
about 33,000 times.

3.4 Lexical Similarity of Domains

zdxlyxadxloa.

AsSexyAs.

com:1

ai:1 com:844 ws:1

365tc.

com:3

17utt.

com:1

cdm-p30-adserv

.nal.ai:1

nl.ai

:1

org:56

AsSexyAs.

com:42

bbs.17utt.

com:1

www.365tc.

com:1

tan2.365tc.

com:1

tan1.365tc.

com:1

aeflkpdhxloa.

AsSexyAs.

com:1

9966.

org:1

wen9.

org:1

sosok.

wen9.

org:1

to.9966.

org:1

mylovefire.to.

9966.org:1

avaxhome.

ws:1

Figure 6: Tree of the captured malicious host-
names.

We now study the lexical similarity in attack domains
we have observed in our data set. We decompose a ma-
licious URL into three components: hostname, file path
and query string, out of which our main interest is just
the hostname. We lexically group together hostnames
that share some similarity in the form of a tree as shown
in Figure 6. All the 395,671 malicious URLs we observe
belong to 1686 distinct hostnames, 37 of which are IP
addresses that we exclude in the clustering process. We
first split hostnames splits hostnames to several tokens,
i.e., is a string between two dots. For example, we break
pann.nate.com into pann, nate and com tokens. Then
we start to build the tree in the reverse order, starting
from the top level domain name (e.g., com, nate and
then pann). Each node in the tree is labelled T : n

where T consists of a prefix and n is the total number
of hostnames that match the prefix.
From the tree, we observed that some prefixes ex-

hibited large subtrees. For example, in our data, we
observed PassingGas.net shared by 42 hostnames that
differed mainly in the third-level token, such as nealyx-
adxloa.PassingGas.net, hccayxadxloa.PassingGas.net and
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Hostname Number of Attacks First Attack Last Attack%
nealyxadxloa.PassingGas.net 21 3-19-2012 10:45:41 3-19-2012 19:17:11
hccayxadxloa.PassingGas.net 95 3-19-2012 19:42:33 3-20-2012 19:26:35
hmcayfadxeoa.PassingGas.net 9 3-20-2012 06:33:53 3-20-2012 06:33:55
dqzoyxadxloa.PassingGas.net 66 3-20-2012 19:41:14 3-21-2012 19:05:38

Table 2: Changing third-level token in the malicious URL’s hostname.

so on. We can observe that their third-level domain
names look like they have been generated randomly;
this discovery is not surprising as we observe such oc-
curences even in public domain phishing blacklists such
as PhishTank. What was interesting, however, is that
each unique hostname was accessed for no more than
2 days by hosts in our network, as the Table 2 indi-
cates; such information cannot be obtained by observ-
ing blacklists such as PhishTank alone. The old host-
names became invalid, leading to a page indicating that
this website is using Sitelutions Redirection Engine and
the URL is either entered incorrectly or has been re-
moved by itself. Another feature of these hostnames
is that they all share the same IP address (located in
Herndon, VA) no matter how they change the third
level domain name. Obviously, this indicates that the
attackers are manipulating the DNS Resource Records
dynamically, which is not surprising as attackers often
try to evade detection this way as previous studies in-
dicated (e.g., [13, 11]).

3.5 Redirect Chain Analysis

Researchers in [9] reported that attackers may use
long redirect chains to hide malicious content; we there-
fore study whether redirections are actively used in at-
tacks today. In our dataset, we observed a total of 7,497
redirect chains that contained at least one malicious
URL. However, in some of the redirect chains, the orig-
inal HTTP requests and redirect response belong to the
same hostname. If a redirect chain is created by attack-
ers intentionally, then: (i) the URL in the redirect re-
sponse typically belongs to a different hostname; (ii) the
last redirect is malicious; (iii) the redirect chain usually
contains more than one redirect. Therefore, we define a
redirect chain to be a effective malicious redirect chain
if it satisfies the first two requirements above.
Note that the third requirement may not be applied

to all attacks. For instance, the chain consisting of redi-
recting http://www.dwnews.com/images/news/blog.gif
→ http://www.dwnews.com/ is not effective malicious
redirect chain since hostname is the same. However,
the chain that involves the following redirection, http://
grannymovs.in/→ http://lotaz.in/MyTRAFF/apiLINK
da.php→ http://servantspywarekeep.info/755063395c4
a385d/ is an effective malicious redirect chain.
We also noticed a special case that the redirect chains

caused by the expiration of the hostnames mentioned
before. Redirects related to the expiration of those host-

Type Number

Total Redirect Chains 50,204,174
Malicious Redirect Chains 7,497
Effective Malicious Chains 1449
Average Number of Redirect 2.221
Number of Chains Longer Than 1 246
Max Number of Redirect 5
Start with Normal Request 988
301 Redirect 231
302 Redirect 1523
303 Redirect 6
307 Redirect 0

Table 3: Statistics of Effective Malicious Redi-
rect Chain

names occurred 2,065 times, significant enough to be
ignored. Among all the 7,497 malicious redirect chains,
we identified 1,449 effective malicious redirect chains.
The statistics of those effective malicious redirect chains
are summarized in Table 3.
Several conclusions can be derived from our analysis

on malicious redirect chains: (1) The number of mali-
cious redirect chains (7497) among all redirects (≈ 50
million) is quite small (<0.0149%). (2) Only a small
portion of malicious redirect chains (246 out of 7497)
are effective malicious redirect chains and contain more
than 1 redirect (about 3.29%) in our experiment. (3)
Most of the effective malicious chains (about 988 out of
1449) start from a normal HTTP request and end up
with a malicious URL as redirect response.

4. CONCLUSIONS

To date, no studies exist on how prevalent phish-
ing/malware attacks are or on the temporal character-
istics of malware accesses in edge networks. We de-
signed the PhishLive system for long-term monitoring
of HTTP traffic of a large campus network that en-
abled us to study various temporal characteristics of
phishing/malware attacks. Using a month-long deploy-
ment of the PhishLive system at the university gateway
router, we observed many interesting characteristics of
phishing attacks. For example, we found that malicious
accesses are more common during 11:00-5:00pm than
during day times. Similarly, we found that most do-
mains appeared only for one day and redirection was
not common among many of the malware URLs we de-
tected.
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