
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2012

Similarity-Aware Query Processing and Optimization Similarity-Aware Query Processing and Optimization

Yasin N. Silva
Arizona State University, ysilva@asu.edu

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Per-Ake Larson
Microsoft Research, palarson@microsoft.com

Mohamed H. Ali
Microsoft Corporation, mali@microsoft.com

Report Number:
12-006

Silva, Yasin N.; Aref, Walid G.; Larson, Per-Ake; and Ali, Mohamed H., "Similarity-Aware Query Processing
and Optimization" (2012). Department of Computer Science Technical Reports. Paper 1760.
https://docs.lib.purdue.edu/cstech/1760

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

1

TECHNICAL REPORT

SIMILARITY-AWARE QUERY PROCESSING AND OPTIMIZATION

YASIN N. SILVA, Arizona State University, ysilva@asu.edu

WALID G. AREF, Purdue University, aref@cs.purdue.edu

PER-AKE LARSON, Microsoft Research, palarson@microsoft.com

MOHAMED H. ALI, Microsoft Corporation, mali@microsoft.com

Department of Computer Science

Purdue University

May 16, 2012

2

ABSTRACT

Many application scenarios, e.g., marketing analysis, sensor networks, and

medical and biological applications, require or can significantly benefit from the

identification and processing of similarities in the data. Even though some work

has been done to extend the semantics of some operators, e.g., join and

selection, to be aware of data similarities; there has not been much study on the

role, interaction, and implementation of similarity-aware operations as first-class

database operators. The focus of this thesis work is the proposal and study of

several similarity-aware database operators and a systematic analysis of their

role as query operators, interactions, optimizations, and implementation

techniques. This work presents a detailed study of two core similarity-aware

operators: Similarity Group-by and Similarity Join. We describe multiple

optimization techniques for the introduced operators. Specifically, we present: (1)

multiple non-trivial equivalence rules that enable similarity query transformations,

(2) Eager and Lazy aggregation transformations for Similarity Group-by and

Similarity Join to allow pre-aggregation before potentially expensive joins, and (3)

techniques to use materialized views to answer similarity-based queries. We also

present the main guidelines to implement the presented operators as integral

components of a database system query engine and several key performance

evaluation results of this implementation in an open source database system. We

introduce a comprehensive conceptual evaluation model for similarity queries

with multiple similarity-aware predicates, i.e., Similarity Selection, Similarity Join,

Similarity Group-by. This model clearly defines the expected correct result of a

query with multiple similarity-aware predicates. Furthermore, we present multiple

transformation rules to transform the initial evaluation plan into more efficient

equivalent plans.

3

CHAPTER 1 INTRODUCTION AND RELATED WORK

1.1. Introduction

It is widely recognized that the move from exact semantics of data and Boolean

semantics of queries to imprecise and approximate semantics of data and

queries is one of the key paradigm shifts in data management. This shift is fueled

in part by the recognition that many application scenarios, e.g., marketing

analysis, sensor networks, data warehousing, data cleaning, etc., require or can

significantly benefit from the identification of similarities in the data. Several

techniques have been proposed to extend some data operations, e.g., join and

selection, to take advantage of data similarities. Unfortunately, there has not

been much study on the role, interactions, and implementation of similarity-aware

operations as first-class database operators. In this context, the research

questions that drive our work are:

1. How can database systems take advantage of similarities in the data to

answer complex similarity-based queries required in multiple application

scenarios?

2. How can conventional database operators be extended to use similarities

on the data?

3. How do these similarity-aware database operators interact among

themselves and with the regular operators?

4. Which optimization and implementation techniques can be used to

effectively realize the similarity-aware operators?

4

We argue that similarity-aware operators should be implemented as first-class

database operators because, as shown in Figure 1, this approach has the

following key advantages: (1) the similarity-aware operators can be interleaved

with other regular or similarity-aware operators and its results pipelined for further

processing; (2) important optimization techniques, e.g., pushing certain filtering

operators to lower levels of the execution plan, pre-aggregation, and the use of

materialized views can be extended to the new operators; and (3) the

implementation of these operators can reuse and extend other operators and

structures to handle large datasets, and use the cost-based query optimizer

machinery to enhance query execution time. Therefore, the focus of our work is

the proposal and study of several similarity-aware database operators and a

systematic analysis of their role, interactions, optimizations, and implementation

techniques.

Implementation

complexity

Take

advantage of

DB optimizer

Composable

with other DB

operators

Supported

Operator

Instances

Similarity Operator Implementation Approach

As Stored

Procedures
Outside of DB

Using Basic

SQL Operators

Integrated in

DB Engine

Queries use a

complex mix of

joins and

aggregations

Can reuse

and extend

DB operators

and structures

No

NoNo

Yes (use of MVs,

pre-aggregation,

etc.)

No directly

No

Yes (full

pipelining of

results)

AllAllAll

Certain types may

be unfeasible or

require very

complex queries

Requires

specialized

structures,

spilling

mechanisms,

etc.

Requires

specialized

structures,

mechanisms to

deal with large

data sets, etc.
Yes (resulting

queries can be

highly complex)

Figure 1-1 Comparison of Similarity Operator Implementation Approaches

As part of this paper, we present the results of the detailed study of two core

similarity-aware database operators, i.e., Similarity Group-by (SGB) and

5

Similarity Join (SJ). We study optimization and implementation techniques for

both SGB and SJ operators and systematically evaluate their performance. We

also introduce a generic conceptual evaluation order for similarity queries with

multiple similarity-aware operations. We present a rich set of generalized

equivalence rules to extend cost-based query optimization to the case of

similarity-aware operators.

The contributions of our work are as follows:

1. We introduce the Similarity Group-by (SGB) operator which extends

standard Group-by to allow the formation of groups based on similarity rather

than equality of the data.

2. We present a generic definition of the SGB operator and three instances

to support: (1) the formation of groups based on fundamental group properties,

e.g., group compactness and group size, (2) the formation of groups around

points of interest, and (3) the formation of groups delimited by a set of limiting

points. The proposed instances support similarity grouping of one or more

independent one-dimensional attributes.

3. We extend the standard optimization techniques for regular aggregations

to the case of SGB. In particular, we introduce the main theorem of Eager and

Lazy similarity aggregations, an extension of the corresponding regular

aggregation based theorem; and the requirements that a materialized view must

satisfy to be used to answer a similarity aggregation query.

4. We implement the proposed SGB operators in PostgreSQL (an open

source database system) and study their performance and scalability properties.

We use SGB in modified TPC-H queries to answer interesting business

questions and show that the execution time of all implemented SGB's instances

is at most only 25% larger than that of the regular Group-by.

6

5. We study the Similarity Join (SJ) as a first-class database operator, its

interaction with other non-similarity and similarity-based operators, and its

implementation as integrated component of the query processing and

optimization engine of Database Management Systems (DBMSs).

6. We present the different types of Similarity Join operators, introduce a

new useful Similarity Join type, the Join-Around, and propose SQL syntax to

express Similarity Join predicates.

7. We analyze multiple transformation rules for the SJ operators. These rules

enable query optimization through the generation of equivalent query execution

plans. We study: (1) multiple core equivalence rules for SJ operators; (2) the

main theorem of Eager and Lazy aggregation for queries with Similarity Join and

Similarity Group-by; (3) the scenarios in which similarity predicates can be

pushed from Similarity Join to Similarity Group-by; and (4) equivalence rules

between different SJ operators and between SJ and the SGB operator.

8. We describe an efficient implementation of two SJ operators, the Epsilon-

Join and Join-Around, as core DBMS operators. We consider the case of multiple

SJ predicates and one-dimensional (1D) attributes.

9. We evaluate the performance and scalability properties of our

implementation of the Epsilon-Join and Join-Around operators in PostgreSQL.

The execution time of Join-Around is less than 5% of the one of the equivalent

query that uses only regular operators while Ɛ-Join’s execution time is 20 to 90%

of the one of its equivalent regular operators based query for the useful case of

small Ɛ (0.01% to 10% of the domain range).

10. We also evaluate experimentally the effectiveness of the proposed

transformation rules for SJ and show they can generate plans with execution

times that are only 10% to 70% of the ones of the initial query plans.

7

11. We introduce a conceptual evaluation order for similarity queries with

multiple similarity-aware operations, i.e., Similarity Group-by, Similarity Join, and

Similarity Selection. This evaluation order specifies a clear and consistent way to

execute a similarity query. It also specifies unambiguously what the results of a

similarity query are, even in the presence of various similarity aware operations.

12. We present many equivalence rules to transform query plans with multiple

similarity-aware operations. These rules represent a generalized version of the

rules proposed for SGB and SJ. Particularly, these rules can be used to

transform the conceptual evaluation plan of a similarity query into equivalent

plans with potentially better execution time.

We have previously published parts of the work presented in this technical report

[52], [53], [54], [55], [56]. The work on Similarity Group-by is presented in [52].

The study of the Similarity Join operator is presented in [53]. In [54], we study the

way SGB operators can be extensively used to implement a Decision Support

System. In [55] we present SimDB, a Similarity-aware Database system that

support multiple SGB and SJ operators. In [56] we present a synopsis of our

work on similarity-aware query processing.

The rest of this paper is organized as follows. The remaining part of this chapter

presents the related work. Chapter 2 introduces and discusses the Similarity

Group-by Operator. Chapter 3 discusses the Similarity Join Operator. Chapter 4

introduces the conceptual evaluation order for similarity queries and presents

many generalized transformation rules. Chapter 5 presents the conclusions and

directions for future research.

1.2. Related Work

Clustering, one of the oldest similarity-aware operations, has been studied

extensively, e.g., in pattern recognition, machine learning, physiology, biology,

statistics, and data mining. In some of these application scenarios, finding the

groups with certain similarity properties is the goal of data analysis while in

8

others finding the groups is just the first step for other operations, e.g., for data

compression or discovery of hidden patterns or relationships among the data

items. Jain et al. present an overview of clustering from a statistical perspective

[1]. Berkhin surveys clustering techniques used in data mining [2]. These

techniques consider the special data mining computational requirements due to

very large datasets and many attributes of different types. Given that the result of

the clustering process depends on the specific clustering algorithm and its

parameter settings, it is important to assess the quality of the results. This

evaluation process is termed cluster validity [3], [4]. Of special interest is the work

on clustering of very large datasets. Single scan versions of the well-known

clustering algorithms K-means and Cobweb for large datasets is proposed in [5]

and [6]. CURE [7] and BIRCH [8] are two alternative clustering algorithms based

on sampling and summaries, respectively. They use only one pass over the data

and hence reduce notably the execution time of clustering. However, their

execution times are still significantly slower than the one of the standard Group-

by. The main differences between these operations and the Similarity Group-by

operators we propose are: (1) the execution times of the SGB operators are very

close to that of the regular Group-by; (2) SGB are fully integrated with the query

engine allowing the direct use of their results in complex query pipelines for

further analysis; and (3) the computation of aggregation functions in SGB is

integrated in the grouping process and considers all the tuples in each group, not

a summary or a subset based on sampling. The last feature allows for fast

generation of cluster representatives with the exact values of the aggregation

functions that can be used immediately by other operators in the query pipeline.

Algorithms similar to CURE or BIRCH would require extra steps to evaluate

aggregation functions or to make available their results to SQL queries. Several

clustering algorithms have been implemented in data mining systems. In general,

the use of clustering is via a complex data mining model and the implementation

is not integrated with the standard query processing engine. The work in [9]

proposes some SQL constructs to make clustering facilities available from SQL

9

in the context of spatial data. Basically, these constructs act as wrappers of

conventional clustering algorithms but no further integration with database

systems is studied. Li et al. extend the Group-by operator to approximately

cluster all the tuples in a pre-defined number of clusters [10]. Their framework

makes use of conventional clustering algorithms, e.g., K-means; and employs

summaries and bitmap indexes to integrate clustering and ranking into database

systems. Our study differs from [10] in that (1) we focus on similarity grouping

operators independent of the support and tight coupling to ranking; (2) we

introduce a framework that does not depend on possibly costly conventional

clustering algorithms, but rather allows the specification of the desired grouping

using descriptive properties such as group size and compactness; and (3) we

consider optimization techniques of the proposed Similarity Group-by operators.

In the context of data reconciliation, Schallehn et al. propose SQL extensions to

allow the use of user-defined similarity functions for grouping purposes [11] and

similarity grouping predicates [12], [13]. They focus on string similarity and

similarity predicates to reconcile records. Although they can be used for this

purpose, the proposed SGB operators are more general and are designed to be

part of a DBMS’s query engine.

Significant work has also been carried out on the extension of certain common

operations, i.e., Join and Selection, to make use of similarities in the data. This

work introduced the semantics of the extended operations and proposed

techniques to implement them primarily as standalone operations outside of a

DBMS engine rather than as integrated database operators.

Several types of Similarity Join, and corresponding implementation strategies,

have been proposed in the literature, e.g., range distance join (retrieves all pairs

whose distances are smaller than a pre-defined threshold) [14], [15], [16], [17],

[18], [19], [20], [21] k-Distance join (retrieves the k most-similar pairs) [22], and

kNN-join (retrieves, for each tuple in one table, the k nearest-neighbors in the

other table) [23], [24], [25]. The range distance join, also known as the Ɛ-Join,

10

has been the most studied type of Similarity Join. Among its most relevant

implementation techniques, we find approaches that rely on the use of pre-built

indices, e. g., eD-index [17] and D-index [18]. These techniques strive to partition

the data while clustering together similar objects. However, this approach may

require rebuilding the index to support queries with different similarity parameter

values, i.e., epsilon. Furthermore, eD-index and D-index are directly applicable

only to the case of self-joins. Several non-index-based techniques have also

been proposed to implement the Ɛ-Join. EGO [19], GESS [20], and QuickJoin

[21] are three of the most relevant non-index-based algorithms. The Epsilon Grid

Order (EGO) algorithm [19] imposes an epsilon-sized grid over the space and

uses an efficient schedule of reads of blocks to minimize I/O. The Generic

External Space Sweep (GESS) algorithm [20] creates hypersquares centered on

each data point with epsilon length sides, and joins these hypersquares using a

spatial join on rectangles. The Quickjoin algorithm [21] recursively partitions the

data until the subsets are small enough to be efficiently processed using a

nested loop join. The algorithm makes recursive calls to process each partition

and a separate recursive call to process the “windows” around the partition

boundary. Quickjoin has been shown to perform better than EGO and GESS

[21]. Some Similarity Join techniques have been employed as building blocks to

implement common clustering algorithms [26]. Kriegel et al. extend the work on

Similarity Join to uncertain data [27].

Also, of importance is the work on Similarity Join techniques that make use of

relational database technology [28], [29], [30]. These techniques are applicable

only to string or set-based data. The general approach pre-processes the data

and query, e.g., decomposes data and query strings into sets of q-grams, and

stores the results of this stage on separate relational tables. Then, the result of

the Similarity Join can be obtained using standard SQL statements. Indices on

the pre-processed data are used to improve performance. A key difference

between this work and our contributions is that we focus on studying the

properties, optimization techniques, e.g., pre-aggregation and query

11

transformation rules, and implementation techniques of several types of Similarity

Joins as database operators themselves rather than studying the way a SJ can

be answered using standard operators. In fact, several of the discussed

properties for epsilon-join in this chapter are also applicable to the operators

proposed in [28] and [29]. Moreover, the implementation component of our work

focuses on SJ on numerical data rather than string data.

A related type of join is the band join introduced in [31]. The join predicate of this

join type has the form S.s-Ɛ1≤R.r≤ S.s+Ɛ2. A key difference between our work

and band joins is that band joins represent only a special case of one of the four

types of joins considered in our study. Specifically, a band join where Ɛ1=Ɛ2 is a

special case of Ɛ-Join for the case of 1D data. We propose transformation rules

and properties for Similarity Joins that apply in general to multi-dimensional data.

Moreover, a key goal of our implementation is to take advantage of the

mechanisms and data structures already available in most DBMS’ engines to

facilitate the integration of Similarity Joins into real world DBMSs. The

implementation of band joins in [31] makes use of specialized sampling,

partitioning, and page replacement mechanisms.

Some recent work in the area of Similarity Joins has focused on: proposing a

compact way to represent the output of an epsilon join [32], i.e., reporting groups

of nearby points instead of every join link; efficient algorithms for in-memory

Similarity Join with edit distance constraints [33]; algorithms for near duplicate

detection that exploit the ordering of tokens in a record to reduce the number of

required distance computations [34]; and Similarity Join algorithms that exploit

sorting and searching capabilities of GPUs [35].

The special cases of Similarity Joins with one-tuple inner relations correspond to

several types of Similarity Selection. Among key recent contributions on

Similarity Selection we have: the study of fast indices and algorithms for set-

based Similarity Selection using semantic properties that allow pruning large

percentages of the search space [36], a quantitative cost-based approach to

12

build high-quality grams to support selection queries on strings [37], a method

that finds all data objects that match with a given query object in a low-

dimensional subspace instead of the original full space [38], and flexible

dimensionality reduction techniques to support similarity search using the Earth

Mover’s Distance [39].

The optimization techniques we present for SGB and SJ operators build on

previous work on optimization of regular aggregation queries. Larson et al. study

pull-up and push-down techniques that enable the query optimizer to move

aggregation operators up and down the query plan [40], [41]. These techniques

allow complete [40] or partial [41] pre-aggregation that can reduce the input size

of a join and consequently decrease significantly the execution time of an

aggregation query. Galindo-Legaria proposes a general framework for

optimization of queries with subqueries and aggregations [42]. Another technique

that can provide substantial improvements in query processing is the use of

materialized views to answer aggregation queries. This technique is presented in

[43] for the case of sum and count aggregation functions, and is extended in [44]

and [45] to arbitrary aggregation functions.

The work in [46] proposes an algebra for similarity-based queries. This work

presents the extension of simple algebra rules, e.g., pushing selection into join,

to the case of similarity operators. The work in [47] proposes an extension to the

relational algebra to support similarity queries with several similarity predicates

combined using the Boolean operators and, or, and not. However, [47] does not

consider Similarity Joins or queries that combine non-similarity and similarity

predicates. [48] proposes an extended SQL syntax to express queries that use

both non-similarity and similarity predicates. The work in [49] presents a cost

model to estimate the number of I/O accesses and distance calculations to

answer similarity queries over data indexed using metric access methods. Both

[48] and [49] only consider range distance and knn-joins. A framework for

similarity query optimization is presented in [50]. This work makes use of simple

13

equivalence rules to generate multiple alternative query plans. The main

difference between [46], [47], [48] and our work is that we focus on analyzing in

detail the properties among different types of similarity-aware operators, among

different instances of the same similarity operator, and among regular and

similarity-aware operators. Furthermore, we study the extension of query

optimization techniques, e.g., lazy and eager aggregation transformations, and

the use of materialized views to answer queries, to the case of similarity-based

queries.

14

CHAPTER 2 THE SIMILARITY GROUP-BY DATABASE OPERATOR

Group-by is a core database operation that is used extensively in OLTP, OLAP,

and decision support systems. In many application scenarios, it is required to

group similar but not necessarily equal values. In this chapter we propose a new

SQL construct that supports similarity-based Group-by (SGB). SGB is not a new

clustering algorithm, but rather is a practical and fast similarity grouping query

operator that is compatible with other SQL operators and can be combined with

them to answer similarity-based queries efficiently. In contrast to expensive

clustering algorithms, the proposed Similarity Group-by operator maintains low

execution times while still generating meaningful groupings that address many

application needs. The chapter presents a general definition of the Similarity

Group-by operator and gives three instances of this definition. The chapter also

discusses how optimization techniques for the regular Group-by can be extended

to the case of SGB. The proposed operators are implemented inside

PostgreSQL. The performance study shows that the proposed similarity-based

Group-by operators have good scalability properties with at most only 25%

increase in execution time over the regular Group-by.

2.1. Similarity Group-By: Definition

This section presents the general definition of the Similarity Group-by operator

along with three instances that enable: (1) grouping tuples based on desired

group properties, e.g., group size and group compactness, (2) grouping tuples

around points of interest, and (3) segmenting the tuples based on given limiting

values.

15

S1,1

S1,2

S1,3

S1

10

20

20

10

20

5

5
10

5

10

5
10

5

20

Figure 2-1 Example of the Use of the Generic SGB Definition

2.1.1. Generic Definition

We define the Similarity Group-by operator as follows:

where R is a relation name, Gi is an attribute of R that is used to generate the

groups, i.e., a similarity grouping attribute, Si is a segmentation of the domain of

Gi in non-overlapping segments, Fi is an aggregation function, and Ai is an

attribute of R. The formation of groups has two steps:

1. For each tuple t, each value vi of t.Gi is replaced by the identifier of the

segment (member of Si) that contains vi. If no segment contains vi, t is dismissed.

2. The resulting tuples are merged to form the similarity groups. Two tuples

are in the same group if their new G1,…,Gn values are the same.

The aggregation functions Fi are applied over each group similar to a standard

aggregation operation. Figure 2-1 illustrates an example segmentation S1 that

groups a two-dimensional data set into three segments S1,1, S1,2, and S1,3 based

on some notion of similarity. Let the dots in the figure represent the tuples of a

relation R(G1, A1), where the value of G1 is the position of the dot and the value

of A1 is the value next to the dot. The result of:

is: {(S1,1, 80), (S1,2, 25), (S1,3, 50)}.

16

2.1.2. Instantiating the General Definition

The general definition of Similarity Group-by (SGB) allows the use of any kind of

segmentation on the grouping attributes. The segmentation could be the result of

any clustering algorithm. For example, the previously proposed clustering

approaches for large datasets [5], [6], [7], [8] can be modeled as instances of this

generic definition. The generic definition is useful for reasoning with the new SGB

operation and for deriving equivalences that allow the optimization of queries (as

in Section 2.2). Naturally, this generic form of SGB is not to be implemented

directly. Below, we present three implementable instances of the generic SGB.

The main factors considered in the selection of the proposed instances are: (1)

the ability to generate meaningful and useful groups, e.g., around a set of points

of interest or groups that satisfy key properties such as group size and group

compactness; (2) the viability of a fast implementation, e.g., using a single-pass

plane-sweep approach; and (3) the usefulness of the instances in practical

scenarios; the specific scenarios considered in this chapter are: business

decision support systems (Section 2.4.2.3) and sensor networks (Section 2.1.2).

The proposed instances represent middle ground between the regular Group-by

and standard clustering algorithms. The proposed Similarity Group-by instances

are intended to be much faster than regular clustering algorithms and generate

groupings that capture similarities on the data not captured by regular Group-by.

On the other hand, the quality of the generated groupings is not expected to be

always as high as the ones generated by more complex and costly clustering

algorithms. The presentation in this section focuses on the case of one or

multiple independent grouping attributes (multiple independent dimensions).

2.1.2.1. Unsupervised Similarity Group-by (SGB-U)

This operator groups a set of tuples in an unsupervised fashion, i.e., with no

extra data provided to guide the process. The SGB-U operator uses the following

two clauses to control the group size and the group compactness:

17

1. MAXIMUM_ELEMENT_SEPARATION s: If the distance between two

neighbor elements (consecutive elements, for the one-dimensional case) is

greater than s, then these elements belong to different groups.

2. MAXIMUM_GROUP_DIAMETER d: For each formed group, the distance

between the extreme elements of a group should be less than or equal to d.

The SQL syntax of the SGB-U operator is:

SELECT select_expr, ...

FROM table_references WHERE where_condition

GROUP BY col_name

[MAXIMUM_ELEMENT_SEPARATION s]

[MAXIMUM_GROUP_DIAMETER d], ...

In the case of one-dimensional attributes, the Similarity Group-by operator forms

the groups in the following way:

1. If neither of the clauses MAXIMUM_ELEMENT_ SEPARATION, or

MAXIMUM_GROUP_DIAMETER is specified, we assume d=0 and s=0. This

case is equivalent to the standard Group-by.

2. If only one clause is specified, we assume that the value of the other is ∞.

3. If MAXIMUM_ELEMENT_SEPARATION is specified, the elements are

grouped first using this criterion. If only MAXIMUM_GROUP_DIAMETER is

specified, all the elements form the unique resulting group of this step.

4. If MAXIMUM_GROUP_DIAMETER is specified, the groups formed in the

previous step are further divided until the group diameter. The criterion to divide

a group can be: (1) split a group “breaking” the longest link in the group, or (2)

process the elements in ascending order and end current group as soon as the

distance from the start of the group to the current element E is greater than d.

We use this approach in our examples.

18

One way to extend the semantics of group diameter and element separation to

higher dimensions is as follows. Assume that we build the minimum spanning

tree that connects all the elements. Group diameter is the distance between the

two most separated elements of a group. Element separation is defined for each

pair of elements connected by a link of the tree, and its value is equal to the

length of this link. Initially, all the elements connected by the tree form a group. If

MAXIMUM_ELEMENT_SEPARATION is specified, all the links whose length is

greater than s are “broken”. If MAXIMUM_GROUP_DIAMETER is specified, we

further divide the resulting connected groups until the group diameter of each

group is less than or equal to d. To split a group, we break the longest link of its

spanning tree. The following example groups a set of sensor readings such that

in each formed group, the distance between two consecutive values is at most 2

degrees. Similar to the regular Group-by, each tuple that belongs to the result of

the query represents one group.

SELECT Min(Temperature), Max(Temperature),

 Count(Temperature), Avg(Temperature)

FROM SensorsReadings WHERE Temperature > 0

GROUP BY Temperature MAXIMUM_ELEMENT_SEPARATION 2

Figure 2-2.a gives one possible output of the previous example. The different

temperature readings are represented as marks on a line. Figures 2-2.b and 2-

2.c give the output when using the other two possible combinations of the

clauses of this operator. In practice, different combinations can be more suitable

for different grouping purposes. As evident from Figure 2-2, the use of group size

and element separation to guide the process of similarity grouping captures

important aspects of the natural formation of groups. These key properties are

actually the building elements of more sophisticated clustering algorithms (e.g.,

as in [1]).

19

Group 1 Group 2 Group 3 Group 4

s s ss s

Group 5 Group 6

Group 1 Group 2 Group 3 Group 4 Group 5 Group 7

d
d

d

Group 6

d d d d d d

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

s s ss s
d d d d

b) GROUP BY Temperature MAXIMUM_GROUP_DIAMETER 6

c) GROUP BY Temperature MAXIMUM_ELEMENT_SEPARATION 2

 MAXIMUM_GROUP_DIAMETER 6

a) GROUP BY Temperature MAXIMUM_ELEMENT_SEPARATION 2

Figure 2-2 Examples of Unsupervised Similarity Grouping Limiting the Groups
Based on Group Size and Compactness

2.1.2.2. Supervised Similarity Group Around (SGB-A)

The SGB-A similarity grouping operator groups tuples based on a set of guiding

points, named central points, such that groups are formed around the central

points and each tuple is assigned to the group of its closest central point.

Additionally, the SQL syntax of SGB-A provides two clauses that are similar to

the ones for the SGB-U operator (Section 2.1.2.1) to restrict the size and

compactness of a group. The SQL syntax of the operator is:

SELECT select_expr, ...

FROM table_references WHERE where_condition

GROUP BY col_name AROUND central-points

 [MAXIMUM_GROUP_DIAMETER 2r]

 [MAXIMUM_ELEMENT_SEPARATION s], ...

20

The central points can be specified directly using a list of points or, more

generally, by another select statement. The latter option is very useful when the

location of the central points depends on dynamic data. In the case of one-

dimensional attributes, SGB-A forms the groups as follows:

1. Each tuple is assigned the group with closest central point.

2. If neither clause (MAXIMUM_ELEMENT_ SEPARATION,

MAXIMUM_GROUP_DIAMETER) is specified, the groups formed in the previous

step are the output of this operator.

3. If only one clause is specified, we assume that the value of the other is ∞.

4. If MAXIMUM_ELEMENT_SEPARATION is specified, the extent of each

group is restricted such that each pair of consecutive elements of a group is

separated at most by s. For this step we can consider the central point of each

group to be one additional data point. The elements that are not connected to the

central point under this compactness restriction are discarded.

5. If MAXIMUM_GROUP_DIAMETER is specified, the groups formed in the

previous steps are further narrowed by removing all the elements whose distance

from their central point is greater than r.

For multidimensional attributes, the semantics of group diameter and element

separation can be extended as follows:

1. If MAXIMUM_GROUP_DIAMETER is specified, the groups are formed

around the central points such that the distance from each point of a group to its

central point is less than r.

2. If MAXIMUM_ELEMENT_SEPARATION is specified, the groups are

further reduced such that it is possible to build a path from each element to its

central point in which the length of every link is at most s.

21

s s s

c) GROUP BY Temperature AROUND {30,50}

MAXIMUM_GROUP_DIAMETER 20

d) GROUP BY Temperature AROUND {30,50}

MAXIMUM_ELEMENT_SEPARATION 2

MAXIMUM_GROUP_DIAMETER 20

b) GROUP BY Temperature AROUND {30,50}

MAXIMUM_ELEMENT_SEPARATION 2

Group 1 Group 2

a) GROUP BY Temperature AROUND {30,50}

Group 1 Group 2

Group 1 Group 2

r r r r

r r r
s s s

r

Group 1 Group 2

Figure 2-3 Examples of Supervised Similarity Grouping around Two Points under
Various Conditions on the Group Size and Compactness

Unlike operator SGB-U of Section 2.1.2.1, operator SGB-A generates at most as

many groups as central points are provided and all the elements that do not

belong to any group are not considered in the output. Alternatively, all the

discarded tuples could form a special group, i.e., group of outliers. Continuing

with the scenario of applying similarity grouping to data retrieved from sensors,

the following example groups the temperature readings around two temperature

values of interest (30 and 50 degrees). Furthermore, the groups are restricted to

include only readings whose distance from their central point is at most 10.

SELECT Min(Temperature), Avg(Temperature)

FROM SensorsReadings WHERE Temperature > 0

GROUP BY Temperature AROUND {30,50}

MAXIMUM-GROUP-DIAMETER 20

22

Figure 2-3.c gives one possible output of the previous example. The given

central points are represented as small circles. Figures 2-3.a, 2-3.b, and 2-3.d

give the output when using the other three possible combinations of the clauses

of SGB-A. From these figures, we observe that SGB-A can identify the naturally

formed groups around certain points of interest.

In the operators defined so far, clauses to describe desired properties of the

groups are combined implicitly using the AND operator. Although not shown in

this chapter, we can combine the conditions using other logic operators.

2.1.2.3. Supervised SGB using Delimiters (SGB-D)

The SGB-D similarity grouping operator forms groups based on a set of

delimiting points that can be provided directly or specified using a select

statement.

In the case of one-dimensional attributes, this operator is especially useful when

the partition of the line representing all the possible values of an attribute cannot

be obtained using a set of central points. Figure 2-4.a gives an example of this

scenario. SGB-D should be used when the natural way to form the required

groups is to partition the range of all possible values in predefined or dynamic

segments. SGB-D’s syntax is:

SELECT select_expr, …

FROM table_references WHERE where_condition

GROUP BY col_name DELIMITED BY limit-points

The following example groups the temperate readings in groups delimited by the

result of a select statement on Table Thresholds.

SELECT Count(Temperature), Avg(Temperature)

FROM SensorsReadings WHERE Temperature > 0

GROUP BY Temperature

DELIMITED BY (SELECT Value FROM Thresholds)

23

Figure 2-4.b gives the output of the previous example. The result of the internal

select is represented by vertical dotted line segments.

a) Segmentation of values that cannot be obtained using

central points

Group 1 Group 2 Group 3 Group 4 Group 5

b) GROUP BY Temperature

DELIMITED BY (SELECT Value FROM Thresholds)

Figure 2-4 Example of Supervised Similarity Grouping Based on a Dynamic Set
of Delimiting Points

Extending the semantics of SGB-D to multidimensional attributes can be

achieved replacing limit-points by a set of geometrical objects, e.g., lines or

planes, that partition the multidimensional space containing the elements to be

grouped.

An important property of all the presented operators is that multiple executions of

the operators on the same data set and same reference points, i.e., central and

delimiting points, will generate the same results.

The generic definition of SGB specifies how similarity groups should be formed

when several similarity grouping attributes (SGAs) are used. In general, we

assume that the segmentation of each SGA is generated using a different

similarity grouping instance. The main definition assumes that the SGAs are

independent, i.e., the segmentation associated with each SGA A depends only

on the values of A in the data tuples, and the reference points and conditions

used with this SGA. According to this generic definition, the result of SGB when

multiple SGAs are used is obtained intersecting the segmentations of all the

(independent) SGAs. Therefore, the order in which the grouping attributes are

specified in a similarity grouping query does not affect its final result. Clustering

and segmentation based on correlated attributes is beyond the scope of this

24

chapter. From an implementation point of view, all the similarity grouping

strategies associated with the different operators presented so far can be

integrated into one single Similarity Group-by operator. This integration facilitates

the use of several similarity grouping strategies in the same SQL statement. The

following example applies Similarity Group Around (SGB-A) on attribute Pressure

and Similarity Group-by with Delimiters (SGB-D) on attribute Temperature. The

sets of elements delimited by dashed lines in Figure 2-5 represent the output of

this query.

SELECT Avg(Temperature), Avg(Pressure)

FROM SensorsReadings GROUP BY

Pressure AROUND {30,50} MAXIMUM_ELEMENT_SEPARATION 3,

Temperature DELIMITED BY (SELECT Value FROM Thresholds)

sPressure

T
e
m

p
e

ra
tu

re

ss s

Figure 2-5 Similarity Grouping with Two Grouping Attributes

2.2. Optimizing Similarity Group-by

Several approaches have been proposed to improve the performance of regular

aggregation queries. This section presents a study of how these approaches can

be extended to the case of similarity grouping. An important approach to optimize

25

queries with regular aggregations is the use of pull-up and push-down techniques

to move the Group-by operator up and down the query tree. The main Eager and

Lazy aggregations theorem presented in [40] is a fundamental theorem that

enables several pull-up and push-down techniques. Its application allows the pre-

aggregation of data, i.e., aggregation before join, and thus potentially reduces the

number of tuples to be processed by the join operator. Eager and Lazy similarity

aggregations are query transformation classes that extend their regular

aggregation counterparts. Figure 2-6 illustrates the transformations of the main

theorem for Eager and Lazy similarity aggregation. The single similarity-based

aggregation operator of the Lazy approach is split into two parts in the Eager

approach. The first part pre-evaluates some aggregation functions and calculates

the count before the join. The second part uses that intermediate information to

calculate the final results after the join. Similar to the case of non-similarity-based

aggregations, it is important to consider both the Eager and Lazy versions of a

similarity aggregation query because neither approach is the best in all

scenarios. Joins with high selectivity tend to benefit the Lazy approach while

aggregations that reduce significantly the number of flowing tuples in the pipeline

tend to benefit the Eager approach. Section 2.4.2.3 presents real world scenarios

in which each of the approaches performs better.

26

SGB

Join

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1), SUM(S2)

SGB

Join

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1), SUM(S2)*CNT

SGB

SUM(S1) AS SS1, CNT

G1 on Seg1,

G2 on Seg2

G1,

G2 on Seg2

G1 on Seg1,

J1

J1=J2

J1=J2

b) Eager Similarity Aggregationa) Lazy Similarity Aggregation

Figure 2-6 Eager and Lazy Aggregation Transformations - The Main Theorem

The algebraic notation used in this section is similar to that in [40]. g[GA; Seg]R

represents similarity grouping of relation R on grouping attributes GA using

segmentations Seg. The domain of the nth element of GA is partitioned by the nth

element of Seg. This operation can be represented by a query that replaces in R

each value of a grouping attribute by the representative value of the segment that

contains it, and sorts the result by GA. Each segmentation is assumed to cover

the whole domain of its associated attribute. The extension of the main theorem

to the case in which this is not true is straightforward. F[AA]R represents the

aggregation operation of a previously grouped table R. F and AA are sets of

aggregation functions and columns, respectively. ×, σ, πD, πA, and UA represent

Cartesian product, selection, projection with and without duplicate elimination,

and set union without duplicate elimination operations, respectively.

The presentation of the main theorem uses the following notation. Rd is a table

that always contains aggregation attributes. Ru is a table that may or may not

contain such attributes. Let GAd and GAu be the grouping columns of Rd and Ru,

respectively, AA be all the aggregation columns, AAd and AAu be the subsets of

AA that belong to Rd and Ru, respectively, Cd and Cu be the conjunctive

predicates on columns of Rd and Ru, respectively, C0 be the conjunctive

27

predicates involving columns in both Ru and Rd, α(C0) be the columns involved in

C0, GAd
+ = GAd U α(C0) - Rd be the columns that participate in the join and

grouping, F be the set of all aggregation functions, Fd and Fu be the members of

F applied on AAd and AAu, respectively, FAA be the resulting columns of the

application of F on AA in the first grouping operation of the eager strategy, Seg

be the set of segmentation of the attributes in GA, Segd and Segu be the subsets

of Seg for the attributes in GAd and GAu, respectively, NGAd be a set of columns

in Rd, CNT be the column with the result of Count(*) in the first aggregation

operation of the eager approach, FAAd be the set of columns, other than CNT,

produced in the first aggregation operation of the eager approach, and Fua be

the duplicated aggregation function of Fu, e.g., if Fu=(SUM,MAX), then Fua=(SUM,

MAX, count) = (SUM*count, MAX). Let A ~ B denote that A and B belong to the

same similarity group, and A !~ B denote the opposite.

Theorem 2-1 Eager/Lazy Similarity Aggregation Main Theorem. The following

two expressions:

E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

 g [GAd, GAu; Seg]σ[Cd ^ C0 ^ Cu] (Rd × Ru)

E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT]

 g [GAd, GAu; Segu]σ[C0 ^ Cu]

 (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

 g [NGAd; Segd]σ[Cd]Rd) × Ru)

are equivalent if (1) Fd can be decomposed into Fd1 and Fd2, (2) Fu contains only

class C or D aggregation functions [40], (3) NGAd → GAd
+ holds in σ[Cd]Rd, and

(4) α(C0) ∩ GAd = Ø.

Expression E1 represents the Eager approach while expression E2 represents the

Lazy approach.

28

Proof sketch of Theorem 2-1

Consider a group Gd generated by g [NGAd, Segd]σ[Cd]rd for some instance rd of

Rd. Due to conditions (3) and (4), all the rows of Gd have the same values of GAd

and the joining attributes. Every tuple of Gd joins with the same set of tuples

SAu(Gd). Let Su(Gd) be the subset of SAu(Gd) that has a unique value of GAu.

Consider two groups of g [NGAd, Segd]σ[Cd]rd: Rd1 and Rd2. There are two cases

to be considered.

Case 1: Gd1[GAd] ~ Gd2[GAd] and Su(Gd1)[GAu] ~ Su(Gd2)[GAu]. In E2, the results

of the join operations represented by the following two expressions are merged

into the same similarity group by the second Similarity Group-by.

i. ((Fd1[AAd], COUNT)π[NGAd, GAd
+, AAd]Gd1) × Su(Gd1)

ii. ((Fd1[AAd], COUNT)π[NGAd, GAd
+, AAd]Gd2) × Su(Gd2)

In E1, each row of Gd1 and Gd2 joins with Su(Gd1) and Su(Gd2) respectively and all

the resulting rows are also merged by the second Similarity Group-by. Due to (1),

the aggregation values in the resulting row of the following expressions in E1 and

E2 respectively are the same.

iii. Fd[AAd]πA[GAd,GAu,AAd] ((Gd1 × Su(Gd1)) UA (Gd2 × Su(Gd2)))

iv. Fd2[FAAd]πA[GAd,GAu,FAAd]

 (((Fd1[AAd]πA[NGAd, GAd
+, AAd]Gd1) × Su(Gd1))

UA ((Fd1[AAd]πA[NGAd, GAd
+, AAd]Gd2) × Su(Gd2))

Due to (2), the aggregation values in the resulting row of the following

expressions in E1 and E2, respectively, are the same.

v. Fu[AAu]πA[GAd,GAu,AAu] ((Gd1 × Su(Gd1)) UA (Gd2 × Su(Gd2)))

vi. Fua[AAu,CNT]πA[GAd,GAu, AAu, CNT]

(((COUNT πA[NGAd, GAd
+]Gd1) × Su(Gd1))

29

UA ((COUNT πA[NGAd, GAd
+]Gd2) × Su(Gd2))

Case 2: Gd1[GAd] !~ Gd2[GAd] or Su(Gd1)[GAu] !~ Su(Gd2)[GAu]. In E2, the results of

the join operations represented by (i) and (ii) are not merged into the same

similarity group by the second Similarity Group-by. In E1, each row of Gd1 and Gd2

joins with Su(Gd1) and Su(Gd2), respectively, but the resulting rows are not

merged by the second SGB. Due to (1), the aggregation values in the resulting

row of the following expressions in E1 and E2, respectively, are the same.

vii. Fd[AAd]πA[GAd,GAu,AAd](Gd1 × Su(Gd1))

viii. Fd2[FAAd]πA[GAd,GAu,FAAd]

((Fd1[AAd]πA[NGAd, GAd
+, AAd]Gd1) × Su(Gd1))

Due to (2), the aggregation values in the resulting row of the following

expressions in E1 and E2, respectively, are the same.

ix. Fu[AAu]πA[GAd,GAu,AAu] ((Gd1 × Su(Gd1))

x. Fua[AAu,CNT]πA[GAd,GAu, AAu, CNT]

((COUNT πA[NGAd, GAd
+]Gd1) × Su(Gd1)) ⁪

Similar to the case of regular Group-by, several other query transformation

techniques can be derived from the main theorem. The way the main theorem is

extended in the case of similarity grouping follows closely the way the equivalent

theorem is extended in the case of Group-by [40], [41], [42].

The use of materialized views to answer aggregation queries [43], [44], [45] is

another important optimization technique that can yield considerable query

processing time improvements and can be extended to the case of similarity

grouping. Goldstein et al. propose a view matching algorithm [43] that determines

if a query can be answered from existing materialized views with aggregation

functions sum and count. Similarity aggregation queries and views should be

treated as a SPJ query followed by a similarity aggregation operation. The

30

requirements that a view must satisfy to be used to answer a SPJG query with

similarity-based aggregations are a slight variation of the requirements for

queries with regular aggregation. These requirements are:

1. The SPJ component of the view contains all rows needed by the SPJ

component of the query with the same duplication factor.

2. All columns required by compensating predicates are part of the view

output.

3. The view does not contain aggregations or is less aggregated than the

query, i.e., the query output can be computed by further aggregating the view

output.

4. In case further aggregation is required, all the columns needed are

available in the view output.

5. All the columns required to compute the query aggregation expressions

are part of the view output.

Steps 1, 2, 4, and 5 can be enforced similar to the case of regular aggregation

queries. To satisfy Step 3, the algorithm has to consider that a query with regular

Group-by on attributes GA, can be computed from a view with regular Group-by

on a superset of GA; a query with Similarity Group-by on attributes GA, can be

computed from a view with regular Group-by on a superset of GA; and a query

with Similarity Group-by on attributes GA, can be computed from a view with

Similarity Group-by on a superset of GA. For instance, a view grouped on

attributes A on Seg1, B on Seg2, C, D can be used to compute the results of

queries grouped on (1) A on Seg1; (2) A on Seg1, C; (3) C, D; or (4) C on Seg3.

2.3. Implementing Similarity Group-by

This section presents the guidelines to implement the similarity grouping

operators introduced in Section 2.1 inside the query engine of standard

31

Relational Database Management Systems (RDBMSs). Although the

presentation is intended to be applicable to any RDBMS, some specific details

refer to our implementation in PostgreSQL. The SGB operators can be

implemented as different database operators or they can be combined with the

regular Group-by operator given that there are no conflicts in their syntax. We

use the latter approach as it reduces the required changes in the query engine

and facilitates the integration of SGB with other query processing mechanisms,

e.g., generation of query trees, optimization tasks, etc.

To add support for similarity grouping in the parser, the raw-parsing grammar

rules, e.g., the yacc rules in the case of PostgreSQL, are extended to recognize

the syntax of the different new grouping approaches. This stage also identifies

the grouping strategy, i.e., regular, similarityAround, similarityDelimitedBy, or

similarityUnsupervized, being used with each grouping attribute. The parse-tree

and query-tree data structures are extended to include the information related to

similarity grouping as shown in Figure 2-7. The routines in charge of transforming

the parse tree into the query tree are updated to process the new fields of the

parse tree. The transformation of the parse tree section that represents the query

of the reference points can be easily performed calling recursively the same

function that is used to parse regular select statements, e.g., do_parse_analyze

in PostgreSQL.

32

NodeTag type

...

SelectStmt

List *targetList

List *fromClause

Node *whereClause

List *groupClause

TargetEntry tarEntry

SelectStmt *refPointsSelect

int maxElementSeparation

GroupTargetEntry

int maxGroupLength

char grouping_mode

list of

NodeTag type

...

Query

List *targetList

List *rtable

bool usesSimGrouping

NodeTag type

Index tleSortGroupRef

Oid sortop

Query *RefPointsSelect

int maxElementSeparation

int maxGroupLength

char grouping_mode

list of

a) Modified data structures of the parse tree

b) Modified data structures of the query tree

GroupClause

List *groupClause

Figure 2-7 Modifications in the Main Query Processing Data Structures
(PostgreSQL)

2.3.1. The Optimizer

Traditionally, the aggregation nodes of execution plans have only one input plan

tree, i.e., a data input plan tree, which represents the query that generates the

data to be grouped. To support supervised similarity grouping, the aggregation

nodes make use of a second input plan tree to receive the reference points data.

Given that in many query engine implementations all the plan tree nodes inherit

from a generic plan node that supports two input plan trees; aggregation nodes

can make use of a second input plan tree without major changes to the plan

tree’s data structures. Figure 2-8.a presents the structure of the plan trees when

one SGA is used. A sort node that orders by the grouping attribute is added on

top of the data input plan tree, and in the case of supervised grouping, another

sort node is added on top of the reference-points input plan tree. This order is

assumed by the routines that form the similarity groups. When multiple SGAs are

used, they are processed one at the time. Figure 2-8.b gives the structure of the

plan trees generated when two SGAs a1 and a2 are used. The bottom

aggregation node applies similarity grouping on a1 and regular aggregation on

a2. The result of this node is further aggregated by the top aggregation node that

33

applies similarity grouping on a2 and regular aggregation on a1. This approach

can be extended directly to support any number of attributes.

Agg (a1 around T1), or

Agg (a1 delimited by T1)

1. SELECT … FROM (T)

GROUP BY a1 AROUND (T1)

Sort (a1)

T T1

2. SELECT … FROM (T)

GROUP BY a1 DELIMITED BY (T1)

Sort (T1.col)

Agg (a1 Max_Elmt_Sep s)

3. SELECT … FROM (T)

GROUP BY a1

MAX_ELMT_SEPARATION s

Sort (a1)

T

Agg (a2 around T2, a1), or

Agg (a2 delimited by T2, a1)

1. SELECT … FROM (T)

GROUP BY a1 AROUND (T1),

a2 AROUND (T2)

Sort (a2)

T2

2. SELECT … FROM (T)

GROUP BY a1 DELIMITED BY (T1),

a2 DELIMITED BY (T2)

Sort (T2.col)

3. SELECT … FROM (T)

GROUP BY

a1 MAX_ELMT_SEPARATION s1,

a2 MAX_ELMT_SEPARATION s2

Agg (a1 around T1, a2), or

Agg (a1 delimited by T1, a2)

Sort (a1)

T T1

Sort (T1.col)

Agg (a2 Max_Elmt_Sep s2, a1)

Sort (a2)

Agg (a1 Max_Elmt_Sep s1, a2)

Sort (a1)

T

a) One grouping attribute

b) Multiple grouping attributes

Figure 2-8 Path/Plan Trees for Similarity Grouping

A similarity-based group can combine tuples that have different values of the

grouping attribute. Thus, the value of a grouping attribute A in an output tuple T is

a representative of the values of this attribute in the tuples that form T. In our

implementation, the central point of a group is selected as the representative

value when SGB-A is used, the smaller delimiting point when SGB-D is used,

and the average of the minimum and maximum values of A in the tuples that

form T when SGB-U is used. Each aggregation node is able to process one SGA

34

and any number of regular grouping attributes. The group formation routines are

presented in Section 2.3.2. Some additional modifications have to be

implemented to ensure the correct calculation of the aggregation functions when

the aggregation operation is divided into several aggregation nodes. For

aggregation functions F for which F(SetA U SetB) cannot be computed from

F(SetA) and F(SetB), e.g., Avg, the bottom aggregation nodes calculate

intermediate information, e.g., Sum and Count, instead of directly computing the

values of the aggregation function F. The top aggregation node processes the

intermediate information and computes the correct final results. For the

aggregation function Count for which Count(SetA U SetB) is not equal to

Count(Count(SetA),Count(SetB)) but equivalent to Sum(Count(SetA),

Count(SetB)), the bottom aggregation node uses the function Count while the

upper nodes aggregate the intermediate result using Sum. Another important

change in the optimizer is in the way the number of groups generated by a

similarity aggregation operation is estimated. This key estimation is used to

compare different query execution paths and is commonly based on the number

of groups each grouping attribute would generate if used alone (NA). In regular

grouping, NA is the number of different values of a grouping attribute and

appropriate statistics are maintained to estimate it. In the case of supervised

similarity grouping, NA should be estimated as the number of tuples of the

reference points query. In the case of unsupervised similarity grouping, NA can

be estimated as the number of different values of the grouping attribute divided

by a constant. The estimated number of groups (ENG) can be used to reduce the

cost of queries with several similarity aggregation attributes. Given that the order

of processing these attributes does not change the final result, they can be

arranged to reduce the number of tuples that flow to upper nodes.

2.3.2. The Executor

When several SGAs are used, the constructed query plan uses several

aggregation nodes where the result of each aggregation node is pipelined to the

next one. The hash-based executor routines that form the groups in each

35

aggregation node are expected to be able to handle one SGA and zero or more

regular grouping attributes. The tuples received from the input plans of the data

and reference points have been previously sorted by sort nodes added in the

plan construction stage as explained in Section 2.3.1. The executor routines

process the input tuples sequentially and form the similarity groups following a

plane sweep approach. A vertical line is swept across the sorted data tuples from

left to right. At any time, a set of current groups is maintained and each time the

line reaches a tuple the system evaluates whether this tuple belongs to the

current groups, does not belong to any group, or starts a new set of groups. The

main execution routine is modified to call appropriate subroutines that handle the

different grouping strategies. In the regular implementation of PostgreSQL, this

routine calls the subroutines agg_fill_hash_table and agg_retrieve_hash_table.

The first routine forms the groups using a hash table, and the second retrieves

the resulting tuples, one tuple at the time. In the case of similarity grouping, the

main routine calls extensions of these two routines that form and retrieve the

similarity groups. The rest of this section describes the extensions of these

subroutines for the case of SGB-A.

To simplify the presentation we do not distinguish between a tuple and its value,

this should be clear from the context. If the value is being used, it corresponds to

the value of the SGA of this node, or the attribute representing the central points.

In agg_fill_hash_table_around, both, the tuples to be grouped and the central

points are processed sequentially. At any point, the routine maintains the current

and next central points and it processes the data tuples to form the group(s)

around the current central point. The sequence of values of the grouping attribute

that satisfies the conditions MAXIMUM_GROUP_ DIAMETER and

MAXIMUM_ELEMENT_SEPARATION is called a chain. When the distance of at

least one of the values of the chain to the central point is smaller than

MAXIMUM_ELEMENT_SEPARATION we say that the chain is connected.

Tuples that belong to a chain are considered candidates to form similarity

groups. The hash table entries corresponding to these potential groups are

36

marked active. If the routine finds that the current chain is connected then it

changes the status of the entries to final. If there is no element that connects the

chain to the central element, the entries are marked inactive. Tuples that do not

belong to any group under the current SGA are also assigned to hash table

entries. These entries are marked as outlier. Outlier entries are maintained to

allow the correct group formation in subsequent similarity grouping nodes when

several SGAs are used. This ensures that the final result of a Similarity Group-by

query is not affected by the order in which its SGAs are processed. Outlier

entries are not considered to calculate the results of aggregation functions since

the final groups are composed only by tuples that belong to some group under

each SGA. Additionally, the tuple structure is extended with a status field that is

used to determine if a tuple is an outlier or not. For each data tuple T, the routine

performs a test to check if the distance from T to the current central point C is

smaller than the value of the parameter MAXIMUM_GROUP_DIAMETER/2 (i.e.,

the radius) and that T is closer to the current central point than to the next one. If

the test fails and T is located to the left of C, T is an outlier. Consequently, the

value of the SGA of this tuple is replaced by a constant and this modified tuple is

inserted in the hash table marking the associated entry as outlier. If the test fails

and T is located to the right of C, the routine finishes processing the current

groups, starts the formation of the groups around the next central point, and

processes T with the new central point. If the test succeeds and T has not been

marked outlier previously, T is processed with the current central point. All the

possible arrangements of the previous and current data tuples and current and

next central points are considered and appropriate actions taken in each case.

For instance, if (1) the distance between the previous and current tuples is

greater than MAXIMUM_ELEMENT_ SEPARATION, (2) the current tuple is

connected to the current central point, and (3) the current chain (without

considering the current tuple) is not connected; the current groups are dismissed,

i.e., marked inactive, a new chain is started having the current tuple T as its first

element, and if T is not an outlier, the aggregation calculations of the associated

37

group are updated with the values of T. The process of advancing a tuple, i.e.,

updating the aggregation calculations of the associated group with the values of

the tuple, uses a similarity version of the tuple replacing the grouping attribute

value with the value of the current central point. The agg_retrieve_hash_table_

around routine is a variation of agg_retrieve_hash_table. It returns the entries

marked final when called from the last SGA of a SGB query. Otherwise, it returns

the entries marked final or outlier.

The changes in the executor required to support the other similarity grouping

strategies can be implemented using similar guidelines. The cost of group

formation in SGB nodes is very close to the one of the regular Group-by since

each tuple is processed once and in almost constant time. The additional cost of

the SGB operators is due to the additional comparison operations and hash table

status maintenance. Although we focus on the hash-based approach, some of

the basic mechanisms employed by this approach to control the extent of the

groups can be used by a simpler sort-based approach to answer single-GA

similarity aggregation queries.

2.4. Performance Evaluation

We implemented the proposed SGB operators inside the PostgreSQL 8.2.4

query engine. This section presents the results of the performance study of these

operators. The main cost considered is the query execution time.

2.4.1. Test Configuration

The dataset used in the performance evaluation is based on the one specified by

the TPC-H benchmark [51]. The tables, additional attributes, and queries used in

the tests are presented in Figures 2-9 and 2-10. The default dataset scale factor

(SF) is 1, i.e., the dataset size is about 1GB. All the experiments are performed

on an Intel Dual Core 1.83GHz machine with 2GB RAM running Linux as

operating system. We use the default values for all PostgreSQL configuration

parameters. The results presented in this section consider the average of the

38

warm performance numbers having 95% confidence and an error margin less

than ±5%.

2.4.2. Performance Evaluation

The focus of the performance evaluation is to study the scalability and overhead

of the Similarity Group-by operators and compare them with the ones of the

regular Group-by.

Part(P), Supplier(S), PartSupp(PS), Customer(C), Orders(O), LineItem(L), Nation(N)

Reference Points Tables

RefPoints_all: All values used by C_acctbal

RefPoints_1b: 50*SF-1 points that partition C_acctbal’s domain in 50*SF

 segments of equal length. For SF=1: {-780,560,...,9780}

RefPoints_x: 50*SF points that correspond to the center of the segments of

 RefPoints_1b. For SF=1: {-890,-670, ...,9890}

RefRevLevels: 10 order revenue levels. {20000,60000,…,380000}

MktCmpRefDates: Marketing campaign dates. Random in the range of O_orderdate.

RefDiscLevel: 5 discount levels. {0.010, 0.030, ..., 0.090}

TPC-H Tables

C.c_acctbal_xb: Similar to C_acctbal but without values in SF*50 segments of length

 1.1 around the points of RefPoints_1b

C.c_acctbal_x: Similar to C_acctbal

C.c_segment_x: Integer. Random [0,19]. Represents ways to segment clients

O.o_clerkType: Integer. Random [1,50]. Represents a way to segment clerks

Figure 2-9 Performance Evaluation Dataset

39

GB
SELECT c_acctbal count(c_acctbal), min(c_acctbal), max(c_acctbal), sum(c_acctbal),
avg(c_acctbal) FROM C GROUP BY c_acctbal

Queries used in Section 2.4.2.1

GB(SGB) <GB> AROUND <RefPoints_all>

SGB-A <GB> AROUND <RefPoints_1>

SGB(GB)

SELECT count(R2.A), min(R2.A),max(R2.A),sum(R2.A), avg(R2.A) FROM
 (SELECT c_acctbal as A, min(abs(c_acctbal - refpoint)) as B FROM C, RefPoints_1 GROUP
 BY C.c_acctbal) as R1, (SELECT c_acctbal as A, refpoint as C, abs(c_acctbal - refpoint) as
 B FROM C, RefPoints_1) as R2
WHERE R1.A=R2.A and R1.B=R2.B GROUP BY R2.C

SGB-A_MR SGB-A + 'MAXIMUM_GROUP_DIAMETER 2r'. r =11000/(100*SF)

SGB-A_MS SGB-A + MAXIMUM_ELEMENT_SEPARATION 1

SGB-D <GB> DELIMITED BY <RefPoints_1b>

SGB-U_MR <GB> MAXIMUM_GROUP_DIAMETER d. d =11000/(50*SF)

SGB-U_MS
SGB-U_MR using 'MAXIMUM_ELEMENT_SEPARATION 1' instead of

'MAXIMUM_GROUP_DIAMETER d'

GB
SELECT sum(c_acctbal_1), …, sum(c_acctbal_n), c_acctbal_1, …, c_acctbal_n FROM C

GROUP BY c_acctbal_1,…, c_acctbal_n

Queries used in Section 2.4.2.2. n=number of similarity grouping attributes (SGAs)

SGB
SELECT sum(c_acctbal_1), …, sum(c_acctbal_n), c_acctbal_1, …, c_acctbal_n FROM C

GROUP BY c_acctbal_1 AROUND <RefPoints_1> … c_acctbal_n AROUND <RefPoints_n>

SGB_MR SGB +'MAXIMUM_GROUP_DIAMETER 220' in each SGA

SGB_MS SGB +'MAXIMUM_ELEMENT_SEPARATION 1' in each SGA

<Query>+5 <Query> + 'c_acctbal_1b, …, c_segment_5' in the GROUP BY clause

Lazy1

SELECT L.l_discount as DcntLevel, O.o_clerkType, sum(L.l_discount)
FROM L, O WHERE L.l_orderkey=O.o_orderkey
GROUP BY O.o_clerkType, L.l_discount AROUND <RefDiscLevel>

Queries used in Section 2.4.2.3

Business question: Study the discount level (DL) given by each type of clerk

Eager1

SELECT R1.l_discount as DcntLevel, O.o_clerkType, sum(R1.CNT) FROM O,
 (SELECT L.l_discount, L.l_orderkey, count(L.l_discount) as CNT FROM L GROUP BY
 L.l_orderkey, L.l_discount AROUND <RefDiscLevel>) AS R1
WHERE R1.l_orderkey=O.o_orderkey GROUP BY R1.l_discount, O.o_clerkType

Lazy2

(Eager2)

Lazy1 (Eager1) + 'AND O.o_orderdate between '1994-06-17' and

'1995-06-17' ' in the WHERE clause

Business question: Study the DL given by each type of clerk in the past six months

GB1 Same as TPC-H Q3

Business question: Retrieve the unshipped orders with the highest value

SGB1

SELECT revenue as RevLevel, count(revenue), min(revenue), max(revenue), avg (revenue)
FROM (SELECT l_orderkey, sum(l_extendedprice*(1-l_discount)) as
 revenue FROM C, O, L WHERE c_mktsegment = 'BUILDING' and c_custkey =
 o_custkey and l_orderkey = o_orderkey and o_orderdate < date '1995-03-15' and
 l_shipdate > date '1995-03-15' GROUP BY l_orderkey) as R1
GROUP BY revenue AROUND <RefRevLevels>

Business question: Clusters the unshipped orders around revenue levels of interest

GB2 Same as TPC-H Q9

Business question: Report profit of a line of parts during marketing campaigns

SGB2

SELECT nation, o_orderdate as MktCmpRefDate, sum(amount) as sum_profit
FROM (SELECT n_name as nation, o_orderdate, l_extendedprice * (1 - l_discount) -
 ps_supplycost * l_quantity as amount FROM P, S, L, PS, O, N WHERE
 s_suppkey = l_suppkey and ps_suppkey = l_suppkey and ps_partkey = l_partkey and
 p_partkey = l_partkey and o_orderkey = l_orderkey and s_nationkey = n_nationkey and
 p_name like '%green%') as profit
GROUP BY nation, o_orderdate AROUND <MktCmpRefDates>
MAXIMUM_GROUP_DIAMETER interval '14 day' ORDER BY nation

Business question: Report profit on a given line of parts (by supplier nation and year)

GB3 Same as TPC-H Q18

Business question: Retrieve clusters of customers with similar buying power

SGB3

SELECT TotalBuy as TotalBuyLevelRef, min(TotalBuy), max(TotalBuy), count(TotalBuy),
avg(TotalBuy)
FROM (SELECT c_name,c_custkey,sum(l_extendedprice) as TotalBuy FROM C, O, L WHERE
 c_custkey = o_custkey and o_orderkey = l_orderkey and o_orderkey IN
 (SELECT l_orderkey FROM L GROUP BY l_orderkey HAVING sum(l_quantity) > 300)
 GROUP BY c_name,c_custkey)
GROUP BY TotalBuy MAXIMUM_GROUP_DIAMETER 200000
MAXIMUM_ELEMENT_SEPARATION 20000

Business question: Retrieve large volume customers

Figure 2-10 Performance Evaluation Queries

40

2.4.2.1. Increasing Dataset Size

Figure 2-11 gives the execution time of several aggregation queries for different

dataset sizes. The number of tuples in table Customer is 15,000*SF while the

number of tuples in the reference points tables is 50*SF. The key result of this

experiment is that the execution times of all the queries that use Similarity Group-

by, i.e., SGB-X, are very close to the execution time of the regular aggregation

query GB for all the dataset sizes. Even in the worst case scenario represented

by GB(SGB)_X, i.e., SGB query produces the same result as GB, the execution

time of GB(SGB) is at most only 25% bigger than the one of GB. The optimizer

selected the sort-based approach to execute GB. GB(SGB)_H and GB(SGB)_S

use the hash-based and sort-based similarity grouping approaches respectively.

The SGB parameters and the data used in this test have been selected such that

all the SGB queries generate approximately the same result. SGB-A_H and

SGB-A_S are queries that use Group-by-around without additional clauses. They

are executed using the hash-based and sort-based approaches respectively. The

execution time of SGB-A_H is about 12% bigger than that of GB while the

execution time of SGB-A_S is about 2% bigger than that of GB. The execution

time of SGB-A_S is about 9% smaller than the one of SGB-A_H because the

hash-based approach makes use of an additional sort node. Given that the hash-

based approach supports queries with multiple similarity grouping attributes

(SGAs), the execution time of the other SGB queries consider this approach. The

execution time of SGB-A_MD and SGB-A_MS, variants of SGB-A that use

parameters MAXIMUM_GROUP_DIAMETER and MAXIMUM_ELEMENT_

SEPARATION respectively, are around 2% and 6% bigger than the one of the

simple SGB-A query. This is due to the extra calculations that need to be

performed to ensure that the produced groups comply with the specified

parameters, and the overhead of keeping track of the status of hash table

entries. As expected, the Group-by-delimited-by query SGB-D performs almost

exactly as SGB-A, and the queries with unsupervised similarity grouping, i.e.,

SGB-U_MD and SGB-U_MS, perform similarly to SGB-A_MD and SGB-A_MS

41

respectively. In all the cases the difference is less than 2%. In the following

experiments we use Group-by-around as a representative of the Similarity-

Group-by queries.

Figure 2-11 Performance while Increasing Dataset Size

Although in general it is not possible to produce the output of SGB queries using

only regular SQL operations, this is feasible in the following special cases: (1)

SGB-A without conditions (assuming there are no points whose distance to the

closest two central points are the same) can be obtained using a complex mix of

aggregations and joins as presented in query SGB(GB) of Figure 2-10; SGB-A

with MAXIMUM_GROUP_ DIAMETER can be implemented using further

selection predicates; and (2) SGB-D can be obtained using a complex query

similar to SGB(GB). Figure 2-12 compares the execution time of SGB(GB) with

that of SGB-A. The presented results show that the execution time and scalability

properties of the query that uses Similarity Group-by is much better than those of

the query that uses only regular SQL operations. The execution time of SGB(GB)

0

50

100

150

200

2 6 10 14

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Dataset Size (SF)

GB

GB(SGB)_H

GB(SGB)_S

SGB-A_H

SGB-A_S

SGB-A_MD

SGB-A_MS

SGB-D

SGB-U_MD

SGB-U_MS

42

grows from being 500% bigger than that of SGB-A for SF=1 to being 1300%

bigger for SF=14.

Figure 2-12 Performance of Generating Similarity Groups with Group-by Vs.
Similarity Group-by

2.4.2.2. Increasing the Number of SGAs

Figure 2-13 gives the execution time of SGB queries when the number of SGAs

increases. As in the previous test, all the SGB queries generate similar results.

The query GB is included as a reference. The optimizer selected sort-based

grouping to execute this query. Even though the implementation to support

multiple SGAs makes use of one aggregation node per similarity grouping

attribute, the execution times of all the SGB queries, i.e., SGB, SGB_MD, and

SGB_MS, scale well when the number of SGAs increases. Furthermore, the way

they scale is similar to the one the regular aggregation query GB scales. Each

query QRY+5 represents the query QRY with five additional regular grouping

attributes. In all the cases, these extra attributes have a very small effect (1% to

5% of additional cost) on the execution time of similarity aggregation queries

0

500

1000

1500

2000

2500

3000

0 5 10 15

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Dataset Size (SF)

SGB-A_H

SGB-A_S

SGB(GB)

43

because they are handled using the same hash tables used in the similarity-

based aggregation nodes.

Figure 2-13 Performance while Increasing Number of SGAs

2.4.2.3. Complex Queries

Figure 2-14 gives the execution time of several real world similarity aggregation

queries and presents scenarios in which the Eager and Lazy query

transformation techniques presented in Section 2.2 are used. Figure 2-10 gives

the details of the queries used in this section and the business question they help

to answer. The similarity-based queries used in this experiment are a small

representative set of the queries that can be built using the introduced similarity

operators to answer real world business questions. Lazy1 and Eager1 are

equivalent queries that obtain information about discount levels given by the

different clerk types. The discount values are grouped around a set of discount

levels of interest. Lazy1 performs first the join and after that the similarity

grouping while Eager1 preaggregates all the discount values in table Lineitem

that correspond to the same order, joins the result with table Orders, and finally

aggregates all the orders that belong to the same clerk type. The execution time

of Eager1 is 13% smaller than that of Lazy1. The reason is that the similarity-

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15

Ex
e

cu
ti

o
n

 T
Im

e
(s

)

Similarity Grouping Attributes

GB SGB
SGB_MD SGB_MS
SGB+5 SGB_MD+5
SGB_MS+5

44

based preaggregation step reduces significantly the number of tuples to be

processed by the join operator. Lazy2 and Eager2 are also equivalent queries,

and are similar to Lazy1 and Eager1, respectively, but only consider the orders

made in the past six months. In this case, the execution time of Lazy2 is 40%

smaller than that of Eager2. In this case the join is significantly more selective

and reduces in Lazy2 the number of tuples to be processed by the similarity

aggregation operator. SGB1, SGB2, and SGB3 are three variants of the TPC-H

queries Q3 (GB1), Q9 (GB2), and Q18 (GB3) respectively. They all provide richer

information and are potentially more useful for the decision maker than their

regular aggregation counterparts. For instance, GB2 reports the profits on a

given line of parts while SGB2 reports how those profits change during marketing

campaigns; GB3 retrieves large volume customers while SGB3 clusters those

costumers in groups of similar buying power. In all cases, the similarity

aggregation queries have a comparable execution time to the ones of their

regular aggregation counterparts.

Figure 2-14 Performance of Complex Queries

0

50

100

150

200

250

300

Lazy1 Eager1 Lazy2 Eager2 GB1 SGB1 GB2 SGB2 GB3 SGB3

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

45

CHAPTER 3 THE SIMILARITY JOIN DATABASE OPERATOR

Similarity Joins have been studied as key operations in multiple application

domains, e.g., record linkage, data cleaning, multimedia and video applications,

and phenomena detection on sensor networks. Multiple Similarity Join algorithms

and implementation techniques have been proposed. They range from out-of-

database approaches for only in-memory and external memory data to

techniques that make use of standard database operators to answer Similarity

Joins. Unfortunately, there has not been much study on the role and

implementation of Similarity Joins as database physical operators. In this

chapter, we focus on the study of Similarity Joins as first-class database

operators. We present the definition of several Similarity Join operators and

study the way they interact among themselves, with other standard database

operators, and with other previously proposed similarity-aware operators. In

particular, we present multiple transformation rules that enable similarity query

optimization through the generation of equivalent similarity query execution

plans. We then describe an efficient implementation of two Similarity Join

operators, Ɛ-Join and Join-Around, as core DBMS operators. The performance

evaluation of the implemented operators in PostgreSQL shows that they have

good execution time and scalability properties. The execution time of Join-

Around is less than 5% of the one of the equivalent query that uses only regular

operators while Ɛ-Join’s execution time is 20 to 90% of the one of its equivalent

regular operators based query for the useful case of small Ɛ (0.01% to 10% of

the domain range). We also show experimentally that the proposed

transformation rules can generate plans with execution times that are only 10%

to 70% of the ones of the initial query plans.

46

3.1. Similarity Join Operators

The generic definition of the Similarity Join (SJ) operator is as follows:

 {〈 〉 |

where θs represents the Similarity Join predicate. This predicate specifies the

similarity-based conditions that the pairs <a,b> need to satisfy to be in the

Similarity Join output. The Similarity Join predicates for the Similarity Join

operators considered in our study are as follows.

1. Range Distance Join (Ɛ-Join):

2. kNN-Join:

3. k-Distance-Join (kD-Join):

 〈 〉

4. Join-Around (A-Join):

The range distance, kNN, and k-Distance join operators are common and

extensively used types of Similarity Join. The Join-Around is a new useful type of

Similarity Join that combines some properties of both the range distance and

kNN joins. Every value of the first joined set is assigned to its closest value in the

second set. Additionally, only the pairs separated by a distance of at most r are

part of the join output. MD stands for Maximum Diameter and r=MD/2 represents

the maximum radius. As presented in Section 3.2, the Join-Around operator with

MD=∞ is equivalent to the kNN-Join for k=1. Some queries that show the

usefulness of this new type of Similarity Join are presented later in this section.

47

Figure 3-1 shows an extension of SQL syntax to express the different types of

Similarity Join predicates. Figure 3-2 shows examples of the four types of

Similarity Join operators when they are applied to two numerical datasets.

Similarity Joins are core operations in multiple application domains, e.g., data

cleaning, pattern recognition, bioinformatics, multimedia, phenomena detection

on sensor networks, marketing analysis, etc. Many of these scenarios, e.g.,

pattern recognition and bioinformatics, inherently need the support of Similarity

Joins on multidimensional data. However, there are also many application

scenarios, e.g., marketing analysis and phenomena detection on sensor

networks, that can greatly benefit from the use of Similarity Joins on one

dimensional data. Figure 3-3 gives four similarity queries that use Similarity Joins

to answer business-oriented questions in a decision support system. The

presented similarity queries are extensions of several conventional TPC-H

queries [51]. The similarity queries in Figure 3-3 show that the use of Similarity

Joins allows answering more complex and interesting business questions.

ε-Join: SELECT … FROM A, B WHERE A.a WITHIN ε OF B.b

Around-Join: SELECT … FROM A, B WHERE A.a AROUND B.b [MAX_DIAMETER 2r]

kNN-Join: SELECT ... FROM A, B WHERE B.b k NEAREST_NEIGHBOR_OF A.a

kD-Join: SELECT ... FROM A, B WHERE A.a k TOP_CLOSEST_PAIRS B.b

Figure 3-1 Extended SQL Syntax for Similarity Join Predicates

A

ε

k=2

ε-Join

B A B A B

Join-AroundkNN-Join

A B

kD-Join

k=2

r

Figure 3-2 Types of Similarity Join

48

Business Question: Study how well the order priority system works around

dates of interest (holydays, marketing campaigns, etc.)
Select d_refdate, o_orderpriority, count(*) as order_count from orders, DatesOfInterest

Where o_orderdate AROUND d_refdate

 and exists (Select * from lineitem

 Where l_orderkey = o_orderkey and l_commitdate < l_receiptdate)

group by o_orderpriority, d_refdate order by o_orderpriority, d_refdate

Original TPC-H Query

Q4 – Business Question: Study how well the order priority system is

working in a given quarter

Similarity-aware Query

Business Question: Study the revenue volume done between local

(nearby) suppliers and customers (Revenue of “short distance”orders)
Select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue

From customer, orders, lineitem, supplier, nationSupp NS, nationCust NC, region

Where c_custkey = o_custkey and l_orderkey = o_orderkey

 and l_suppkey = s_suppkey and c_location WITHIN Ɛ TO s_location

 and c_nationkey = NC.n_nationkey and s_nationkey = NS.n_nationkey

 and NC.n_regionkey = NS.n_regionkey and NC.n_regionkey = r_regionkey

 and r_name = '[REGION]' and o_orderdate >= date '[DATE]'

 and o_orderdate<date '[DATE]'+interval '1' year

group by n_name order by revenue desc

Original TPC-H Query

Q5 – Business Question: Study the revenue volume done between

suppliers and customers of the same country

Similarity-aware Query

Business Question: Forecast revenue change that would have resulted

from eliminating certain discounts on certain date ranges of interest

(holydays, marketing campaigns, etc.)
Select d_refdate, sum(l_extendedprice*l_discount) as revenue

From lineitem, DatesOfInterest

Where l_shipdate AROUND d_refdate MAX_SIZE 'D' day

 and l_discount between [DISCOUNT] - 0.01 and [DISCOUNT] + 0.01

 and l_quantity < [QUANTITY]

Group by d_refdate;

Original TPC-H Query
Q6 – Business Question: Forecast revenue change that would have

resulted from eliminating certain discounts in a given year
Similarity-aware Query

Business Question: Classify customers based on their buying power
Select c_name, c_custkey, r_refRevlevel

From (Select c_name, c_custkey, sum(l_extendedprice) as TotalBuy

 From customer, orders, lineitem

 Where o_orderkey in (Select l_orderkey From lineitem

 Group by l_orderkey Having sum(l_quantity) > [QUANTITY])

 and c_custkey = o_custkey and o_orderkey = l_orderkey

 Group by c_name, c_custkey), RevenueLevelsOfInterest

Where TotalBuy AROUND r_refRevlevel Order by r_refRevlevel

Original TPC-H Query
Q18 – Business Question: Find large volume(quantity) customers. Large

volume orders are the ones with a total quantity greater than a given level.
Similarity-aware Query

Similarity Query Example 1

Similarity Query Example 2

Similarity Query Example 3

Similarity Query Example 4

Figure 3-3 Examples of the Use of Similarity Join

49

3.2. Optimizing Similarity Joins

This section presents the study of Similarity Join properties and techniques that

enable the optimization of Similarity Join queries through the generation of

alternative execution plans. This section introduces: (1) core equivalence rules

that exploit specific properties of SJs, (2) equivalence rules between multiple SJ

operators and between SJ and Similarity Group-by (SGB) operators, and (3) the

study of Eager and Lazy transformation techniques that exploit pre-aggregation

using Group-by and Similarity Group-by to significantly reduce the amount of

data to be processed by SJs.

3.2.1. Core Equivalence Rules

This section presents multiple equivalence rules that involve the different SJ

operators. This section not only considers the extension of common equivalence

rules to the case of Similarity Joins, but particularly also studies scenarios that

exploit certain specific properties of SJs to enable more effective query

transformations. The rules in this section and in section 3.2.2 use the notation

presented in Figure 3-4. The examples assume the following relations’ content:

E1=E2=E3={1,2,...,100}, and E4={21,22,...,25}.

Ei a relation

ei an attribute of Ei

σ and the selection and join operators respectively

θ a non similarity predicate
θƐ, θkNN, θkD, θA the different similarity join predicates as defined in section III

GAγF(AA)(R)

the aggregation operator
is the relation being aggregatedR
 the aggregation attributesAA
 the aggregation functionsF
the grouping attributes. It can be a simple attribute in the
case of regular grouping, or an expression like E1.e1
around E2.e2 in the case of Similarity Group Around
(SGB-A), a type of similarity grouping that groups the
tuples of E1 around a set of central points (tuples of E2)
assigning every tuple of E1 to the group of the central
point with the minimum dist (E1.e1, E2.e2) [24]

GA

Figure 3-4 Notation for Equivalence Rules

50

3.2.1.1. Basic Distribution of Selection over SJ

The regular selection operation distributes over the Similarity Join operations

according to the following rules.

When all the attributes of the selection predicate θ involve only the attributes of

one of the expressions being joined (E1):

E1. (
)

E2. (
)

E3. (
)

When the selection predicates θ1 and θ2 involve only the attributes of E1, and E2,

respectively:

E4. (
)

Usage: In the RHS of these rules, the selection operator is pushed under the SJ

operators to reduce the number of tuples to be processed by the join. The

transformation from the LHS expression to the RHS one can generate low cost

plans because in general SJ operators are expected to be more costly than

selection filters. Figure 3-5.a presents an example of Rule E1. The numbers next

to the arrows represent the number of flowing tuples in the query pipeline. The

SJ operator of the LHS expression processes a total of 200 tuples while the one

of the RHS expression only processes a total of 105 tuples.

3.2.1.2. Pushing Selection Predicate under Originally Unrelated Join Operand

In the equivalence rules presented in Section 3.2.1.1, each selection predicate θ

is pushed only under the join operand that contains all the attributes referenced

in θ. In the case of Ɛ-Join, the filtering benefits of pushing θ can be further

improved by pushing it under both operands of the join as shown in Rule E5.

E5. (
)

51

σ

E1

a) Distribution of selection over

SJ

S

E2

e1 within

5 of e2

20<e1≤25

100 100

1058

55

Q1: SELECT e1, e2 FROM E1, E2

WHERE e1 within 5 of e2 and 20<e1<=25

σ

E1

S

E2

100
100

55

5

σ

E1

b) Pushing selection predicate under

originally unrelated join operand

S

E2

e1 within

5 of e2

20<e1≤25

100 100

1058

55

σ

E1

S

E2

100 100

55

5

20<e1≤25
σ

15<e2≤3020<e1≤25

15

c) Associativity of SJ operators

Q2: SELECT e1, e2, e2 FROM E1,

E2, E3 WHERE e1 within 5 of e2

and e2 within 0.5 of e3

E1

S

E2

100

100

1058

1058

S

E3

e1 within

5 of e2

e2 within

0.5 of e3

100

E2

S

E3

100
100

1058

100

S

E1

e1 within

5 of e2

100

e2 within

0.5 of e3

d) Associativity rule that enables join on

originally unrelated attributes

Q3: SELECT e1, e2, e4 FROM E1,

E2, E4 WHERE e1 within 5 of e2

and e2 within 5 of e4

E1

S

E2

100

5

605

1058

S

E4

e1 within

5 of e2

e2 within

5 of e4

100

E1

S

E4

100

100

605

55

S

E2

e1 within 5 of e2,

e2 within 5 of e4

5

e1 within

10 of e4

Figure 3-5 Extended SQL Syntax for Similarity Join Predicates

where all the attributes of the selection predicate θ involve only the attributes of

E1, and the selection predicate θ±Ɛ represents a modified version of θ where

each condition is extended by Ɛ and is applied on the join attribute of E2. For

example, if θ = 10 ≤ e1 ≤ 20, then θ±Ɛ = 10–Ɛ ≤ e2 ≤ 20+Ɛ.

Usage: The single selection operator of the LHS expression is used to filter both

inputs of the join in the RHS expression. The transformation from the LHS

expression to the RHS one can generate a plan with even lower cost than the

one generated applying Rule E1. Figure 3-5.b presents an example of Rule E5

52

where the SJ operator of the LHS expression processes a total of 200 tuples

while the one of the RHS expression only processes a total of 20 tuples.

3.2.1.3. Basic Associativity of SJ Operators

Similarity Join operators are associative using the following rules.

Rules with the same type of Similarity Join:

E6. (
)

E7. (
)

E8. (
)

Rules that combine different types of similarity and regular join:

E9. (
)

E10. (
)

E11. (
)

E12.

E13.

where θ1, θƐ1, θA1, and θkNN1 involve attributes from only E1 and E2; θ2, θƐ2, θA2,

and θkNN2 involve attributes from only E2 and E3.

Usage: Given an expression with several SJ operations, the plan cost depends

on how many tuples need to be processed by each SJ operator and the

processing cost of each specific type of SJ. Thus, the cost depends on which SJ

operation is computed first. This will determine the number of flowing tuples to be

processed by the remaining SJ operators. Figure 3-5.c presents an example of

Rule E6. The LHS expression computes first the less selective SJ and processes

53

a total of 1158 tuples in the second one. The RHS expression computes first the

most selective SJ and processes only 200 tuples in the second one. The

optimizer will probably select the RHS plan.

3.2.1.4. Associativity Rule that Enables Join on Originally Unrelated Attributes

In the equivalence rules presented in Section 3.2.1.3, each join predicate

involves the same attributes in both sides of the rule. In the case of Ɛ-Join, when

the attributes e1 of E1 and e2 of E2 are joined using Ɛ1 and the result joined with

attribute e3 of E3 using Ɛ2, there is an implicit relationship between e1 and e3 that

is exploited by the following equivalence rule.

E14. (
)

 (
)

Notice that this rule is expressed using an extended notation that specifies

explicitly the attributes being joined.

Usage: The RHS expression of this rule produces a bottom join that joins

attributes that are not joined in the LHS expression. The transformation from the

LHS expression to the RHS one has the potential to generate a lower cost plan

when the RHS’ bottom join outputs a low number of tuples. Figure 3-5.d presents

an example of Rule E14. The LHS expression processes a total of 200 tuples in

the first SJ and 1063 tuples in the second one. The LHS expression processes

105 tuples in the first SJ and 155 tuples in the second one. Notice that the top

RHS’ SJ has a slightly more complex SJ predicate.

3.2.1.5. Commutativity of SJ Operators

Some similarity Join operations are commutative:

E15.

E16.

kNN-Join and Join-Around operators are not commutative.

54

Usage: Similarly to the case of regular join, the cost of a given implementation of

a SJ operator can be different when considering the larger relation to be joined

as the inner or outer input of the operator. This rule is used to consider both

cases during cost-based optimization.

Additionally, other rules like the distribution of projection over SJ and the

combination of selection predicates with SJ predicates apply to the case of SJs in

a similar way they do to the case of non-similarity joins.

3.2.2. Equivalence among Similarity Operators

The Join-Around and the Similarity Group Around (SGB-A) operators are

equivalent in the following way:

E17.

i.e., a SGB-A operation can be transformed into a regular Group-by applied to

the result of a Join-Around operation.

Usage: This rule can be used to support a similarity grouping operation using the

implementation of the Join-Around.

The following rules describe the special cases in which different Similarity Join

operators are equivalent.

E18.

E19.

if the joins operate on one-dimensional data and 2Ɛ < minimum distance of

consecutive points in E2 , i.e., there is no overlap in the MD ranges.

E20.

if Ɛ = distance of the k-th (longest) link in LHS.

55

3.2.3. Eager and Lazy Transformations with SJ and SGB

An important query optimization approach is the use of pull-up and push-down

techniques to move the grouping operator up and down the query tree. The main

Eager and Lazy aggregations theorem introduced in [40] enables several pull-up

and push-down techniques for the regular, i.e., non-similarity, join and Group-by

operators. This theorem allows the pre-aggregation of data before the join

operator to reduce its input size. The main theorem was extended in section 2.2

to the case of regular join and Similarity Group-by (SGB). This subsection

presents the extension of the main theorem to the case of Similarity Join and

(regular or similarity) Group-by. Furthermore, we study scenarios in which the

similarity predicate of SJ operators can be pushed totally or partially to the

grouping operator.

General usage: Figures 3-7, 3-8, 3-9, and 3-10 illustrate several cases of the

Eager and Lazy transformations that will be studied in detail later in this section.

In general, the single aggregation operator of the Lazy approach is split into two

parts in the Eager approach. The first part pre-evaluates some aggregation

functions and calculates the count before the join. The second part uses the

intermediate information to calculate the final results after the join. Both the

Eager and Lazy versions of a query should be considered during query

optimization since neither of them is the best approach in all scenarios. Joins

with high selectivity tend to benefit the Lazy approach while aggregations that

reduce considerably the number of tuples that flow in the pipeline tend to benefit

the Eager approach.

The presentation of the theorems and proofs in this section use the notation

presented in Figure 3-6. This notation is used because: (1) it allows a direct

comparison with analogous theorems for regular operators [40] that use a similar

notation, and (2) it uses a convenient representation of operators’ arguments that

facilitates the presentation of the theorems and proofs. The Eager and Lazy

aggregation theorems for the case of (1) regular join and Group-by [40], and (2)

56

regular join and Similarity Group-by are presented next. These theorems are

referenced in the new extensions of the theorem studied later in this section.

g[GA]R regular grouping of relation R on grouping attributes GA

g[GA; Seg]R
similarity grouping of relation R on grouping attributes GA
using segmentations Seg. The domain of the nth element of GA
is partitioned by the nth element of Seg

F[AA]R aggregation operation of a previously grouped table R

F and AA sets of aggregation functions and columns, respectively

σ, πD, πA, UA

and

selection, projection with and without duplicate elimination, set
union without duplicate elimination, theta-join, and similarity
join respectively

Rd a table that always contains aggregation attributes
Ru a table that may or may not contain aggregation attributes

GAd and GAu the grouping columns of Rd and Ru, respectively
AA all the aggregation columns

AAd and AAu the subsets of AA that belong to Rd and Ru, respectively
Cd and Cu the conjunctive predicates on columns of Rd and Ru, respectively

C0 the conjunctive predicates involving columns in both Ru and Rd

α(C0) the columns involved in C0

GAd
+ = GAd U α(C0)-Rd, columns that participate in join and grouping

F the set of all aggregation functions
Fd and Fu the members of F applied on AAd and AAu, respectively

FAA
the resulting columns of the application of F on AA in the first
grouping operation of the eager strategy

Seg the set of segmentation of the attributes in GA
Segd and Segu the subsets of Seg for the attributes in GAd and GAu, respectively

NGAd a set of columns in Rd

CNT
the column with the result of Count(*) in the first aggregation
operation of the eager approach

FAAd
the set of columns, other than CNT, produced in the first
aggregation operation of the eager approach

Fua
the duplicated aggregation function of Fu, e.g., if Fu=(SUM,
MAX), then Fua=(SUM, MAX, count) = (SUM*count, MAX)

Figure 3-6 Algebraic Notation for Eager and Lazy Transformation Theorems

Theorem 3-1 Eager/Lazy Aggregation Main Theorem for Group-by and Join. The

following two expressions:

E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

g [GAd, GAu]σ[Cd ^ Cu] (Rd Ru)

57

E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

πA[GAd, GAu, AAu, FAAd, CNT]

g [GAd, GAu]σ[Cu]

(((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

g [NGAd]σ[Cd]Rd) Ru)

are equivalent if (1) Fd can be decomposed into Fd1 and Fd2, (2) Fu contains only

class C or D aggregation functions [40], (3) NGAd → GAd
+ holds in σ[Cd]Rd, and

(4) α(C0) ∩ GAd = Ø.

Expression E1 represents the Lazy approach while expression E2 represents the

Eager approach.

Theorem 3-2 Eager/Lazy Aggregation Main Theorem for Similarity Group-by and

Join. The following expressions:

E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

g [GAd, GAu; Seg]σ[Cd ^ Cu] (Rd Ru)

E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

πA[GAd, GAu, AAu, FAAd, CNT]

g [GAd, GAu; Segu]σ[Cu]

 (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

g [NGAd; Segd]σ[Cd]Rd) Ru)

are equivalent under the same conditions as the ones of Theorem 3-1.

3.2.3.1. Eager and Lazy Transformations with GB and SJ

The Eager and Lazy aggregation transformations can be extended to the case of

Similarity Joins as shown in Theorem 3-3.

Theorem 3-3 Eager/Lazy Aggregation Main Theorem for Group-by and Similarity

Join. The following expressions:

58

E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

g [GAd, GAu]σ[Cd ^ Cu] (Rd ̃ Ru)

E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

πA[GAd, GAu, AAu, FAAd, CNT]

g [GAd, GAu]σ[Cu]

(((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

g [NGAd]σ[Cd]Rd) ̃ Ru)

where ̃ is kNN-Join, Ɛ-Join, or A-Join; are equivalent under the same

conditions as the ones of Theorem 3-1.

Usage: Figure 3-7 illustrates an example of the application of this theorem. The

SJ of the Lazy aggregation expression processes a total of 7 tuples while the

grouping node processes 5 tuples. In the Eager aggregation expression all the

tuples of T1 get combined into one tuple in the bottom grouping node and the SJ

and top grouping operators only need to process 3 and 1 tuples respectively. In

scenarios where T1 has a significant number of tuples with the same value of

(G1, J1) the optimizer will probably favor the Eager approach; otherwise the Lazy

approach will probably be selected.

GB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2) GB

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

GB

SUM(S1) AS SS1,

CNT

G1 , G2

G1 , G2

b) Eager Aggregation a) Lazy Aggregation

G1 , J1
5 2

5

1

2

5

1

1

1

Q5: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE

J1 within 5 of J2 GROUP BY G1, G2

T1

1 11 5

1 11 10

1 11 5

1 11 5

1 11 5

G1 J1 S1

T2

1 11 5

2 20 10

G2 J2 S2

S

J1 within

5 of J2

S

J1 within

5 of J2

Figure 3-7 Eager/Lazy Transformation with GB and SJ

59

Proof sketch of Theorem 3-3

The validity of this theorem relies on the following properties.

P1. Given Rd' and Ru' instances of Rd and Ru respectively, the result of (Rd'

 ̃ Ru') is equivalent to the result of (Rd' Ru') where θ = disjunction of

(Rd.C0d=x ^ Ru.C0u=y) for every different link (x,y) of the result of (Rd' ̃ Ru').

P2. θ, as defined in P1, remains unchanged and valid when Rd' is augmented

with tuples that have already present values of Rd'.C0d, i.e., duplicates, or when

such tuples are removed from Rd'.

The validity of Theorem 3-3 can be shown by following these steps:

For every Rd’ and Ru’ instances of Rd and Ru, respectively,

1. E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

g [GAd, GAu]σ[Cd ^ Cu] (Rd’ ̃ Ru’)

 is equivalent to

E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

g [GAd, GAu]σ[Cd ^ Cu] (Rd’ Ru’),

where θ is defined as in P1.

2. E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] g [GAd, GAu]σ[Cd ^ Cu] (Rd’ Ru’)

is equivalent to

E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

πA[GAd, GAu, AAu, FAAd, CNT]

g [GAd, GAu]σ[Cu]

(((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd] g [NGAd]σ[Cd]Rd’) Ru’)

because of Theorem 3-1.

60

3. E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

πA[GAd, GAu, AAu, FAAd, CNT]

g [GAd, GAu]σ[Cu]

(((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

g [NGAd]σ[Cd]Rd’) Ru’)

is equivalent to

E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

πA[GAd, GAu, AAu, FAAd, CNT]

g [GAd, GAu]σ[Cu]

(((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

g [NGAd]σ[Cd]Rd’) ̃ Ru’)

since the grouping operation before the join merges only tuples that share the

same value of Rd’.C0d, and P2.

3.2.3.2. Eager and Lazy Transformations with SGB and SJ

The Eager and Lazy Aggregation transformations can be extended to the case of

Similarity Join and Similarity Group-by as shown in Theorem 3-4.

Theorem 3-4 Eager/Lazy Aggregation Main Theorem for Similarity Group-by and

Similarity Join. The following two expressions:

E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

g [GAd, GAu; Seg]σ[Cd ^ C0 ^ Cu] (Rd ̃ Ru)

E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

πA[GAd, GAu, AAu, FAAd, CNT] g [GAd, GAu; Segu]σ[C0 ^ Cu]

 (((Fd1[AAd], COUNT)πA[NGAd, GAd
+, AAd]

g [NGAd; Segd]σ[Cd]Rd) ̃ Ru)

61

where ̃ is kNN-Join, Ɛ-Join, or A-Join; are equivalent under the same

conditions as the ones of Theorem 3-1.

Usage: An example of the use of this theorem is presented in Figure 3-8. The

number of tuples flowing in the pipelines is similar to the one of the previous

example. The bottom grouping node of the Eager approach merges tuples that

have: (1) the same value of J1 and (2) values of G2 that belong to the same

similarity group. In the example all the tuples of T1 are merged even though they

have different values of G1.

Proof sketch of Theorem 3-4

The validity of this theorem relies on the validity of Theorem 3-2 and Theorem 3-

3.

SGB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
SGB

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

SGB

SUM(S1) AS SS1, CNT

G1 around {1,20},

G2 around {1,20}

b) Eager Aggregationa) Lazy Aggregation

5 2

5

1

5

1 2

1

1

Q6: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE

J1 within 5 of J2 GROUP BY G1 around {1,20}, G2 around {1,20}

T1

1 11 5

2 11 10

3 11 5

4 11 5

5 11 5

G1 J1 S1

T2

1 10 5

2 20 10

G2 J2 S2
S

S

J1 within

5 of J2

J1 within

5 of J2

G1,

G2 around {1,20}

G1 around

 {1,20}, J1

Figure 3-8 Eager/Lazy transformation with SGB and SJ

3.2.3.3. Pushing Similarity Predicate from Ɛ-Join to GB

This subsection and the following one explore ways to further enhance the

filtering power of the pre-aggregation step of the Eager approach pushing down

the similarity predicates from the SJ operator to the grouping one. The

62

equivalences described in these subsections are enhancements over the one

presented in Section 3.2.3.1.

The similarity predicate of the Ɛ-Join can be (partially) pushed down to a

grouping operator as shown in Figure 3-9. The bottom aggregation of the Eager

approach performs regular aggregation on G1 and similarity aggregation SGB-A'

on J1 around J2 with MAX_GROUP_DIAMETER = 2Ɛ. SGB-A' is a variation of

similarity group around (SGB-A) that only merges tuples that are linked to only

one central point (J2) by the Ɛ-Join. The value of J1 in a resulting tuple of SGB-A'

can be the value of the central point, i.e., J2, or any of the values of J1 of the

grouped tuples. In both cases, the Ɛ-Join of the Eager approach will generate the

correct join links. SGB-A' generates at most one group per different value of J2,

i.e., tuples with the same value of J2 in T2 are treated as a single central point.

The goal of pushing the similarity predicate from SJ to the aggregation operator

is to increase the number of pre-aggregated tuples while maintaining a grouping

operator that can be executed quickly. SGB-A has been shown to have an

execution time not higher than 25% of that of the regular Group-by for one

dimensional data. SGB-A' is expected to perform similarly.

Usage: In the example presented in Figure 3-9, the bottom grouping node of the

Eager approach merges all the tuples of T1 even though they have different J1

values. Notice that applying the transformation of Section 3.2.3.1 to this case

would generate five tuples rather than one as the result of the bottom grouping

node of the Eager approach.

The validity of this equivalence relies on the following properties: (1) if two tuples

t1a and t1b are grouped by the bottom aggregation of the Eager approach around

a center point tuple, say t2, then t1a and t1b will always be matched with t2 by the

Ɛ-Join of the Lazy approach; and (2) tuples that are not merged with others at the

bottom aggregation of the Eager approach, are always processed in the same

way in both approaches.

63

GB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
GB

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

SGB

SUM(S1) AS SS1,

CNT

G1 , G2

G1 , G2

b) Eager Aggregation a) Lazy Aggregation

T2

G1,

J1 around'MGD=10 J2

R.r S.s

ε

ε

SGB-A'

 Group by

R.r around'MGD=2Ɛ S.s

5 2

5

1

5
2

1
2

1

1

Q7: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE

J1 within 5 of J2 GROUP BY G1, G2

T1

10 18 5

10 19 5

10 20 10

10 21 5

10 22 5

G1 J1 S1

T2

20 20 10

15 40 5

G2 J2 S2

S

S

J1 within

5 of J2

J1 within

5 of J2

Figure 3-9 Pushing Similarity Predicate from Ɛ-Join to GB

3.2.3.4. Pushing Similarity Predicate from Join-Around to GB

The similarity predicate of the Join-Around can be (completely) pushed down to a

grouping operator as shown in Figure 3-10. The bottom aggregation of the Eager

approach performs regular aggregation on G1 and similarity aggregation SGB-A

on J1 around J2 with MAX_GROUP_DIAMETER = 2Ɛ. The value of J1 in a

resulting tuple of SGB-A is the value of the central point, i.e., J2. This will enable

generating the correct links using only a regular join in the Eager approach. This

regular join is still required to obtain the values of G2 and S2. SGB-A generates

at most one group per different value of J2, i.e., tuples with the same value of J2

in T2 are treated as a single central point.

Usage: As illustrated in Figure 3-10, the Eager approach avoids completely the

use of the SJ operator, using instead a fast Similarity Group-by operator and a

regular join. In the example shown in Figure 3-10, the bottom grouping node of

the Eager approach merges all the tuples of T1 even though they have different

values of J1; applying the transformation of Section 3.2.3.1 would produce five

tuples instead.

64

GB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
GB

T2
(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

J1←J2, SUM(S1)

AS SS1, CNT

G1 , G2
G1 , G2

b) Eager Aggregation a) Lazy Aggregation

J1=J2

G1,

J1 aroundMGD=10 J2

Join

R.r S.s

ε

ε

SGB-A

Group by

R.r aroundMGD=2Ɛ S.s

SGB5 2

5

1

1

1

1 2
S

Q8: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE

J1 around J2 MAX_DIAMETER 10 GROUP BY G1, G2

T1

10 18 5

10 19 5

10 20 10

10 21 5

10 22 5

G1 J1 S1

T2

20 20 10

15 40 5

G2 J2 S2

T1(G1,J1,S1)
T2

5
2

J1 around J2

MD=10

Figure 3-10 Pushing Similarity Predicate from Join-Around to GB

The validity of this equivalence relies on the following properties: (1) if two tuples

t1a and t1b are grouped by the bottom aggregation of the Eager approach around

a center point tuple t2, t1a and t1b are always matched with t2 by the Join-Around

of the Lazy approach; and (2) if two tuples t1a and t1b share the same value of

G1 and are linked to tuple t2 in the Lazy approach, then t1a and t1b will always be

grouped by the bottom aggregation of the Eager approach.

3.3. Implementing Similarity Join

This section presents the guidelines to implement two Similarity Join operators,

Ɛ-Join and Join-Around, inside the query engine of standard RDBMSs. Although

the presentation is intended to be applicable to any RDBMS, some specific

details refer to our implementation in PostgreSQL. One of the goals of the

implementation is to reuse and extend already available routines and structures

to minimize the effort needed to realize these operators. The Ɛ-Join and Join-

Around operators are implemented as extensions of the Sort Merge Join (SMJ)

operator and consider the case of one dimensional numeric data and multiple

Similarity Join predicates.

65

To add support for SJs in the parser, the raw-parsing grammar rules, e.g., yacc

rules in the case of PostgreSQL, are extended to recognize the syntax of the

various new Similarity Join predicates presented in Section 3.1. The parse-tree

and query-tree data structures are extended to include the type and parameters,

e.g., Ɛ, MD, of SJ predicates. The routines in charge of transforming the parse

tree into the query tree are updated accordingly to process the new fields in the

parse tree.

3.3.1. The Optimizer

Figure 3-11.a presents the structure of the plan tree when one Similarity Join

predicate is used. Given that the implementation is based on Sorted Merge Join,

sort nodes that order by the Similarity Join attributes are added on top of the

input plan trees. This order is assumed by the routines that find the similarity

matches, i.e., links. When multiple Similarity Join predicates are used, they are

processed one at a time. Figure 3-11.b gives the structure of the plan tree

generated when two Similarity Join predicates, a~b and c~d, are used. The

bottom Similarity Join makes use of a~b while the top one uses c~d. The routines

that find the similarity matches are presented in Section 3.3.2. Another important

change in the optimizer is in the way the number of tuples generated by a

similarity aggregation node is estimated. This important estimation is used to

compare the cost of different query execution plans. In the case of Join-Around,

the number of resulting tuples can be estimated as the number of tuples in the

inner input dataset. In the case of Ɛ-Join, more complex techniques, e.g.,

employing histograms of the density of elements in metric space [49], can be

employed. The number of output tuples of the kNN-Join can be estimated as (#

of tuples of outer input)*min(k, # of tuples of inner input) while the one of the kD-

Join can be estimated as min(# of tuples of outer input * # of tuples of inner input,

k). The estimated number of output tuples can be used to reduce the cost of

queries with several Similarity Join predicates. Since the order of processing

these predicates does not change the final result, they can be arranged to

minimize the overall cost of the query.

66

Join-Around (a,b), or

Epsilon-JoinƐ (a,b)

1. SELECT … FROM T1, T2

 WHERE T1.a AROUND T2.b

Sort (a)

T1 T2

2. SELECT … FROM T1, T2

 WHERE T1.a WITHIN Ɛ T2.b

Join-Around (c,d), or

Epsilon-JoinƐ2 (c,d)

1. SELECT … FROM T1, T2, T3 WHERE

 T1.a AROUND T2.b AND T2.c AROUND T3.d

Sort (c)

T3

2. SELECT … FROM T1, T2, T3 WHERE T1.a

 WITHIN Ɛ1 OF T2.b AND T2.c WITHIN Ɛ1 OF T3.d

Join-Around (a,b), or

Epsilon-JoinƐ1 (a,b)

Sort (a)

T1 T2

a) One similarity join predicate b) Multiple similarity join predicates

Sort (b)

Sort (d)

Sort (b)

Figure 3-11 Path/Plan Trees for Join-Around and Ɛ-Join

3.3.2. The Executor

When several Similarity Join predicates are used, the constructed query plan

uses several Similarity Join nodes where the result of each node is pipelined to

the next one as illustrated in Section 3.3.1. The executor routines that produce

the similarity links in a SJ node are expected to handle one Similarity Join

predicate. Additionally, they could be extended to handle any number of regular

join predicates. The tuples received from the input plans have been previously

sorted as explained in Section 3.3.1. The executor routines process the input

tuples synchronously following a plane sweep approach.

Figure 3-12 presents the algorithms of the main operation of the regular Sort

Merge Join (3-12.a), Join-Around (3-12.b), and Ɛ-Join (3-12.c). The sections that

were modified to support the SJ operators are shown in bold. It is clear from

Figure 3-12 that the use of the already implemented machinery that supports

67

Sorted Merge Join as the basis to support Similarity Joins, allows a fast and

efficient implementation of both SJ operators.

The SMJ algorithm in Figure 3-12.a operates as follows. Lines 1 and 2 initialize

the outer and inner tuples. Lines 4-9 advance the current inner and outer tuples

until a match is found. When a match is found, Line 10 marks the inner tuple.

Marking a tuple allows repositioning the inner cursor to the marked tuple later in

the process. This key feature is already supported by the access method

interface of PostgreSQL. Lines 13-18 join the current outer tuple with the current

and following inner tuples as long as there is a match between outer and inner.

Once an inner tuple that fails the match is found, the outer tuple is advanced

(Line 19). Lines 20 to 24 test if the new outer tuple matches the marked tuple. If

this is the case the inner cursor is restored to the marked tuple and the new

match is processed, otherwise the process continues looking for a new match.

In the presentation of the algorithms, we assume that there is only one join

predicate, i.e., the similarity predicate. The algorithms can be easily extended to

handle the case of additional regular join predicates. The required changes to

support Ɛ-Join are presented in Figure 3-12.b. As expected, the function that

evaluates if there is match between an outer and an inner tuples (Lines 4, 18,

and 20) needs to be extended. In this case, the similarity predicate outer~inner is

evaluated as distance(outer,inner) ≤ Ɛ. The block that produces the join links, in

Lines 13-18, keeps track of the previous processed input tuple, i.e., prevInner.

This tuple is used in Line 20 to test if there is a match between outer and

prevInner. A positive result of this test means that there is at least one tuple in

the range [mark, prevInner] that matches with the current outer. If this is the

case, we restore the inner cursor to mark. The break command in Line 22

ensures that the process jumps to line 4 to look for a match. This is required

since outer may not match all the tuples in the range [mark, prevInner].

The required changes to support Join-Around are shown in Figures 3-12.c and 3-

13. At any point, the algorithm keeps track of the current outer and inner and the

68

next inner tuple, i.e., nextInner. Lines 2, 8, 16, and 22 in Figure 3-12.c, and Lines

2 and 6 in Figure 3-13 maintain the correct nextInner tuple. The function that

evaluates if there is match between an outer and an inner tuples (used in Lines 5

and 20 in Figure 3-12.c and Line 4 in Figure 3-13) is also extended. In this case,

the similarity predicate outer~inner is evaluated as distance(outer, inner) <

distance (outer,nextInner). The function that evaluates if an inner tuple matches

another inner tuple (used in lines 4 and 18 in Figure 3-12.c and in lines 1 and 3 in

Figure 3-13) evaluates the regular equality operator on the join attribute values.

The expression outer>inner in line 1 of Figure 3-13 ensures that the Similarity

Join attribute of the outer tuple is greater than the one of the inner tuple. In

contrast to the previous algorithms, when the process reaches line 10, there is

not necessarily a match. This happens when there are consecutive inner tuples

with the same join attribute values and the Similarity Join attribute of outer is

greater than the one of inner. In this case, the inner cursor needs to be advanced

until it is possible to check if there is a similarity match. This task is performed by

check_match() as presented in Figure 3-13. If a match is found, then the inner

cursor is restored to mark and the process reports the join links. Otherwise, the

process starts looking for a match again in line 4. The block that reports the join

links is also modified to keep track of the previous inner, i.e., prevInner. This

block (lines 13 to 18) outputs join links for the current inner and the consecutive

inner tuples that have the same value of the join attribute. prevInner is used in

line 18 to test if two consecutive inner tuples have the same join attribute values.

prevInner is also used in line 20 to test if the new outer is closer to prevInner than

to inner. Notice that if the result of this test is true, the new outer matches all the

tuples in the range [mark, prevInner] and the process continues reporting the join

links directly (line 13). The presented algorithms are coded in PostgreSQL in the

fashion of a state machine. Figure 3-12.d shows the states associated to the

different tasks. The implementation of Ɛ-Join and Join-Around use the same set

of states employed by SMJ.

69

S
M
J
o
i
n

{

g
e
t

i
n
i
t
i
a
l

o
u
t
e
r

t
u
p
l
e

g
e
t

i
n
i
t
i
a
l

I
n
n
e
r

t
u
p
l
e

d
o

f
o
r
e
v
e
r

{

w
h
i
l
e

(
o
u
t
e
r

!
=

i
n
n
e
r
)

{

i
f

(
o
u
t
e
r

<

i
n
n
e
r
)

a
d
v
a
n
c
e

o
u
t
e
r

e
l
s
e

a
d
v
a
n
c
e

i
n
n
e
r

}

m
a
r
k

i
n
n
e
r

p
o
s
i
t
i
o
n

d
o

f
o
r
e
v
e
r

{

d
o
{

j
o
i
n

o
u
t
e
r

a
n
d

i
n
n
e
r

a
d
v
a
n
c
e

i
n
n
e
r

p
o
s
i
t
i
o
n

}

w
h
i
l
e

(
o
u
t
e
r

=
=

i
n
n
e
r
)

a
d
v
a
n
c
e

o
u
t
e
r

p
o
s
i
t
i
o
n

i
f

(
o
u
t
e
r

=
=

m
a
r
k
)

r
e
s
t
o
r
e

i
n
n
e
r

t
o

m
a
r
k

e
l
s
e

b
r
e
a
k

}

} }

I
N
I
T
I
A
L
I
Z
E

S
K
I
P
_
T
E
S
T

S
K
I
P
O
U
T
E
R
_
A
D
V
A
N
C
E

S
K
I
P
I
N
N
E
R
_
A
D
V
A
N
C
E

S
K
I
P
_
T
E
S
T

J
O
I
N
T
U
P
L
E
S

N
E
X
T
I
N
N
E
R

N
E
X
T
O
U
T
E
R

T
E
S
T
O
U
T
E
R

T
E
S
T
O
U
T
E
R

N
E
X
T
I
N
N
E
R

d
.
S

ta
te

a
.
S

o
rt

e
d

 M
e

rg
e

 J
o

in

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

E
p
s
i
l
o
n
J
o
i
n

{

g
e
t

i
n
i
t
i
a
l

o
u
t
e
r

t
u
p
l
e

g
e
t

i
n
i
t
i
a
l

i
n
n
e
r

t
u
p
l
e

d
o

f
o
r
e
v
e
r

{

w
h
i
l
e

(
o
u
t
e
r

!
~

i
n
n
e
r
)

{

i
f

(
o
u
t
e
r

<

i
n
n
e
r
)

a
d
v
a
n
c
e

o
u
t
e
r

e
l
s
e

a
d
v
a
n
c
e

i
n
n
e
r

}

m
a
r
k

i
n
n
e
r

p
o
s
i
t
i
o
n

d
o

f
o
r
e
v
e
r

{

d
o
{

j
o
i
n

o
u
t
e
r

a
n
d

i
n
n
e
r

p
r
e
v
I
n
n
e
r

←

i
n
n
e
r

a
d
v
a
n
c
e

i
n
n
e
r

p
o
s
i
t
i
o
n

}

w
h
i
l
e

(
o
u
t
e
r

~

i
n
n
e
r
)

a
d
v
a
n
c
e

o
u
t
e
r

p
o
s
i
t
i
o
n

i
f

(
o
u
t
e
r

~

p
r
e
v
I
n
n
e
r
)

r
e
s
t
o
r
e

i
n
n
e
r

t
o

m
a
r
k

b
r
e
a
k

e
l
s
e

b
r
e
a
k

}

} }

b
.

E
p

s
ilo

n
-J

o
in

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

c
.
J
o

in
-A

ro
u

n
d

J
o
i
n
A
r
o
u
n
d

{

g
e
t

i
n
i
t
i
a
l

o
u
t
e
r

t
u
p
l
e

g
e
t

i
n
i
t
i
a
l

i
n
n
e
r

a
n
d

n
e
x
t
I
n
n
e
r

d
o

f
o
r
e
v
e
r

{

w
h
i
l
e

(
(
i
n
n
e
r

!
=

n
e
x
t
I
n
n
e
r
)
&
&

(
o
u
t
e
r

!
~

i
n
n
e
r
)
)

{

a
d
v
a
n
c
e

i
n
n
e
r

a
n
d

n
e
x
t
I
n
n
e
r

}

m
a
r
k

i
n
n
e
r

p
o
s
i
t
i
o
n

i
f

(
!
c
h
e
c
k
_
m
a
t
c
h
(
)
)

c
o
n
t
i
n
u
e

d
o

f
o
r
e
v
e
r

{

d
o
{

j
o
i
n

o
u
t
e
r

a
n
d

i
n
n
e
r

p
r
e
v
I
n
n
e
r

←

i
n
n
e
r

a
d
v
a
n
c
e

i
n
n
e
r

a
n
d

n
e
x
t
I
n
n
e
r

}

w
h
i
l
e

(
p
r
e
v
I
n
n
e
r

=
=

i
n
n
e
r
)

a
d
v
a
n
c
e

o
u
t
e
r

p
o
s
i
t
i
o
n

i
f

(
o
u
t
e
r

~

p
r
e
v
I
n
n
e
r
)

r
e
s
t
o
r
e

i
n
n
e
r

t
o

m
a
r
k

n
e
x
t
I
n
n
e
r

←

g
e
t
N
e
x
t
(
i
n
n
e
r
)

e
l
s
e

b
r
e
a
k

}

} }

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

I
N
I
T
I
A
L
I
Z
E

T
E
S
T
O
U
T
E
R

S
K
I
P
_
T
E
S
T

F
ig

u
re

 3
-1

2
 M

a
in

 O
p

e
ra

ti
o

n
 o

f
E

p
s
ilo

n
-J

o
in

 a
n

d
 J

o
in

-A
ro

u
n
d

 C
o

m
p
a

re
d

 t
o

 t
h
e

 o
n

e
 o

f
S

o
rt

e
d

 M
e
rg

e
 J

o
in

70

1

2

3

4

5

6

7

8

9

10

11

check_match() {

if ((inner == nextInner) && (outer>inner)){

 do {advance inner and nextInner}

 while(inner == nextInner)

 if (outer ~ inner)

 restore inner to mark

 nextInner ← getNext(inner)

 return True //similarity match

 else return False

}

return True //no need to advance to check match

}

Figure 3-13 Routine check_match

The cost of the proposed SJ operators is close to the one of SMJ for reasonably

small Ɛ (for Ɛ-Join) and inner datasets without many duplicates (for Join-Around)

because: (1) every outer tuple is read once in sequential order; (2) the inner

tuples are read in an almost sequential order, restoring the inner cursor to a

previously read inner tuple is employed to generate the correct SJ links; (3) in Ɛ-

Join, if the inner cursor is restored, the length of the jump, i.e., distance from

previous inner to marked tuple, is at most 2Ɛ; and (4) in Join-Around, if the inner

cursor is restored, all the tuples in the range [marked tuple, previous inner tuple]

share the same value of the Similarity Join attribute.

3.4. Performance Evaluation

We implemented the Ɛ-Join and Join-Around, as described in Section 3.3 inside

the PostgreSQL 8.2.4 query engine. In this section we evaluate the performance

of these operators as well as the effectiveness of several transformation rules for

SJs.

3.4.1. Test Configuration

The dataset used in the performance evaluation is based on the one specified by

the TPC-H benchmark [51]. The Reference points tables and queries used in the

tests are presented in Figure 3-14. The default dataset scale factor (SF) is 5

(5GB). All the experiments are performed on an Intel Dual Core 1.83GHz

machine with 2GB RAM running Linux as OS.

71

Reference Points Table

AccBalLevels1(R1): 110 account balance values in the range of C_acctbal [0,11000]

SELECT * FROM CUSTOMER, AccBalLevels1
WHERE abs(C_acctbal - refpoint) <= Ɛ;

RegOps-JoinAround

SELECT * FROM CUSTOMER, AccBalLevels1

WHERE C_acctbal WITHIN Ɛ OF refpoint;
SJ-EpsJoin

RegOps-EpsJoin

AccBalLevels2(R2): 11000 account balance values in the range of C_acctbal [0,11000]

SELECT T1.c_custkey, T1.C_acctbal, T2.refpoint FROM

 (SELECT c_custkey, C_acctbal, min(dist) as mindist

 FROM (SELECT c_custkey, C_acctbal, refpoint, abs(

 C_acctbal - refpoint) as dist FROM CUSTOMER,

 AccBalLevels1) AS C1 GROUP BY c_custkey, C_acctbal) AS

 T1, AccBalLevels1 T2

WHERE R1.mindist = abs(T1.C_acctbal - T2.refpoint);

SELECT c_custkey, C_acctbal, refpoint

FROM CUSTOMER, AccBalLevels1

WHERE C_acctbal AROUND refpoint;

SJ-JoinAround

SELECT * FROM CUSTOMER, AccBalLevels1 R1 ,

AccBalLevels2 R2 WHERE C_acctbal WITHIN 11 OF

R1.refpoint AND R1.refpoint WITHIN 11 OF R2.refpoint;

AssocRule

SELECT * FROM CUSTOMER, AccBalLevels2
WHERE C_acctbal WITHIN 11 OF refpoint AND
2200<C_acctbal AND C_acctbal<=6600

PushSel

SELECT refpoint, sum(C_acctbal)
FROM CUSTOMER, AccBalLevels[N] WHERE C_acctbal
WITHIN 11 OF refpoint GROUP BY refpoint

Lazy-Eager [N]

Queries

Figure 3-14 Reference Points Table and Queries Used in Performance
Evaluation

3.4.2. Performance Evaluation

We study the performance of the implemented operators comparing their

execution time and scalability properties with the ones of queries that get similar

results using only regular, i.e., non-similarity-based, operators. Notice that even

though many implementation approaches have been proposed for SJs, e.g., [17],

[18], [19], [20], [21], most of them have been proposed as standalone

implementations not integrated within a DBMS engine and make use of

specialized indices, data structures, partitioning, and access methods. The

efficient integration of these techniques within a DBMS query engine and

evaluation of their performance is a task for future work.

72

3.4.2.1. Join-Around Performance while Increasing Dataset Size

Figure 3-15 gives the execution time of the SJ-JoinAround query compared to

the one of the RegOps-JoinAround query that produces the same output using

only regular operators. This figure compares the performance of both queries for

different values of scale factor. The number of customers is 150,000*SF while

the number of central points is maintained constant. The execution time of

RegOps-JoinAround grows from being about 20 times bigger than that of SJ-

JoinAround for SF=1 to being about 200 times bigger for SF=8. The poor

performance of RegOps-JoinAround is due to a double nested loop join in its

execution plan in addition to the use of an aggregation operation. The Join-

Around operator sorts each set once, and processes both sets synchronously.

Figure 3-15 Performance of Join-Around

3.4.2.2. Ɛ-Join Performance while Increasing Ɛ

Figure 3-16 gives the execution time of the SJ-EpsJoin query compared to the

one of the RegOps-EpsJoin query that produces the same output. The results

are presented for various values of Ɛ. The value of Ɛ is a fraction of the domain

range. Specifically, the customer account balance domain uses values in the

range [0,11000]. This experiment uses SF=1. The key result of this experiment is

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Dataset Size (SF)

SJ-JoinAround

RegOps-JoinAround

73

that the SJ-EpsJoin query performs significantly better than the RegOps-EpsJoin

query for small values of Ɛ. For instance, when Ɛ=1, the execution time of

RegOps-EpsJoin is 4.32 sec. while the one of SJ-EpsJoin is 0.96 sec., i.e.,

RegOps-EpsJoin is over 4 times faster. The advantage of the Ɛ-Join over the

regular query gets reduced as the value of Ɛ increases and is almost negligible

when the size of Ɛ is about 20% of the domain range. Having a good

performance for small values of Ɛ is of key importance for the Ɛ-Join operator

since Similarity Join queries with small Ɛ are among the most common and

useful types of similarity-based operations. The performance of SJ-EpsJoin is

better for small values of Ɛ because it generates shorter restorations of the inner

cursor. On the other hand, RegOps-EpsJoin calculates the distance between all

the combinations of outer and inner tuples. This requires in general the same

amount of I/O independently of the value of Ɛ. The additional cost for high values

of Ɛ is due to the increase in the number of links to be reported.

Figure 3-16 Performance of Ɛ-Join

3.4.2.3. Effectiveness of Associativity Transformation

AssocRule_ LHS and AssocRule_RHS in Figure 3-17 represent the query

AssocRule executed using plans that corresponds to the LHS and RHS of the

0

5

10

15

20

25

30

35

40

45

0.01 0.1 1 5 10 20

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

% of domain length used as Epsilon

SJ-EpsJoin

RegOps-EpsJoin

74

Rule E6 respectively. The execution time of AssocRule_RHS is 9.2% of that of

AssocRule_LHS. AssocRule_LHS joins (Ɛ-Join) first Customer (C) and R2

generating 17,241,601 intermediate rows. The execution time of

AssocRule_RHS is much smaller because it joins the two smaller tables (R1 and

R2) first generating only 2519 intermediate rows.

Figure 3-17 Effectiveness of Associativity Transformation

3.4.2.4. Effectiveness of Pushing Selection under SJ

PushSel_LHS, PushSel_RHS1, and PushSel_RHS2 in Figure 3-18 represent the

query PushSel executed using plans that corresponds to the LHS and RHS of

Rule E1, and the RHS of Rule E5 respectively. PushSel_LHS performs first the

join (7,241,601 intermediate rows) and then the selection. In PushSel_RHS1 the

selection operation has been pushed to the input corresponding to table

Customer (300,872 intermediate rows). The execution time of PushSel_RHS1 is

73% of the one of PushSel_LHS. In PushSel_RHS2 the filtering benefit is furher

improved by pushing selection operations on both inputs of the join. The

execution time of PushSel_RHS2 is only 55% of the one of PushSel_LHS.

0

40

80

120

160

200

AssocRule_LHS AssocRule_RHS

Ex
e

cu
ti

o
n

 T
im

e
 (

s)
 C

S

R2

S

R1 R2

S

R1

S

C

75

3.4.2.5. Effectiveness of Lazy and Eager Aggregation Transformations

In Figure 3-19, LazyN and EagerN represent the query LazyEager executed

using plans that corresponds to the expressions E1 and E2 of Theorem 3-3

respectively. The execution time of Eager1 is 35% of the one of Lazy1. The

advantage of the Eager approach increases when the cardinality of the inner

input grows. Eager2 has an execution time that is only 9% of that of Lazy2.

Figure 3-18 Effectiveness of Pushing Selection under SJ

Figure 3-19 Effectiveness of Lazy and Eager Aggregation Transformations

0

40

80

120

160

PushSel_LHS PushSel_RHS1 PushSel_RHS2

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

0

10

20

30

Lazy1 Eager1 Lazy2 Eager2

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

C

S

R2

o

C

S

R2

o

C

S

R2

o o

GB

S

C R1

GB

GB

S

C

R1

GB

S

C R2

GB

GB

S

C

R2

76

CHAPTER 4 CONCEPTUAL EVALUATION OF SIMILARITY QUERIES AND

SIMILARITY QUERY TRANSFORMATIONS

4.1. Supported Similarity-aware Operators

This section specifies the similarity-aware operations considered in this chapter.

The supported operations are:

1. Similarity Group-by (SGB)

Unsupervised SGB (U-SGB)

Similarity Group Around (SGB-A)

SGB with Delimiters (SGB-D)

2. Similarity Join (SJ)

Range Distance Join (Ɛ-Join, Eps-Join)

kNN Join (kNN-Join)

kDistance Join (kD-Join)

Join Around (Join-Around)

3. Similarity Selection (SS)

Range Dist. Selection (Ɛ-Selection, Eps-Selection)

kNN Selection (kNN-Selection)

The Similarity Group-by and Similarity Join operators are defined in Chapters 2

and 3, respectively. The Similarity Selection operators can be seen as special

77

cases of the join operators where one of the input relations of the join consists of

a single tuple. The Range Distance selection operator is a special case of the

Range Distance join and the kNN selection operator is a special case of the kNN

Join.

The generic definition of the Similarity Selection (SJ) operator is as follows.

 { |

where θs represents the Similarity Selection predicate. This predicate specifies

the similarity-based conditions that tuple a needs to satisfy to be in the Similarity

Selection output. The Similarity Selection predicates for the Similarity Selection

operators considered in our study are as follows. Let C be a constant value.

Range Distance Selection (Eps-Selection):

kNN-Selection:

For simplicity of this presentation, we require that all the relations involved in the

k-based operations, i.e., kNN-Join, kDistance-Join and kNN-Selection, have a

primary key. This requirement allows the correct computation of the results when

the relations have duplicates or have been combined with other relations, and

using only the values of the attributes involved in the operations’ predicates (and

the required keys). Figure 4-1 shows a scenario that highlights the need for

primary keys to correctly compute a kNN-Join operation. This figure shows two

sets of relations E1 and E2. The results of the kNN-Join between E1 (outer) and

E2 (inner) are represented by the lines between the values of the joined relations.

We want to be able to compute the kNN-Join even if we previously combine E1

and E2, e.g., using the cross product operation. However, both sets of relations

generate the same cross product making it impossible to compute the kNN-Join

without additional information. The use of primary keys in E1 and E2 solve the

problem because these keys uniquely identify the tuples of the original joined

tables even after they have been combined.

78

a b

c

a b

c

a b
a b
a c
a c

E1 x E2

e1 e2

e1 e2 E1 x E2

kNN-Join

(k=2)

kNN-Join

(k=2)

a b
b
c
c

E1 E2

a b
a c

E1 E2

Figure 4-1 The Need of Primary keys for kNN-Join

4.2. Notation Used in Similarity-aware Expressions

Unless otherwise specified, the expressions in this chapter use the following

notation conventions:

1. The default letter to represent a relation is E. The default attribute name of

relation Ei is ei. When expressions require multiple attributes of a relation Ei, we

use a second component in the subscript, e.g., Ei_1, Ei_2, etc.

2. Similarity Join predicates are specified using the expression θSa_b. The

subscript a refers to the outer relation while b refers to the inner relation. The

value of S determines the type of Similarity Join: ε represents Epsilon-Join, kNN

represents kNN-Join, A represents Join-Around and kD represents kDistance-

Join. For example, the predicate θε1_2 represents an Epsilon-Join operation

between relations E1 (outer) and E2 (inner). Furthermore, by default, θε1_2

represents a join on the attributes e1 (outer) and e2 (inner). Regular, i.e., non

similarity, join uses a similar notation without the component S.

3. Similarity Selection predicates are specified using the expression θSa,C.

The subscript a refers to the input relation while C refers to the constant

parameter. The value of S determines the type of Similarity Selection: ε

represents Epsilon-Selection and kNN represents kNN-Selection. For example

79

the predicate θε1,C1 represents an Epsilon-Selection operation on E1 around C1.

Regular selection uses a similar notation without the components S and C.

4. We say that the attributes of an expression have a single direction when

the expression is composed by join predicates and their attribute graph is of the

form e1→ e2→…→ en. The attribute graph is built as follows. The vertices of the

graph are the join attributes and each join is represented as a directed edge from

the outer attribute (left attribute of the join predicate) to the inner one (right

attribute of the join predicate).

4.3. Conceptual Evaluation of Similarity-aware Queries

The conceptual evaluation order of queries specifies a clear and consistent way

to evaluate queries and the expected correct results. In practice, database

systems generate an initial plan for a given query and the query optimizer

transforms this plan into an equivalent one trying to find a better way to execute

the query. Having a conceptual order of evaluation of queries is important

because it provides a clear and consistent way to specify a query, which will

generate the same results independently of the database system

implementation.

We present a conceptual evaluation order for similarity-aware queries with

multiple similarity-aware operators. This evaluation order is particularly important

because the order in which the similarity operations are evaluated affects the

results of a query. For instance, consider the left hand side (LHS) plan of Figure

4-2 which shows a similarity query with two Similarity Selection predicates: an

Epsilon-Selection predicate and a kNN-Selection predicate. Figure 4-2 shows

two ways in which this query could be evaluated and the different results

obtained under each evaluation. The middle plan in the figure corresponds to

evaluating first the kNN-Selection predicate and applying the Epsilon-Selection

over the output of the first operator. The right hand side (RHS) plan corresponds

to evaluating first the Epsilon-Selection predicate and then the kNN-Selection. It

80

is not clear which way this query should be evaluated and without a clear

conceptual evaluation order of similarity queries, multiple users may write the

same query expecting different results.

σ

σ

E1

S

S

θε1,C1

C1
ε1

ε1

Output

θkNN1,C2

C2

σ

E1

S
θε1,C1 ˄

θkNN1,C2 σ

σ

E1

S

S θε1,C2

C2
ε1

ε1

Output

θkNN1,C1

C1

kNN1=4kNN1=4

e1 e1e1

C1

C2

≡

Evaluating Eps-

Selection first

Evaluating kNN-

Selection first

ε1

ε1

kNN1=4

Figure 4-2 Different Ways to Combine Eps-Selection and kNN-Selection

Figure 4-3 presents a conceptual evaluation order for similarity-aware queries.

The conceptual query plan makes use of a generic similarity-selection node that

combines multiple similarity-selection and similarity-join predicates using the

conventional intersection operator as shown in Figure 4.4. Based on the

conceptual evaluation order presented in Figure 4.3, a generic similarity-aware

query composed by multiple SGB, SJ and SS operators is evaluated as follows.

At the bottom of the plan, all the relations involved in the query get combined

using cross product. A generic Similarity Selection is evaluated after the cross

product operation. This step is equivalent to intersecting the results of evaluating

independently each SS and SJ predicate. The regular and similarity grouping

operations are evaluated over the results of the selection node. Finally, an

optional TOP operator selects the top K tuples using the order established by

SortExpr.

81

σ

RegSelPred1 ∩… ∩ RegSelPredp ∩

EpsSelPred1 ∩… ∩ EpsSelPredq ∩

kNNSelPred1 ∩… ∩ kNNSelPredr ∩

RegJoinPred1 ∩… ∩ RegJoinPreds ∩

EpsJoinPred1 ∩… ∩ EpsJoinPredt ∩

kNNJoinPred1 ∩… ∩ kNNJoinPredu ∩

JoinArdPred1 ∩… ∩ JoinArdPredv ∩

kDJoinPred1 ∩… ∩ kDJoinPredw

S

SGB
RegGA1,…,RegGAx

SimGExp1,…,SimGExpy

TOP k

E1 En
...

SELECT TOP k WITH TIES e1,…,em FROM E1,…,En WHERE

 RegSelPred1 AND… AND RegSelPredp AND

 EpsSelPred1 AND… AND EpsSelPredq AND

 kNNSelPred1 AND… AND kNNSelPredr AND

 RegJoinPred1 AND… AND RegJoinPreds AND

 EpsJoinPred1 AND… AND EpsJoinPredt AND

 kNNJoinPred1 AND… AND kNNJoinPredu AND

 JoinArdPred1 AND… AND JoinArdPredv AND

 kDJoinPred1 AND… AND kDJoinPredw

GROUP BY

 RegGA1,…,RegGAx

 SimGExp1,…,SimGExpy

ORDER BY SortExpr

Figure 4-3 Conceptual Evaluation Order of Similarity Queries

σPred1 ∩… ∩ Predn S

E

≡ σS

E

∩

Pred1 ... σ
S

Predn

E

Figure 4-4 Combining Multiple Similarity-aware Predicates

For a given similarity query, the presented conceptual evaluation order makes it

clear what the query’s expected results are. For example, Figure 4-5 shows how

the query presented in Figure 4-2 is evaluated using the conceptual evaluation

order. This figure also shows that the conceptual evaluation plan of this query is

equivalent to evaluating first the kNN-Selection operator and applying the

Epsilon-Selection on the results of the first operator. Figure 4-6 shows another

82

example of the use of the conceptual evaluation order. This figure shows the

SQL version of a similarity query with multiple similarity-aware predicates and the

corresponding conceptual evaluation plan.

C1
ε1

ε1

Output

C2

σ

E1

S
θε1,C1 ∩

θkNN1,C2

kNN1=4

e1

Evaluating kNN-Selection first

σS

∩

σ
S

E1 E1

θε1_2

θε2,C

σ

σ

E1

S

S

θε1,C1

θkNN1,C2

Conceptual Evaluation

C1
ε1

ε1

Output

C2

kNN1=4

e1

≡

Figure 4-5 Using the Conceptual Evaluation Order

SELECT e1, e2, e3 FROM E1, E2, E3

WHERE

EpsSelPred1 AND kNNSelPred1 AND

EpsJoinPred1_2 AND kNNJoinPred2_3

σS

∩

σ
Sθε1,C1 θkNN1,C2

σS σ
S

E1 x E2 x E3 E1 x E2 x E3 E1 x E2 x E3 E1 x E2 x E3

θkNN2_3
θε1_2

Figure 4-6 Conceptual Evaluation of a Query with Multiple Similarity Predicates

83

4.4. Similarity Query Transformations

Section 4.3 introduced a conceptual evaluation order for similarity-aware queries.

Similar to conventional query processing, the conceptual evaluation of a similarity

query is not, in many cases, an efficient way to evaluate the query. Conventional

database systems often make use of equivalence rules to transform a query plan

into equivalent plans that generate the same results. Cost-based query

optimizers compute the cost of each equivalent plan and return the plan with the

smallest cost for execution. This section presents multiple equivalence rules that

allow the transformation of a similarity query from its conceptual evaluation plan

into multiple plans that generate the same results. These equivalence rules allow

the extension of cost-based optimization techniques to the case of similarity-

aware queries. This section presents proof sketches of several equivalence rules

and counterexamples to show the correctness of several non-equivalence rules.

Proof sketches for other rules can be constructed in a similar way.

4.4.1. Rules to Combine/Separate Similarity-aware Predicates

The rules presented in this section can be used to serialize the operations

involved in a query. For instance, given a similarity query composed of two

Epsilon-selection predicates applied over the same attribute, the conceptual

evaluation will evaluate each selection predicate separately. This evaluation will

require reading and processing the input relation twice and then applying an

intersection operation over the intermediate results. Using the equivalences

presented in this section we are able to obtain an equivalent plan that serializes

both selection operations. This new plan only reads from the original relation

once to process the first selection. The second selection is applied over the

output of the first operation. In all the rules that allow the separation of multiple

similarity-aware predicates we assume that the input relation is composed by the

cross product of all the relations involved in the similarity-aware predicates. Note

that this is always the case in the plans obtained using the conceptual evaluation

of similarity queries.

84

4.4.1.1. Combining Similarity Selection with Cross Product

Similarity Selection operators can be combined with cross product using the

following rules.

R1.

R2.

R3.

R4.

Note that the selection predicates correspond to Similarity Join operations.

Figure 4-7 shows a graphic representation of these rules.

E1

S

E2

≡

E1 E2

SimJoinPred1-2σ
S

SimJoinPred1-2

Figure 4-7 Combining Similarity Selection with Cross Product

Proof sketch of Rule R1

Consider a generic tuple tE1 of E1. We will show that for any possible pair (tE1,tE2),

where tE2 is a tuple of E2, the results generated by the plans of both sides of the

rule are the same. Figure 4-8 shows a graphical representation of Rule R1. This

figure also shows the domain of the join attributes e1 and e2, the location of tE1.e1

(the value of attribute e1 in tuple tE1), and the different possible regions for the

value of tE2.e2.

1. When the value of tE2.e2 belongs to A. In the LHS plan, the cross product

will generate the tuple (tE1,tE2). However, the tuple will not be selected by the

85

Similarity Selection operator since dist(tE1.e1,tE2.e2)>ε1_2. In the RHS plan, due

to the definition of Eps-Join, the tuple (tE1,tE2) is not part of the output.

2. When the value of tE2.e2 belongs to B. In the LHS plan, the cross product

will generate the tuple (tE1,tE2). In this case, this tuple is selected by the Similarity

Selection operator since dist(tE1.e1,tE2.e2)≤ε1_2. In the RHS plan, due to the

definition of Eps-Join, the tuple (tE1,tE2) is part of the output.

E1

S

E2

≡

E1 E2

σ
S

e1 θε1_2 e2

e1 e2

ε1_2

ε1_2
tE1

A

A

B

tE2

e1 θε1_2 e2

Figure 4-8 Combining Similarity Selection with Cross Product – Proof Sketch

4.4.1.2. Combining/Separating Similarity Selection Predicates

Multiple Similarity Selection predicates can be combined or separated using the

following rules.

R5.
(

)

R6.
(

)

R7.
(

)

R8.
(

)

86

Rule R5, presented in Figure 4-9, states that multiple Eps-Selection predicates

can be combined or separated.

σ

σ

E1

S

S

θε1_1,C1

C1ε1_1

ε1_1

Output

θε1_2,C2

C2
ε1_2

ε1_2

σ

E1

S
θε1_1,C1 ∩

θε1_2,C2

Output
C1

C2

≡

ε1_1

ε1_1

ε1_2

ε1_2

Figure 4-9 Combining/Separating Eps-Selection and Eps-Selection

Proof sketch of Rule R5

Consider a generic tuple tE1 of E1. We will show that for any possible value of tE1,

the results generated by the plans of both sides of the rule are the same. The top

part of Figure 4-10 shows a graphical representation of Rule R5. Using the

conceptual evaluation order of similarity queries, we can transform the left part of

the rule to an equivalent expression that uses the intersection operation as

represented in the middle part of Figure 4-10. We will use this second version of

the rule in the remaining part of the proof. The bottom part of Figure 4-10 shows

the different possible regions for the value of tE1.e1.

1. When the value of tE1.e1 belongs to A. In the LHS plan, tE1 is not selected

in any of the Eps-Selection operators since it does not satisfy any of the selection

predicates. Thus, no output is generated by this plan. In the RHS plan, tE1 is

filtered out by the bottom selection. No tuple flows to the top selection. Thus, no

output is generated by this plan either.

2. When the value of tE1.e1 belongs to B. In the LHS plan, tE1 is selected in

the left Eps-Selection but not in the right one. The intersection operator does not

produce any output and consequently no output is generated by this plan. In the

87

RHS plan, tE1 is filtered out by the bottom selection. No tuple flows to the top

selection. Thus, no output is generated by this plan either.

3. When the value of tE1.e1 belongs to C. In the LHS plan, tE1 is selected by

both Eps-Selection operators. Consequently, tE1 belongs to the output of the

intersection operator. tE1 belongs to the output of the LHS plan. In the RHS plan,

tE1 is selected by the bottom Eps-Selection. tE1 is also selected by the top Eps-

Selection. Thus, tE1 belongs also to the output of the RHS plan.

4. When the value of tE1.e1 belongs to D. In the LHS plan, tE1 is selected in

the right Eps-Selection but not in the left one. The intersection operator does not

produce any output and consequently no output is generated by this plan. In the

RHS plan, tE1 is selected by the bottom Eps-Selection but filtered out by the top

one. Thus, no output is generated by this plan either.

e1

ε1_1

ε1_1

tE1

A

A

B

≡
σS

∩

σ
S

E1 E1

C1

C2
ε1_2

ε1_2 D

C

σ

σ

E1

S

S

θε1_1,C1

θε1_2,C2

σ

E1

S
θε1_1,C1 ∩

θε1_2,C2

≡

σ

σ

E1

S

S

θε1_1,C1

θε1_2,C2
θε1_1,C1 θε1_2,C2

Figure 4-10 Combining Eps-Selection and Eps-Selection – Proof Sketch

88

Rule R6 states that kNN-Selection predicates cannot be combined or separated.

Figure 4-11 shows that plans with separated and combined kNN-Selection

predicates generate different results.

σ

σ

E1

S

S

C1
Output

θkNN1_2,C2

C2

σ

E1

S

θkNN1_1,C1 ∩

θkNN1_2,C2

≡

θkNN1_1,C1

C1
Output

C2

kNN1_1=4

kNN1_2=4

Figure 4-11 Combining/Separating kNN-Selection and kNN-Selection

Rules R7 and R8 specify the way in which Eps-Selection and kNN-Selection

predicates can be combined. According to Rule R7, the plan that combines these

two types of Similarity Selection is equivalent to executing first the kNN-Selection

operation and then the Eps-Selection operation as shown in Figure 4-12. Rule

R8 states that we cannot separate these selection predicates executing first the

Eps-Selection and then the kNN-Selection. Figure 4-13 shows an example of

Rule R8 where the plans have different output.

σ

σ

E1

S

S

θε1,C1

C1
ε1

ε1

Output

θkNN1,C2

C2

σ

E1

S
θε1,C1 ∩

θkNN1,C2

ε1

ε1

Output

≡

C1

C2

kNN1=4

Figure 4-12 Combining/Separating Eps-Selection and kNN-Selection

89

σ

σ

E1

S

S θε1,C2

C2
ε1

ε1

Output

θkNN1,C1

C1

σ

E1

S

θkNN1,C1

∩ θε1,C2

≡

C2
ε1

ε1

Output
C1

kNN1=4

Figure 4-13 Combining/Separating kNN-Selection and Eps-Selection

Proof sketch of Rule R7

Consider a generic tuple tE1 of E1. We will show that for any possible value of tE1,

the results generated by the plans of both sides of the rule are the same. The top

part of Figure 4-14 shows a graphical representation of Rule R7. Using the

conceptual evaluation order of similarity queries, we can transform the left part of

the rule to an equivalent expression that uses the intersection operation as

represented in the middle part of Figure 4-14. We will use this second version of

the rule in the remaining part of the proof. The bottom part of Figure 4-14 shows

the different possible regions for the value of tE1.e1. Note that the region marked

as kNN1 (which comprises regions C and D) represents the region that contains

the kNN1 closest neighbors of C2.

1. When the value of tE1.e1 belongs to A. In the LHS plan, tE1 is not selected

in any of the selection operators since it does not satisfy any of the Similarity

Selection predicates. Thus, no output is generated by this plan. In the RHS plan,

tE1 is filtered out by the kNN-Selection. No tuple flows to the Eps-Selection. Thus,

no output is generated by this plan either.

2. When the value of tE1.e1 belongs to B. In the LHS plan, tE1 is selected in

the Eps-Selection but not in the kNN-Selection. The intersection operator does

not produce any output and consequently no output is generated by this plan. In

90

the RHS plan, tE1 is filtered out by the kNN-Selection. No tuple flows to the Eps-

Selection. Thus, no output is generated by this plan either.

3. When the value of tE1.e1 belongs to C. In the LHS plan, tE1 is selected by

both Similarity Selection operators. Consequently, tE1 belongs to the output of the

intersection operator. tE1 belongs to the output of the LHS plan. In the RHS plan,

tE1 is selected by the kNN-Selection. tE1 is also selected by the Eps-Selection.

Thus, tE1 belongs also to the output of the RHS plan.

4. When the value of tE1.e1 belongs to D. In the LHS plan, tE1 is selected in

the kNN-Selection but not in the Eps-Selection. The intersection operator does

not produce any output and consequently no output is generated by this plan. In

the RHS plan, tE1 is selected by the kNN-Selection but filtered out by the Eps-

Selection. Thus, no output is generated by this plan either.

σ

σ

E1

S

S

θε1,C1

θkNN1,C2

σ

E1

S
θε1,C1 ∩

θkNN1,C2

≡

σ

σ

E1

S

S

θε1,C1

θkNN1,C2
≡σS

∩

σ
S

E1 E1

θε1,C1
θkNN1,C2

e1

ε1

ε1

tE1

A

A

BC1

C2
D

C
kNN1

Figure 4-14 Combining Eps-Selection and kNN-Selection – Proof Sketch

91

4.4.1.3. Combining/Separating Similarity Join and Similarity Selection

Similarity Selection and Similarity Join predicates can be combined or separated

using the following rules.

1. Eps-Join and Eps-Selection

When the selection predicate attribute is the inner attribute in the join predicate

R9.

When the selection predicate attribute is the outer attribute in the join predicate

R10.

2. Eps-Join and kNN-Selection

When the selection predicate attribute is the inner attribute in the join predicate

R11.

R12.

When the selection predicate attribute is the outer attribute in the join predicate

R13.

R14.

3. kNN-Join and Eps-Selection

When the selection predicate attribute is the inner attribute in the join predicate

R15.

R16.

92

When the selection predicate attribute is the outer attribute in the join predicate

R17.

4. kNN-Join and kNN-Selection

When the selection predicate attribute is the inner attribute in the join predicate

R18.

R19.

When the selection predicate attribute is the outer attribute in the join predicate

R20.

5. kD-Join and Eps-Selection

When the selection predicate attribute is the inner attribute in the join predicate

R21.

R22.

When the selection predicate attribute is the outer attribute in the join predicate

R23.

R24.

6. kD-Join and kNN-Selection

When the selection predicate attribute is the inner attribute in the join predicate

R25.

R26.

93

When the selection predicate attribute is the outer attribute in the join predicate

R27.

R28.

7. Join-Around and Eps-Selection

When the selection predicate attribute is the inner attribute in the join predicate

R29.

R30.

When the selection predicate attribute is the outer attribute in the join predicate

R31.

8. Join-Around and kNN-Selection

When the selection predicate attribute is the inner attribute in the join predicate

R32.

R33.

When the selection predicate attribute is the outer attribute in the join predicate

R34.

R35.

In Rules R9 to R35, we consider two generic cases: when the selection predicate

attribute is the outer or inner attribute in the join predicate. An intuitive but

important generic observation is that this classification is relevant, i.e., generate

different equivalence rules in both cases, when the Similarity Join operation is

not commutative (kNN-Join and Join-Around). In general, if the join operation is

94

commutative (Epsilon-Join and kDistance-Join), the rules for both cases are the

same. We will discuss commutative join operations in Section 4.4.2.

Rules R9 and R10 state that Eps-Join and Eps-Selection operations can be

combined or separated. Figure 4-15 shows an example of Rule R9.

≡

E

θε1_2 ∩ θε2,Cσ
S

σ
S

e1 e2

C

E

θε2,Cσ
S

θε1_2

≡

σ
S

E

θε2,C

σ
S

θε1_2

ε2

ε2

Output

ε1_2

e1 e2

Cε2

ε2

Output

ε1_2

e1 e2

Cε2

ε2

Output

ε1_2

Figure 4-15 Combining/Separating Eps-Join and Eps-Selection

Proof sketch of Rule R9

Eps-Join is defined over two relations. Assume that θε1_2 is defined over relations

E1 and E2, and that the input relation E is the cross product of all the relations

involved in the similarity-aware predicates, i.e., E = E1 x E2. Furthermore, we

assume that the join attributes are E1.e1 and E2.e2. Consider a generic tuple tE1 of

E1. We will show that for any possible pair (tE1,tE2), where tE2 is a tuple of E2, the

results generated by the plans of both sides of the rule are the same. The top

part of Figure 4-16 shows a graphical representation of Rule R9. Using the

conceptual evaluation order of similarity queries, we can transform the left part of

the rule to an equivalent expression that uses the intersection operation as

95

represented in the middle part of Figure 4-16. We will use this second version of

the rule in the remaining part of the proof. The bottom part of Figure 4-16 shows

the different possible regions for the value of tE2.e2.

1. When the value of tE2.e2 belongs to A. In the LHS plan, the pair (tE1,tE2) is

not selected in any similarity-aware operator since it does not satisfy any of their

predicates. Thus, no output is generated by this plan. In the RHS plan, (tE1,tE2) is

filtered out by the bottom selection since dist(tE2.e2 ,C1)>ε2. No tuple flows to the

top operator. Thus, no output is generated by this plan either.

2. When the value of tE2.e2 belongs to B. In the LHS plan, the pair (tE1,tE2) is

selected in the left Similarity Selection but not in the right one. The intersection

operator does not produce any output and consequently no output is generated

by this plan. In the RHS plan, (tE1,tE2) is filtered out by the bottom selection since

dist(tE2.e2 ,C1)>ε2. No tuple flows to the top operator. Thus, no output is

generated by this plan either.

3. When the value of tE2.e2 belongs to C. In the LHS plan, the pair (tE1,tE2) is

selected in both similarity-aware operators. Consequently, (tE1,tE2) belongs to the

output of the intersection operator. (tE1,tE2) belongs to the output of the LHS plan.

In the RHS plan, (tE1,tE2) is selected by the bottom selection since

dist(tE2.e2,C1)≤ε2. (tE1,tE2) is also selected by the top selection since

dist(tE1.e1,tE2.e2)≤ε1_2. Thus, the pair (tE1,tE2) belongs also to the output of the

RHS plan.

4. When the value of tE2.e2 belongs to D. In the LHS plan, the pair (tE1,tE2) is

selected in the right Similarity Selection but not in the left one. The intersection

operator does not produce any output and consequently no output is generated

by this plan. In the RHS plan, (tE1,tE2) is selected in the bottom selection since

dist(tE2.e2 ,C1)≤ε2 but it is filtered out by the top selection. Thus, no output is

generated by this plan either.

96

≡

E

θε1_2 ∩

θε2,C1
σ

S

σ
S

E

θε2,C1σ
S

θε1_2

≡

σ
S

E

θε2,C1σ
S

θε1_2

σS

∩

σ
S

E E

θε1_2

θε2,C1

e2

ε2

ε2
C1

e1 A

A

B

D

C

tE2

tE1

ε1_2

ε1_2

Figure 4-16 Combining Eps-Join and Eps-Selection – Proof Sketch

Rules R11, R12, R13 and R14 state that Eps-Join and kNN-Selection predicates

can be separated as long as the kNN-Selection operation is executed first. Figure

4-17 shows examples of Rules R11 and R12.

Rules R15, R16 and R17 state the way kNN-Join and Eps-Selection predicates

can be combined or separated. In this case, the equivalence rules depend on

whether the selection attribute is the inner or outer attribute of the join predicate.

According to Rules R15 and R16, when the selection attribute is the inner

attribute of the join predicate, the similarity operations can be separated

executing first the kNN-Join and then the Eps-Selection as shown in Figure 4-18.

97

According to Rule R17, when the selection attribute is the outer attribute of the

join predicate, the similarity operations can be separated in any order as shown

in Figure 4-19.

≡

E

θε1_2 ∩

θkNN2,C
σ

S

σ
S e1 e2

C

E

θkNN2,Cσ
S

θε1_2

σ
S

E

σ
S

θε1_2

Output

θkNN2,C

≡

kNN2=3

e1 e2

C
Output

kNN2=3

e1 e2

C

Output

kNN2=3

Figure 4-17 Combining/Separating Eps-Join and kNN-Selection

≡

E

θkNN1_2 ∩

θε2,C
σ

S

σ
S

E

θkNN1_2 σ
S

θε2,C

σ
S

E

σ
S

≡

e1 e2

C

Output

kNN1_2=2
θkNN1_2

θε2,C

e1 e2

C

Output

kNN1_2=2

e1 e2

C

Output

kNN1_2=2

ε2

ε2 ε2

ε2

ε2

ε2

Figure 4-18 Combining/Separating kNN-Join and Eps-Selection - When the
Selection Predicate Attribute is the Inner Attribute in the Join Predicate

98

≡

E

θkNN1_2 ∩

θε1,C
σ

S

σ
S

E

θkNN1_2

σ
S

θε1,C

σ
S

E

σ
S

e2e1

C
Output

kNN1_2=2

θkNN1_2

θε1,C

ε1

ε1

≡

e2e1

C
Output

kNN1_2=2

ε1

ε1

e2e1

C
Output

kNN1_2=2

ε1

ε1

Figure 4-19 Combining/Separating kNN-Join and Eps-Selection - When the
Selection Predicate Attribute is the Outer Attribute in the Join Predicate

Proof sketch of Rule R16

kNN-Join is defined over two relations. Assume that θkNN1_2 is defined over

relations E1 and E2, and that the input relation E is the cross product of all the

relations involved in the similarity-aware predicates, i.e., E = E1 x E2.

Furthermore, we assume that the join attributes are E1.e1 and E2.e2. Consider a

generic tuple tE1 of E1. We will show that for any possible pair (tE1,tE2), where tE2

is a tuple of E2, the results generated by the plans of both sides of the rule are

the same. The top part of Figure 4-20 shows a graphical representation of Rule

R16. Using the conceptual evaluation order of similarity queries, we can

transform the left part of the rule to an equivalent expression that uses the

intersection operation as represented in the middle part of Figure 4-20. We will

use this second version of the rule in the remaining part of the proof. The bottom

part of Figure 4-20 shows the different possible regions for the value of tE2.e2.

Note that the region marked as kNN1_2 (which comprises regions B and C)

represents the region that contains the kNN1_2 closest neighbors of tE1 in E2.

99

1. When the value of tE2.e2 belongs to A. In the LHS plan, the pair (tE1,tE2) is

not selected in any similarity-aware operator since it does not satisfy any of their

predicates. Thus, no output is generated by this plan. In the RHS plan, (tE1,tE2) is

filtered out by the bottom selection since tE2 is not one of the kNN1_2 closest

neighbors of tE1 in E2. No tuple flows to the top operator. Thus, no output is

generated by this plan either.

2. When the value of tE2.e2 belongs to B. In the LHS plan, the pair (tE1,tE2) is

selected in the left Similarity Selection but not in the right one. The intersection

operator does not produce any output and consequently no output is generated

by this plan. In the RHS plan, (tE1,tE2) is selected in the bottom selection since tE2

is one of the kNN1_2 closest neighbors of tE1 in E2. However, (tE1,tE2) is filtered

out by the top selection because dist(tE2.e2 ,C1)>ε2. Thus, no output is generated

by this plan either.

3. When the value of tE2.e2 belongs to C. In the LHS plan, the pair (tE1,tE2) is

selected in both similarity-aware operators. Consequently, (tE1,tE2) belongs to the

output of the intersection operator. (tE1,tE2) belongs to the output of the LHS plan.

In the RHS plan, (tE1,tE2) is selected by the bottom selection since tE2 is one of

the kNN1_2 closest neighbors of tE1 in E2. (tE1,tE2) is also selected by the top

selection since dist(tE2.e2 ,C1)≤ε2. Thus, (tE1,tE2) belongs also to the output of the

RHS plan.

4. When the value of tE2.e2 belongs to D. In the LHS plan, the pair (tE1,tE2) is

selected in the right Similarity Selection but not in the left one. The intersection

operator does not produce any output and consequently no output is generated

by this plan. In the RHS plan, (tE1,tE2) is filtered out by the bottom selection. No

tuple flows to the top operator. Thus, no output is generated by this plan either.

100

≡

E

θkNN1_2 ∩

θε2,C1
σ

S

σ
S

E

θkNN1_2 σ
S

θε2,C1

≡

σ
S

E

θkNN1_2 σ
S

θε2,C1

σS

∩

σ
S

E E

θε2,C1
θkNN1_2

e2

ε2

ε2
C1

e1

kNN1_2

A

A

B

D

C

tE1

tE2

Figure 4-20 Combining kNN-Join and Eps-Selection - When the Selection
Predicate Attribute is the Inner Attribute in the Join Predicate – Proof Sketch

Rules R18, R19 and R20 specify the way kNN-Join and kNN-Selection

predicates can be combined or separated. In this case, the similarity operations

can be combined or separated only if the selection attribute is the outer attribute

of the join predicate. Figure 4-21 shows that when the selection attribute is the

inner attribute of the join predicate, the plans with combined and separated

similarity predicates produce different results (R18 and R19). Figure 4-22 shows

an example of separating kNN-Join and kNN-Selection when the selection

attribute is the outer attribute of the join predicate (R20).

101

E

θkNN1_2 ∩

θkNN2,C
σ

S

σ
S

E

θkNN2,Cσ
S

θkNN1_2

σ
S

E

σ
S

≡

e1 e2

C Output θkNN1_2

θkNN2,C

≡

kNN2=2

e1 e2

C Output

kNN1_2=2 kNN2=2

e1 e2

C
Output

kNN1_2=2 kNN2=2
kNN1_2=2

Figure 4-21 Combining/Separating kNN-Join and kNN-Selection - When the
Selection Predicate Attribute is the Inner Attribute in the Join Predicate

E

θkNN1_2 ∩

θkNN1,C
σ

S

σ
S

E

θkNN1,Cσ
S

θkNN1_2 σ
S

E

σ
S

e1 e2

C Output

θkNN1_2

θkNN1,C

kNN1=1

≡ ≡

kNN1_2=2

e1 e2

C Output

kNN1=1 kNN1_2=2

e1 e2

C Output

kNN1=1 kNN1_2=2

Figure 4-22 Combining/Separating kNN-Join and kNN-Selection - When the
Selection Predicate Attribute is the Outer Attribute in the Join Predicate

Rules R21, R22, R23 and R24 specify the way kD-Join and Eps-Selection

predicates can be combined or separated. According to these rules, the similarity

operations can be separated executing first the kD-Join and then the Eps-

Selection as shown in Figure 4-23. Rules R25, R26, R27 and R28 state that

plans with combined or separated kD-Join and kNN-Selection predicates

produce different results. Figure 4-24 shows examples of Rules R25 and R26.

102

E

θkD1_2 ∩

θε2,C
σ

S

σ
S

E

θε2,C

σ
S

θkD1_2

σ
S

E

σ
S

≡
θkD1_2

θε2,C

≡

e1 e2

C
Output

kD1_2=2

ε2

ε2

e1 e2

C
Output

kD1_2=2

ε2

ε2

e1 e2

C
Output

kD1_2=2

ε2

ε2

Figure 4-23 Combining/Separating kD-Join and Eps-Selection

E

θkD1_2 ∩

θkNN2,C
σ

S

σ
S

E

θkD1_2

σ
S

θkNN2,C

σ
S

E

σ
S

≡
θkNN2,C

θkD1_2

e1 e2

C
Output

kD1_2=2

≡

kNN2=2

e1 e2

C
Output

kD1_2=2

e1 e2

C
Output

kD1_2=2

Figure 4-24 Combining/Separating kD-Join and kNN-Selection

Rules R29, R30 and R31 state the way Join-Around and Eps-Selection

predicates can be combined or separated. Rules R32, R33, R34 and R35 state

the way Join-Around and kNN-Selection predicates can be combined or

separated. Given that Join-Around is a hybrid between the kNN-Join with k=1

and the Eps-Join, the way this operation can be combined with Similarity

103

Selection corresponds to the most restricted way in which kNN-Join or the Eps-

Join can be combined with Similarity Selection.

4.4.1.4. Combining/Separating Similarity Join Predicates

Multiple Similarity Join predicates can be combined or separated using the

following rules.

1. Eps-Join and Eps-Join

When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R36.

When the predicates’ attributes do not have a single direction (e1→e2, e2 ←e3)

R37.

2. kNN-Join and kNN-Join

When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R38.

When the predicates’ attributes do not have a single direction (e1→e2, e2 ←e3)

R39.

R40.

3. kD-Join and kD-Join

 When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R41.

R42.

104

When predicates’ attributes do not have a single direction (e1→e2, e2 ←e3)

R43.

R44.

4. Eps-Join and kNN-Join

When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R45.

When the predicates’ attributes do not have a single direction (e1→e2, e2←e3)

R46.

R47.

5. Eps-Join and kD-Join

When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R48.

R49.

When the predicates’ attributes do not have a single direction (e1→e2, e2 ←e3)

R50.

R51.

6. kNN-Join and kD-Join

When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R52.

R53.

105

When the predicates’ attributes do not have a single direction (e1→e2, e2 ←e3)

R54.

R55.

7. Join-Around and Join-Around

When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R56.

When the predicates’ attributes do not have a single direction (e1→e2, e2 ←e3)

R57.

R58.

8. Eps-Join and Join-Around

When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R59.

When the predicates’ attributes do not have a single direction (e1→e2, e2←e3)

R60.

R61.

9. Join-Around and kNN-Join

When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R62.

R63.

106

When the predicates’ attributes do not have a single direction (e1→e2, e2←e3)

R64.

R65.

10. Join-Around and kD-Join

When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R66.

R67.

When the predicates’ attributes do not have a single direction (e1→e2, e2←e3)

R68.

R69.

In Rules R36 to R69, we consider two generic cases: when the attributes in the

predicates have a single direction, e.g., e1→e2, e2→e3; and when they do not,

e.g., e1→e2, e2 ←e3. In general, this classification is relevant, i.e., generate

different equivalence rules in both cases, when at least one of the Similarity Join

operations is not commutative (kNN-Join and Join-Around). Commutative join

operations are discussed in Section 4.4.2.

Rules R36 and R37 specify the way multiple Eps-Join predicates can be

combined or separated. According to these rules, Eps-Join predicates can be

separated in any order. Figure 4-25 shows an example of Rule R36.

Proof sketch of Rule R36

Every Eps-Join operation is defined over two relations. Assume that θε1_2 is

defined over relations E1 and E2, and θε2_3 over relations E2 and E3.

107

≡

E

θε1_2 ∩

θε2_3
σ

S

σ
S

e1 e2

E

θε2_3σ
S

θε1_2

≡

σ
S

E

θε2_3

σ
S

θε1_2

Output

e3 e1 e2

Output

e3 e1 e2

Output

e3

Figure 4-25 Combining/Separating Multiple Eps-Join Predicates

Assume also that the input relation E is the cross product of all the relations

involved in the similarity-aware predicates, i.e., E = E1 x E2 x E3. Furthermore, we

assume that the join attributes in θε1_2 are E1.e1 and E2.e2, and in θε2_3 are E2.e2

and E3.e3. Consider a generic tuple tE1 of E1. We will show that for any possible

triplet (tE1,tE2,tE3), where tE2 is a tuple of E2, and tE3 is a tuple of E3, the results

generated by the plans of both sides of the rule are the same. The top part of

Figure 4-26 shows a graphical representation of Rule R36. Using the conceptual

evaluation order of similarity queries, we can transform the left part of the rule to

an equivalent expression that uses the intersection operation as represented in

the middle part of Figure 4-26. We will use this second version of the rule in the

remaining part of the proof. The bottom part of Figure 4-26 shows the different

possible regions for the values of tE2.e2 and tE3.e3. Note that the regions for tE3.e3

have been specified based on a generic tuple tE2 with tE2.e2 in region B.

1. When the value of tE2.e2 belongs to A. In the LHS plan, the triplet

(tE1,tE2,tE3) is not selected in any similarity-aware operator since it does not satisfy

any of their predicates. Thus, no output is generated by this plan. In the RHS

plan, (tE1,tE2,tE3) is filtered out by the bottom selection since

dist(tE1.e1,tE2.e2)>ε1_2. No tuple flows to the top operator. Thus, no output is

generated by this plan either.

108

≡

E

θε1_2 ∩

θε2_3
σ

S

σ
S

E

θε2_3

σ
S

θε1_2

≡

σ
S

E

θε2_3

σ
S

θε1_2σS

∩

σ
S

E E

θε1_2 θε2_3

e3e2

A

e1

ε1_2

ε1_2

ε2_3

ε2_3

A

B D

C

C

tE1
tE2

tE3

Figure 4-26 Combining/Separating Two Eps-Join Predicates – Proof Sketch

2. When the value of tE2.e2 belongs to B and the value of tE3.e3 belongs to C.

In the LHS plan, the triplet (tE1,tE2,tE3) is selected in the left Similarity Selection

since dist(tE1.e1,tE2.e2)≤ε1_2 but not in the right one since dist(tE2.e2,tE3.e3)>ε2_3.

The intersection operator does not produce any output and consequently no

output is generated by this plan. In the RHS plan, (tE1,tE2,tE3) is selected in the

bottom selection since dist(tE1.e1,tE2.e2)≤ε1_2 but it is filtered out by the top

selection since dist(tE2.e2,tE3.e3)>ε2_3. Thus, no output is generated by this plan

either.

109

3. When the value of tE2.e2 belongs to B and the value of tE3.e3 belongs to D.

In the LHS plan, the triplet (tE1,tE2,tE3) is selected in both similarity-aware

operators since dist(tE1.e1,tE2.e2)≤ε1_2 (left) and dist(tE2.e2,tE3.e3)≤ε2_3 (right).

Consequently, (tE1,tE2,tE3) belongs to the output of the intersection operator.

(tE1,tE2,tE3) belongs to the output of the LHS plan. In the RHS plan, (tE1,tE2,tE3) is

selected by the bottom selection since dist(tE1.e1,tE2.e2)≤ε1_2. (tE1,tE2,tE3) is also

selected by the top selection since dist(tE2.e2,tE3.e3)≤ε2_3. Thus, (tE1,tE2,tE3)

belongs also to the output of the RHS plan.

Multiple kNN-Join operations can be separated when the attributes of the join

predicates have a single direction (R38) but not when this condition is not

satisfied (R39 and R40). Figure 4-27 shows an example of Rule R38. This figure

also shows that the kNN-Join operations can be separated in any order. Figure

4-28 shows an example of Rules R39 and R40. The figure shows that, when the

join attributes do not have a single direction, the plans generated serializing the

kNN-Join operations generate different results than the conceptual evaluation

plan. Furthermore, the plans corresponding to the two ways to serialize the

operations generate different results.

≡

E

θkNN1_2 ∩

θkNN2_3
σ

S

σ
S

e1 e2

E

θkNN2_3σ
S

θkNN1_2

≡

σ
S

E

σ
S

Output

e3

θkNN1_2

θkNN2_3

kNN1_2=2

kNN2_3=2

e1 e2

Output

e3 e1 e2

Output

e3

Figure 4-27 Combining/Separating Multiple kNN-Join Predicates - When the
Attributes in the Predicates Have a Single Direction (e1→e2, e2→e3)

110

e3

E

θkNN1_2 ∩

θkNN3_2
σ

S

σ
S

e1 e2

E

θkNN3_2σ
S

θkNN1_2

σ
S

E

σ
S

Output

θkNN1_2

θkNN3_2kNN1_2=2

kNN3_2=2

≡

≡

e3e1 e2

Output

kNN1_2=2

kNN3_2=2

e3e1 e2

Output

kNN1_2=2

kNN3_2=2

Figure 4-28 Combining/Separating Multiple kNN-Join Predicates - When the
Attributes in the Predicates do not Have a Single Direction (e1→e2, e2←e3)

E

θkD1_2 ∩

θkD2_3
σ

S

σ
S

e1 e2

E

θkD2_3σ
S

θkD1_2

σ
S

E

σ
S

Output

e3

θkD1_2

θkD2_3

kD1_2=2

kD2_3=2

e1 e2

Output

e3

e1 e2

Output

e3

≡

≡

Figure 4-29 Combining/Separating Multiple kD-Join Predicates

Rules R41, R42, R43 and R44 specify that multiple kD-Join operations cannot be

separated. Rules R41 and R42 state that the separation cannot be made when

111

the attributes of the join predicates have a single direction. Rules R43 and R44

state that the separation cannot be made when the single direction requirement

is not satisfied. Figure 4-29 shows an example of Rules R41 and R42. This figure

shows that the plans that separate the kNN-Join operations generate different

results than the plan that combines the join predicates. Furthermore, the plans

corresponding to the two ways to serialize the operations generate different

results.

Rules R45, R46 and R47 specify the way Eps-Join and kNN-Join predicates can

be combined or separated. In this case, the equivalence rules depend on

whether the attributes of the join predicates have a single direction or not.

According to Rule R45, when the attributes of the join predicates have a single

direction, the join operations can be separated in any order as shown in Figure 4-

30. According to Rules R46 and R47, when the attributes of the join predicates

do not have a single direction, the join operations can be separated executing

first the kNN-Join and then the Eps-Join as shown in Figure 4-31.

≡

E

θε1_2 ∩

θkNN2_3
σ

S

σ
S

e1 e2

E

θkNN2_3σ
S

θε1_2

≡

σ
S

E

σ
S

e3

θε1_2

θkNN2_3

kNN2_3=2

e1 e2

Output

e3 e1 e2

Output

e3

Figure 4-30 Combining/Separating Eps-Join and kNN-Join - When the Attributes
in the Predicates Have a Single Direction (e1→e2, e2→e3)

112

≡

E

θε1_2 ∩

θkNN3_2
σ

S

σ
S

e1 e2

E

θkNN3_2σ
S

θε1_2

σ
S

E

σ
S

e3

θε1_2

θkNN3_2kNN3_2=2

Output

≡

e1 e2 e3

kNN3_2=2

Output

e1 e2 e3

kNN3_2=2

Output

Figure 4-31 Combining/Separating Eps-Join and kNN-Join - When the Attributes
in the Predicates do not Have a Single Direction (e1→e2, e2←e3)

E

θε1_2 ∩

θkD2_3
σ

S

σ
S

e1 e2

E

θkD2_3σ
S

θε1_2

σ
S

E

σ
SOutput

e3

θε1_2

θkD2_3
kD2_3=2 ≡

≡

e1 e2

Output

e3

e1 e2

Output

e3

Figure 4-32 Combining/Separating Eps-Join and kD-Join

Rules R48, R49, R50 and R51 specify the way Eps-Join and kD-Join predicates

can be combined or separated. The Similarity Join predicates can be separated

as long as kD-Join is executed first and Eps-Join is executed on the first join’s

output. An example of Rules R48 and R49 is presented in Figure 4-32. Given

113

that both Eps-Join and kD-Join are commutative, the transformation does not

depend on whether or not the attributes of the join predicates have a single

direction.

According to Rules R52, R53, R54 and R55, kNN-Join and kD-Join predicates

cannot be combined or separated in any order. Figure 4-33 shows an example of

Rules R52 and R53. This figure shows that the plans that separate the kNN-Join

and kD-Join operations generate different results than the plan that combines

these predicates. Furthermore, the plans corresponding to the two ways to

serialize the operations generate different results.

E

θkNN1_2 ∩

θkD2_3
σ

S

σ
S

e1 e2

E

θkD2_3σ
S

θkNN1_2

σ
S

E

σ
S

Output

e3

θkNN1_2

θkD2_3kNN1_2=2

≡

≡kD2_3=2

e1 e2

Output

e3

kNN1_2=2 kD2_3=2

e1 e2

Output

e3

kNN1_2=2 kD2_3=2

Figure 4-33 Combining/Separating kNN-Join and kD-Join

Rules R56 to R69 specify how Join-Around can be combined with other Similarity

Join operations and how join expressions that contain at least one Join-Around

predicate can be separated. Join-Around is a hybrid between the kNN-Join with

k=1 and the Eps-Join. Therefore, given a specific combination of Join-Around

and another type of Similarity Join Sim-Join, the equivalence rules for combining

or separating Join-Around and Sim-Join correspond to the most restrictive rules

between combining (1) Eps-Join and Sim-Join and (2) kNN-Join and Sim-Join.

114

4.4.2. Other Core Equivalence Rules

4.4.2.1 Commutativity of Similarity Join Operators

Some similarity Join operations are commutative as specified by the following

rules. Some additional conditions are given in the description of these rules.

R70.

R71.

R72. (
)

R73. (
)

Rules R70 and R71 state that Epsilon-Join and kD-Join are commutative. In

addition to the conditions specified in the rules, the distance functions associated

to these operations have to be symmetric. Figure 4-34 represent Rules R70 and

R71 graphically. Rules R72 and R73 state that kNN-Join and Join-Around are not

commutative.

E1

S

E2 E1

S

E2

≡
θkD1_2 θkD2_1

kD1_2 = kD2_1

E1

S

E2 E1

S

E2

≡
θε1_2 θε2_1

ε1_2 = ε2_1

b. kD-Join

a. Eps-Join

Figure 4-34 Commutativity of Similarity Join Operators

115

Proof sketch of Rule R70

In the LHS expression of the equivalence, all the join links satisfy dist(e1,e2) ≤ ε.

Given that the distance function dist is symmetric, dist(e1,e2)=dist(e2,e1).

Consequently, the condition dist(e2,e1) ≤ ε in the LHS expression of the

equivalence will produce the same set of join links.

4.4.2.2 Distribution of Selection over Similarity Join

The regular selection operation distributes over the Similarity Join operations

according to the following rules.

When all the attributes of θn involve only the attributes of one of the expressions

being joined (En):

R74.
(

)

R75.
(

)

R76.
(

)

R77.
(

)

R78.
(

)

R79.
(

)

R80.
(

)

R81.
(

)

When predicates θ1 and θ2 involve only the attributes of E1 and E2, respectively:

R82.
(

)

R83.
(

)

116

R84.
(

)

R85.
(

)

According to Rules R74 and R75, the regular selection operation distributes over

the Eps-Join operation. Furthermore, the selection operation can be pushed

under either the outer (R74) or the inner (R75) input of the Eps-Join. Figure 4-35

represents Rule R74 graphically.

σ

E1

S

E2

σ

E1

S

E2

≡

θ1

θε1_2

θε1_2

θ1

Figure 4-35 Distribution of Selection over Eps-Join

Proof sketch of Rule R74

Assume that the join attributes in θε1_2 are E1.e1 and E2.e2 and that θ1 is defined

over E1.e1. Consider a generic tuple tE1 of E1. We will show that for any possible

pair (tE1,tE2), where tE2 is a tuple of E2, the results generated by the plans of both

sides of the rule are the same. The top part of Figure 4-36 shows a graphical

representation of Rule R74. The bottom part of Figure 4-36 shows the different

possible regions for the values of tE2.e2 and two generic values of tE1.e1. a2

represents a value that satisfies the predicate θ1 while a1 represents a value that

does not.

1. When the value of tE1.e1 is a1. In the LHS plan, the pair (tE1,tE2) may or

may not belong to the output of the Eps-Join. However, (tE1,tE2) will be filtered out

by the selection operator since a1 does not satisfy the predicate θ1. Thus, no

output is generated by this plan. In the RHS plan, tE1 is filtered out by the

117

selection since a1 does not satisfy θ1. No tuple flows to the Eps-Join operator

form its outer input. Thus, no output is generated by this plan either.

2. When the value of tE1.e1 is a2 and the value of tE2.e2 belongs to A. In the

LHS plan, the pair (tE1,tE2) does not belong to the output of the Eps-Join since

dist(tE1.e1,tE2.e2)>ε1_2. No tuple flows to the selection operator. Thus, no output

is generated by this plan. In the RHS plan, tE1 is selected by the regular selection

operator since a2 satisfies θ1. However, the pair (tE1,tE2) does not belong to the

output of the Eps-Join since dist(tE1.e1,tE2.e2)>ε1_2. Thus, no output is generated

by this plan either.

3. When the value of tE1.e1 is a2 and the value of tE2.e2 belongs to B. In the

LHS plan, the pair (tE1,tE2) belongs to the output of the Eps-Join since

dist(tE1.e1,tE2.e2)≤ε1_2. (tE1,tE2) is also selected by the regular selection operator

since a2 satisfies θ1. (tE1,tE2) belongs to the output of the LHS plan. In the RHS

plan, tE1 is selected by the selection operator since a2 satisfies θ1. (tE1,tE2)

belongs to the output of the Eps-Join since dist(tE1.e1,tE2.e2)≤ε1_2. Thus, (tE1,tE2)

belongs also to the output of the RHS plan.

σ

E1

S

E2

σ

E1

S

E2

≡

θ1

θε1_2

θε1_2

θ1

e2

A

e1

a2

ε1_2

ε1_2

A

B

a1

θ1

tE1 tE2

Figure 4-36 Distribution of Selection over Eps-Join – Proof Sketch

118

Rules R76 and R77 specify the way the regular selection operation distributes

over the kNN-Join operation. In this case, the regular selection operation can be

pushed only under the outer input of the kNN-Join.

Rules R78 and R79 state that the regular selection operation does not distribute

over the kD-Join operation. Figure 4-37 shows an example of Rule R78. This

figure shows that the plan that executes the selection after the kD-Join generates

an output that is different from that of the plan that pushes selection under the

join.

E1 E2

S θ1

Output

S

≡

θkD1_2

σ

E1 E2

θ1

S θkD1_2

e1 e2

Output

e1 e2

σ

kD1_2=2

θ1 θ1

Figure 4-37 Distribution of Selection over kD-Join

Rules R80 and R81 state that the regular selection operation does not distribute

over the Join-Around operation. These rules can be explained taking into

consideration that Join-Around is a hybrid between the kNN-Join with k=1 and

the Eps-Join. The way regular selection distributes over Join-Around

corresponds to the most restrictive way in which regular selection distributes over

Eps-Join and kNN-Join.

119

Rules R82, R83, R84 and R85 specify the way the regular selection operation

distributes over both inputs of a Similarity Join operation when the selection

operations contains two predicates θ1 and θ2, and θi involves only the attributes

of Ei. In this case, regular selection distributes only over Eps-Join. This can be

explained considering the rules that specify how selection can be distributed over

one input of a Similarity Join (R74 to R81). In these rules, selection can be

distributed over either the inner or the outer input of the Similarity Join only in the

case of Eps-Join. Figure 4-38 presents Rule 82 graphically.

σ

E1

S

E2

σ

E1

S

E2

σ≡

θ1˄θ2

θ1 θ2

θε1_2

θε1_2

Figure 4-38 Distribution of Selection over Both Inputs of Eps-Join

4.4.2.3 Distribution of Similarity Selection over Join

Similarity Selection operations distribute over the regular join according to the

following rules.

R86.

R87.

R88.

R89.

120

According to these rules only the Eps-Selection operation distributes over the

regular join (R86 and R87). Furthermore, Eps-Selection can be pushed under

either the outer (R86) or the inner (R87) input of the join. Figure 4-39 shows Rule

R86 graphically. Figure 4-40 presents an example of Rule R88. This figure

shows that the plan that executes the kNN-Selection after the join generates an

output that is different from that of the plan that pushes the kNN-Selection under

the outer input of the join.

σ

E1 E2

σ

E1 E2

S

S

≡

θε1,C

θ1_2

θ1_2

θε1,C

Figure 4-39 Distribution of Eps-Selection over Join

σ

E1 E2

σ

E1 E2

S

S

C

kNN1=2

Output

C
Output

≡

θkNN1,C

θkNN1,C

kNN1=2

θ1_2

θ1_2

Figure 4-40 Distribution of kNN-Selection over Join

4.4.2.4 Distribution of Similarity Selection over Similarity Join

Similarity Selection operations distribute over Similarity Join operations according

to the following rules.

121

Distribution of Eps-Selection over Eps-Join

R90.
(

)

R91.
(

)

Distribution of Eps-Selection over kNN-Join

R92.
(

)

R93.
(

)

Distribution of Eps-Selection over kD-Join

R94.
(

)

R95.
(

)

Distribution of kNN-Selection over Eps-Join

R96.
(

)

R97.
(

)

Distribution of kNN-Selection over kNN-Join

R98.
(

)

R99.
(

)

Distribution of kNN-Selection over kD-Join

R100.
(

)

R101.
(

)

122

Distribution of Eps-Selection over Join-Around

R102.
(

)

R103.
(

)

Distribution of kNN-Selection over Join-Around

R104.
(

)

R105.
(

)

According to Rules R90 and R91, the Eps-Selection operation distributes over

the Eps-Join operation. The Eps-Selection operation can be pushed under either

the outer (R74) or the inner (R75) input of the Eps-Join. Figure 4-41 represents

Rule R74 graphically.

σ

E1 E2

σ

E1 E2

S

S
S

S

≡

θε1,C

θε1,C

θε1_2

θε1_2

Figure 4-41 Distribution of Eps-Selection over Eps-Join

Rules R92 and R93 specify the way the Eps-Selection operation distributes over

the kNN-Join operation. In this case, the Eps-Selection operation can be pushed

only under the outer input of the kNN-Join (R92). Figure 4-42 shows an example

of the equivalence Rule R92. Figure 4-43 shows an example of Rule R93. This

figure shows that the output of the plan that executes the Eps-Selection after the

kNN-Join is different from the output of the plan that pushes the Eps-Selection

under the inner input of the kNN-Join.

123

σ

E1 E2

σ

E1 E2

S

S
S

S

Cε1

ε1
Output Output

Cε1

ε1

θε1,C

θε1,C
θkNN1_2

θkNN1_2

kNN1_2=2 kNN1_2=2

≡

Figure 4-42 Distribution of Eps-Selection over kNN-Join - When Selection is
Pushed under the Outer Relation

σ

E1 E2 E1 E2

S

S

S

kNN1_2=2

C
ε2

ε2
Output

σS

C
ε2

ε2
Output

≡

θε2,C

θε2,CθkNN1_2

θkNN1_2

kNN1_2=2

Figure 4-43 Distribution of Eps-Selection over kNN-Join - When Selection is
Pushed under the Inner Relation

Rules R94 and R95 specify that the Eps-Selection operation does not distribute

over the kD-Join operation. Figure 4-44 shows an example of Rule R94. This

figure shows that the plan that executes the Eps-Selection after the kD-Join

124

generates an output that is different from that of the plan that pushes Eps-

Selection under the outer input of the kD-Join.

σ

E1 E2 E1 E2

S

S

S

θkD1_2

kD1_2=2

σS

θkD1_2

θε1,C

θε1,C

C
ε1

ε1

Output

kD1_2=2

C
ε1

ε1

Output

≡

Figure 4-44 Distribution of Eps-Selection over KD-Join

Rules R96 and R97 specify that the kNN-Selection operation does not distribute

over the Eps-Join operation. Figure 4-45 shows an example of Rule R96. This

figure shows that the output of the plan that executes the kNN-Selection after the

Eps-Join is different from the output of the plan that pushes the kNN-Selection

under the outer input of the Eps-Join. Intuitively, Rule R97 can be derived from

Rule R96 considering that Eps-Join is commutative.

125

σ

E1 E2 E1 E2

S

S

S

θε1_2

Output

≡

θkNN1,C
θε1_2

C

kNN1=3
ε1_2

σS

Output

C

kNN1=3
ε1_2

θkNN1,C

Figure 4-45 Distribution of kNN-Selection over Eps-Join

Rules R98 and R99 specify the way the kNN-Selection operation distributes over

the kNN-Join operation. In this case, the kNN-Selection operation can be pushed

only under the outer input of the kNN-Join (R98). The reason why the rules

depend on whether the selection is pushed under the outer or the inner input is

that the kNN-Join operation is not commutative. Figure 4-46 shows an example

of Rule R98. Figure 4-47 shows an example of Rule R99. This figure shows that

the output of the plan that executes the kNN-Selection after the kNN-Join is

different from the output of the plan that pushes the kNN-Selection under the

inner input of the kNN-Join.

126

σ

E1 E2

σ

E1 E2

S

S
S

SθkNN1,C

θkNN1_2

C

Output

θkNN1,C

θkNN1_2

kNN1_2=2

kNN1=1 C

Output

≡

Figure 4-46 Distribution of kNN-Selection over kNN-Join - When selection is
Pushed under the Outer Relation

e1 e2

C Output

kNN1_2=2 kNN2=2

e1 e2

C
Output

kNN1_2=2 kNN2=2

σ

E1 E2

σ

E1 E2

S

S
S

SθkNN2,C

θkNN1_2

θkNN2,C

θkNN1_2

≡

Figure 4-47 Distribution of kNN-Selection over kNN-Join - When selection is
Pushed under the Inner Relation

Rules R100 and R101 state that the kNN-Selection operation does not distribute

over the kD-Join operation. Figure 4-48 shows an example of Rule R100. In this

figure, the output of the plan that executes the kNN-Selection after the kD-Join is

different from the output of the plan that pushes the kNN-Selection under the

outer input of the kD-Join. Intuitively, Rule R101 can be derived from Rule R100

considering that kD-Join is commutative.

127

σ

E1 E2 E1 E2

S

S

S

θkD1_2

Output

≡

θkNN1,C

C

kNN1=2

kD1_2=3

σS

θkD1_2

θkNN1,C

Output
C

kNN1=2

kD1_2=3

Figure 4-48 Distribution of kNN-Selection over KD-Join

Rules R102 to R105 specify the way Similarity Selection operations distribute

over the Join-Around operation. Since Join-Around is a hybrid between kNN-Join

and Eps-Join, these rules correspond to the most restricted way in which a given

Similarity Selection operation distributes over Eps-Join and kNN-Join.

4.4.2.5. Associativity of Similarity Join Operators

Similarity Join operations are associative according to the following rules.

Associativity of Eps-Join Operators

When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R106. (
)

When the predicates’ attributes do not have a single direction (e1→e2, e2←e3)

R107.
(

)

Associativity of kNN-Join Operators

When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R108. (
)

When the predicates’ attributes do not have a single direction (e1→e2, e2←e3)

128

R109.
(

)

Associativity of kD-Join Operators

When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R110. (
)

When the predicates’ attributes do not have a single direction (e1→e2, e2←e3)

R111.
(

)

Associativity of Join-Around Operators

When the attributes in the predicates have a single direction (e1→e2, e2→e3)

R112. (
)

When the predicates’ attributes do not have a single direction (e1→e2, e2←e3)

R113.
(

)

Rules R106 and R107 state that Eps-Join operations are associative whether the

attributes in the predicates have a single direction or not. Having or not a single

direction does not affect the equivalence rules since Eps-Join is commutative.

Figure 4-49 shows an example of Rule R106.

129

θε2_3

Output

e1 e2 e3

E1

S

E2

S

E3 E2

S

E3

S

E1

θε1_2

θε1_2

θε2_3

Output

e1 e2 e3

ε1_2
ε2_3

≡

Figure 4-49 Associativity of Eps-Join Operators

Rules R108 and R109 specify when kNN-Join operations are associative. As

expected, given that kNN-Join is not commutative, the rules depend on whether

or not the attributes in the predicates have a single direction. kNN-Join

operations are associative only when the predicate attributes have a single

direction (R108). Figure 4-50 shows an example of Rule R108. Figure 4-51

shows an example of Rule R109. This figure shows that the order of evaluation

of multiple kNN-Join operations with predicate attributes that do not have a single

direction affects the final results.

E1

S

E2

S

E3 E2

S

E3

S

E1

θkNN1_2

Output

e1 e2 e3

kNN1_2=2

kNN3_2=2

θkNN2_3

θkNN2_3

θkNN1_2

Output

e1 e2 e3

≡

Figure 4-50 Associativity of kNN-Join Operators - When Attributes in Predicates
Have a Single Direction: e1→e2, e2→e3

130

E1

S

E2

S

E3 E3

S

E2

S

E1

θkNN3_2

θkNN1_2

θkNN1_2

θkNN3_2

Output

e1 e2 e3

kNN1_2=2

kNN3_2=2

Output

e1 e2 e3

≡

Figure 4-51 Associativity of kNN-Join Operators - When Attributes in Predicates
do not have a Single Direction: e1→e2, e2←e3

Proof sketch of Rule R108

Assume that the join attributes in θε1_2 are E1.e1 and E2.e2 and the join attributes

in θε2_3 are E2.e2 and E3.e3. Consider a generic tuple tE1 of E1. We will show that

for any possible triplet (tE1,tE2,tE3), where tE2 is a tuple of E2 and tE3 is a tuple of

E3, the results generated by the plans of both sides of the rule are the same. The

top part of Figure 4-52 shows a graphical representation of Rule R108. The

bottom part of Figure 4-52 shows the different possible regions for the values of

tE2.e2 and tE3.e3. Note that the regions for tE3.e3 have been specified based on a

generic tuple tE2 with tE2.e2 in region B. The region marked as kNN1_2 represents

the segment that contains the kNN1_2 closest neighbors of tE1 in E2. The region

marked as kNN2_3 represents the segment that contains the kNN2_3 closest

neighbors of tE2 in E3. Note that for a given kNN-Join (θkNN1_2 or θkNN2_3) and a

given outer tuple t, the join identifies the same set of k nearest neighbors of t in

both plans. This is the case since (1) kNN-Join over R1 and R2 makes use of

primary keys in both input relations (R1.pk1, R2.pk2) and ignores tuples in R2 that

have the same primary key, and (2) the set of different values of R2.pk2 in the

inner input of both plans is the same. Furthermore, note that the set of different

values of R2.pk2 in the inner input of both plans corresponds to the set of all

different values of R2.pk2 in the base relation R2.

131

1. When the value of tE2.e2 belongs to B and the value of tE3.e3 belongs to D.

In the LHS plan, the pair (tE1,tE2) belongs to the output of the bottom kNN-Join

(θkNN1_2) since tE2 is one of the kNN1_2 closest neighbors of tE1 in E2. (tE1,tE2)

flows to the top kNN-Join. The triplet (tE1,tE2,tE3) belongs also to the output of the

top kNN-Join (θkNN2_3) since tE3 is one of the kNN2_3 closest neighbors of tE2 in

E3. Consequently, (tE1,tE2,tE3) belongs to the output of the LHS plan. In the RHS

plan, (tE2,tE3) belongs to the output of the bottom kNN-Join (θkNN2_3) since tE3 is

one of the kNN2_3 closest neighbors of tE2 in E3. The triplet (tE1,tE2,tE3) belongs

also to the output of the top kNN-Join (θkNN1_2) since tE2 is one of the kNN1_2

closest neighbors of tE1 in E2. Thus, (tE1,tE2,tE3) belongs also to the output of the

RHS plan. Note that in the RHS plan, the bottom join (θkNN2_3) matches each

inner tuple of E2 to its closes kNN2_3 neighbors in E3. The output of this join will

contain all the values of E2.pk2 (the primary key of E2) in the base relation E2.

Consequently, the set of all different values of E2.pk2 in the inner input of θkNN1_2

is the same in both plans. Therefore, for a given inner tuple t, the join θkNN1_2 will

find the same set of kNN1_2 nearest neighbors of t in both plans.

2. When the value of tE2.e2 belongs to B and the value of tE3.e3 belongs to C.

In the LHS plan, the pair (tE1,tE2) belongs to the output of the bottom kNN-Join

(θkNN1_2) since tE2 is one of the kNN1_2 closest neighbors of tE1 in E2. (tE1,tE2)

flows to the top kNN-Join. However, the triplet (tE1,tE2,tE3) does not belong to the

output of the top kNN-Join (θkNN2_3) since tE3 is not one of the kNN2_3 closest

neighbors of tE2 in E3. Consequently, no output is generated by this plan. In the

RHS plan, (tE2,tE3) does not belongs to the output of the bottom kNN-Join

(θkNN2_3) since tE3 is not one of the kNN2_3 closest neighbors of tE2 in E3. No

tuple flows to the top join. Thus, no output is generated by this plan either.

3. When the value of tE2.e2 belongs to A. In the LHS plan, the pair (tE1,tE2)

does not belongs to the output of the bottom kNN-Join (θkNN1_2) since tE2 is not

one of the kNN1_2 closest neighbors of tE1 in E2. No tuple flows to the top join.

Consequently no output is generated by this plan. In the RHS plan, (tE2,tE3) may

132

or may not belong to the output of the bottom kNN-Join (θkNN2_3). However, any

triplet (tE1,tE2,tE3) does not belong to the output of the top kNN-Join (θkNN1_2) since

tE2 is not one of the kNN1_2 closest neighbors of tE1 in E2. Thus, no output is

generated by this plan either.

E1

S

E2

S

E3 E2

S

E3

S

E1

θkNN1_2

θkNN2_3

θkNN2_3

θkNN1_2

≡

e3e2

A

e1

kNN1_2

A

B D

C

C

kNN2_3tE1
tE2

tE3

Figure 4-52 Associativity of kNN-Join Operators - When Attributes in Predicates
Have a Single Direction: e1→e2, e2→e3 – Proof Sketch

Rules R110 and R111 state that multiple kD-Join operations are not associative.

Given that kD-Join is commutative, the transformations do not depend on

whether or not the attributes of the join predicates have a single direction. Figure

4-53 shows an example of Rule R110. This figure shows that plans with different

evaluation order of the kD-Join operations generate different results.

Rules R112 and R113 specify when multiple Join-Around operations are

associative. Since Join Around is a hybrid between Eps-Join and kNN-Join,

these rules correspond to the most restrictive rules among the counterpart rules

for Eps-Join and kNN-Join.

133

θkD2_3

Output

e1 e2 e3

kNN1_2=2

kNN2_3=2

E1

S

E2

S

E3 E2

S

E3

S

E1

θkD1_2
θkD2_3

θkD1_2

Output

e1 e2 e3

≡

Figure 4-53 Associativity of kD-Join Operators

4.4.3. Rules that use Distance Function properties

This section presents some equivalence rules that take advantage of properties

of the distance functions used by the similarity-aware operators. The rules in this

section specify explicitly the attributes that are involved in each similarity-aware

operation. The selection predicate θS,C(e) specifies that the selection condition is

applied on the attribute e. The join predicate e1 θS e2 specifies that e1 and e2 are

the outer and inner join attributes respectively.

4.4.3.1. Pushing Selection Predicate under Originally Unrelated Eps-Join

Operand

In the equivalence rules presented in Section 4.4.2.2, each selection predicate θ

is pushed only under the join operand that contains the attribute referenced in θ.

In the case of the Ɛ-Join operator, the filtering benefits of pushing selection under

the join can be further improved by pushing θ or a variant of it under both

operands of the Eps-Join as shown in the following equivalence rule.

R114. (
)

where (1) the distance function satisfies the properties: Triangular Inequality,

Symmetry, and Identity of Indiscernibles; and (2) the selection predicate θ±Ɛ

134

represents a modified version of θ where each condition is extended by Ɛ and is

applied on e2, the join attribute of E2. θ±Ɛ uses the same distance function used

in θ. For example, if θ = 10 ≤ e1 ≤ 20, then θ±Ɛ = 10–Ɛ ≤ e2 ≤ 20+Ɛ. This rule is

represented graphically in Figure 4-54.

Proof sketch of Rule R114

Notice that pushing the selection operation under the outer input of the Eps-Join

has been already studied in Rule R74. We focus here on the validity of pushing

the selection operation under the inner input of the Eps-Join. Consider the case

of 1D data. Assume that in the LHS part of Rule R114, the selection predicate θ

is e1=10 and the Eps-Join predicate e1 θε e2 is dist(e1,e2) ≤ ε.

1. Since dist satisfies Identity of Indiscernibles, we know that dist(e1,10) = 0.

2. dist also satisfies Triangular Inequality, consequently dist(10,e2) ≤

dist(10,e1) + dist(e1,e2).

σ

E1

S

E2

σ

E1

S

E2

σ
≡

θ(e1)

e1 θε e2 θ±ε(e2)

e1 θε e2

θ(e1)

Figure 4-54 Pushing Selection Predicate under Originally Unrelated Eps-Join
Operand

3. Due to Commutativity, we have that dist(10,e2) ≤ dist(e1,10) + dist(e1,e2).

4. Replacing (1) in (3), dist(10,e2) ≤ 0+dist(e1,e2) ≤ dist(e1,e2).

5. Using in (4) the fact that dist(e1,e2) ≤ ε, dist(10,e2) ≤ ε.

135

The expression in (5) dist(10,e2) ≤ ε represents a selection predicate that can be

applied on e2. This predicate is in fact the predicate being applied on e2 in the

inner input of the RHS part of Rule R114. We could extend this analysis to other

types of selection conditions.

4.4.3.2. Pushing Eps-Selection Predicate under Originally Unrelated Eps-Join

Operand

Section 4.4.2.4 presented multiple rules that enabled pushing Similarity Selection

predicates θS under the Similarity Join operand that contains the attribute

referenced in θS. In the case of Eps-Join and Eps-Selection, the filtering benefits

of pushing a Similarity Selection predicate θS can be further improved by pushing

θS under one join operand and a variant of θS under the other join operand as

shown in the following equivalence rule.

R115. (
)

where (1) all Eps-Selection and Eps-Join operators use the same distance

function; (2) the distance function satisfies the Triangular Inequality and

Symmetry properties; and (3) the selection predicate θ(Ɛ1+Ɛ2),C represents an Eps-

Selection predicate with a value of Ɛ equal to Ɛ1 + Ɛ2, where Ɛ1 and Ɛ2 are the

values of epsilon used in the Eps-Selection and Eps-Join operators, respectively.

For example, if θƐ1,C is dist(e1,C) ≤ 10, and θƐ2 is dist(e1,e2) ≤ 5, then θ(Ɛ1+Ɛ2),C is

dist (e2,C) ≤15. This rule is represented graphically in Figure 4-55.

Proof sketch of Rule R115

Notice that pushing Eps-Selection under the outer input of the Eps-Join has been

already studied in Rule R90. We focus here on the validity of pushing the Eps-

Selection operation under the inner input of the Eps-Join. Consider the case of

1D data. Assume that the selection predicate θƐ1,C1 is dist(e1,C1) ≤ ε1 and the

join predicate θƐ2 is dist(e1,e2) ≤ ε2.

136

σ

E1 E2

σ

E1 E2

S

S
S

S

σS

C

ε2

ε1
d(e2,C) ≤ ε1 + ε2

e1
e2

θε1,C

θε1,C θ(ε1+ε2),C

≡

e1 θε2 e2

e1 θε2 e2

Figure 4-55 Pushing Eps-Selection Predicate under Originally Unrelated Eps-
Join Operand

1. Due to Triangular Inequality, dist(e2,C1) ≤ dist(e2,e1) + dist(e1,C1).

2. Due to Commutativity, we have that dist(e2,C1) ≤ dist(e1,e2) + dist(e1,C1).

3. Using in (2) the fact that dist(e1,e2) ≤ ε2, dist(e2,C1) ≤ ε2 + dist(e1,C1).

4. Using in (3) the fact that dist(e1,C1) ≤ ε1, dist(e2,C1) ≤ ε1 + ε2.

The expression in (4) dist(e2,C1) ≤ ε1 + ε2 represents an Eps-Selection predicate

that can be applied on e2. This predicate is in fact the predicate being applied on

e2 in the inner input of the RHS part of Rule R115.

4.4.3.3. Associativity Rule that Enables Join on Originally Unrelated Attributes

In the Associativity rules presented in Section 4.4.2.5, each Similarity Join

predicate involves the same attributes in both sides of the rule. In the case of Ɛ-

Join, when the attributes e1 of E1 and e2 of E2 are joined using Ɛ1 and the result

joined with attribute e3 of E3 using Ɛ2, there is an implicit relationship between e1

and e3 that is exploited by the following equivalence rule.

137

R116. (
)

 (
)

where (1) all the Eps-Join operators use the same distance function; (2) the

distance function satisfies the Triangular Inequality and Symmetry properties;

and (3) the predicate θƐ1+Ɛ2 represents an Eps-Join predicate with a value of Ɛ

equal to Ɛ1 + Ɛ2, where Ɛ1 and Ɛ2 are the values of epsilon used in the Eps-Join

operators of the RHS part of the rule. For example, if θƐ1 is dist(e1,e2) ≤ 10, and

θƐ2 is dist(e2,e3) ≤ 5, then θƐ1+Ɛ2 is dist(e1,e3) ≤ 15. This rule is represented

graphically in Figure 4-56.

E1

S

E2

S

E3 E1

S

E3

S

E2

≡
e1 θε1 e2

e2 θε2 e3

e1 θε1+ε2 e3

(e1 θε1 e2)˄

(e2 θε2 e3)

Figure 4-56 Eps-Join Associativity that Enables Join on Originally Unrelated
Attributes

Proof sketch of Rule R116

Assume that in the LHS part of Rule R116, the join predicate θƐ1 is dist(e1,e2) ≤

ε1, and the join predicate θƐ2 is dist(e2,e3) ≤ ε2. The order of attributes in these

expressions is irrelevant because the distance function is Commutative.

1. Due to Triangular Inequality, dist(e1,e3) ≤ dist(e1,e2)+dist(e2,e3).

2. Since dist(e1,e2) ≤ ε1 and dist(e2,e3) ≤ ε2, dist(e1,e3) ≤ ε1+ ε2.

The expression in (2) dist(e1,e3) ≤ ε1+ ε2 represents a join predicate that can be

applied on e2 and e3.This predicate is in fact the predicate being applied on e2

and e3 in the left join of the RHS part of Rule R116. Notice that the RHS part of

138

the rule requires a second join that applies the two join predicates of the LHS

part because some tuples that do not satisfy these predicates can be present in

the output of the join between e1 and e3.

4.4.3.4. Applicability of Rules for Common Distance Functions

Sections 4.4.3.1, 4.4.3.2, and 4.4.3.3 presented three equivalence rules that take

advantage of specific properties of the distance functions used by the similarity-

aware operators (Rules R114, R115, and R116). Many distance functions are

used in practice, where each distance function can be used with certain types of

data, e.g., numeric, text, vector data, etc. Tables 4-1 and 4-2 present several

common distance functions and the equivalence rules that can be used with each

of them. These tables also present the definition of each distance function and

the data types they can be used with.

4.4.4. Examples of the Use of Transformation Rules

The equivalence rules presented in Section 4.4 allow the transformation of

similarity query plans into equivalent plans with possibly smaller execution times.

Particularly, these rules can be used to transform the conceptual evaluation plan

of a similarity query into more efficient equivalent plans. This section presents

examples of this type of query transformations.

Figure 4-57 shows the SQL version of a similarity query with Eps-Selection and

Eps-Join predicates. The left plan in this figure shows the conceptual evaluation

plan of this query. The right plan shows an equivalent plan with potentially better

execution time (since each relation is read only once and the Similarity Selection

is pushed under the Similarity Join). The following steps show how the query

expression of the left plan can be transformed into the one of the right plan.

1.

2.

 , since Eps-Selection and Eps-Join can be

separated or combined (Rule R10)

139

Table 4-1 Common Distance Functions 1

Distance

Function
Definition

Supported Data Types Applicable Rules

Text Numeric Vector
Time

Series
114 115 116

p-norm

distance

p-norm distance of two

vectors (x1, x2, ...,xn) and

(y1, y2, ...,yn) is defined as:

1-norm distance =

∑| |

2-norm distance =

(∑| |

)

p-norm distance =

(∑| |

)

infinity-norm distance =

(∑| |

)

 X X X X X X

Cosine

Distance 1

CD1(A,B) = 1 - CS(A,B),

where A and B are vectors

and is the CS(A,B) Cosine

Similarity. CS(A,B) =

(A·B)/(ǁAǁǁBǁ)

 X X

Cosine

Distance 2

Cosine Distance 2

CD2(A,B)=arccos(CS(A,B)

)

 X X X X X

Discrete

Metric

Function

DM(x,y) = 0 if x = y, 1

otherwise, where x and y

are numbers.

 X X X X

Longest

Common

Subseque

nce

LCS(X,Y) = longest

subsequence common to

strings or time series X

and Y.

X X

140

Table 4-2 Common Distance Functions 2

Distance

Function
Definition

Supported Data Types
Applicable

Rules

Text Numeric Vector
Time

Series
114 115 116

Edit

Distance

with Equal

Weights

ED(X,Y) = minimum

number of operations

needed to transform string

X into string Y. Allowed

operations: insertion,

deletion, and substitution of

a single character.

X X X X

Edit

Distance

with

Different

Weights

ED(X,Y) = min(w(E)),

where E is a sequence of

edit operations that

transforms string X into

string Y, and w is a weight

function that assigns a

nonnegative real number

w(x, y) to each elementary

edit operation.

X

Hamming

Distance

HD(X,Y) = number of

positions in which the

characters of strings X and

Y are different.

X X X X

Jaccard

Distance

JD(A,B) = 1- JS(A,B),

where JS(A,B) =

(|A∩B|/|AUB|). A and B are

two generic sets. For string

data, JS(A,B) = number of

shared tokens/total number

of tokens. For vector data,

JS(A,B)=number of

matching cells/total number

of cells.

X X X X X

141

3.

 , since Eps-Selection distributes over Eps-Join

(Rule R86)

4.

 , since Eps-Selection and cross product can be

combined (Rule R1)

SELECT e1, e2 FROM E1, E2

WHERE EpsJoinPred1-2 AND EpsSelPred1

E1
E2

S

EpsSelPred1

EpsJoinPred1-2

σS

∩

σ
S

σS

E1 x E2 E1 x E2

EpsSelPred1
EpsJoinPred1-2

Figure 4-57 Transformation of Query with Eps-Selection and Eps-Join Predicates

Figure 4-58 shows the SQL version of a similarity query two Eps-Join predicates.

The left plan in this figure is the conceptual evaluation plan of the query while the

right one shows an equivalent plan with potentially better execution time (since

each relation is read only once and only the tuples that satisfy the bottom join

flow to the outer input of the top join). The following steps show how the query

expression of the left plan can be transformed into the one of the right plan.

1.

2.

 , since two Eps-Join predicates can be

separated or combined (Rule R36)

3.

 , since Eps-Selection distributes over Eps-Join

(Rule R86)

142

4.
(

), since Eps-Selection and cross product can be

combined (Rule R1)

5.

 , since Eps-Selection and cross product can be

combined (Rule R1)

SELECT e1, e2, e3 FROM E1, E2, E3

WHERE EpsJoinPred1-2 AND EpsJoinPred2-3

E1 E2

S

S

E3

EpsJoinPred1-2

EpsJoinPred2-3∩

σ
S

σS

E1 x E2 x E3 E1 x E2 x E3

EpsJoinPred1-2 EpsJoinPred2-3

Figure 4-58 Transformation of Query with Multiple Eps-Join Predicates

Figures 4-59, 4-60, 4-61 and 4-62 show examples of more complex similarity

query transformations. The final plan presented in these examples can be

derived from the corresponding conceptual evaluation plans using the

equivalence rules presented in this chapter and rules that generalize them.

These queries also show several key general transformation guidelines for

similarity query optimization.

Figure 4-59 shows the transformation of a query with multiple Similarity Selection

predicates. This figure shows that multiple Eps-Selection operators over the

same attribute can be serialized. Multiple kNN-Selection operators cannot be

serialized; they need to be executed independently and their results combined

using the intersection operator. Eps-Selection and kNN-Selection operations over

the same attribute can be serialized executing the kNN-Selection operations first.

143

SELECT e1, e2, e3 FROM E1, E2, E3

WHERE

EpsSelPred1_1 AND EpsSelPred1_2 AND

kNNSelPred2_1 AND kNNSelPred2_2 AND

EpsSelPred3 AND kNNSelPred3 AND

EpsSelPred4_1 AND EpsSelPred4_2 AND kNNSelPred4_1 AND kNNSelPred4_2

E1 E3...

σ
S

EpsSelPred1_1 ∩ EpsSelPred1_2 ∩

kNNSelPred2_1 ∩ kNNSelPred2_2 ∩

EpsSelPred3 ∩ kNNSelPred3 ∩

EpsSelPred4_1 ∩ EpsSelPred4_2 ∩

kNNSelPred4_1 ∩ kNNSelPred4_2

EpsSelPred1_1

σ
S

σ
S

EpsSelPred1_2

E1

∩

kNNSelPred2_1

σ
S

σ
S

kNNSelPred2_2

E2 E2

EpsSelPred3

σ
S

σ
S

kNNSelPred3

E3

EpsSelPred4_1

σ
S

σ
S

EpsSelPred4_2

∩

kNNSelPred4_1

σ
S

σ
S
kNNSelPred4_2

E4 E4

Figure 4-59 Query with Multiple Similarity Selection Predicates

Figure 4-60 shows the transformation of a query with multiple Eps-Join and

Similarity Selection predicates. This figure shows that Eps-Selection and kNN-

Selection operations can be pushed under any input of an Eps-Join. Multiple

Eps-Join operations can be serialized, i.e., the results of a join are sent to the

next one.

144

SELECT e1, e2, e3 FROM E1, E2, E3

WHERE

EpsJoinPred1_2 AND EpsJoinPred2_3 AND

EpsSelPred1_1 AND EpsSelPred1_2 AND kNNSelPred1_1 AND kNNSelPred1_2 AND

EpsSelPred2_1 AND EpsSelPred2_2 AND kNNSelPred2_1 AND kNNSelPred2_2 AND

EpsSelPred3_1 AND EpsSelPred3_2 AND kNNSelPred3_1 AND kNNSelPred3_2

E1 E3...

σ
S

EpsJoinPred1_2 ∩ EpsJoinPred2_3 ∩

EpsSelPred1_1 ∩ EpsSelPred1_2 ∩ kNNSelPred1_1 ∩ kNNSelPred1_2 ∩

EpsSelPred2_1 ∩ EpsSelPred2_2 ∩ kNNSelPred2_1 ∩ kNNSelPred2_2 ∩

EpsSelPred3_1 ∩ EpsSelPred3_2 ∩ kNNSelPred3_1 ∩ kNNSelPred3_2

EpsSelPred1_1

σ
S

σ
S

EpsSelPred1_2

∩

kNNSelPred1_1

σ
S

σ
S
kNNSelPred1_2

E1 E1

S

EpsSelPred2_1

σ
S

σ
S

EpsSelPred2_2

∩

kNNSelPred2_1

σ
S

σ
S

kNNSelPred2_2

E2 E2

EpsJoinPred1_2

S
EpsJoinPred2_3

EpsSelPred3_1

σ
S

σ
S

EpsSelPred3_2

∩

kNNSelPred3_1

σ
S

σ
S

kNNSelPred3_2

E3 E3

Figure 4-60 Query with Multiple Eps-Join and Similarity Selection Predicates

Figure 4-61 shows the transformation of a query with a kNN-Join and multiple

Similarity Selection predicates. This figure shows that Eps-Selection and kNN-

Selection can be pushed under the outer input of kNN-Joins. Eps-Selection

defined over the inner input attribute of a kNN-Join can be serialized with the join

operation executing the kNN-Join first. kNN-Selection defined over the inner

input attribute of a kNN-Join cannot be serialized with the join operation. In this

145

case, the kNN-Join and kNN-Selection operations need to be evaluated

independently and the results combined using the intersection operation.

SELECT e1, e2 FROM E1, E2

WHERE

kNNJoinPred1_2 AND

EpsSelPred1_1 AND EpsSelPred1_2 AND kNNSelPred1_1 AND kNNSelPred1_2 AND

EpsSelPred2_1 AND EpsSelPred2_2 AND

kNNSelPred2_1 AND kNNSelPred2_2

E1 E2

σ
S

EpsSelPred1_1 σ
S

σ
S

EpsSelPred1_2

∩

kNNSelPred1_1 σ
S

σ
S

kNNSelPred1_2

E1 E1

S

E2

kNNJoinPred1_2

∩

kNNSelPred2_1

σ
S

σ
S

kNNSelPred2_2

E1 x E2

kNNJoinPred1_2 ∩

EpsSelPred1_1 ∩ EpsSelPred1_2 ∩ kNNSelPred1_1 ∩ kNNSelPred1_2 ∩

EpsSelPred2_1 ∩ EpsSelPred2_2 ∩

kNNSelPred2_1 ∩ kNNSelPred2_2

EpsSelPred2_1 σ
S

σ
S

EpsSelPred2_2

∩

E1 x E2

Figure 4-61 Query with kNN-Join and Multiple Similarity Selection Predicates

Figure 4-62 shows the transformation of a generic query with multiple Similarity

Join and Similarity Selection predicates. Figure 4-62 shows that multiple kNN-

Join operations can be serialized as long as the attributes of the join predicates

have a single direction. kNN-Join and Eps-Join can also be serialized executing

the kNN-Joins first. Multiple kNN-Join operations whose predicates do not have a

146

single direction need to be evaluated independently and the results combined

using the intersection operation.

SELECT e1, e2, e3, e4 FROM E1, E2, E3, E4

WHERE

kNNJoinPred1_2 AND kNNJoinPred2_3 AND kNNJoinPred1_3 AND EpsJoinPred4_3 AND

EpsSelPred1_1 AND EpsSelPred1_2 AND kNNSelPred1_1 AND kNNSelPred1_2

E1 E4

σ
S

S

E2

kNNJoinPred1_2

E1 x E2 x E3 x E4

∩

kNNJoinPred1_2 ∩ kNNJoinPred2_3 ∩ kNNJoinPred1_3 ∩ EpsJoinPred4_3 ∩

EpsSelPred1_1 ∩ EpsSelPred1_2 ∩ kNNSelPred1_1 ∩ kNNSelPred1_2

...

S
kNNJoinPred2_3

S
EpsJoinPred4_3

S
kNNJoinPred1_3

E3

E4

σ
S

σ
S

EpsSelPred1_2

∩

kNNSelPred1_1 σ
S

σ
S

kNNSelPred1_2

E1 E1

EpsSelPred1_1

Figure 4-62 Query with Multiple Similarity Join and Similarity Selection
Predicates

147

CHAPTER 5 CONCLUSIONS AND FUTURE WORK

5.1. Conclusions

Many application scenarios can benefit tremendously from database operators

that exploit similarities in the data and allow the pipelining of the results for

further processing. Related previous work has proposed some similarity-aware

operations and standalone implementation techniques that are not fully

integrated with the query processing engine of DBMSs.

The focus of this paper is the proposal and study of several similarity-aware

database operators and the analysis of their role as physical operators,

interactions, optimizations, and implementation techniques.

We demonstrate that Similarity-aware operators can be efficiently implemented

taking advantage of structures and mechanisms already available in DBMSs.

The performance study shows that similarity queries using the implemented

similarity-aware operators perform significantly better than queries that get the

same result using only regular operators. Furthermore, some similarity-aware

operations cannot be answered using conventional database operators, e.g.,

Unsupervised Similarity Group-by.

Multiple optimization techniques used in regular operators can be extended to

the case of Similarity-aware operators. Particularly, we present (1) multiple

transformation rules for SGB and SJ, (2) Eager and Lazy Aggregation

transformation techniques for SGB and SJ, and (3) guidelines to answer

similarity queries using materialized views.

We demonstrated that it is possible to have a conceptual evaluation model for

similarity queries that clearly specifies the way a similarity query should be

148

evaluated even if the query has multiple similarity-aware operations. The

proposed conceptual evaluation model considers Similarity Group-By, Similarity-

Join, and Similarity Selection operations.

We presented a rich set of generalized transformation rules for similarity queries

with multiple similarity-aware operations. Furthermore, we demonstrated that

transformation rules for similarity operators can take advantage of special

properties of these operations and the involved distance functions to enable

more useful query transformations.

We also demonstrated how the conceptual evaluation plan of a query can be

transformed to equivalent plans with potentially better execution times.

Furthermore, we identified several core query transformation guidelines for

similarity queries, e.g., (1) multiple Eps-Selection or multiple Eps-Join operations

can be serialized, (2) multiple kNN-Selection operations need to be executed

independently and their results combined using intersection, (3) Eps-Selection

and kNN-Selection over the same attribute can be serialized executing the kNN-

Selection first, (4) Eps-Selection and kNN-Selection can be pushed under any

input of Eps-Joins, (5) kNN-Join and Eps-Selection over the inner input of the join

can be serialized executing the kNN-Join first, (6) kNN-Join and kNN-Selection

on the inner input need to be executed independently and their results combined

using intersection, (7) multiple kNN-Join whose join attributes do not have a

single direction also need to be executed independently.

We showed how the SGB and SJ operators can be efficiently used in practice.

We used these operators to support the queries of a decision support system.

5.2. Future Work

The paths for future work include:

1. Similarity-aware database for sensor networks. The study and

implementation of similarity-aware operators to process sensor data is of

149

particular interest because of the imprecise nature of the data. In this scenario,

operations like SGB and SJ can be extensively used to answer more useful

queries.

2. Similarity-aware massively parallel data stream management system.

Building this system will involve implementing similarity-aware operations using

the Map-Reduce paradigm. These operations will enable the analysis of very

large streams of data.

3. Other core similarity-aware database operators. Our previous work

focused on the Similarity Group-by, Similarity Join and Similarity Selection

operators. Additional operators that can be studied are: duplicate elimination, set

intersection, and set difference.

4. Similarity-aware data warehousing operators. The CUBE and ROLLUP

operators, which are extensively used in data warehousing applications, can be

extended to use similarity grouping mechanisms like the ones used in SGB.

Different similarity grouping strategies could be used to group the values in

different dimensions. These extended CUBE and ROLLUP operators will be able

to generate more meaningful and useful summaries of large datasets.

5. Benchmark for Similarity-aware Query Processing. This benchmark will

evaluate the similarity-aware query processing capabilities of database systems.

One of the goals for this benchmark would be the specification of queries that

exploit similarities in the data and have broad industry-wide relevance.

REFERENCES

160

REFERENCES

1. A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM
Computing Surveys, vol. 31, no. 3, pp. 264-323, 1999.

2. P. Berkhin, “Survey of clustering data mining techniques,” Accrue Software,

2002.

3. B. Stein, S. M. Eissen, and F. Wibrock, “On cluster validity and the
information need of users,” in 3rd IASTED Int. Conference on Artificial
Intelligence and Applications, 2003.

4. M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “Clustering validity checking
methods: Part II,” SIGMOD Record, vol. 31, no. 3, pp. 19-27, 2002.

5. M. Li, G. Holmes and B. Pfahringer, “Clustering large datasets using Cobweb
and K-Means in tandem,” in 17th Australian Joint Conference on Artificial
Intelligence, 2004.

6. F. Farnstrom, J. Lewis, and C. Elkan, “Scalability for clustering algorithms
revisited,” SIGKDD Explorations Newsletter, vol. 2, no. 1, pp. 51–57, 2000.

7. S. Guha, R. Rastogi, and K. Shim, “CURE: An efficient clustering algorithm
for large databases,” SIGMOD Record, vol. 27, no. 2, pp. 73-84, 1998.

8. T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient data
clustering method for very large databases,” SIGMOD Record, vol. 25, no. 2,
pp. 103-114, 1996.

9. C. Zhang and Y. Huang, “Cluster By: A new SQL extension for spatial data
aggregation,” in 15th Annual ACM international Symposium on Advances in
Geographic information Systems, 2007.

10. C. Li, M. Wang, L. Lim, H. Wang, and K. C. Chang, “Supporting ranking and
clustering as generalized order-by and group-by,” in ACM SIGMOD
International Conference on Management of Data, 2007.

11. E. Schallehn, K. Sattler, and G. Saake, “Extensible grouping and aggregation
for data reconciliation,” in 4th Workshop of Engineering Federated Information
Systems, 2001.

161

12. E. Schallehn and K. Sattler, “Using similarity-based operations for resolving

data-level conflicts,” in 20th British National Conference on Databases, 2003.

13. E. Schallehn, K. Sattler, and G. Saake, “Efficient similarity-based operations
for data integration,” Data & Knowledge Engineering, vol. 48, no. 3, pp. 361-
387, 2004.

14. C. Böhm, “The Similarity Join: A powerful database primitive for high
performance data mining,” tutorial, in 17th International Conference on Data
Engineering, 2001.

15. C. Böhm and H. Kriegel, “A cost model and index architecture for the
similarity join,” in 17th International Conference on Data Engineering, 2001.

16. C. Böhm, F. Krebs, and H. Kriegel, “Optimal Dimension Order: A generic
technique for the similarity join,” in 4th International Conference on Data
Warehousing and Knowledge Discovery, 2002.

17. V. Dohnal, C. Gennaro, and P. Zezula, “Similarity join in metric spaces using
eD-Index,” in 14th International Conference on Database and Expert Systems
Applications, 2003.

18. V. Dohnal, C. Gennaro, P. Savino, and P. Zezula, “Similarity join in metric
spaces,” in 25th European Conference on IR Research, 2003.

19. C. Böhm, B. Braunmüller, F. Krebs, and H.-P. Kriegel, “Epsilon Grid Order:
An algorithm for the similarity join on massive high-dimensional data,” in ACM
SIGMOD International Conference on Management of Data, 2001.

20. J.-P. Dittrich and B. Seeger, “GESS: A scalable similarity join algorithm for
mining large data sets in high dimensional spaces,” in 7th ACM SIGKDD
international Conference on Knowledge Discovery and Data Mining, 2001.

21. E. H. Jacox and H. Samet, “Metric space similarity joins,” ACM Trans.
Database Syst., 33(2):1-38, 2008.

22. G. Hjaltason and H. Samet, “Incremental distance join algorithms for spatial
databases,” in ACM SIGMOD International Conference on Management of
Data, 1998.

23. C. Böhm and F. Krebs, “The k-Nearest Neighbour Join: Turbo charging the
KDD process,” Knowledge and Information Systems, 6(6): 728-749, 2004.

162

24. C. Yu, B. Cui, S. Wang, and J. Su, “Efficient index-based KNN join processing
for high-dimensional data,” Information and Software Technology, 49(4): 332-
344, 2007.

25. C. Xia, H. Lu, B. Chin, and O. Hu, “GORDER: An Efficient method for KNN
join processing,” in 30th International Conference on Very Large Data Bases,
2004.

26. C. Böhm, B. Braunmüller, M. Breunig, and H. Kriegel, “High performance
clustering based on the similarity join,” in 9th International Conference on
Information and Knowledge Management, 2000.

27. H. Kriegel, P. Kunath, M. Pfeifle, and M. Renz, “Probabilistic similarity join on
uncertain data,” in 11th International Conference on Database Systems for
Advanced Applications, 2006.

28. S. Chaudhuri, V. Ganti, and R. Kaushik, “A Primitive operator for similarity
joins in data cleaning,” in International Conference on Data Engineering,
2006.

29. S. Chaudhuri, V. Ganti, and R. Kaushik, “Data Debugger: An operator-centric
approach for data quality solutions,” Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 2006.

30. L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and
D. Srivastava, “Approximate string joins in a database (almost) for free,” in
International Conference on Very Large Data Bases, 2001.

31. D. J. DeWitt, J. F. Naughton, and D. A. Schneider, “An evaluation of non-
equijoin algorithms,” in International Conference on Very Large Data Bases,
1991.

32. B. Bryan, F. Eberhardt, and C. Faloutsos, “Compact similarity joins,” in
International Conference on Data Engineering, 2008.

33. C. Xiao, W. Wang, and X. Lin, “EdJoin: An efficient algorithm for similarity
joins with edit distance constraints,” in International Conference on Very
Large Data Bases, 2008.

34. C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient similarity joins for near
duplicate detection,” in 17th international Conference on World Wide Web,
2008.

163

35. M. D. Lieberman, J. Sankaranarayanan, and H. Samet, “A fast similarity join
algorithm using graphics processing units,” in International Conference on
Data Engineering, 2008.

36. M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava, “Fast indexes
and algorithms for set similarity selection queries,” in International Conference
on Data Engineering, 2008.

37. X. Yang, B. Wang, and C. Li, “Cost-based variable-length-gram selection for
string collections to support approximate queries efficiently,” in ACM SIGMOD
International Conference on Management of Data, 2008.

38. X. Lian and L. Chen, “Similarity search in arbitrary subspaces under Lp-
norm,” in International Conference on Data Engineering, 2008.

39. M. Wichterich, I. Assent, P. Kranen, and T. Seidl, “Efficient EMD-based
similarity search in multimedia databases via flexible dimensionality
reduction,” in ACM SIGMOD International Conference on Management of
Data, 2008.

40. W. Yan and P. Larson, “Eager aggregation and lazy aggregation,” in 21th
International Conference on Very Large Data Bases.

41. P. Larson, “Data reduction by partial preaggregation,” in Proc. 18th
International Conference on Data Engineering, 2002.

42. C. Galindo-Legaria and M. Joshi, “Orthogonal optimization of subqueries and
aggregation,” SIGMOD Record, vol. 30, no. 2, pp. 571-581, 2001.

43. J. Goldstein and P. Larson, “Optimizing queries using materialized views: A
practical, scalable solution,” SIGMOD Record, vol. 30, no. 2, pp. 331-342,
2001.

44. S. Cohen, W. Nutt, and Y. Sagiv, “Rewriting queries with arbitrary aggregation
functions using views,” ACM Transactions on Database Systems, vol. 31, no.
2, pp. 672-715, 2006.

45. S. Cohen, “User-defined aggregate functions: Bridging theory and practice,”
in ACM SIGMOD International Conference on Management of Data, 2006.

46. S. Adali, P. Bonatti, M. L. Sapino, and V. S. Subrahmanian, “A multi-similarity
algebra,” in ACM SIGMOD International Conference on Management of Data,
1998.

164

47. C. Traina, A. J. M. Traina, M. R. Vieira, A. Arantes, and C. Faloutsos,
“Efficient processing of complex similarity queries in RDBMs through query
rewriting,” in 15th ACM international Conference on information and
Knowledge Management, 2006.

48. M. C. N. Barioni, H. L. Razente, A. J. M. Traina, and C. Traina, “SIREN: A
similarity retrieval engine for complex data,” In International Conference on
Very Large Data Bases, 2006.

49. G. B. Baioco, A. J. M. Traina, and C. Traina, “Mamcost: Global and local
estimates leading to robust cost estimation of similarity queries,” in 19th
international Conference on Scientific and Statistical Database Management,
2007.

50. M. R. P. Ferreira, C. Traina, and A. J. M. Traina, “An efficient framework for
similarity query optimization,” in 15th Annual ACM international Symposium
on Advances in Geographic information Systems, 2007.

51. TPC-H Version 2.6.1. http://www.tpc.org/tpch.

52. Y. N. Silva, W. G. Aref, and M. H. Ali, “Similarity group-by,” in International
Conference on Data Engineering, 2009.

53. Y. N. Silva, M. Arshad, and W. G. Aref, “Exploiting similarity-aware grouping
in decision support systems,” in 12th International Conference on Extending
Database Technology: Advances in Database Technology, 2009.

54. Y. N. Silva, W. G. Aref, and M. Ali, “The similarity join database operator,” in
International Conference on Data Engineering, 2010.

55. Y. N. Silva, A. M. Aly, W. G. Aref, and P. Larson, “SimDB: A similarity-aware
database system,” in ACM SIGMOD International Conference on
Management of Data, 2010.

56. Y. N. Silva and W. G. Aref, “Similarity-aware query processing and
optimization,” in International Conference on Very Large Data Bases PhD
Workshop, 2009.

	Similarity-Aware Query Processing and Optimization
	Report Number:
	

	Similarity-aware Query Processing and Optimization

