Hot Surface Ignition Testing of Low GWP 2L Refrigerants

Mary Koban
Barbara Minor
Patrick Coughlan
Nina Gray
The Chemours Company

July 11 -14, 2016
Outline/Agenda

- Introduction
- AIT – Autoignition Temperature
- HSIT – Hot Surface Ignition Temperature
 - HSIT Test Apparatus
 - HSIT Test Method
 - Test Results
- Summary/Conclusions
Introduction

• New environmental regulations require lower GWP refrigerants
• However, many of the new low/lower GWP refrigerants are ANSI/ASHRAE Class 2L flammable or “mildly flammable”
Typically, equipment and area standards have focused on:
- LFL and AIT as the basis for safety design when using flammable refrigerants
- ASHRAE 15-2013
- UL 60335-2-40,
- IEC 60335-2-40 and others

Would be appropriate:
- If all ignition energies were similar for all refrigerant classes
- If all leak events were similar to AIT conditions
Not all flammable refrigerant have the same ignition energy or MIE.
Autoignition Temperature (AIT)

- Autoignition temperature (AIT) of a gas mixture is the minimum temperature at which a gas mixture spontaneously ignites without an external ignition source.
- Autoignition is a balance between the heat production and heat loss.
- If the rate of heat production is higher than the rate of heat loss, the temperature of the gas mixture will increase and auto-ignition will occur.

*Autoignition testing *may not reflect* HVAC equipment leaks*
Autoignition Temperature (AIT)

AIT is not an intrinsic property of a mixture.

AIT depends on

• system volume
• pressure
• boundary conditions for heat transfer and
• time of contact between the hot environment and gas mixture.

*Not all leak events are similar to AIT
AIT conditions may be overly conservative*
Hot Surface Ignition Temperature

- Hot surface ignition (HSI) occurs when a substance impinges on a hot surface and it ignites.
- Hot surface ignition temperature (HSIT) is the lowest temperature at which the substance ignites when impinged upon a surface.
- This topic has been of interest to many different fields (automotive, aviation, mining) and now more recently in HVAC.
- Auxiliary heaters and other refrigeration systems can contain hot surfaces, which can be potential ignition sources.

Hot surface phenomena may more appropriately reflect leak events in HVAC equipment than AIT
Hot Surface Ignition Temperature

Previous HSIT conducted on:

- **Hot rod**
 - Temps up to 1000°C
 - Ref: 2009 Montforte et al

- **Heating element**
 - Temps 600-750°C
 - Ref: 2008 VDA, Hill

- **Flat plate**
 - Temps up to 800°C
 - Ref: 2008 VDA, Honeywell

- These HSIT tests all provided useful information to the industry
- However, they were not performed using a standard test method.

Current work was to develop a standard HSIT method that can be used in the HVAC industry for class 2L refrigerants.
HSIT Test Apparatus

Enclosed chamber used to house the hot plate

Hot plate
HSIT Test Apparatus

Top view of apparatus

Front view of apparatus

- Refrig spray line
- Planchett
- Insulation
- Ceramic hot plate
HSIT Test Method

- Planchet heated until desired temp was reached
- Five grams of liq refrigerant at room temperature was discharged directly onto planchett
- Planchett surface was observed for..
 » initial liquid refrigerant hot surface ignition and
 » for an additional 2 min for possible refrigerant vapor ignition.
- If no visible ignitions
 » immediately or during the 2 minute observation time
 » the ventilation was turned on to clear the enclosure of refrigerant vapors.
- A corresponding “NO GO” result was also recorded for this refrigerant release.
- Process was repeated 5 times for each sample

*Neat 2L refrigerants did not ignite at 800°C.
Therefore refrigerant blends at 825°C (1517 °F) and 850°C (1562 °F).*
Actual HIST Testing

- Planchet (round metal disc) heated to 800 °C (1472 °F).
- Disc is characteristically bright red

- Refrigerant is released at the center of the planchet.
- Disc is cooled due to refrigerant release and becomes duller color
Test Results (2L or expt 2L)

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Blend Composition</th>
<th>AIT, °C (°F)</th>
<th>HSIT, °C (°F)</th>
<th>HSIT-AIT, °C (°F)</th>
<th>BV, cm/sec (in/sec)</th>
<th>LFL, vol %</th>
<th>MIE, mJ (ft-lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-32</td>
<td>N/A</td>
<td>648 (1198)</td>
<td>> 850 (1562)</td>
<td>202 (364)</td>
<td>6.7 (2.64)</td>
<td>14.4</td>
<td>30-100 (0.02 - 0.07)</td>
</tr>
<tr>
<td>R-1234ze</td>
<td>N/A</td>
<td>375 (707)</td>
<td>> 850 (1562)</td>
<td>475 (855)</td>
<td>1.2 (0.47)*</td>
<td>7.0 **</td>
<td>61,000-64,000 (45 - 47)</td>
</tr>
<tr>
<td>R-1234yf</td>
<td>N/A</td>
<td>405 (761)</td>
<td>> 850 (1562)</td>
<td>445 (801)</td>
<td>1.5 (0.59)</td>
<td>6.2</td>
<td>5,000-10,000 (3.7 - 7.4)</td>
</tr>
<tr>
<td>R-452B</td>
<td>R-32/125/1234yf (67/7/26)</td>
<td>N/A</td>
<td>> 850 (1562)</td>
<td>N/A</td>
<td>4.2</td>
<td>7.5</td>
<td>est 100-300</td>
</tr>
<tr>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-454A</td>
<td>R-32/1234yf (35/65)</td>
<td>N/A</td>
<td>> 850 (1562)</td>
<td>N/A</td>
<td>2.4</td>
<td>6.3</td>
<td>est 300-1000</td>
</tr>
<tr>
<td>R-454C</td>
<td>R-32/1234yf (21.5/78.5)</td>
<td>N/A</td>
<td>> 850 (1562)</td>
<td>N/A</td>
<td><4* (2.5)</td>
<td>6.2</td>
<td>est 300-1000</td>
</tr>
<tr>
<td>Pending</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Submitted to ASHRAE</td>
<td>R-32/R-1234ze (21.5/78.5)</td>
<td>N/A</td>
<td>> 850 (1562)</td>
<td>N/A</td>
<td><4*</td>
<td>~ 7.0</td>
<td>est > 1000</td>
</tr>
</tbody>
</table>

*Denotes BV and **ETFL per ASHRAE Standard 34.

Two blends recently submitted to ASHRAE for safety classification; marked as R-pending.

All 2L refrigerants evaluated passed the test with no ignitions in any of the five replicates.
Test Results- HSIT Profile

- During refrigerant release, the surface significantly cooled within 5 sec after the release.
- Surface temperature decrease after refrigerant impingement is noted as “refrigerant surface-impingement cooling capacity.”
- Surface temperature rebounds back to the initial surface temperature and is noted as “surface temperature time lag.”
- ~30 seconds for the hot surface to come back to temperature and plateau.
Some refrigerants appear to be able to provide more cooling capacity.
Conclusions

• A new test method was developed to evaluate class 2L refrigerants for HSIT.
• All refrigerants evaluated (both 2L refrigerants and those containing 2L refrigerants) passed the test with no ignitions in any of the five replicates.
• HSIT > > AIT values due to the uncontrolled loss of vapor and heat after the refrigerant impinges upon the surface.
• Differences between HSIT and AIT were expected. As the ignition events become less than ideal (non-forced), the ignition temperature shifts to the right (increases).
• Delta HSIT – AIT values
 – ranged between 150-425°C (300-797 °F) and
 – could be even greater as test was limited to 800 °C (1472 °F) value.
• At this point, not enough 2L refrigerants were tested to make a general statement regarding the magnitude of the temperature shift between AIT and HSIT for 2L refrigerants.
Conclusions

• A data logger was used to collect temperature data for each refrigerant during the release event.
• During refrigerant release, the hot surface is cooled significantly within the first five seconds after the release.
• Depending on the refrigerant, the hot surface is cooled anywhere from 50°C to as much as 100°C.
 – This is noted as “refrigerant surface-impingement cooling capacity.”
 – Time it takes the surface to rebound is noted as “surface temperature time lag.”
• It appears that not all refrigerants have similar “surface impingement cooling capacity”.
• Some refrigerants appear to be able to provide more cooling capacity. It is important to note that
Bibliography

Bibliography

• UL 1995 “Heating and Cooling Equipment”, Underwriter’s Laboratory, Northbrook, IL 2012
• UL 60335-2-40 “Safety of Household and Similar Electrical Appliances, Part 2-40: Particular Requirements for Electrical Heat Pumps, Air-Conditioners and Dehumidifiers” Underwriter’s Laboratory, Northbrook, IL, 2012
Questions?

Mary E. Koban
Mary.E.Koban@Chemours.com
Patrick R. Coughlan
Patrick.R.Coughlan@Chemours.com