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ABSTRACT
Ensemble learning can improve classification of relational
data. Previous attempts to do so include methods that have
focused primarily on reducing learning or inference variance,
but not both at the same time. We present an ensemble
model that reduces error due to variance in both learning
and collective inference. Our model uniquely combines two
strategies tailored specifically for relational data and rela-
tional models to achieve a larger reduction in variance than
using either method alone, which results in significant ac-
curacy gains. In addition, we present the first theoretical
analysis for ensembles of collective classifiers in relational
domains, to show the reasons for the superior performance
of our proposed method. We also use synthetic and real
world data to demonstrate the improvement empirically.

1. INTRODUCTION
Ensemble methods have been widely studied as a means of
reducing classification error by combining multiple models
for prediction. However, much of this work has focused on
i.i.d. domains (where objects are independent and models
use exact inference techniques). While there has been some
recent investigation of ensembles for relational domains [4,
11, 19], these previous works have a number of limitations in
that: (1) they focus on the reduction of only one type of error
(due to either learning or inference), (2) they restrict their
attention to datasets with multiple relations, and (3) there
is no theoretical analysis to show the mechanism by which
ensembles reduce model error in relational domains. In this
work, we go beyond previous work and develop an ensemble
that can reduce both types of errors (learning and infer-
ence), and is also applicable for networks with only a single
relation (e.g., email networks, citation networks). Moreover,
we formulate a theoretical framework to compare the errors
made by different relational ensembles and show the reason
for the superior performance of our proposed method.

Traditional design choices for i.i.d. ensembles included meth-
ods to ensure variety among the learned models and methods

to aggregate the output of the models. For example, bagging
approaches (e.g., [2]) aggregate predictions from multiple
models and boosting approaches (e.g., [1, 20, 24]), construct
the models in a coupled fashion so that their weighted vote
gives a good fit to the data. Previous work on relational
ensembles [4, 19] focused on an opportunity offered by re-
lational networks with multiple edge types in order to learn
the component models of a relational ensemble in a new way.
Specifically, the multiple link types in the network are used
to subset the data (instead of a conventional feature sub-
set approach which would sample from the node features).
Also, [4] proposed a new approach to aggregating predic-
tions, which aggregates across the models during collective
inference in addition to the conventional aggregation of the
final model output. This method utilized another unique op-
portunity offered by relational domains, which stems from
the use of collective classification [10, 14, 18, 21].

In this work, we formulate a novel ensemble approach for
relational domains through a unique combination of design
choices. First, we choose to use collective classifiers as base
models for the ensemble, since they can significantly im-
prove classification accuracy. In addition, link structures
and dependencies in relational data require new approaches
for data sampling to learn the base models. Instead of the
traditional way of sampling objects independently to create
multiple pseudosamples for learning, our approach uses a re-
lational resampling method that considers subgraphs of con-
nected objects to capture the dependencies in the data. This
type of resampling more accurately captures the increased
variance in network data [6]. Learning the base models from
pseudosamples constructed in this way will allow the ensem-
ble to capture and reduce more learning variance in predic-
tions. In addition, the collective classifiers will be able to
utilize the link dependencies in the data, which are only
preserved by this type of resampling approach. For pre-
diction, our approach uses an interleaved inference process
that aggregates predictions across the models during infer-
ence. This generalizes the previous interleaved method [4] to
single-network domains. We empirically compare our pro-
posed ensemble approach to several baselines using synthetic
and real-world classification tasks and demonstrate its su-
perior performance. In addition to empirical validation, we
also analyze the relational ensembles theoretically to show
the mechanism by which they reduce classification error.

In i.i.d. domains, ensemble learning methods have been
shown to reduce classification error by reducing variance



(e.g., bagging [2]) or reducing bias (e.g., boosting [24]). How-
ever, since the analysis focuses on i.i.d. data, the models are
assumed to use exact inference techniques that have no asso-
ciated error—thus the only error is attributed to the learning
process. On the other hand, collective inference models ap-
plied to relational data have been shown to have additional
sources of error due to the inference process [16]. Further-
more, the correlation in relational data has been shown to
increase variance [13]. We show that our ensemble design
choices combine to reduce errors due to both the learning
and inference process in relational data. Specifically, our re-
lational resampling approach aims to capture the increased
variance in relational data, allowing the ensembles to reduce
more of the variance due to learning. This is combined with
the interleaved inference, which allows the ensembles to re-
duce more of the variance due to inference. In contrast, the
previous work has developed methods focused on reducing
errors due to variance in learning [19], or due to variance in
inference [4], but not both simultaneously.

We use a bias/variance decomposition similar to that of [16]
for our analysis, but extend it for the ensemble setting—
to consider not just a single collective inference model, but
an ensemble of collective inference models. Specifically, we
reason about two ensemble models: (1) a simple relational
ensemble model that runs the component classifiers inde-
pendently for inference and aggregates the final predictions,
and (2) an across-model approach, which runs the compo-
nent models simultaneously for collective inference and ag-
gregates intermediate predictions across the models during
inference. In the remainder of this paper, the first model
is referred to as the relational ensemble model, while the
second model is referred to as the interleaved model. The
goal of our theoretical analysis is to decompose the errors
associated with each ensemble and show how the different
ensemble approaches are able to reduce the error of a single
model. Specifically, we show that an interleaved ensemble
produces the greatest reduction in error due to its ability to
reduce learning and inference error without an increase in
bias. To our knowledge this is the first analytical investiga-
tion of error for relational ensembles.

The main contributions of this work are:

• A novel ensemble method for relational domains that
can reduce both learning and inference errors, which
is applicable for networks with only a single relation.

• Empirical evaluation on real and synthetic data, which
shows significant performance gains for our proposed
method compared to alternative ensembles.

• Formalization of an error analysis framework for rela-
tional ensemble models.

• Theoretical analysis to show the error reduction offered
by alternative relational ensembles, which demonstrates
the mechanism by which our proposed model improves
model accuracy.

2. PROPOSED ENSEMBLE MODEL
We propose an ensemble model that uses relational sub-
graph resampling (RSR) for generating the bootstrap pseu-
dosamples to learn the ensembles from, and collective ensem-
ble classification (CEC) for inference. RSR was originally

proposed for accurate estimation of variance for network
data [6]. We utilize RSR to accurately capture the learn-
ing variance during ensemble construction. This enables our
ensemble method to reduce more variance in learning than
traditional independent resampling approaches. In addition,
using CEC in our method facilitates the reduction of infer-
ence error. In contrast, the majority of existing ensembles
focus on reducing learning error alone. Using these two ap-
proaches allows a combined reduction of learning and infer-
ence variance, and extends the utility of CEC to single net-
work settings. Note that, CEC was developed for domains
with multiple types of relations (e.g., a network with email,
phone, and SMS links)—and the method requires multiple
link types to learn a model from each typed subnetwork.
However, using RSR for learning enables a generalization of
the method to domains that do not necessarily have multi-
ple link graphs. The psuedosamples we use for learning are
networks sampled with replacement from a single training
graph (regardless of the link types in the graph).

Given a training dataset, our algorithm uses RSR to gener-
ate m bootstrap pseudosamples to learn an ensemble of m
models. The models are applied for collective inference on a
single test set using CEC, which iteratively interleaves the
inferences across the m models. After inference is done, the
predictions output by each base model are aggregated for
each node independently as in traditional ensembles.

2.1 Problem Formulation
The general relational learning and collective classification
problem can be described as follows. Given a fully-labeled
training set composed of a graph Gtr = (Vtr, Etr) with
nodes Vtr and edges Etr, observed features Xtr, and ob-
served class labels Ytr, a model F defining a joint proba-
bility distribution over the labels of Vtr, conditioned on the
observed attributes and graph structure in Gtr is learned.
Given a partially-labelled test set composed of a graph Gte =
(Vte, Ete) with nodes Vte and edges Ete, observed features

Xte, and partially-observed class labels Ỹte ⊂ Yte, the learned
model F is applied for collective inference to output a set of
marginal probability distributions P (i.e., predictions) for
each unlabeled node in Vte. Note that, in this work, we as-
sume the Gtr used for learning is different from the Gte used
for collective inference.

2.2 Ensemble learning
Given the setting described above, the ensemble learning ap-
proach using bootstrap sampling is outlined in Algorithm 1,
showing how an ensemble of size m models is constructed.
A pseudosample Gps = (Vps, Eps) is generated by resam-
pling from Gtr (line 3) and a model F is learned from Gps

(line 4). F is a joint probability distribution over the labels
of Vps, conditioned on the observed attributes and graph
structure in Gps. The ensemble set of m learned models
is returned (line 6). Note that the two main components
needed for an implementation of the algorithm are: a re-
sampling algorithm (step 3) and a learning algorithm (step
4). We describe each below.

2.2.1 Resampling
RSR is an approach for resampling relational data to ac-
curately capture the increased variance due to linkage and
autocorrelation. RSR samples subgraphs with replacement



Algorithm 1 Ensemble Learning: EL(Gtr =(Vtr, Etr),m)

1: Ensemble← ∅
2: for j := 1 to m do
3: Gpsj = Resample(Gtr)
4: Fj = LearnModel(Gpsj )
5: Ensemble = Ensemble ∪ {Fj}
6: return Ensemble

instead of the typical independent sampling technique that
samples instances (i.e., nodes) with replacement. When in-
stances are resampled independently at random the resulting
pseudosamples underestimate the amount of variance if the
data exhibits network autocorrelation.

The RSR procedure is outlined in Algorithm 2. Given a
sample relational data graph G = (V,E), it returns a pseu-
dosample data graph GPS = (VPS , EPS). A set of NS =

d |V |
b
e subgraphs of size b are sampled from G. Each of NS

subgraphs is sampled using a breadth-first search from a
randomly selected seed nodes. As a node vs is added to the
sampled subgraph node set Vs, v′ss neighbors are added to a
list Q, from which the next node vs is taken. This continues
until the subgraph size b is reached.

Note that the sampling is with replacement from the graph,
so a node may appear in multiple subgraphs, one subgraph,
or none. The pseudosample node set (VPS) consists of all the
nodes selected in the subgraphs (suitably relabeled so mul-
tiple copies of the same original node are distinguishable for
the learning algorithm). The pseudosample edge set (EPS)
consists of all the edges within the selected subgraphs.

The key idea behind sampling subgraphs is that when au-
tocorrelation is high (i.e., neighbors are correlated), the ef-
fective sample size is going to be closer to the number of
“groups” of correlated instances than the number of nodes
in the network. To account for this, RSR attempts to sample
these “groups” instead of single instances, thus it more ac-
curately approximates the effective sample size of the data.
Moreover, sampling subgraphs preserves the local relational
dependencies among instances in the subgraph so the re-
lational model is better able to utilize the interrelated at-
tribute dependencies to improve classification. In the tradi-
tional independent sampling technique, a node in the pseu-
dosample will not necessarily have its neighbors from the
original sample, and therefore the model will be less capable
of exploiting the link structure. We compare to a method
that uses independent sampling as a baseline. It is described
in more detail the experimental section.

2.2.2 Learning
We learn relational dependency network (RDN) [18] mod-
els as the component collective classification models. Since
RDNs are selective models based on decision trees, they
exhibit the instability that typically works well in bagged
ensembles. RDNs use pseudolikelihood estimation to effi-
ciently learn a full joint probability distribution over the la-
bels of the data graph, and are typically applied with Gibbs
sampling for collective inference. Note that the full joint
distribution over the test data need not be estimated for
accurate inference and it is sufficient to accurately estimate
the per instance conditional likelihoods, which is easy to

Algorithm 2 Relational Subgraph Resampling (RSR)

RSR(G = (V,E), b)

1: VPS ← ∅; EPS ← ∅
2: for s := 1 to d |V |

b
e do

3: VS ← ∅; ES ← ∅; Q← ∅
4: vs = randomly select node from V
5: VS ← VS ∪ vs
6: push neighbors of vs onto Q
7: while (|VS | < b) ∧ (|Q| > 0) do
8: vs = pop Q
9: VS ← VS ∪ vs

10: push neighbors of vs onto Q
11: ES = {eij ∈ E s.t. vi, vj ∈ VS}; VPS ← VPS +

VS ; EPS ← EPS + ES

12: return GPS = (VPS , EPS)

Algorithm 3 Collective Ensemble Classification (CEC)

CEC(F1, F2, . . . , Fm, G=(V,E), X,Ỹ , Fm=P (Yi|G,X, Y ))

1: for all i in 1 to m do
2: Ŷ i = Ỹ ; Yi

T = ∅
3: for all vj ∈ V s.t. yj /∈ Ỹ do

4: Randomly initialize ŷi
j ; Ŷ i = Ŷ i ∪ ŷi

j

5: repeat
6: for all i = 1 to m do
7: for all vj ∈ V s.t. yj /∈ Ỹ do

8: ŷinew
j = F i : P i(Yj |Xi.j ,Xi.R, Ŷi

R) where R =
{vk : ejk ∈ Ei}

9: ŷ
iagg

j = 1
m

∑m
j=1 ŷ

inew
j

10: Ŷ i = Ŷ i − {ŷi
j}+ {ŷiagg

j } ; Yi
T = Yi

T ∪ ŷ
iagg

j

11: until terminating condition
12: for all i = 1 to m do
13: Compute Pi = {P i

j : yj /∈ Ỹ } using Yi
T

14: P = ∅
15: for all vj ∈ V do
16: pj = 1

m

∑m
i=1 p

i
j ; P = P ∪ {pj}

17: return P

do with Gibbs sampling (i.e., has been shown to converge
within 500-2000 Gibbs iterations [18]).

2.3 Ensemble inference
For inference, we use collective ensemble classification (CEC).
However, instead of learning the ensemble from multiple link
graphs as previously proposed [4], we learn the ensemble
from bootstrap pseudosamples constructed using RSR as
described above. This has an additional advantage of being
applicable in single-graph network settings. The CEC proce-
dure is included in Algorithm 3 for completeness. CEC uses
across-models collective classification for inference, which
propagates predictions across the component models during
collective inference.

Given a test network G with partially labeled nodes V ,
and m base models F1, F2, . . . , Fk learned as described in
section 2.2, the models are applied simultaneously to col-
lectively predict the values of unknown labels (lines 5-11).
First, the labels are randomly initialized (lines 1-4). Next,
at each collective inference iteration, the model Fi is used
to infer a label for each node v conditioned on the current



labels of the neighbors of v (line 8). This corresponds to a
typical collective inference iteration. Then instead of using
the prediction from Fi directly for the next round, it is av-
eraged with the inferences for v made by each other model
Fj s.t. j 6= i (line 9). This interleaves inferences across
the component models and pushes the variance reduction
gains into the collective inference process itself. At the end,
the predictions are calculated for each model based on the
stored prediction values from each collective inference iter-
ation (lines 12-13). Finally, model outputs are averaged to
produce the final predictions (lines 15-16).

Note that the manner in which CEC uses inferences from
other models (for the same node) provides more informa-
tion to the inference process that is not available if the col-
lective inference processes are run independently on each
base model. Since each collective inference process can ex-
perience error due to variance from approximate inference,
the ensemble averaging during inference can reduce these
errors before they propagate throughout the network. This
results in significant reduction of inference variance, which
is achieved solely by CEC.

CEC assumes a collective classification model as the base
component of the ensemble, we use RDNs, but any collec-
tive classification model can be used instead. However, our
analysis shows that the approach will work particularly well
for models that exhibit learning and/or inference variance.

2.4 Experimental Evaluation
We refer to our proposed ensemble as RSR-CEC. We evalu-
ate the ensemble method on both synthetic and real world
datasets, and the results show that combining RSR with
CEC significantly outperforms using either approach alone.

2.4.1 Baseline approaches
We use a number of baseline methods to compare the pro-
posed model to alternative approaches while controlling for
model representation.

SM. A single model baseline is used to evaluate the im-
provement achieved by each ensemble approach. Here, a
collective classification model is learned from the original
training sample and applied once on the given test set. Note
that all the ensembles we discuss below, including the pro-
posed model, generate the bootstrap pseudosamples from
this original training sample, and use the same collective
classification algorithm as the base component model.

IID-RE. This model uses IID resampling for generating the
training pseudosamples and learns a relational model for
each base classifier. IID resampling works by sampling in-
stances independently at random from the network, with
replacement. A link in the original sample will only appear
in the pseudosample if both nodes it connects were selected.
A simple relational ensemble (RE) approach is then used
for inference, where each base model is applied indepen-
dently for collective inference to produce a set of probability
estimates for nodes predictions. Then for each node, the
base models’ predictions are averaged to get the node’s final
prediction. We compare to this approach to evaluate the
combined improvement achieved by using RSR for resam-
pling and CEC for inference over a method that does not
use either approach. The goal is to show the total variance

reduction offered by RSR and CEC.

RSR-RE. This baseline uses RSR for constructing the en-
semble and RE for inference. Comparing the performance
of our proposed model to this approach allows us to evalu-
ate the improvement achieved by CEC for inference, while
controlling for the resampling method (RSR) used by our
proposed approach.

IID-CEC. This baseline uses IID resampling for ensemble
construction, and CEC for inference. Comparing the per-
formance of our proposed model to this approach allows us
to evaluate the improvement achieved by RSR for sampling,
while controlling for the inference method (CEC) used by
our proposed approach.

2.4.2 Datasets
We evaluate the methods on synthetic and real world net-
work data. Synthetic datasets are generated with a latent
group model [17]. They are homogeneous (i.e., with a sin-
gle object type) data graphs with autocorrelation due to
an underlying (hidden) group structure. Each object has
a boolean class label C (that is determined by the type
of group to which it belongs), and three attributes. The
class label C has an autocorrelation level of 0.75. We in-
dependently constructed five training and test pairs of such
datasets, each consisting of 500 objects.

The Facebook dataset used in this work is a sample of Pur-
due University Facebook network. We construct a friend-
ship graph from the links between friends. Each user has
a boolean class label which indicates whether their political
view is ‘Conservative’. In addition, we considered nine node
features which record user profile information. We use 4
sampled networks of users (based on membership in various
Purdue subnetworks): [Purdue Alum’07, Purdue’08, Pur-
due’09, Purdue’10] with node sizes of: [921, 827, 1268, 1384]
respectively. Then we construct 4 different training and test
pairs by testing on one subnetwork and training on two sub-
networks from the previous and preceding class networks.
For example we learn the model from Purdue Alum’07 and
Purdue’09, and apply the model on Purdue’08.

2.4.3 Methodology
The RSR algorithm uses a subgraph size b = 50 and b = 10
for the synthetic and Facebook experiment, respectively.
The methods described are learned and evaluated using RDNs
as the base collective classification model, using 450 − 500
Gibbs iterations for collective inference. We use the follow-
ing setting to compare the various approaches.

For each experiment, the proportion of the test set that
is labeled before inference is specified, and for each trial
a random set of nodes is chosen to label. The random la-
beling process is repeated 10 times. The area under the
ROC (AUC) is measured to assess the prediction accuracy
of each model. The 10 trials are repeated for 4 training
and test pairs, and the averages of the 10 × 4 = 40 AUC
measurements from each approach are reported. Note that,
all methods are run on the same random labeling of the
test set. From each training test set and for each sam-
pling approach, we construct 5 bootstrap pseudosamples and
learn the ensemble models (i.e., m = 5). This is repeated
for 4 different labeling proportions (l) in each experiment.
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Figure 1: Synthetic experiments show significant ac-
curacy improvement of proposed RSR-CEC ensem-
ble model at various proportions of available true
labels in the test graph.

l = {10%, 30%, 50%, 70%} denotes the x-axis in the figures,
while the y-axis plots the AUC values.

2.4.4 Results
Figures 1 and 2 show the results of the synthetic and Face-
book experiments, respectively. The main finding is that our
proposed RSR-CEC approach has significantly higher classi-
fication accuracy than all the baseline comparison methods—
at all percent labelings, across both the synthetic and Face-
book experiments. We measured significance using paired
t-tests and all significance reported here correspond to p <
0.0001 unless stated otherwise. The superior performance
of RSR-CEC can be explained by the combined benefit of
learning and inference variance reduction.

In addition, the accuracy of the single model baseline is
significantly less than all the ensemble models, at all per-
cent labelings for both experiments. Moreover, IID-CEC
significantly outperforms IID-RE at all percent labelings for
both experiments. This is because CEC reduces inference
variance while RE only reduces learning variance. RE ap-
plies the models independently for inference which does not
reduce inference variance–since prediction aggregation hap-
pens after inference, possibly after inference variance has
propagated through the graph. Furthermore, RSR-RE sig-
nificantly outperforms IID-RE at all percent labelings for
both experiments, with p < 0.01 and p < 0.03 for the
50% and 70% synthetic experiments. This is because RSR
captures more variance in the data than IID resampling.
Therefore, RE can reduce more learning variance when used
with RSR. Finally, IID-CEC significantly outperforms RSR-
RE at {10%, 30%, 50%} for the synthetic experiment. This
shows that CEC can reduce both learning and inference vari-
ance, even when combined with IID resampling.

To summarize the empirical findings:

• Ensembles using RSR outperform ensembles using IID
resampling, since RSR reduces more learning variance
than IID resampling.
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Figure 2: Facebook experiments show significant ac-
curacy improvement of proposed RSR-CEC ensem-
ble model at various proportions of available true
labels in the test graph.

• Ensembles using CEC outperform ensembles using RE,
since CEC reduces inference variance which is not re-
duced by RE.

• Combining RSR with CEC results in significant gains
in accuracy, since the combination reduces the largest
amount of variance (due to learning and inference).

3. THEORETICAL ANALYSIS
In this section we use bias/variance analysis to explore the
differences between single collective models and the various
relational ensembles. Specifically, we focus on squared loss
as a measure of classification performance and show the error
reduction offered by the different types of ensembles. The
analytical results confirm our empirical findings, and shows
how the simple relational ensemble improves performance
over the single collective classifier, as well as how the CEC
improves performance over the simple relational ensemble.
To this best of our knowledge, this is the first analytical
exploration of classification error for relational ensembles.

3.1 Framework
We formalize the collective classification task in order to
describe the setting we use for this analysis. Let D be
a population of attributed graphs G. Each sample D :=
[G=(V,E), XV , YV ] is drawn from D, where V is the set of
instances in D, E is the set of links, and |V | = g.

Let f := P (Yg|Xg, G) represent a model of the joint distri-
bution over class labels Y of instances in a graph G, given
attributes of the instances X. Let DL ∈ D be a training
graph. Let DI ∈ D be a partially labeled test graph where
T ∈ VI is the set of labeled instances in GI . Let YT be
the set of known labels available to the inference process.
For this analysis, we assume that DL and DI are drawn
independently from D and that DI 6= DL.

The goal is to learn f from the training set DL and apply it
to the test set DI to collectively predict class labels for each



unlabeled instance i ∈ VI/T :

yi
f := f(i,DI , T ) = P (Y i= ti|YT ,X, GI) (1)

Since relational models that use collective inference have
an additional source of error due to the inference process,
we need to isolate the errors due to learning from the er-
rors due to inference. To achieve this, we also consider the
performance an exact inference model, which does not use
collective inference and simply makes a prediction for i con-
ditioned on the set of Bayes-optimal values for all instances
except i. Below, we use ỸVI/i

to refer to the Bayes-optimal
prediction for all instances in the dataset DI except i.

3.1.1 Model definitions
We consider four models in our analysis: a single collective
inference model (fs), a simple relational ensemble model
(fe), our interleaved collective inference model (fc), and the
“true” model (f∗). We define each of these models below.

True model: We define f∗ as the“true”model for the popu-
lation D, where P∗ is the “true” joint distribution, which can
be estimated as the expected model fs that will be learned
over samples drawn from the population D:

f∗ = P∗(Yg|Xg, G) = E[fs] =
∑

DL∈D

fs ∗ p(DL) (2)

Single model: Let fs be a single collective inference model
learned from a sample DL, which estimates Ps. Note that
each fs learned from a different sample DL gives a different
estimate of the true joint distribution P∗. The model fs is
then used to make predictions for each unlabeled instance i
in a partially labeled dataset < DI , T >:

yi
fs := fs(i,DI , T )

= Ps(Y i= ti|YT ,X, GI) (3)

Simple relational ensemble model (RE): Let fe be a
simple relational ensemble model that aggregates predictions
from m collective inference base models that each run n
Gibbs iterations independently. A prediction yi

fe for an in-
stance i is calculated by averaging the final predictions for i
from all m models. Each base model makes its predictions
as described for the single model above.

yi
fe :=

1

m

m∑
k=1

fk(i,DI , T )

=
1

m

m∑
k=1

Pk(Y i= ti|YT ,X, GI) (4)

Interleaved ensemble model (CEC): Let fc be an inter-
leaved model that aggregates predictions from m collective
inference base models at each Gibbs iteration j ∈ {1..n}.
At each iteration j, predictions made by all the base mod-
els are aggregated and used to make a prediction for each
model k ∈ {1..m}. These predictions are for VI/T . For the
instances in T , we use the true labels. The final prediction
for an instance i is estimated from the average of the com-
ponent models’ predictions at the last inference iteration n.

This defines the interleaved model fc = f̌k,n.

y̌i
k,j =

1

m

m∑
k′=1

fk′,j(i,DI , T )

=
1

m

m∑
k′=1

Pk′(Y i= ti|YT , ŶVI/{T +i},j ,X, GI)

yi
fc = y̌i

k,n (5)

3.1.2 Error decomposition
We decompose error of collective classification models into
bias, variance and noise components based on the work of
Neville and Jensen [16]. Here we consider squared loss as a
measure of classification performance. The loss L for model
f on instance i is defined as the expected squared loss for
prediction yi

f given i’s true label of ti:

Loss: Li
f = E

[
(ti − yi

f )2
]

(6)

Here E refers to the total expectation, which is taken over
training sets (D ∈ D) used to learn the model f and subsets
of true labels T available for inference. For ease of reading,
when it is clear from context, we drop the superscript i and
the subscript f .

Note that in conventional settings, the expectation E would
refer to aspects of learning and represent the effect of train-
ing sets on models/predictions. However, in collective in-
ference settings the relational inference process introduces
another source of error [16]. Thus, to reason about the per-
formance of different relational ensembles, we need to make
a distinction between the expectation over learning and the
expectation over inference and the expectation over both.
We define these expectations below.

To analyze performance differences, loss can be decomposed
into bias, variance, and noise components, and compared
across models. For squared loss, the decomposition is ad-
ditive: L = V + B + N . We show the decomposition and
define each component below.

E[L]

= E[(t− y)2]

= E[t2 − 2ty + y2]

= E[y2]− 2E[t]E[y] + E[t2]

= E[y2]− 2E[t]E[y] + E[t2] + E[y]2 − E[y]2

= V + E[y]2 − 2E[t]E[y] + E[t2]

= V + E[y]2 − 2E[t]E[y] + E[t2] + E[t]2 − E[t]2

= V + (E[t]− E[y])2 − E[t]2 + E[t2]

= V + B + E[t2]− E[t]2

= V + B + N

Variance: Here variance, V =E
[
(E[y]− y)2

]
, is the aver-

age loss incurred by all predictions y, relative to the mean
prediction E[y].

Bias: Here bias, B = (E[t]− E[y])2, is the loss incurred by
the mean prediction, relative to the Bayes-optimal value for
instance i: E[t] (the expected value of the true label).



Noise: Here noise, N =E
[
(t− E[t])2

]
, is the loss incurred

due to noise in the labels of the data, which is independent
of the learning algorithm.

3.1.3 Expectations
We define the three types of expectations that will be used in
the proofs—expectations over learning, inference, and total.
Note these expectations are defined for the predictions that
will be made by the single model fs for a test data set DI .

Expected learning prediction: This is the expectation
over learning, where the prediction for an instance i is es-
timated using exact inference based on the set of Bayes-
optimal predictions for the rest of the graph, ỸVI/i

:

EL[yi
fs |DI ] =

∑
DL∈D

Ps(Y i = ti|ỸVI/i
,X, GI) ∗ p(DL)

= P∗(Y
i = ti|ỸVI/i

,X, GI) (7)

Expected inference prediction: This is the expectation
over inference, where the prediction for an instance i is es-
timated using the model fDL

s learned from a single training
set DL:

EI [yi
fs |DI , f

DL
s ] =

∑
T

Ps(Y i = ti|YT ,X, GI) ∗ p(YT )

= Ps(Y i = ti|X, GI) (8)

Expected total prediction: This is the total expectation
over learning and inference, where the prediction for an in-
stance i reflects the prediction that would be made from the
true distribution:

ET [yi
fs |DI ] = ELI [yi

fs |DI ]

=
∑
T

p(YT )
∑

DL∈D

Ps(Y i = ti|YT ,X, GI) ∗ p(DL)

= P∗(Y
i = ti|X, GI) (9)

3.2 Analysis
Given the framework described above, we compare the per-
formance of the ensemble models to the single model and
show how the ensembles reduce total loss. Specifically, we
decompose the error of the single collective inference model
fs, the simple relational ensemble model fe, and our pro-
posed interleaved ensemble model fc. Our analysis shows
that the interleaved ensemble results in the greatest reduc-
tion in error, through its reduction of both learning and in-
ference variance.

We refer to ys as an arbitrary prediction from a single collec-
tive inference model fs, ye as an arbitrary prediction from
a simple relational ensemble fe, and yc as an arbitrary pre-
diction from an interleaved ensemble model fe. The proofs
below make use of the following assumptions.

Noise equivalence: We note that the noise component of
error is dependent upon the data set, and is independent of
the classification algorithm. Therefore:

Ns = Ne = Nc (10)

Dataset independence: The data graph samples
{DLs}s=1..m used for learning the m models and DI used
for inference are drawn independently from the population
of graphs D. When the datasets are independent, the total
expectation can be computed from the learning and infer-
ence expectations as follows:

ET [.] = EI [EL[.]] (11)

Predictions from simple relational ensemble: In the
simple relational ensemble fe, when the number of base mod-
els m approaches∞, the ensemble prediction yi

fe approaches
the expected prediction of the single model fs, when the ex-
pectation is over learning (i.e., EL[yi

s]). But since the pre-
dictions from fe are conditioned on a single labeling T , the
ensemble prediction does not approach the total expected
prediction of the single model (i.e., it does not reflect the
variation over inference).

lim
m→∞

ye = EL[ys] = P∗(Y
i = ti|ỸVI/i

,X, GI) (12)

Predictions from interleaved relational ensemble: In
the interleaved relational ensemble fc, when both the num-
ber of base models m and the number of inference iterations
n approach ∞, the interleaved prediction yi

fc approaches
the expected prediction of the single model fs, where the
expectation is over both learning and inference (i.e., ET [yi

s]).
This is because the interleaving process, which conditions
on ŶDI/{T +i},j at each inference iteration j, simulates draws
from alternative labelings T over the course of inference.

lim
m,n→∞

yc = ET [ys] = P∗(Y
i = ti|X, GI) (13)

3.2.1 Variance reduction
When squared loss is decomposed, the variance component
is VT = ET

[
(ET [y]− y)2

]
. Here we consider the expected

total error, over both learning and inference. We now show
that a simple relational ensemble reduces the variance of a
single model, and an interleaved ensemble reduces the vari-
ance of a simple relational ensemble.

Theorem 1: Let fs be a single collective inference model
with variance Vs, fe be a simple relational ensemble with
variance Ve, and fc be an interleaved ensemble model with
variance Vc. Then Vs ≥ Ve ≥ Vc.

1.1 Vs − Ve ≥ 0
1.2 Ve − Vc ≥ 0

Proof of Theorem 1.1

Vs−Ve

=ET

[
(ET [ys]−ys)2

]
−ET

[
(ET [ye]−ye)2

]
=ET

[
ET [ys]2−2ysET [ys]+y2

s

]
−ET

[
ET [ye]2−2yeET [ye]+y2

e

]
=ET [ys]2−2ET [ys]2+ET [y2

s ]−ET [ye]2+2ET [ye]2−ET [y2
e ]

=−ET [ys]2+ET [y2
s ]+ET [ye]2−ET [y2

e ]

=−ET [ys]2+ET [y2
s ]+ET [EL[ys]]2−ET

[
EL[ys]2

]
(by 12)

=−EI [EL[ys]]2+ET [y2
s ]+EI [EL[ys]]2−ET

[
EL[ys]2

]
(by 11)

=ET [y2
s ]−ET

[
EL[ys]2

]
=EI

[
EL[y2

s ]
]
−EI

[
EL[ys]2

]
(by 11)



=EI

[
EL[y2

s ]−EL[ys]2
]

≥ 0 (EL[y2s ]−EL[ys]2 ≥ 0 by Jensen’s Inequality)

Proof of Theorem 1.2

Ve−Vc

=ET

[
(ET [ye]−ye)2

]
−ET

[
(ET [yc]−yc)2

]
=ET

[
ET [ye]2−2yeET [ye]+y2

e

]
−ET

[
ET [yc]

2−2ycET [yc]+y2
c

]
=ET [ye]2−2ET [ye]2+ET [y2

e ]−ET [yc]
2+2ET [yc]

2−ET [y2
c ]

=−ET [ye]2+ET [y2
e ] +ET [yc]

2−ET [y2
c ]

=−ET [EL[ys]]2+ET

[
EL[ys]2

]
+ET [yc]

2−ET [y2
c ] (by 12)

=−ET [EL[ys]]2+ET

[
EL[ys]2

]
+ET [ET [ys]]2

−ET

[
ET [ys]2

]
(by 13)

=−ET [EL[ys]]2+ET

[
EL[ys]2

]
+ET [ys]2−ET [ys]2

=−EI [EL[ys]]2+EI

[
EL[ys]2

]
(by 11)

= EI

[
EL[ys]2

]
−EI [EL[ys]]2

≥ 0 (by Jensen’s Inequality)

Single collective models fs have two sources of variance in
their predictions—variance due to learning the models from
different training graphs, and variance due to applying the
model for inference given different labeled subsets of the
test graph. Simple relational ensembles fe average mod-
els predictions from different learned models and reduce the
variance due to learning. Thus, Vs ≥ Ve.

Similar to simple relational ensembles, interleaved ensembles
fc reduce the variance due to learning. Moreover, interleav-
ing predictions across the base models during each collective
inference iteration simulates draws from alternative labeled
subsets of the inference graph, and prevents any of the base
models from converging to extreme state. This allows an ad-
ditional reduction of the inference variance. Thus, Vc ≥ Ve.

3.2.2 Bias reduction
When squared loss is decomposed, the bias component is
BT = (ET [t] − ET [y])2. Again we consider the expected
total error, over both learning and inference. We now show
that the two relational ensembles have the same bias as the
single model. Since bias depends on how well the models
can approximate the true model, it is not corrected by the
relational or interleaved ensemble.

Theorem 2: Let fs be a single collective inference model
with variance Bs, fe be a simple relational ensemble with
variance Be, and fc be an interleaved ensemble model with
variance Bc. Then Bs = Be = Bc

2.1 Bs −Be = 0
2.2 Be −Bc = 0

Proof of Theorem 2.1

Bs −Be

=(ET [t]− ET [ys])2 − (ET [t]− ET [ye])2

=(ET [t]− ET [ys])2 − (ET [t]− ET [EL[ys]])2 (by 12)

=(ET [t]− ET [ys])2 − (ET [t]− ET [ys])2

=0

Proof of Theorem 2.2

Be −Bc

=(ET [t]− ET [ys])2−(ET [t]− ET [yc])
2

=(ET [t]−ET [EL[ys]])2−(ET [t]−ET [ET [ys]])2 (by 12, 13)

=(ET [t]− ET [ys])2 − (ET [t]− ET [ys])2

=0

3.2.3 Loss reduction
Now, given the reduction in variance and equivalent bias, we
can analyze the reduction in error that the ensembles offer.
Recall that we define total loss as the expected error over
learning and inference L = ET [(ti − yi

f )2] and this decom-
poses additively into variance, bias and noise components:
L = V + B + N . We now show that a simple relational en-
semble reduces the loss of a single model, and an interleaved
ensemble reduces the loss of a simple relational ensemble.

Corollary 1: Let fs be a single collective inference model
with variance Ls, fe be a simple relational ensemble with
variance Le, and fc be an interleaved ensemble model with
variance Lc. Then Ls ≥ Le ≥ Lc

1.1 Ls − Le ≥ 0
1.2 Le − Lc ≥ 0

Proof of Corollary 1.1

Ls − Le

=(Vs + Bs + Ns)− (Ve + Be + Ne)

=(Vs + Bs + Ns)− (Ve + Bs + Ns) (by 10, Thm 2)

=Vs − Ve

≥0 (by Thm 1.1)

Proof of Corollary 1.2

Le − Lc

=(Ve + Be + Ne)− (Vc + Bc + Nc)

=(Ve + Bs + Ns)− (Vc + Bs + Ns) (by 10, Thm 2)

=Ve − Vc

≥0 (by Thm 1.2)

Following the results of Theorems 1 and 2, and according
to the definition of noise, it is straightforward to make the
above conclusion about reduction in error. A simple rela-
tional ensemble model will reduce the error a single collec-
tive inference model by reducing the learning variance, and
an interleaved ensemble will reduce the error even further
by reducing both learning variance and inference variance.



3.2.4 Resampling
The error analysis presented above applies to ensembles learned
from bootstrap pseudosamples generated using either IID
resampling or RSR. In both sampling methods, when the
number of pseudosamples m approaches ∞, the bootstrap
samples approximate the true population distribution D.
This indicates that for the ensemble model fe, assumption
12 holds regardless of the resampling approach. In other
words, the ensemble prediction yi

fe approaches the expected

prediction of the single model fs over learning (i.e., EL[yi
s])

for both IID and RSR sampling:

lim
m→∞

yRSR
e = lim

m→∞
yIID
e = EL[ys] (14)

However, yRSR
e converges faster than yIID

e . Thus, given a
finite ensemble size m, because RSR can more accurately
capture the increased variance in network data, predictions
made by models learned from RSR pseudosamples will cap-
ture and reduce more learning variance. The same argument
applies to fc. Thus assumption 13 holds regardless of the
resampling approach, but in finite ensemble sizes, RSR pseu-
dosamples will capture and reduce more variance.

4. RELATED WORK
There are two main lines of research related to the analy-
sis we present here. Error analysis for ensemble classifiers
and collective classification models, and work on relational
methods that reduce bias or variance. For error analysis,
earlier work has used conventional bias/variance analysis to
evaluate model performance [3, 8, 9, 12]. However, the focus
has been on single models and on errors in learning.

For error analysis of ensembles, Breiman [2] has shown theo-
retically that bagging reduces total classification error by re-
ducing the error due to variance. However, the work is based
on the assumption that the data is i.i.d. and therefore the
models run exact inference. Consequently, Breiman’s work
has focused on theoretical analysis for this type of models
where the error is only associated with the learning process.
Other work has presented an analytical framework to quan-
tify the improvements in classification results due to com-
bining or integrating the outputs of several classifiers [22].
Their work is based on analysis of decision boundaries and
is applied on linearly combined neural classifiers.

For error analysis of collective classification models, Neville
and Jensen [16] have shown that collective classification in-
troduces an additional source of error due to variation in the
inference process. While other work has presented another
type of error decomposition for collective classification [23],
by studying the propagation error in collective inference with
maximum pseudolikelihood estimation.

Related works [4, 5, 6] have extended ensembles to improve
classification accuracy for relational domains. This includes
a method for constructing ensembles while accounting for
the increased variance of network data [6], a method for en-
semble classification on multi-source networks [5], and an
ensemble method for reducing variance in the inference pro-
cess for collective classification [4]. Moreover, recent work [7]
recently showed that stacking [15] improves collective clas-
sification by reducing inference bias. This work compares to

our model as it evaluated model performance in single source
relational datasets. However, it is interesting to note that
stacking reduces inference bias, while our method reduces
inference variance.

5. CONCLUSION
We proposed an ensemble model that significantly improves
classification accuracy of network data by reducing errors
due to variance in both learning and inference. We eval-
uated it using both synthetic and real-world classification
tasks. We presented theoretical analysis that confirms our
empirical findings. We showed that an interleaved ensemble
model reduces total loss over a simple relational ensemble
model which reduces total loss over a single model (corol-
lary 1). We showed that this is achieved by the reduction of
variance (theorem 1), not bias (theorem 2).
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