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CobWeb: A System for Automated In-Network Cobbling of
Web Service Traffic

†Hitesh Khandelwal, ‡Fang Hao, ‡Sarit Mukherjee, †Ramana Kompella, ‡T.V. Lakshman
†Purdue University, ‡Bell Labs Alcatel-Lucent

ABSTRACT
We consider the problem of in-network categorization of all
traffic associated with a given set of web services. While this
problem can be viewed as a generalization of per-session
traffic monitoring, a key difficulty is that we have to con-
struct the entire session tree that represents the transitive
closure of all traffic downloaded as a result of a user access-
ing a given web service. Such in-network session tree con-
struction and monitoring is useful for many measurement,
monitoring, and new types of billing services such as ‘re-
verse billing’ where usage charges are paid for by either the
service provider or the ISP itself as an incentive to the user.

Automated construction of the session tree based on net-
work traffic observation is challenging and to our knowledge
unaddressed. The challenges arise due to the complexities
inherent in today’s web services and the lack of universal
standards that are followed when designing web services.
This necessitates the use of heuristics that rely upon preva-
lent web service design practices. In this paper, we present a
system, called COBWEB, that performs this automated in-
network cobbling and monitoring of web services traffic.
We evaluate the classification accuracy of COBWEB by ex-
tensive experimentation using controlled downloads and by
analysis of about 100 popular web sites using large traffic
traces (over 700 GB) collected at a major university’s gate-
way. Our experiments suggests that COBWEB can achieve
good accuracy with low (< 5%) false positive and negative
rates.

1. INTRODUCTION
The design of network-based mechanisms for per-flow traf-

fic measurement has been a topic of much research interest
(e.g., [6, 13, 11, 21, 18]). Here, the challenges have been
in designing low-cost mechanisms for collecting statistics of
millions of flows or sessions at speeds of 10 Gbps and be-
yond. Another topic of much interest has been in-network-
based mechanisms for application identification (e.g., [8]).
Here the challenge is in the design of network-based mech-
anisms to identify the applications that are generating the
observed traffic in the network. This identification is needed
for per-application network usage reports, application-aware
traffic management, service-level-agreement conformance,

subscriber management and billing, etc.
In this paper, we focus on a new measurement problem,

namely that of associating with a particular web service all
the traffic that is generated upon each access to that web
service. This entails identifying all the traffic that is due
to downloads from the original host for the web service, its
content delivery network (CDN), and downloads of embed-
ded objects from third-party services (e.g., advertisements).
Unlike per-flow traffic measurement, for this more general
problem, it is necessary to construct a “session tree” that rep-
resents the transitive closure of all web service accesses that
happen as a consequence of accessing a given root web ser-
vice. Note that the session tree may be quite dynamic and
the internal nodes can change across users as well as across
time. To our knowledge, this general measurement problem
is largely unaddressed.

The motivations for this new class of measurements are
largely similar to existing traffic measurement solutions. To-
day, per-flow traffic measurement and application identifica-
tion are extensively used by ISPs to gain insight into their
network operations. These are often done using several of
the specialized monitoring boxes, currently in the market [3,
1], that provide extensive per-session, per-application or per-
flow usage and performance reports. These boxes also iden-
tify traffic to various popular web-sites by time-of-day, re-
gion, etc. However, these solutions are at a coarse-granularity
(e.g., IP address, protocol signature); efficient solutions for
traffic monitoring of more meaningful aggregates such as the
web session trees that we consider in this paper can signifi-
cantly add to the usefulness of existing monitoring and mea-
surement equipment.

A more recent and emerging potential application is ‘re-
verse billing’ where any charges associated with accessing
a web service are billed back to the web service provider
rather than to users accessing the service. Reverse billing
is motivated by the growing shift from flat-rate to tiered-
pricing in wireless networks, and in some countries, wired
networks as well. Examples are such plans such as those of
AT&T which permit 250MB of data usage for about $15 per
month and 2GB for $25 in the United States. Thus, web ser-
vice providers may want to make it attractive to customers
by to providing ‘toll-free’ access to their services. Another
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alternate could be a subsidized service model where the ISP
may provide access to a web-services such as ESPN, Face-
book, or CNN for some nominal fee per month. For exam-
ple, Vodafone already offers unlimited access to a few sites
(e.g., Facebook, Twitter, FourSquare and Myspace) in every
new contract in Australia.

For such applications, it is important to construct the ses-
sion tree in the network, which is challenging for many rea-
sons. Widely used web services are a complex mashup of
content from several supporting services including CDNs,
third-party advertisement platforms (e.g., ads.doubleclick.com),
and other third-party services (e.g., CNN web services us-
ing Facebook for friend recommendations). This makes the
structure of the session tree difficult to infer. Also, with
the inherent flexibility in designing web services, the ses-
sion tree is rarely static. Moreover, web services are largely
personalized—the content served varies with the user even
for the same URI. Thus, one cannot use a unique set of URIs
to identify a service. Yet another issue is that web services
are usually hosted across many data centers causing IP ad-
dresses to change based on user location. Also, since a CDN
such as Akamai’s, can service many different web services
the use of IP addresses itself is not sufficient.

In this paper, we describe a system, COBWEB, for this
general measurement problem. It automatically performs
in-network cobbling of different web services—we use the
term “cobbling” for the identification and measurement of
all traffic associated with a given web service. To the best
of our knowledge, COBWEB is the first system developed
for addressing this measurement problem. We assume that
COBWEB has access to both upstream and downstream traf-
fic flows, since COBWEB is a system that observes network
traffic (hence deployed at the network edge with port mirror-
ing used for access to traffic flows). We use online mecha-
nisms for the cobbling done by COBWEB since we need to
effectively handle web service personalization. Also, online
mechanisms need less storage and raise fewer privacy con-
cerns. However, they require more processing power, which
is not a limiting factor using current multicore processors.

COBWEB works in two stages. It identifies any support-
ing CDN used by a web service and then, it identifies all the
embedded objects downloaded for that web service. The to-
tal data usage consists of all the traffic that is associated with
access to this service—be it from the original access, from
the CDNs, and from all the related chain of accesses that
are triggered by the embedded links. As pointed out earlier,
designing a system that tracks all the traffic belonging to a
web service with 100% accuracy is a big challenge given the
lack of any uniform methodology or standards in the com-
position of web services. The mechanisms that we use nec-
essarily rely on heuristics based on prevalent practices in the
provision of web services.

We evaluate our system based on two web traffic traces
in total amount of 739 GB collected from a large university
campus network, along with traces that are generated at lab

controlled environment for emulating user browsing behav-
iors. We take 70 web sites from the Alexa top 100 US sites,
along with the top 26 popular web sites for users in a large
university campus network as the target web services. Our
results show that the system can achieve an average false
positive rate of 3.5% and false negative rate of 4.8% across
these 96 web services.

The rest of the paper is organized as follows: We first
present the problem statement precisely and discuss naive
solutions that do not work well. We discuss our approach in
Section 3 followed by implementation details of our system
in Section 4. In Section 5, we evaluate each classification
heuristic individually, and then show the accuracy of the fi-
nal combined classification algorithm.

2. PROBLEM STATEMENT
In this section, we start with some preliminaries about

web services. We then clearly define our main objective in
this paper, argue why the problem is hard, and show that
simple solutions do not work well.

2.1 Web Service Preliminaries
A web browser interacts with a web server by sending

HTTP requests to the server, and then receiving response
messages back. The most common requests are GET (for
downloading content) and POST (for uploading content).
The contents on a web page, displayed to a user, are usu-
ally downloaded via multiple GET/POST requests that are
sent to one or more hosts. The page returned in the response
to a request to cnn.com message may contain many links to
other embedded objects as shown in Figure 1(a). For ex-
ample, the objects /.element/..../1pix.gif, /banner.html are a are
fetched immediately after the main CNN web page is down-
loaded. Embedded objects may in turn trigger the download
of many more embedded objects. For example, as shown in
Figure 1(a), the GET request to /index.js on host cdn.turner.com
leads to the download of many further embedded objects
such as /cnn/.../btn_play.jpg. For this session, more than 150
additional requests are sent to 24 other hosts to acquire all
the additional content. Of course, such numbers may change
due to dynamic nature of the content.

The hosts that provide content to a web page can be clas-
sified into three broad categories: original hosts, CDN hosts
and third party hosts. Original hosts are those that belong to
the same root domain of the web service, e.g., cnn.com and
money.cnn.com. CDN hosts are the servers that are part of the
CDNs associated with that main domain (e.g., cdn.turner.com
is the main CDN associated with CNN). Third-party hosts
provide content such as advertisements, statistics collection,
social networking, and so on (e.g., feeds.bbci.co.uk and www.
facebook.com for CNN). These hosts may be contacted as a
result of the main web page or because of embedded re-
quests as shown in Figure 1(a). For example, we can see
more third-party requests to hosts such as ad.doubleclick.com
originating after the ads.cnn.com object is fetched.
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cnn.com

GET /index.js
Host: cdn.turner.com

GET /index.jpeg
Host: cdn.turner.com

GET: /extern/login_status.php?...
Host: www.facebook.com

GET /banner.html
Host: www.cnn.com

GET: /rss.xml?edition=int
Host: feeds.bbci.co.uk

GET /cnn/…./btn_play.jpg
Host: i.cdn.turner.com

GET /cnn/…./hdr-search-google.gif
Host: i.cdn.turner.com

GET /.element/…/1pix.gif
Host: www.cnn.com

GET /html.ng/site=cnn?...
Host: ads.cnn.com

GET /888BFFEA-DF82….
Host: content.pulse360.com

GET /adi/N5776
Host: ad.doubleclick.com

GET /2656415/Robots.swf
Host: s0.2mdn.net

Referer: 
cnn.com

Referer: 
ads.cnn.com

Referer: 
ad.doubleclick.com

Referer: 
cdn.turner.com

(a) Constituents of a CNN session

cnn.com

CDN Objects Original Hosts Third-Party Hosts

cnn.com/politics

USER CLICK

CDN Objects

Original Hosts

Third-Party Hosts

USER CLICK

facebook.com

CDN Objects

Original Hosts
Third-Party Hosts

CNN TREE 

FACEBOOK TREE

(b) Defining CNN web session

Figure 1: Subfigure (a) shows a subset of URLs downloaded when a user downloads the base cnn.com page. Subfigure
(b) shows that clicks to third party websites are not part of the the CNN session tree.

2.2 Objective
Our goal is to ‘cobble’ an entire session tree correspond-

ing to a user accessing a given web service in the network
(e.g., at an ISP border router). We define a web session more
precisely as follows:

• All the content downloaded from the original hosts (e.g.,
*.cnn.com) responsible for the web service.
• All the content downloaded from CDN servers (e.g., *.cdn.

turner.com) the web service uses as part of the session.
• All the embedded objects automatically downloaded for

the web service from any servers, e.g., original hosts,
CDN hosts or any third-party hosts.

Figure 1(b) shows an example navigation of the CNN web
page. The root of the session tree starts at cnn.com that, as
discussed in Section 2.1, involves the browser automatically
fetching embedded content from the original hosts, CDN
hosts or third party hosts. The user click on cnn.com/politics
leads to another series of sessions to various hosts and this
is again considered part of the session tree since the click
leads to a CNN webpage. When a user clicks on a link to a
third party website such as facebook.com, we consider it to be
outside of the CNN session tree (as shown in the figure).

Though not shown in the example, any clicks to URLs
which involve the CDN hosts or original hosts are consid-
ered as part of the session tree. For example, if the user
clicks on URL cdn.turner.com/xyz.html (a contrived example),
it would be considered a part of the session tree. While this
example started with cnn.com, a user may directly enter the
URL cnn.com/politics into the browser and make that URL the
root. However, we do not consider session trees starting di-
rectly from a CDN URL as part of the web service since
CDNs are known to be shared across different web services.
For example, cdn.turner.com may host content from tbs.com.

2.3 Why is the problem hard ?
The key difficulty in cobbling of the web sessions in the

network comes from the fact that routers only observe a

stream of HTTP requests to various web services from a
given client, but there is no obvious handle one can use
to easily bind the requests that belong to a given session.
Simple approaches such as enumerating domain names or
IP addresses for their applications (e.g., for reverse billing)
do not work well as we shall discuss next. Anecdotal evi-
dence suggests that ISPs today are already using these naive
approaches for their applications, primarily because of the
lack of a compelling alternative.
Naive Solution 1: Use Domain Names One simple solu-
tion to this problem is to use domain names that are associ-
ated with the web service. Thus, the router may essentially,
for every web service of interest, simply keep the domain
names that it needs to match. While such an approach may
have worked 10-15 years ago when web services were very
simple, e.g., a few servers would serve static HTML content,
unfortunately this approach will not work well for today’s
web services due to their complex composition. Specifi-
cally, many modern websites are constructed as a mash-up
of many different services, often relying on third party web-
sites as well. We illustrate this complexity in Figure 2, where
we show the number of unique URLs and unique domain
web pages for about 96 web sites, comprising 70 of Alexa’s
top 100 web pages and 26 most popular domains observed at
a large university gateway . As we can observe from the fig-
ure, most of these web pages tend to access many different
domains (up to 50) and the number of unique objects fetched
is as high as 450.

Perhaps more importantly, many web services involve fetch-
ing objects from common domains. For example, the main
cnn.com and nytimes.com web pages include an embedded re-
quest to facebook.com. Thus, the request to Facebook needs
to be classified as part of CNN or NYTimes or even just
Facebook depending on the overall context, making it dif-
ficult to come up with a blanket rule for all websites. We
show this phenomenon in Figure 3, where we quantify the
overlap among these 96 websites. Specifically, suppose a
website A resulted in the set of URLs, we compute the frac-
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Figure 2: Statistics for sessions of the web services
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Figure 3: Quantifying domain overlaps across web ser-
vices

tion of URLs (and their total bytes) in this set, that have the
same domain name (e.g., facebook.com) as that of at least one
URL in URL set of B. We plot the maximum among all
fractions for each of the 96 web sites. As we can see from
the figure, the overlap can be quite high; for half of the 96
websites, 30% of requests and approximately 20% of bytes
overlap with at least one other website.
Naive Solution 2: Use IP Addresses The next solution
we consider is to enumerate IP addresses that correspond to
a given web service. Similar to the domain names above,
IP addresses cannot easily be used for isolating web ser-
vices since the same web servers may be hosting content
from different providers. For example, today many web
services use content delivery networks (CDNs), and often
they use the same CDN provider (e.g., Akamai) for hosting
content. Thus, the same server IP addresses may be shared
across different web services making it difficult to filter out
all requests specific to a given web site just by examining
network-layer header fields alone. In addition, most CDNs
adopt locality-based DNS resolution and so the exact IP ad-
dress(es) used can change depending on the location.
Other ideas In certain settings, when we have coopera-
tion from a given web service provider, we could potentially
obtain a ‘site map’ of all the host names, and URIs used in
constructing the web service. In general, however, we can-
not assume that such cooperation is the norm, since the kind
of application (e.g., for reverse billing) may not necessarily
involve the particular website content provider, and may de-
pend only on an agreement between the customer and the

ISP alone. Even if obtain the site map of domains for a web-
service, this may not be sufficient because of the overlap be-
tween different services we have already discussed before.
(For generality, in this paper, we assume no such coopera-
tion.) We cannot also assume any client cooperation since
it is too intrusive an approach to run a special agent on the
client side machine.

Another possible idea is to collect and store all HTTP
data corresponding to a user, and somehow reconstruct the
web activity corresponding to that user accessing a given
page. Unfortunately, modern websites heavily rely on CSS,
javascript, etc.; parsing and interpreting these websites re-
quires a full-fledged javascript engine on the router making
it complicated to keep up with line rates.

Thus, it is clear that simple enumeration of either domain
names or IP addresses will not work well for our problem.
Instead, we need a more sophisticated way to derive the asso-
ciation between web accesses, but not as complex as parsing
and interpreting javascript and other web pages in a detailed
fashion. We discuss one such middle-ground approach that
we propose next.

3. COBWEB DESIGN
In this section, we describe the design of COBWEB, a sys-

tem for in-network cobbling of web service traffic. We first
present an overview of our approach, and then describe the
heuristics that form the basis for COBWEB. We assume that
both directions of the traffic can be observed by COBWEB.

3.1 Overview
In our approach, we mainly leverage a key field within

the HTTP headers, namely the ‘Referer’ field, which most
browsers today set. This field mainly indicates the (pre-
vious) page that referred to the current page. For exam-
ple, when a user clicks on www.cnn.com/politics URL on the
www.cnn.com/US web page, the corresponding GET request
will contain www.cnn.com/US as the Referer. Note that the
Referer field contains both a referrer host (e.g., cnn.com) and
referrer URI (e.g., /US) should it be present. We leverage the
Referer field to keep track of the navigation chains to iden-
tify the roots of the session trees.

While using the Referer field, one can form an association
between two different webpages A and B if A led to B, it
is not always easy to establish whether B was a result of the
user clicking on A, or an automated download. The reason
why this is important is that automated downloads need to
be counted as part of the actual web service, even if it is to
third party domains, i.e., non-origin domains. On the other
hand, user clicks to third party domains, that start a new ses-
sion tree (as we discussed in Figure 1(b)). However, some-
times a user can click on an associated CDN domains (e.g.,
turner.com for CNN), which must be considered as part of the
session tree. Thus, to make this differentiation, it is impor-
tant to first establish the set of CDNs for a given domain,
after which we need methods to differentiate between the
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embedded downloads and clicks to third party sites. Note
however, all accesses to the CDN cannot be considered as
part of that particular web service, since the same CDN may
host multiple web services.

Our overall approach therefore consists of the two basic
steps: CDN detection and Embedded object detection. The
CDN detection step is an offline process that involves iden-
tifying the CDN (or supporting) domains that play an im-
portant supporting role for delivering a given web service.
We expect that for web services of interest, we separately
track their associated CDNs (which rarely change) and in-
corporate them into the cobbling process. For embedded
object detection, which is an online process, the goal is to
identify the set of embedded objects fetched as part of a
given web page as opposed to those that are retrieved due
to user clicks. The key metric used here to distinguish be-
tween the two types of retrievals is that embedded object
retrieval has much less ‘think time’ than user-click based re-
trieval since the embedded objects are automatically fetched
by the web browser. We also use the fact that some embed-
ded objects have standard file-types such as javascript (ex-
tension .js, .json) that are not usually associated with objects
retrieved by user clicks.

Given the importance of the Referer field in our approach,
one could argue that it is easy to disable the Referer field
since many modern browsers provide the appropriate set-
tings anyway. In most modern browsers, however, the Ref-
erer field is by default turned on; very few people even bother
to turn it off (or are even savvy enough to turn it off). If
indeed, the Referer field were turned off completely by a
majority of the users, the whole multi-billion dollar Inter-
net advertisement industry would crumble, since they heav-
ily rely on the Referer field for tracking the source of their
clicks. Thus, companies such as Google and Microsoft, have
the incentive to keep the Referer field on in Chrome and In-
ternet Explore browsers to support their online advertising
businesses.

In the next few subsections, we first discuss each of the
heuristics in detail and then present the overall algorithm.

3.2 CDN Detection
The goal of CDN detection is to identify supporting CDNs

(if any) for a web service. In the example of Figure 1(a), the
focus for this would be the left portion of the tree, i.e., re-
quests with host *.cdn.turner.com that belong to the CDN for
CNN. One method for CDN detection is to monitor web re-
quest traffic at a network edge router (e.g., campus gateway
or ISP border router), and use it to identify the domain that
has delivered the most amount of traffic to clients when the
pages are downloaded. The main purpose of a CDN is to
make sure that static and relatively less frequently changing
parts of the web pages (such as javascript objects and some
images) are replicated and placed close to the clients. (Note
that this is not to say that frequently changing parts are never
part of CDNs, but generally CDNs store more static objects

than dynamically changing ones.) Hence, it is reasonable to
assume that most traffic for a given web site using the CDN
will come from the CDN (apart from the main domain itself).

Implementing this idea is not straightforward since we
still need to identify, from the monitored traffic, the total
traffic to a web site (which is the cobbling problem that
we started with). We first focus on the portion of the traf-
fic that can be clearly identified—the HTTP GET/POST re-
quests with referer URL belonging to the root domain. For
example, to detect CDN for cnn.com, we first look at all re-
quests where the request has its referer host as cnn.com or
sub-domain of cnn.com such as money.cnn.com. This is the
traffic for downloading the embedded pages of the root do-
main (e.g., embedded content for main cnn.com web page)
and the traffic for accessing pages when user navigates away
from the page (e.g., user clicks on nytimes.com on cnn.com
page). Note that in the second case, only the first GET or
POST request has referer as cnn.com. The rest of the requests
have nytimes.com or subsequent pages as referer. As long as
the traffic for accessing the external web sites, in the second
case, does not exceed the traffic for accessing the CDN for
cnn.com, it will not affect the result of CDN detection. Since
users in general are likely to navigate to various different
pages within the origin or CDN domains, the latter traffic
should not be an issue in practice.

Another issue is that web services may use multiple CDNs.
For example, cnn.com uses both Level 3 and Akamai CDNs.
Fortunately, in many cases, we find that the CDN host con-
tained in HTTP requests is an alias of the canonical name
(CNAME) of the actual server. For example, cnn.com has
i,z.cdn.turner.com for different types of content. i.cdn.turner.com
is an alias for CNAME cdn.cnn.com.c.footprint.net and is owned
by Level 3, z.cdn.turner.com is an alias for CNAME z.cdn.turner.
com.edgesuite.net and is owned by Akamai. Use of this kind
of aliasing is convenient for the web service provider since
it allows web pages to be not tied to any particular CDN
provider. A web site can switch to other CDNs by sim-
ply mapping the alias to other CNAMEs. Given the struc-
ture of the CDN aliases, we can detect the “CDN domain”
(e.g., cdn.turner.com) instead of specific CDN host (e.g., i.cdn.
turner.com). Our algorithm looks at different levels of the host
domain, and tries to aggregate them. For example, level-1
(top-level) domain of i.cdn.turner.com is com, level-2 domain
of that is turner.com, etc.
CDN Detection Algorithm We start with traffic monitored
at the network edge router. The algorithm (shown in Fig-
ure 4) starts by looking for all the HTTP GET requests that
contain the main host domain as the referer (e.g., cnn.com or
ads.cnn.com or money.cnn.com for CNN). Let this total num-
ber be n. We also compute the break down of these requests
individually to each and every host h (denoted by nh). For
example, if x and y GET requests with referer as cnn.com
were made to disqus.com and cdn.turner.com, respectively, we
denote ndisqus= x and ncdn.turner=y. Note that all counts
are in number of bytes. Out of all hosts h, we pick the host
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req: HTTP GET or POST request
host(req): host name in request req
rhost(req): referer host name in request req
root: root domain
l: host domain level
n: number of bytes for all sessions s.t.

rhost(req) = root
doml(h): level-l domain of host h
nh,l: number of bytes for all sessions s.t.

rhost(req) = root and
doml(host(req)) = doml(h)

bi: number of bytes for session i

for each session i s.t. rhost(req) = root
BEGIN

n+ = bi
nhost(req),l+ = bi

END
for each host h
BEGIN

rh,l = nh,l/nl

END

doml(h) with max(rh,l) is the top level-l CDN domain

Figure 4: Detecting top level-l CDN domain

with maximum portion of traffic (nh/n) as the top host.
Suppose we identify i.cdn.turner.com as the top host in this

step, we then try the next aggregated level of the top host
domain: cdn.turner.com by repeating the counting procedure
for level-3 domains. We can continue this procedure for fur-
ther aggregated levels to get the top domain at each level.
Note that we need to avoid the trivial levels such as .com or
expanded levels .co.uk and so we stop at level-3. After get-
ting the list of the top domains Hl and their traffic rates rl,
for each level l = 3, 4, .., we use the following heuristic to
decide which level of the top domain to use:

Starting from the lowest level (most aggregated) l = 3, we
select the top level-3 domain as the CDN domain if the dif-
ference between the proportion of traffic for the top level-3
domain and the top level-4 domain is above a pre-set thresh-
old t (r3 − r4 > t). In our system we choose t to be 5%.
Otherwise we do not use the level-3 domain, and check the
next level l = 4. We select level-4 if r4 − r5 > t. We
continue this process until either we find a level l such that
rl − rl+1 > t or l is the full host domain. We then select top
level-l domain as the CDN domain.

In the cnn example, we have the top level-3 and level-4 do-
mains as cdn.turner.com and i.cdn.turner.com, respectively. We
start from the level-3 domain cdn.turner.com and check if the
traffic rate difference between cdn.turner.com and i.cdn.turner.com
is more than 5% of all traffic with referer field as cnn.com.
This turns out to be true, so we choose cdn.turner.com as the
CDN domain. Intuitively, when we choose a level l CDN
domain, we are essentially combining traffic from all level

l + 1 CDN domains. We choose to use an aggregated level
of CDN domain only if such aggregation makes a difference,
e.g., if the aggregated traffic grows by 5%.
Special cases For less popular web sites, it is possible that
they do not use any CDN services. One of the following may
happen in such cases: (1) Most traffic comes from the origin
domain, so that no other traffic will pass the threshold. As a
result, no CDN is detected. This is fine since detection based
on the origin domain already covers the majority of traffic.
(2) The web site itself does not have much content. Most
users who access this web site navigate to another web site.
This is a corner case where the web site most likely does not
provide any useful service. We ignore this case as being not
of practical interest.

A more important case that we need to handle involves
a web site that heavily uses services from some third party
sites. For example, we found that reddit.com is a popular site
(in the Alexa top 50 sites in the US) that relies on imgur.com
for hosting images, although imgur.com is neither a CDN nor
the main supporting domain owned by reddit.com. Given that
our algorithm selects the most heavily referred site as the
CDN, it will end up picking imgur.com as the CDN for red-
dit.com, which is not true even though its presence may be
vital to the particular web service. However, we cannot al-
low clicks to imgur.com beyond the embedded requests as be-
longing to reddit.com service. In that sense, imgur.com should
be considered similar to a third-party host, where embedded
object accesses from the origin web pages are considered
part of the web service in question while user clicks are not.

One other issue is that multiple web sites may claim the
same CDN as its own CDN. For example, both cnn.com and
adultswim.com use cdn.turner.com as the CDN. This is accept-
able for our method, since we can trace back to the origin
domain through the chain of referer fields and separate out
the requests originating at different origin domains.

3.3 Embedded Object Detection
Besides the traffic from the origin domain and CDN (or

main supporting domain), there is also traffic for download-
ing embedded content from third party web sites. This in-
cludes objects such as www.facebook.com/extern/login... and
ad.doubleclick.com/adi/... in the example shown in Figure 1(a).
In this section, we investigate two methods for detecting re-
quests for fetching such objects—one based on the file-type
extensions and the other based on timing.
Classification based on file-types: Our first observation
is that certain file-types are almost always embedded. This
includes css, js, swf, ico, json, and xml. Download of such
files is always triggered automatically by the download of
another (embedding) web page since such files are not use-
ful on their own. Our preliminary inspection for a recent one
hour trace collected at the large university campus network
gateway shows that 15% in terms of requests and 11.3% in
terms of bytes of all the HTTP traffic are for such files. In
terms of percentage, they cover a smaller portion of traffic
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than the CDN, but still significant in terms of volume espe-
cially for services that use these embedded objects more fre-
quently. In addition, the almost certainly embedded nature
of these objects makes it an accurate classification rule, and
is also easy to implement. It also helps cross-checking with
other heuristics as we discuss next. While it appears that
relying on the file-type extension may allow gaming the sys-
tem (e.g., by simply renaming other content with these file-
types), a user can only cheat if he can collude with the web-
service provider since the URLs are managed by the service
owner. Such a case therefore is highly unlikely in practice;
we discuss cheating and collusion further in Section 6.
Classification based on timing: Our second observation
is that the embedded objects are downloaded shortly after
its referer page (called the base page). The time interval be-
tween the two downloads should typically be shorter than the
time it takes for a user to browse a given web page and then
click on a URL in the page to navigate to a different page.
For convenience, we define the time interval between down-
loading the base page and the embedded links as think time.
More precisely, we define think time Tthink = TG − TR,
where TG is the time at which the GET/POST request for
the embedded page has been sent, and TR is the time in-
stant at which the last response packet of the corresponding
referer page arrived. For example, the think time for URL
cdn.turner.com/index.jpeg in Figure 1(a) is interval between the
time when the last response packet for its referer cnn.com is
received and when the GET request for cdn.turner.com/index.jpeg
is sent. Note that it is possible to have Tthink < 0 since
browsers can start downloading the embedded URL even be-
fore it finishes downloading the entire base page. Intuitively,
think time is the time it takes for the browser to process the
web page, extract any embedded URLs, and then send sub-
sequent requests to download these embedded objects.
Naive timing heuristic: We may use the following naive
heuristic for detecting embedded objects: A session is classi-
fied as embedded URL download if Tthink < Tthresh, where
Tthresh is a timing threshold, e.g., 1 second. Unlike the file-
type heuristic, the timing heuristic can generate both false
negatives (missing requests part of the target web service)
and false positives (including requests after the user navi-
gates to third party web pages) depending on the value of
Tthresh. To understand how practical the timing heuristic
is, we take advantage of the file-type heuristic described in
previous section.

Results from a real packet trace. We calculate the think
time for all embedded file downloads based on the file-type
heuristic in a full HTTP trace we collected at the large uni-
versity gateway. Figure 5 shows the think time distribution.
We observe that think time varies across a wide range. Al-
though about 60% of think time falls below 1 second, 10% of
think time is above 10 seconds. If we naively set the Tthresh

to 10s, we will be able to capture almost 90% of all the em-
bedded objects. But, this has the negative effect of increas-
ing the false positives, since 10 seconds is sufficient time for
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Figure 5: Think time distribution for embedded object
downloads with both naive and refined heuristics.

a user to click on a third party link, which will then be clas-
sified as an embedded object. Clearly, it is not supposed to
be counted as part of this web service, but will be because
of the relatively high value of Tthresh. If we set Tthresh to
say 100ms or even 1s, we will miss a large fraction of em-
bedded objects (80% with Tthresh = 100ms and 50% with
Tthresh = 1s). It is clear that finding a fixed threshold that
will work for a large number of web-services is not easy.
Next, we discuss how to improve this further.
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Figure 6: Think time for multiple embedded objects with
the same referer

Refined timing heuristic: To better understand why the
browser think times are sometimes exceedingly long, we in-
spect the time sequence of web page downloads more care-
fully. Figure 6 shows the timing for downloading multi-
ple embedded URLs following the referer URL cnn.com/XXX.
The X-axis shows the index of the URLs sorted according to
the time when the GET/POST request is sent. URL 0 is the
referer URL and other URLs are all embedded URLs. The
Y-axis shows the think time for each URL. We observe that
the think time increases almost linearly though the requests
towards the end are spaced farther apart than at the begin-
ning. The increased spacing is because third-party embed-
ded objects or advertisements are among the last to be re-
quested and they take more time to load as well. Except for
this artifact, think times seem to be accumulating over con-
secutive embedded URL downloads. The reason is because
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the browser typically processes each web page sequentially,
and instead of sending out all requests for all embedded
URLs at the same time, requests are spaced out over time.
Browsers also restrict the number of parallel downloads as
well, so downloads tend to be somewhat sequential.

Examination of the figure further reveals that the time off-
set when a GET request for an embedded object is made, rel-
ative to the request for the base page, is proportional to the
number of GET requests for embedded object downloads.
This is why choosing one fixed threshold is hard. Notice,
however, that the gap between two adjacent requests is more
constant and predictable, compared to the time differences
between the original page and the embedded objects. Hence,
we propose the use of the following refined timing heuris-
tic: For each referer page R, maintain time TA as the “latest
activity time”. The activity can be either the last response
packet being received for this referer page (TR), or be a GET
request sent for an embedded URL of this referer page (TG).
When a new request is sent with referer R at time TG′ , we
check if TG′−TA < Tth, where Tth is a chosen threshold. If
the condition holds, we classify this request as an embedded
URL for R and also update TA = TG′ .

The think time distribution of the refined timing heuristic
is shown in Figure 5. Most adjacent requests (almost 90%)
are within about 100-500ms, which is much less than the
human think time. Of course, if the chain of requests is long,
the chances of false positives will increase since a user may
click on some link. However, the chance of a user clicking
on a link before the page completely loads is quite small and
this approach therefore works for almost all practical cases.
The problem with the naive timing heuristic was that it was
trying to choose one threshold for all web sites, whereas the
refined heuristic adapts to the number of objects and to the
time taken to download all the previous objects.

Note that the tail still contains a small percentage of re-
quests that were sent almost 1000s (about 16.67 minutes)
after the previous request. While this may seem like a user
click, our file-type heuristic indicates otherwise. On further
investigation, we found that the browser was requesting the
same embedded object several times (with the same referer).
This happens every so often, as in an auto-refresh. If the
browser refreshes certain objects automatically after a long
time, it could be difficult for us to correctly classify these
refreshes as embedded requests. However, for the refresh
requests present in the trace, we observed that the file type
was almost always of embedded variety. So, our file-type
heuristic would have correctly flagged them as embedded.

3.4 Overall Algorithm
The cobble tree construction algorithm combines the mul-

tiple heuristics discussed above: CDN detection and embed-
ded object detection based on both file-types and refined tim-
ing. To combine them, we run them as two separate proce-
dures. In the first procedure, we detect the CDNs or main
supporting domains for each target web site by using the

Algorithm:
for each request req
BEGIN

if host(req) ∈ Origin
root(url(req)) = Origin

else if (host(req) ∈ CDN &
root(referer(req)) ∈ Origin)

root(url(req)) = Origin
else if (url(req) is embedded file-type &

root(referer(req)) ∈ Origin)
root(url(req)) = Origin

else if (req passes refined timing test &
root(referer(req)) ∈ Origin)

root(url(req)) = Origin
else

root(url(req)) = NULL
END

Figure 7: Overall classification algorithm for one domain

CDN detection algorithm described in Section 3.2. Note
that the administrator can choose to include multiple CDNs
or supporting domains here based on the few top domains
flagged using the algorithm. In the second procedure, we use
the detected CDN domains along with the file-type heuristic
and the refined timing heuristic to classify the traffic. Given
a list of target origin domains, the goal of the algorithm is
to classify each connection either as belonging to one of the
target domains or as NULL when it does not belong to any
target domain.

We classify each HTTP session based on the request mes-
sage that the client sends to the server. Figure 7 shows the
procedure for classifying a request. Each URL is associ-
ated with a “root” domain, which can be either NULL or
one of the target domains. During processing, the heuristics
are applied according to the specified precedence. Note that
although conceptually we are isolating the session tree for
each target origin domain, we do not need to maintain one
unified data structure for the entire tree. Instead we can just
maintain the root for each URL so that we know which tree
this URL belongs to.

The precedence rules in the algorithm in Figure 7 are intu-
itive. If the host belongs to the origin domain, or to the CDN
domain provided that referer’s root belongs to the origin do-
main, then the host belongs to the origin domain. Then,
we perform the file-type and timing checks, coupled with
whether the referer’s root belongs to the origin domain. Thus,
if there is a false positive in the timing heuristic (i.e., a GET
request was sent to a third party host as a result of a user click
and was not automatically fetched by the browser, but was
misclassified by the timing heuristic) the overall algorithm
is robust enough to stop further misclassification. For exam-
ple, while the CNN page is loading, suppose a user clicks on
some third party link, say facebook.com, on the CNN page.
Because the page is still getting loaded, this user click may
be inadvertently classified as an embedded object by the tim-
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ing heuristic. The algorithm will set the root(facebook.com)
to the origin domain (CNN). Further accesses to links from
this third party page, however, will not match any of the rules
because their referer would be facebook.com. For this one
false positive to cascade into including an entire browsing
tree, the user must repeatedly click on one link after another
while the page is loading, with virtually no think time. We
did not encounter such scenario in our trace.

The algorithm also handles URL shorteners flawlessly.
An URL shortener redirects a short URL to the actual long
URL using HTTP’s 301 return code. When a browser fetches
the long URL, the referer field remains NULL and so the
cobble tree for the long URL can be formed in its entirety
as if the redirect never happened. In a similar fashion near
domain names (e.g.nyt.com and nytimes.com) can also be han-
dled since usually the shorter name redirects the browser to
the longer one. The algorithm can be made even more ro-
bust by filtering out the links to embedded objects by parsing
the content within the HTTP response. This not only helps
reduce the number of false classification of the URLs, but
also remedies against auto-refresh and other fraudulent ac-
tivities trying to circumvent the cobbling process. We how-
ever, chose not to implement that in our current algorithm
due to the large overhead involved in storing, uncompress-
ing and parsing the content within a HTTP response.

4. IMPLEMENTATION
In this section, we describe the implementation of the COB-

WEB system. This system is designed to operate on any net-
work edge router with access to bi-directional traffic. It can
either run directly in a gateway as a service blade or as a
stand alone server that is directly linked to gateways via port
mirroring. The system needs configuration information such
as target web domain, their CDN names, timing thresholds
and so on; it generates periodic reports about the cobbled
session trees as output.

COBWEB system consists of a standard off-the-shelf packet
sniffer (e.g., libpcap) and a simple HTTP parser that allows
us to extract various fields within HTTP packets. Our sys-
tem can operate on live packet captures or in passive mode
to operate on pcap traces. It maintains some minimal state
regarding the HTTP session, and tracks requests and corre-
sponding responses. It also stores some timing information
to implement the embedded object detection heuristic.

We implement the COBWEB system in C++. Our total
source code consists of 4,460 SLOC (Source Lines of Code).
All our experiments were conducted on an Endance Nin-
jaBox networking monitoring appliance [2]. Internally, it
consists of an 2.5 GHz 8-core Intel Xeon E5420 procesor
with a total memory of 16GB, running Linux operating sys-
tem with a 10Gbps capture card. Current version of COB-
WEB is based on single process model, but it can be easily
parallelized to take advantage of multi-core architectures. In
our evaluation, we found that our unoptimized system can
keep up with 10 Gbps line rate. Specifically, we found that

Trace Size Date Duration
Field2011 227GB July 29, 2011 1 hour
Field2012 512GB Jan. 19, 2012 5 hour

Manual 108MB Jan. 19, 2012 96min total

Table 1: Traces used in evaluation
the system took 2 hours 10 minutes to process a 5 hours
trace, suggesting that it can easily keep up with line rates.
The scalability is mainly because it only processes less than
0.1% of the actual data.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of COBWEB

system. Our evaluation mainly focuses on measuring clas-
sification accuracy. We first explain the basic methodology
for measuring the accuracy of our system, and then show re-
sults for each component of the algorithm. We also show
some performance benchmarks for our unoptimized system
prototype.

5.1 Evaluation Methodology
We use mainly two metrics to evaluate the efficacy of any

classification algorithm—false negatives and false positives.
False negatives occur if the algorithm misses part of the tar-
get web site traffic. False positives occur when the algo-
rithm inadvertently includes traffic from web sites not part of
the target web site’s session tree. In the context of reverse-
billing, false negatives cause over-billing for the user and
false positives cause loss of revenue for the service provider;
it is therefore important to minimize both so that the traffic
accounting can be accurate.
Packet trace and ground truth In order to evaluate the
web service cobbling algorithm, we take 70 out of the top
100 US web sites listed in Alexa, along with the top 26
popular web sites for users in the campus network. Note
that we exclude the sites that heavily rely on HTTPS (e.g.,
gmail.com) since our algorithm is not applicable there. We
also exclude the sites that require user login since such ses-
sions cannot be emulated by manual download and hence it
is very difficult to obtain ground truth. Those 96 sites cover
a wide range of service categories such as shopping, news,
social networking, searching and so on. They also tend to
use sophisticated web technologies, and hence is good for
testing the effectiveness and robustness of the algorithms.
We have collected two packet traces from a 10Gbps large
university network gateway link that connects the campus to
the rest of the Internet, both listed in Table 1. Note that the
512 GB is the size of the compressed Field2012 trace.

Real traces are very useful for understanding how users
navigate through the web sites and what kinds of false posi-
tives and false negatives we can encounter when we deploy
our COBWEB system in the field. However, such traces are
not sufficient by themselves since we do not have access to
the ground truth. Obtaining ground truth from traces in the
field is challenging since there is no easy way to distinguish
between user clicks and embedded downloads—a key re-
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From From Others
CDN domain Origin domain Main Self Others

2mdn.net doubleclick.net 0.247 0.149 0.604
gstatic google 0.854 0.006 0.140

images-amazon amazon 0.523 0.207 0.269
imgur reddit 0.749 0.107 0.144
imwx weather 0.373 0.263 0.364

mzstatic apple 0.919 0.001 0.080
turner cnn 0.428 0.215 0.357
twimg twitter 0.489 0.011 0.500
yimg yahoo 0.544 0.105 0.351

Table 2: CDN traffic based on referrer domains

quirement for measuring false positives and false negatives.
Normally, one would assume we could just parse all the

links from entire base page and we should be able to identify
all the clickable links in the web page. If we see a GET
request from the web page for one of the clickable links, we
should be able to assume that it is a user click. The difficulty
here is identifying the clickable links from the base page.
Modern web sites heavily rely on javascript and it is not easy
to just search for specific patterns such as “<a href=.* >”
as in traditional plain HTML web pages. Indeed, we tried
searching for such URLs and we found very few links in the
entire trace that some user actually clicked on.

Thus, in order to make sure we evaluate our algorithm
against credible ground truth, we also simulate a real user
clicking on the 96 web sites and collect these traces. We
use a web browser to open each of the main web pages and
wait for 1 minute to record the traffic trace for each session.
Hence we obtain 96 manual traces, also listed in Table 1.
Given no interference from any other source, the packets will
be pure ground truth. This of course gives us a limited eval-
uation since we cannot completely capture all the subtleties
and complexities that are prevalent in the field. The com-
bined evaluation using both manually clicked ground truth
as well as real packet traces will cover more cases leading
to a more thorough evaluation than either one of them can
achieve individually. (Note that, with virtually no papers in
this space, there are no clear established metrics or method-
ologies or data sources that we can directly use for evalua-
tion.)
False negatives To evaluate false negatives, we mainly rely
on manual downloads in a controlled environment. This en-
sures that we have access to credible ground truth. We run
the algorithm on the manual traces and compute the false
negative rate, the proportion of traffic that is in the manual
trace but is missed by the algorithm. For convenience, we
also use its complement true positive rate in our discussion.
False positives Unlike false negatives, it is difficult to eval-
uate false positives using manually downloaded web pages,
because by construction, we are not injecting any interfer-
ence in the user click emulation (hence, every GET request
is part of ground truth). Here is where the real campus traces
prove beneficial. But the issue with the real trace is that it
is difficult to reliably isolate traffic between different web
sites even with manual inspection, since we do not have any

knowledge of user browsing behavior. For example, concur-
rent or overlapping HTTP sessions may be caused by down-
loading embedded content on the same web page, or caused
by user opening multiple tabs in the browser, or caused by
user quickly clicking through multiple URLs.

We address this problem by combining campus trace with
controlled browsing as follows. First, we use our cobble al-
gorithm to generate the cobbled tree for each user browsing
session of each target web site in the campus trace. Recall
that the root of each session tree is the starting point for
each browsing session for a web page. The leaves of the
tree include both the embedded objects that are automati-
cally fetched from any server, and user navigations to other
pages within the same web site (as in Figure 1(b)). In order
to find out the accuracy of this tree, we use the manual trace
as the ground truth (we call this the ground tree) and com-
pare it against the cobbled tree. However, one issue is that
it is not easy to emulate the user opening other pages within
the web site; for ease of evaluation, therefore, we only con-
sider root page downloads (called pruned cobbled tree).

In the ideal case, both trees, namely the ground tree and
the pruned cobbled tree, should overlap perfectly; branches
missing in ground tree implies false positives. However,
there is one additional complexity we need to grapple with:
Many web sites have very dynamic content which changes
for almost every download. This can cause the trees from
two different sessions differ and introduce “noise” into the
comparison result. Such content is typically advertisements
that are randomly selected or customized according to user
profile or browsing history. For example, when we make
two consecutive downloads for cnn.com, each download gen-
erates 150 and 148 GET requests, respectively. Among the
150 requests generated in the first download, 33 requests do
not appear in the second download, with 25 being ads. If we
compute false positives naively, several extraneous sessions
not part of the ground tree will appear in the cobbled tree;
this would not be an accurate classification though.

Hence we mark a node as false positive if the following
two conditions hold: (1) it is in the pruned cobbled tree, but
not in the ground tree; and (2) its URL belongs to third-party
non-ads domain. If a node is marked as false positive, then
the entire sub-tree below this node is also marked as false
positive.

Intuitively, false positives can be classified into two cate-
gories: (a) user clicking on third-party non-ads link; and (b)
user clicking on ads link. Obviously, case (a) is covered by
the above heuristic. For case (b), when a user clicks on an
ads link to navigate to a third-party web site, e.g., clicking an
ads of nytimes.com served by doubleclick.net on cnn.com page,
although the first download may contain URL of ads link
(and hence not covered by the above heuristic), the majority
of traffic will be for downloading pages on nytimes.com along
with embedded objects, which is covered by the heuristic.
As a result, we can capture all false positives involving non-
ads links and majority of false positive traffic for ads.
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5.2 CDN Detection
In order to test the CDN detection heuristic, we first run

the CDN detection algorithm with the Field2011 trace and
then verify the detection result by using tools such as whois,
dig and google search. Table 2 shows an example of the
detection result. CDNs for most web sites are correctly de-
tected except reddit.com, for which imgur.com was mistakenly
identified as the CDN or main supporting domain. The rea-
son was that lots of reddit users are browsing image links of
imgur during the measurement period.

Table 2 also shows the traffic break-down for each CDN
(or main supporting) domain (for a subset of websites for
space reasons). Traffic for each CDN domain can be re-
ferred by either the main domain, the CDN domain itself, or
other domains. We observe that although in most cases the
majority of traffic for a CDN is referred by its main domain,
significant fractions of traffic for many CDNs are referred by
external web sites. This confirms our intuition that classifi-
cation just based on host domains is not sufficient. For ex-
ample, even though 2mdn.net is the main supporting domain
for doubleclick.net, majority of its traffic is referred by exter-
nal web sites to show ads, and hence should be classified as
part of the corresponding external web site traffic. The same
can be said for twitter.com’s supporting domain twimg.com.

We further run the CDN detection algorithm with the Field
2012 trace. For all 96 top sites, we find that the algorithm
correctly identified CDNs for 89 sites (92.7% accuracy). In
the other cases another third party site is marked as CDN
incorrectly since there is no separate CDN domain for this
web site and the third party domain exceeds the 5% thresh-
old. There are also two web sites that use more than one
CDN domain, so the algorithm just picks the top one.

Once the CDN or main supporting domain is determined
for the target web site, we can apply the CDN heuristic to
classify traffic. In order to find out the proportion of traffic
classified by using the CDN heuristic, we construct the cob-
bled tree as follows: Starting from the target root domain
with empty Referer field, we include a HTTP request into
the tree if its host belongs to the root domain or CDN do-
main, and its referrer also belongs to the tree. Here we only
evaluate the true positive rate since there are no false pos-
itives for the CDN heuristic. We use the 96 manual traces
for this evaluation. Figure 8(a) (the green line) shows the
proportion of traffic correctly identified by using the CDN
heuristic. We observe that true positive rate varies across a
wide range between 5.09% to 100%. The average true posi-
tive rate over the 96 sites is 75.68%. This indicates that the
CDN heuristic is very effective for many web sites, but if
used as the only heuristic, it is not robust enough to classify
traffic for all web sites.

5.3 File-Type Heuristic
We next investigate how much the file-type heuristic can

further improve the classification result. We construct the
cobbled tree in a similar way as before, and in addition, in-
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Figure 8: Proportion of traffic correctly classified by in-
dividual heuristics and overall algorithm. Webservices
are sorted based on the True positive rate for the overall
algorithm
clude a session if the URI is for an embedded file type and its
referrer host belongs to the tree. Similar to CDN heuristic,
file-type heuristic does not generate false positives and we
use the 96 manual traces for evaluation. Figure 8(a) (blue
line) shows the proportion of traffic classified correctly by
combining file-type heuristic with the CDN heuristic. Note
that such embedded files can be downloaded from either
CDN or third party. As a result, the two detection meth-
ods have certain overlap between their classification results.
We observe the effectiveness of the file-type heuristic varies
across web sites. On an average, the method with combined
heuristics can correctly classify 83.75% of total traffic, an
8.08% increase over the original CDN heuristic. In other
words, the file-type heuristic classifies an additional 8.08%
traffic for embedded file downloads from third party web
sites.

5.4 Refined Timing Heuristic
To evaluate effectiveness of the refined timing heuristic,

we construct the cobbled tree using this heuristic, and use
the method discussed in Section 5.1 to evaluate mainly true
positive rate. We use the Tthresh value of 500ms for these
results. Since, this heuristic is only part of our overall al-
gorithm, we later study the sensitivity of the Tthresh value
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Figure 9: False positive and false negative for all the webservices with timing threshold 500 ms.
on the performance of the overall algorithm. We evaluate
true positive rate by using the 96 manual traces as before.
Figure 8(b) shows the true positive for each target web site.
We observe that the true positive rate varies across a wide
range between 14.98% to 100%. The average true positive
rate over all web sites is 87.11%. Again, as shown in the
Figure 8 the combination of all these heuristics has the best
chance of correctly classifying most of the traffic. We dis-
cuss this further in the next subsection.

5.5 Overall Algorithm
We now evaluate the overall algorithm (shown in Figure 7)

that combines all the heuristics. We first use the manual
traces to evaluate false negatives, and then use both Field2012
campus trace and manual traces to evaluate false positives.
In the latter case, there are typically multiple browsing ses-
sions for each of the 96 sites. We take the average false
positive rate of all the sessions for the same site. Figure 9
shows both the false negative and false positive rates by us-
ing the overall algorithm. Timing threshold is 500ms. Result
is shown in two rows, sorted based on false negative rate.
We observe that the overall algorithm performs very well
for most web sites. The average false positive rate across
all web sites is 3.54%. With very few exceptions, the false
positive rate is below 10%. One anomaly is www.reddit.com
with false positive 65.12%. We conjecture that this is caused
by very frequent content update due to active user postings.
Since we compare all sessions within the 5 hour field trace
with just one ground truth trace, the “ground truth” is out-
dated for most sessions. To verify this hypothesis, we collect
a shorter 20 min trace on the same campus gateway along
with a ground truth trace. For the 48 reddit sessions that we
capture, the average false positive rate is now 5.2%, indeed
much lower. This confirms that the high false positive rate
we have observed in Figure 9 is indeed caused by the evalu-

ation artifact rather than the cobbling algorithm.
The average false negative rate is 4.14% across all web

services. Except the last 8 sites, all false negatives for all
other sites are below 10%. Further investigation of the trace
shows that the high false negatives for the last 8 sites are
mostly caused by flash video players. Unlike the browser,
the video players often have empty Referer field in their GET
requests. Recall that our algorithm relies on Referer field for
cobbling the session tree; if the Referer field is not set, our
algorithm assumes it is not related to this session tree and
will miss the traffic completely. Not setting the Referer field
is alright for the CDN or main domain accesses, since they
will still be accounted for, although as part of a different
cobbled tree.

We think this problem can be addressed by correlating the
sessions without Referer field with those with Referer field.
For example, when we see a GET request with empty Ref-
erer field, we take its URL and find the “best matching” URL
of another request among all the cobbled trees of the same
user within a certain time period, say 5 sec. The intuition
here is that if the flash player retrieves video from a domain,
the browser is likely to retrieve some other content from the
same domain. We have tested out this approach on the four
domains with highest false negative rate, and found that their
false negative rate is reduced to 19.1%. Work is still needed
to further validate such approach, and exploring other alter-
native correlation methods.

5.6 Sensitivity to the Timing Threshold
The only parameter in our algorithm is the timing thresh-

old Tthresh. Clearly, setting Tthresh too high leads to fewer
false negatives, but also increases the number of false posi-
tives. It is therefore important to identify a good threshold
that can balance the two. We vary the timing threshold and
observe its impact on the false positives and false negatives;
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Figure 10: Sensitivity to the timing threshold Tthresh.

results for top 17 web services (in terms of traffic volume) in
the Field2012 trace are shown in Figure 10.

In Figure 10(a), we show that we can decrease the false
negative percentage of some of the web sites by increas-
ing the timing threshold. For example, bing’s false negative
percentage comes down from 35% to almost zero when the
threshold is increased from 100ms to 250ms. But we also
find that the false negatives of several web sites are not af-
fected by the threshold. One reason is that if the Referer field
is missing, there is not much gain in accuracy by increasing
the timing threshold.

On the other hand, false positives generally increase with
the increase in the timing threshold (shown in Figure 10(b)).
google is most sensitive to the timing threshold since its search
results have many third party web sites, and also user tends
to click on search results faster than when they browse in-
dividual web sites. But web sites such as cnn and wikipedia
are much less sensitive to increase in timing threshold. One
reason is that many web sites are designed to attract users
to their own pages and hence have very few clickable third
party URLs. Such differences between different web sites in
their sensitivity to the timing threshold suggests that it may
be beneficial to adopt a different timing threshold for differ-
ent web sites. For the web sites we have studied we find
that timing threshold of 250ms to 500ms seems to be a good
trade-off between false positive and false negative rates.

App name Main Supporting Ads Third party
cnn 58.69 41.31 0.00 0.00
yelp 30.37 69.63 0.00 0.00

washingtonpost 90.21 0.02 9.77 0.00
amazon 62.98 37.02 0.00 0.00
nytimes 98.90 0.00 0.87 0.23

facebook 11.15 87.73 0.00 1.11
twitter 0.00 98.13 0.00 1.87
imdb 0.00 97.68 0.29 2.03

bestbuy 80.56 16.67 0.00 2.78
dictionary 56.96 0.00 39.04 4.00

bbc 17.82 72.80 0.38 9.01
huffingtonpost 18.33 67.56 4.85 9.26

abc 81.01 9.72 0.00 9.27
engadget 0.28 79.90 1.42 18.39

ebay 4.32 84.18 0.00 11.51
wunderground 69.80 0.00 0.28 29.93

weather 13.94 19.64 30.44 35.99

Table 3: Mobile app traffic break-down per domain in
percentage of bytes

6. DISCUSSION
Mobile Apps. Browsers on the mobile phone behave in a
fashion similar to the desktop browsers in terms of filling in
the Referer fields. However, mobile apps often ignore op-
tional fields such as User Agent and Referer. To investigate
this, we ran several mobile apps on an Android phone, ran-
domly navigated within the apps, and captured traces. We
found that Referer field is empty in majority of the requests.
Thus, we believe that our cobbling algorithm, in its current
form, may not be directly applicable to mobile apps. How-
ever, further investigation reveals that the mobile apps send
requests to a significantly small number of domains as com-
pared to the web browsers (refer to Figure 2). We found that
the average number of top level domains per app is just 5.
Moreover, as Table 3 shows, for majority of the apps more
than 90% of the traffic belongs to the main and the support-
ing domains for the app. Hence it is likely that CDN detec-
tion and simple static traffic rules may work well for mobile
apps, although a more careful study is still needed. We plan
to investigate such techniques as part of our future work.
Video Services. There are several popular video service
sites that also use HTTP streaming to deliver video content.
Examples include Youtube, Netflix, and Hulu. Our algo-
rithm does not directly apply to such web sites since they
typically have multiple domains for supporting content de-
livery. For example, both Netflix and Hulu use three CDNs
(Akamai, Level3, and LimeLight). Youtube also has several
domains to support video and image download although they
do not use third party CDNs. However, since there are very
few of such large scale video service sites, it is affordable
to make specific rules for such web services. Such rules can
be made based on CDN host or domain names as well as
signatures in the message [4].
Cheating and Collusion. The cobbling algorithm can po-
tentially be vulnerable to cheating by a user since the client
browser determines what Referer field to set. For instance, a
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user can disable the Referer field so that the traffic cannot be
easily associated with any web service. Or a user can modify
the Referer field to falsely associated the traffic in question
with a different web service. However, unless most of the
Internet users cheat, we can always correlate individual user
sessions with the common and vast majority and hence can
detect anomaly and blacklist such individuals. Collusion be-
tween users and web service providers make the detection
more difficult. However this should be very rare since there
is not much incentive to do so in practice. For instance, in
the case of reverse billing, it is unlikely that the web service
provider will collude with a user since one of the parties has
to pay for the traffic.
Prefetching and Auto-Refresh. Prefetching at the origin
or CDN server does not affect our algorithm. In addition,
prefetching by the client browser is similar to user access-
ing such content, so it will be classified accordingly. There
are several scenarios for auto-refresh. First, auto-refresh of
the entire page is similar to user accessing the page again,
and hence it is classified correctly. Second, auto-refresh of
individual objects such as ads are also fine if the same link
has been classified before. Last but not the least, if the auto-
refresh is for a different link, then we can search for similar
links in the cobbled tree similar to what we have done for
sessions with missing Referer fields. Further work is needed
to fully evaluate the impact of such strategy.

7. RELATED WORK
Major search engines and portals such as Yahoo and Bing

have long been offering catalog of web sites based on the
type of their services. Research work has also been done in
the past to catalog web services by using techniques such
as machine learning [17, 9]. The focus in our paper is not
to catalog the web services, but to isolate each target indi-
vidual web service traffic to assist better billing and service
management. To the best our knowledge, this is the first
work to consider this problem and as such very few related
works exist.

There exists related work in traffic classification and iden-
tification in general, especially at the application level [14,
19, 8]. Moore and Zuev have proposed a machine learn-
ing approach based on Bayesian analysis to classify Inter-
net traffic into categories such as P2P, multimedia, WWW,
etc [15]. Karagiannis et al. propose BLINC system [8] for
traffic classification in the dark using communication graphlets
for characterizing different types of applications. A survey
on traffic classification techniques based on machine learn-
ing is given in [16]. Prior research has also been done to
identify specific applications such as Skype [5, 7] based on
payload signatures and packet timing characteristics.

There have been some measurement studies to understand
the new web technologies such as Ajax (e.g., [20, 12, 10]).
Our goal in this paper however is to provide a mechanism to
identify sessions corresponding to a web service.

8. CONCLUSIONS
We have presented the COBWEB system for in-network

cobbling of traffic associated with a given set of web ser-
vices. Such system can enable new types of monitoring and
measurement capabilities, and have the potential to even en-
able new revenue models such as reverse billing for service
providers. While the classification algorithm is based on a
combination of multiple heuristics based on CDN and HTTP
request timing, the association between different web re-
quests is made possible using the HTTP Referer field, which
is an essential component of Internet advertising industry to-
day. Our extensive evaluation suggests COBWEB can achieve
low false positive and false negative rates, and can poten-
tially sustain a 10Gbps link.

We view COBWEB only as the first step towards solving
the complex problem of web service classification. Specif-
ically, COBWEB cannot currently handle encrypted traffic
(e.g., using HTTPS) since it relies on information within
the HTTP requests that may not be visible in the network.
While most traffic today is not HTTPS, extensively covering
all such cases is a big challenge.
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