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Query Processing in Private Data Outsourcing Using
Anonymization

Ahmet Erhan Nergiz and Chris Clifton

Purdue University, West Lafayette, IN 47907
anergiz, clifton @cs.purdue.edu

Abstract. We present a scheme for query processing in a private data outsourcing model. We assume
that data is divided into identifying and sensitive data using an anatomy approach[24]; only the client
is able to reconstruct the original identifiable data. The key contribution of this paper is a relational
query processor that minimizes the client-side computation while ensuring that the server learns nothing
violating the privacy constraints.

Keywords: privacy, anonymization, data outsourcing, anatomy model

1 Introduction

Data outsourcing is a growing business. Cloud computing developments such as Amazon Relational Database
Service promise further reduced cost. However, use of such a service can be constrained by privacy laws,
requiring specialized service agreements and data protection that could reduce economies of scale and dra-
matically increase costs.

Most privacy laws apply to data “relating to an identified or identifiable natural person”[8], data that
cannot be directly or indirectly linked to an individual is not restricted. Some laws are even more specific; the
U.S. Healthcare laws apply only to identifiable health information[13]. We propose a private data outsourcing
approach where the link between identifying information and sensitive (protected) information is encrypted,
with the ability to decrypt this link residing only with the client. As the server no longer has access to
individually identifiable protected information, it is not subject to privacy laws, and can offer a service that
does not need to be customized to the needs of each country- or sector-specific requirements; any risk of
violating privacy through releasing sensitive information tied to an individual remains with the client.

We admit that the legal and privacy issues of this model are open to debate (although some laws suggest
the appropriateness of this model; U.S. laws applying to educational institutions specifically allow disclosure
of “directory information” on an opt-out basis [10]); such debate is not in the scope of this paper. We propose
a data model based on anatomization[24]. This divides data into anatomy groups, separates identifying and
sensitive data into two tables, and provides a join key at the group level (see Figure 3.) We add an encrypted
key that does allow reconstructing the record, but the ability to decrypt and reconstruct resides only at
the client. Note that this model can support a variety of privacy constraints, including k-anonymity[21, 23],
discernibility/l-diversity[20, 18], and t-closeness[17]. While the original anatomization paper just considered
a single table, extending this to a full relational database has been explored[19].

This paper presents a relational query processor operating within this model. The goal is to minimize
communication and client-side computation, while ensuring that the privacy constraints captured in the
anatomization are maintained. At first glance, this is straightforward: standard relational query processing
at the server, except that any joins involving the encrypted key must be done at the client; an appropriate
distributed query optimizer should do a reasonably good job of this. However, two issues arise that confound
this simple approach:

1. By making use of the anatomy groups, and the knowledge that there is an one-to-one mapping (unknown
to the server) between tuples in such groups, we can perform portions of the join between identifying
and sensitive information at the server without violating privacy constraints, and



2. Performing joins at the client and sending results back to the server for further processing (as might be
recommended by a distributed query optimizer) can violate privacy constraints.

We first give the threat model and related work in consequent subsections and then provide definitions
and notations for an anatomized database in Section 2. We show how standard relational algebra operations
can be performed to lower client-side cost using issue 1 (Section 3) and analysis the cost of each of these
standard operations (Section 4).

1.1 Threat Model

In our private data outsourcing model, a data owner(i.e. client) first anonymizes the database such that
individually identifiable links are encrypted besides the anonymization of such links. The data owner sends
the modified database to a semi-honest third party(i.e. server) to delegate most of the query processing.
The server is only allowed to try to infer additional information than that is allowed by the anonymization
technique we use and it is assumed not to return incorrect or/and incomplete result, or alter the protocol
in an attempt to gain information Moreover, the server does not modify the database that the data owner
sends at the beginning of the protocol.

Fig. 1. Protocol Model

Figure 1 shows the outline of our private outsourcing technique. Although the outline of our technique
is similar to the ones in the secure outsourcing literature, the privacy of our technique reduces to already
existent anonymization techniques thus achieving accepted privacy metrics throughout the anonymization
literature.

1.2 Related Work

Private data outsourcing also known as database-as-a-service model was first introduced by Hacigumus et al.
[12]. They used bucketization over encrypted database that allows the server to partially execute queries on
the behalf of the client. There is a yet unmeasured trade-off between efficiency and the privacy of individuals
in the database while choosing the size and the contents of each bucket of encrypted values. Although, there
has been an effort to address the optimization of this trade-off in [14], no privacy measurement showing the
amount of information leakage On the other hand, Damiani et al. [6] purposed another technique that uses
hashing for bucketization and encrypted B+ trees for indexing. They also give an aggregate metric showing
the exposure of the database contents in various adversarial models. However we note that an aggregate
exposure metric fails to ensure the privacy of each individual’s identity.

Another approach is using searchable encryption for range queries [22, 2]. Since the client needs to
decrypt each query result and also group-by queries are not supported, encryption is far from being practical
for large databases. Kantarcioglu et al.[16] shows that an efficient private data outsourcing scheme based
on encryption cannot be proven to meet cryptographic-style definitions. Instead they give the outline of
an efficient private data outsourcing scheme using encryption with provable security, though they require
tamper-resistance hardware on the server side.
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Instead of using encryption, Aggarwal et al. [1] proposed vertical fragmentation to hide functional de-
pendencies from an adversary. They require two non-colluding servers to send each fragment. However we
believe that assuming two unaware servers from each other is too strong in the real world. Ciriani et al.
[5] proposed to vertically fragment a table and store the rest of the attribute values encrypted into each
partition. This enables the client to have queries involving only the unencrypted values in a fragment to be
executed without decryption. However in this method the size of the database is m times the original size
where m is the number of fragments and in the case of more complicated queries involving both encrypted
and plaintext attributes, the client needs to decrypt the query result to refine it. Another approach described
in [4] is to fragment the tables into partitions and have the client store a small partition storing the sensitive
values. The rest is stored in the server in plaintext. They prove that finding the optimal partitioning is
NP-hard and give a heuristic solution instead.

As far as we know the closest idea to ours is in [15]. They give an l -diverse partitioning scheme based on
anatomization[24] for a single table having multiple sensitive attributes. Our work is orthogonal to their work
in the sense that we give detailed query evaluation strategies given such an l -diverse partitioning scheme
exists for multirelational databases.

2 Data Outsourcing using Anatomy

As stated before, we assume use of the anatomy model[24] to meet privacy constraints. Making this work
for multiple tables does demand extra thought; a solution for this is given in [19]. This paper assumes an
anatomized database meeting privacy constraints; we now present relevant definitions and notations (based
on [19]) that we will use in describing query processing.

2.1 Definitions and Notations

Definition 2.1 (Equivalence class/QI-group). An equivalence class, Ej , is a subset of tuples in table T
such that T =

⋃m
j=1Ej and for any pair, (Ej1 , Ej2) where 1 ≤ j1 6= j2 ≤ m, Ej1 ∩ Ej2 = ∅.

Definition 2.2 (l-diversity). A set of equivalence classes is said to be l-diverse, if each equivalence class,
Ej where 1 ≤ j ≤ m, satisfies

∀v ∈ πSEj , f(v,Ej)/|Ej | ≤ 1/l

where S is the sensitive attribute in T , f(v,Ej) returns the frequency of v in Ej and |Ej | is the number of
tuples in Ej.

We use a variation of the definition of Anatomy in [24].

Definition 2.3 (Anatomy). Given an l-diverse table, T , with m equivalence classes, anatomy produces a
quasi-identifier table (QIT) and a sensitive table (SNT) as follows. QIT has schema

(A1, . . . , Ad, GID, SEQ)

where Ai ∈ QT for 1 ≤ i ≤ d, |QT | = d, GID is the group id of the equivalence class and SEQ is the unique
sequence number for a tuple. For each Ej ∈ T and each tuple t ∈ Ej , QIT has a tuple of the form:

(t[1], . . . , t[d], j, s)

The SNT has schema
(HSEQ,GID,Ad+1)

where {Ad+1} = ST , GID is the group id of the equivalence class and HSEQ contains the outputs of Hk(s)
defined as in Definition 2.4 where s is the corresponding unique sequence number in QIT for a tuple. For
each Ej ∈ T and each tuple t ∈ Ej , SNT has a tuple of the form:

(Hk (s) , j, v)
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Doctor Gender Patient

Alice Female Ike

Carol Female Eric

Bob Male Olga

Dave Male Kelly

Carol Female Faye

Alice Female Mike

Dave Male Jason

Carol Female Max

(a) Physician

Patient Age Address Disease

Ike 41 Dayton Cold

Eric 22 Richmond Fever

Olga 30 Lafayette Flu

Kelly 35 Lafayette Cough

Faye 24 Richmond Flu

Mike 47 Richmond Fever

Jason 45 Lafayette Cough

Max 31 Lafayette Flu

(b) Patient

Fig. 2. Original Database

For instance, the anatomy anonymization of person specific tables Physician and Patient in Figure 2 is
shown Figure 3.

Note that we show a (keyed) hash as the “join key” between the two subtables. We use HMAC [3] for
hiding the join links due to the efficiency of cryptographic hash functions; one could also encrypt the key
using a standard mechanism (with nonces) or a Probabilistic Encryption method [11] to achieve semantic
security. We formally describe this problem below.

Definition 2.4 (Hiding Join Link). Given two tables T1 and T2 having the same cardinality and a joining
attribute, SEQ in domain D, mapping T1 1:1 to T2, a function H : k×D → D′ is said to hide the join link,
SEQ, once each value v in T2.SEQ is updated with Hk(v) if

• Without knowing the secret k used in H, it is hard to join T1 with T2 on attribute SEQ.
• In case H can be applied to inputs with unbounded length, it is hard to encounter two v1 and v2 such that

Hk(v1) = Hk(v1)

Remark 1. When HMAC used, one needs to apply HMAC to the attribute T1.SEQ to join T1 and T2 since
HMAC is hard to invert even the used key k is known whereas when encryption is used, one needs to decrypt
each Hk(v) in T2 and then T1 and T2 can be joined since the strategy used in HMAC cannot be used in
randomized encryptions where encrypting the same value each time results in a different ciphertext based
on the random used during the encryption process.

Doctor Gender GID SEQ

Alice Female 1 1

Carol Female 1 2

Bob Male 2 3

Dave Male 2 4

Carol Female 3 5

Alice Female 3 6

Dave Male 4 7

Carol Female 4 8

(a) PhysicianQIT

HSEQ GID Patient

Hk1 (1) 1 Ike

Hk1 (2) 1 Eric

Hk1 (3) 2 Olga

Hk1 (4) 2 Kelly

Hk1 (5) 3 Faye

Hk1 (6) 3 Mike

Hk1 (7) 4 Jason

Hk1 (8) 4 Max

(b) PhysicianSNT

Patient Age Address GID SEQ

Ike 41 Dayton 1 1

Eric 22 Richmond 1 2

Olga 30 Lafayette 2 3

Kelly 35 Lafayette 2 4

Faye 24 Richmond 3 5

Mike 47 Richmond 3 6

Jason 45 Lafayette 4 7

Max 31 Dayton 4 8

(c) PatientQIT

HSEQ GID Disease

Hk2 (1) 1 Cold

Hk2 (2) 1 Fever

Hk2 (3) 2 Flu

Hk2 (4) 2 Cough

Hk2 (5) 3 Flu

Hk2 (6) 3 Fever

Hk2 (7) 4 Cough

Hk2 (8) 4 Flu

(d) PatientSNT

Fig. 3. Anatomized Database

In Theorem 2.1, we show that the probability of having a collision in the hash values of any equivalence
group is negligible which in return proves our model is correct with overwhelming probability.
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Theorem 2.1 (Correctness). Given QIT , SNT tables each having n tuples and structured as in Definition
2.3, and HMAC with l-bit outputs used for hiding the actual join link between QIT and SNT ; one can
construct the original table T by joining QITupdated and SNT with overwhelming probability if 2l � n where
QITupdated is computed by updating each value v in QIT.SEQ with Hk(v) value.

Proof. T can only be constructed if 〈t1.GID, t1.SEQ〉 pair matches with exactly one tuple t2 of SNT for each
tuple t1 of QITupdated. Hence the pair 〈t1.GID, t1.SEQ〉 needs to be unique across the tuples of QITupdated.
The same is also true for 〈t2.HSEQ, t2.GID〉 in SNT. Since all sequence values in QIT.SEQ is unique, the
only case that there are more than one same 〈t1.GID, t1.SEQ〉 value is when there is a collision in one of the
equivalence class. Recall that T =

⋃m
j=1Ej and let c be max(|E1|, . . . , |Em|). Then the probability, P , of not

having the same Hk(v) value for any v in any equivalence class in QITupdated or SNT can be approximated
by using the birthday problem analysis [7].

P ≈
(
e−(c2)/2

l
)m
≈
(
e−cn/2

l+1
)

Considering the current world population and having a tuple for each person in the world, the largest
database can hold at most 233 tuples. When l = 160 and n = 233 and assuming c is a small constant, P ≈ 1.

2.2 Privacy Preservation

Given QIT and SNT , a semi-honest adversary can only associate each individual to a sensitive attribute
with some probability based on the size of an equivalence class. Lemma 2.1 gives the formulation for this
probability.

Lemma 2.1. Given that H(.) is a cryptographic hash function, the probability that a tuple in QIT, (t[1], . . . ,
t[d], j, s), matches with a tuple in SNT (Hk (s′) , j, v) is

P((t[1], . . . , t[d], v) ∈ T ) = f(v,Ej)/|Ej |

where f(v,Ej) returns the frequency of v in Ej , |Ej | is the number of tuples in Ej and k is the unknown
key for the cryptographic hash function, H(.).

Proof. Each tuple belonging to some equivalence class EQITj in QIT, joins with every tuple in the corre-

sponding equivalence class, ESNTj , in SNT due to the same GID, j. Thus for a tuple t ∈ EQITj , {t} ×ESNTj

is the set of all the tuples that t contributes to QIT on SNT . Therefore the sample space for t’s possible
matching sensitive value v is |{t} × ESNTj | = |ESNTj | = |Ej |. However there exists only one tuple, t′, such

that t′ ∈ {t} × ESNTj and t′ ∈ T by Definition 2.3. Due to the first property of function H in Definition

2.4, it is infeasible to guess t′ correctly out of {t} × ESNTj tuples without knowing the key k used with the

function H to get HSEQ values. Thus the probability that t matches with sensitive value v in ESNTj is the

count of v in ESNTj divided by the sample space (i.e. |Ej |).

For instance, the probability of the individual represented by the first tuple in PatientQIT in Figure 3,
〈Ike, 41, Dayton〉 , having Cold is 1/2 since |E1| = 2 and the frequency of Cold in E1 is 1 (i.e. f(Cold,E1) =
1)

Theorem 2.2. The client cannot safely send any information resulting from a join between identifying and
sensitive information back to the server given that the server knows the transcript of the join query, unless
such information would provide no benefit to further join processing.

Proof. Let QIT and SNT be the anatomization of T such that ∀t1 ∈ QIT ; ∃t2 ∈ SNT , (t = t1 on t2) ∈ T
and the probability, P ′, of finding each tuple t from QIT and SNT is 1/k. Then each equivalence class has
k items and there are n/k number of equivalence classes in both QIT and SNT where n is the number of
tuples in T . Hence there are (k!)n/k possible tables that can be derived from QIT and SNT and at least
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one of these tables corresponds to the original table T . Let T ji denote each of these possible tables where

1 ≤ i ≤ (k!)n/k−1 and 1 ≤ j ≤ k!; and T̄ denote the set of all T ji ’s. Then T j denotes all possible tables where
an equivalence class, E, has a fixed permutation (i.e. jth permutation of equivalence class, E) and Ti denotes
all possible tables where all equivalence classes except E has a fixed permutation (i.e. ith permutation of all
equivalence classes except E). Then we get the probability formulas,

P
{
T ji = T | T ∈ Ti

}
=

1

k!
and P

{
T ∈ T j

}
=

(k!)n/k−1∑
i=1

P
{
T ji = T | T ∈ Ti

}
P {T ∈ Ti} =

1

k!

Assume a query q′ that is q′(q(T ) on C) where C is another table and the client sends the intermediate
result q(T ) to the server for improved evaluation of q′. If ∀T ji ∈ T̄ q(T ji ) = q(T ), sending the result of q(T )

does not give any benefit to the server since it can compute q(T ) by itself. If q(T ji ) 6= q(T ) for some T ji ∈ T̄ ,

sending the result of q(T ) violates the privacy since P{T ∈ T j} < 1/k! due to the fact that P{T ji = T} = 0.

If P{T ∈ T j} < 1/k!, there is at least one j′ such that P{T ∈ T j′} > 1/k! and therefore P ′ is not 1/k for
all the tuples in E.

P
{
T ∈ T j

}
= ((k!)n/k−1 − 1)× 1

(k!)n/k
<

1

k!

3 Query Operators

Query processing that operates on only the QIT or SNT sub-tables can be performed at the server without
raising privacy issues; it is when these must be combined that we must take care. A simple solution is to
operate on each independently, then send the results to the client to decrypt and combine. However, we can
often do better. We now detail how relational query operations can be performed in ways that minimize the
computation performed on the client.

3.1 Selection

Selection on a single table T anonymized into QIT and SNT can be broken into selection on QIT , selection
on SNT , and selection criteria requiring the join of the two. The single sub-table selections are performed
first. The resulting tables are then queried to determine where an anatomization group contains values that
could satisfy the cross-subtable criterion. If so, all possible matching tuples from each group are passed to
the client, which can decrypt, join, and complete the selection.

Definition 3.1 (CNF Predicates). A set of predicate, P , being in CNF form with respect to a table T
anonymized as two tables QIT and SNT , has the following form:

P =
∧

1≤i≤n

 ∨
1≤j≤mi

P ji


where P ji is a single-literal clause having a form att op value or att op att. Without losing generality, each
set of Pi’s are defined further as

PQIT = P1 ∧ . . . ∧ Pα, PSNT = Pα+1 ∧ . . . ∧ Pβ , PQS = Pβ+1 ∧ . . . ∧ Pn

where PQIT and PSNT are only applicable to attributes of QIT and SNT respectively. PQS contains predicates
applicable to both QIT and SNT in each its disjunctions. Let PTi be the ith disjunction of single-literal clauses
in PQS that is only applicable to the attributes of table T . Then PQS is defined as

PQS =
∧

β<i≤n

(
PQITi ∨ PSNTi

)
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Definition 3.2 (Server-side Selection Query). Given QIT and SNT tables derived from a table T using
Anatomy model anonymization and a set of predicates P in conjunctive normal form defined as in Definition
3.1, a selection query written as

σP (QIT, SNT )

returns two tables, QIT ′′ and SNT ′′:

QIT ′ = (σPQIT (QIT )) n (σPSNT (SNT ))

SNT ′ = (σPSNT (SNT )) n (σPQIT (QIT ))

SGID =

n⋂
i=β+1

(
πGID(σPQITi

QIT ′) ∪ πGID(σPSNTi
SNT ′)

)
QIT ′′ = QIT ′ on SGID

SNT ′′ = SNT ′ on SGID

Lemma 3.1. Given table QIT, and SNT along with a predicate P defined as in Definition 3.1, and tables
QIT ′′ and SNT ′′ calculated with the steps defined in Definition 3.2; the following property holds

σPQS (QIT ′′ on SNT ′′) = σP (QIT on SNT )

Proof. Rewriting the selection query on the right hand side above into multiple separate selection queries
reflects the intuition behind the steps of Definition 3.2.

σP (QIT on SNT ) = σPQS
(
σPQIT (σPSNT (QIT on SNT ))

)
(3.1)

= σPQS
(
σPQITQIT on σPSNT SNT

)
(3.2)

= σPQS (QIT ′ on SNT ′) (3.3)

= σPβ+1

(
σPβ+2

(. . . (σPn (QIT ′ on SNT ′)))
)

(3.4)

=

n⋂
i=β+1

(σPβ+1
(QIT ′ on SNT ′)) (3.5)

= σPQS (QIT ′ on SNT ′) n
n⋂

i=β+1

(σPβ+1
(QIT ′ on SNT ′)) (3.6)

= σPQS (QIT ′ on SNT ′) on
n⋂

i=β+1

(SPβ+1
) (3.7)

= σPQS (QIT ′ on SNT ′) on SGID

= σPQS ((QIT ′ on SGID) on (SNT ′ on SGID)) (3.8)

= σPQS (QIT ′′ on SNT ′′) (3.9)

Equation 3.1 is due to the cascading of selections. Equation 3.2 is derived by commuting selections with
the join operation since these selections can be only applied to QIT or SNT . As in Equation 3.3, QIT ′ and
SNT ′ can be substituted for the inner two selections since join of these two tables is the same as the join
of these selections. Equation 3.4 shows the cascading of PQS predicates and intersecting individual selection
operations yields the same result as in shown in equation 3.5. Combining equation 3.3 with equation 3.5 by
a semi-join does not change the validity of the equality. The selection inside the union in the second term of
the right hand side of equation 3.6 is substituted in equation 3.7 by a new term which is proven to be equal
to SGID below. SGID can be distributed into both tables QIT ′ and SNT ′ with a join as in equation 3.8. By
Definition 3.2, equation 3.9 is concluded.

SPi = πGID(σPi(QIT
′ on SNT ′)) (3.10)
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= πGID(σPQITi ∨PSNTi
(QIT ′ on SNT ′)) (3.11)

= πGID((σPQITi
(QIT ′ on SNT ′)) ∪ (σPSNTi

(QIT ′ on SNT ′))) (3.12)

= πGID((σPQITi
(QIT ′) on SNT ′) ∪ (QIT ′ on σPSNTi

(SNT ′))) (3.13)

= (πGID(σPQITi
(QIT ′)) on πGIDSNT

′) ∪ (πGIDQIT
′ on πGID(σPSNTi

(SNT ′))) (3.14)

= πGID(σPQITi
(QIT ′)) ∪ πGID(σPSNTi

(SNT ′)) (3.15)

Above equations show that SPi defined as in equation 3.10 corresponds to a term in the intersection of
SGID in Definition 3.2. Equation 3.11 is due to the terms Pi in PQS in Definition 3.1. Predicates having
OR can be separated by applying union to the result of the two selection operations as in Equation 3.12.
Equation 3.13 commutes each selection with their join operation. Since GID is the only join attribute, one
can commute the projection further with the join operations as in equation 3.14. πGIDSNT

′ and πGIDQIT
′

can be omitted as in equation 3.15 since they contain superset of group-ids with respect to the selection
operations due to the fact that QIT ′ and SNT ′ have the same set of GIDs.

Definition 3.3 (Client-side Selection Query). Given QIT ′′ and SNT ′′ tables computed by the server
and a predicate PQS in conjunctive normal form defined as in Definition 3.1 where each Pi in PQS checks
at least one attribute from each QIT and SNT table, the client updates each tuple of QIT ′′ by replacing the
values of SEQ attribute with their corresponding keyed hash value (i.e. s→ Hkd(s)). Then the final selection
query is written as

R = σPQS (QIT ′′updated on SNT ′′)

Theorem 3.1. Given P as in Definition 3.1, QIT, and SNT; R derived according to Definition 3.2 and 3.3
is equal to σP (T ) if the pair 〈QIT, SNT 〉 is an anatomization of table T according to Definition 2.3.

Proof. Deriving σPQS (QIT ′′updated on SNT ′′) from σP (T ) assuming the unique separation of T into tables
QIT and SNT in Definition 2.3 proves σP (T ) = σPQS (QIT ′′updated on SNT ′′)

σP (T ) = σP (QITupdated on SNT ) (3.16)

= σPQS (QIT ′′updated on SNT ′′) (3.17)

(3.16) can be obtained due to the Definition 2.3. The join operation can be applied to the unique 1-1 mapping
attributes SEQ and HSEQ once SEQ is hashed to uncover the link in HSEQ. Derivation of (3.17) from (3.16)
is proved in Lemma 3.1.

Example 1. According to Definition 3.2 and 3.3, given query

σ(Age>40)∧(Disease=Flu or Cough)∧(Disease=Cough∨Age<3)(PatientQIT,PatientSNT)

PQIT = (Age > 40), PSNT = (Disease = Flu ∨Disease = Cough), and PQS = (Disease = Fever ∨Age <
3). QIT ′ has the 6th and 7th tuples of table PatientQIT based on PQIT . 1th tuple is not included since the
corresponding group of PatientSNT doesn’t satisfy the PSNT (which is ensured with semi-join). SNT ′ has
5th, 7th and 8th tuples of table PatientSNT. And SGID = {4} since none of the tuples in group 3 satisfies the
predicate PQS . Then QIT ′′ has 7th tuple of PatientQIT and SNT ′′ has 7th and 8th tuples of PatientSNT. After
server sends these intermediate results to the client, client updates the SEQ field of QIT ′′ and computes
R = 〈Jason, 45, Lafayette, 4,Hk2 (7),Hk2 (7), 4, Cough〉. Intermediate tables are shown in Figure 4.

Cross sub-table correlation The reader may have noticed an apparent issue: This process potentially
returns a single value from the QIT and SNT from the server to the client, implying to the server that these
are linked. The key is to remember that it is quite possible that these values do not join; the query result
could be empty. This only becomes a problem if 1) attributes in QIT are correlated with attributes in SNT ,
and 2) the server knows of this correlation.
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Patient Age Address GID SEQ

Mike 47 Richmond 3 6

Jason 45 Lafayette 4 7

(a) PatientQIT’

HSEQ GID Disease

Hk2 (5) 3 Flu

Hk2 (7) 4 Cough

Hk2 (8) 4 Flu

(b) PatientSNT’

Patient Age Address GID SEQ

Jason 45 Lafayette 4 7

(c) PatientQIT”

HSEQ GID Disease

Hk2 (7) 4 Cough

Hk2 (8) 4 Flu

(d) PatientSNT”

Fig. 4. Intermediate tables in Example 1

If attributes are not correlated, then the chance that a single tuple selected from a group in QIT based
on a query matches a single tuple from the same group in SNT is 1/k, and the server cannot infer that they
match. Even if the values are correlated, if the server does not know of that correlation it must assume the
match probability is 1/k. If the server knows of the correlation, then it can infer that the two values match
based on the QIT and SNT values alone, without even processing a query.

An issue arises when the server does not know of the correlation, but repeated queries suggest such a
correlation. However, these issues are with the decision on how to anatomize the table, not with the query
processing mechanism itself – the proposed query processing mechanism reveals only linkages that the server
could discover from only the data, queries, and knowledge of correlations.

3.2 Projection

Projection is at first glance straightforward, as removing attributes can be done independently on each
sub-table. The difficulty comes in removing duplicates: two tuples may be identical in all non-encrypted
attributes in QIT (or SNT ), but not be a duplicate in the join.

There is an exception when all values in an anatomy group become identical under projection; then only
a single tuple representing the entire group needs to be returned. However, this only works if no selection is
performed on “projected out” attributes prior to the projection.

We show how projection operator, denoted by π, is processed in case of eliminating duplicates. We also
use πd throughout the paper to denote that the projection operator does not eliminate duplicates. Since
calculating πd is straightforward, we show the processing of π instead.

Definition 3.4 (Server-side Projection Query). Given QIT and SNT tables derived from a table T
using Anatomy model anonymization and a set of attributes A’, projection query without duplicates written
as

πA′(QIT, SNT ), A′ = A′QIT ∪A′SNT and SEQ,GID,HSEQ /∈ A′

returns a set of tables, R:

R =


{
R′, T ′QIT , T

′
SNT

}
if A′QIT 6= ∅ and A′SNT 6= ∅

πA′QIT (QIT ) if A′QIT 6= ∅ and A′SNT = ∅
πA′SNT (SNT ) if A′QIT = ∅ and A′SNT 6= ∅
πA(QIT, SNT ) otherwise

where tables R′, T ′QIT , and T ′SNT ; defined as

R′ = πA′
(
σGID/∈S

(
R′QIT on R′SNT

))
T ′QIT = πdA′QIT ,SEQ

(σGID∈SQIT )

T ′SNT = πdA′SNT ,HSEQ
(σGID∈SSNT )
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and R′QIT , R′SNT , and S; defined as

R′QIT = πA′QIT ,GID (QIT )

R′SNT = πA′SNT ,GID (SNT )

S =
{
i :
∣∣σGID=i

(
R′QIT

)∣∣ > 1 ∧ |σGID=i (R′SNT )| > 1
}

Lemma 3.2. Given R′ and S as in Definition 3.4,

R′ = πA′
(
σGID/∈S

(
R′QIT on R′SNT

))
= πA′ (σGID/∈S (QITupdated on SNT )) (3.18)

Proof. Let i be any group id such that i /∈ S and T i = σGID=iT . We can rewrite the above equation so
that each selection is pushed to the lowest level of the query evaluation tree. Handling each single group
separately then applying union over each single operation yields to

R′ = πA′

(⋃
i/∈S

πA′QIT ,GID
(
QIT i

)
on πA′SNT ,GID

(
SNT i

))

= πA′

(⋃
i/∈S

QIT iupdated on SNT i

)
which can be proven by showing that for each i /∈ S

πA′
(
πA′QIT ,GID

(
QIT i

)
on πA′SNT ,GID

(
SNT i

))
= πA′

(
QIT iupdated on SNT i

)
Based on the anonymization by Anatomy model, for any group i there is a 1/k possibility that a tuple in
QIT i matches with a tuple in SNT i and vice versa where k = |QIT i| = |SNT i|. Similarly, for any group i
there is a 1∣∣∣πA′

SNT
SNT i

∣∣∣ possibility that a tuple in πA′QITQIT
i matches with a tuple in πA′SNT SNT

i and vice

versa. Therefore; if the cardinalities of at least one side is 1, the matching probability becomes 1. Since any
group id i /∈ S represents the groups that have a matching probability of 1, the join of the projected QIT i

and SNT i is the same as joining and projecting QIT i and SNT i after revealing the encrypted link between
them. Therefore the above equation holds which implies the Equation 3.18.

Definition 3.5 (Client-side Projection Query). Given the set of tables, R, computed by the server; if
|R| = 1 then the client outputs the only table in R without any processing. Otherwise, the client updates
each tuple of T ′QIT by replacing the values of SEQ attribute with their corresponding keyed hash value (i.e.
s→ Hkd(s)). Then the final result is computed by

R′′ = πA′
(
R′ ∪ πA′

(
T ′QITupdated on T ′SNT

))
Theorem 3.2. Given A′ = A′QIT ∪A′SNT , QIT , and SNT ; R′′ derived according to Definition 3.4 and 3.5
is equal to πA′(T ) if the pair 〈QIT, SNT 〉 is an anatomization of table T according to Definition 2.3.

Proof. Simply substituting variables in the formulation of R′′ according to their definitions shows the equality
in Theorem 3.2,

R′′ = πA′
(
R′ ∪ πA′

(
T ′QITupdated on T ′SNT

))
= πA′

(
πA′

(
σGID/∈S

(
R′QIT on R′SNT

))
∪ πA′

(
T ′QITupdated on T ′SNT

))
(3.19)

= πA′
(
πA′ (σGID/∈S (QITupdated on SNT )) ∪ πA′

(
T ′QITupdated on T ′SNT

))
(3.20)

= πA′ (σGID/∈S (QITupdated on SNT ) ∪ σGID∈S (QITupdated on SNT )) = πA′ (T ) (3.21)

We get Equation 3.19 when we substitute R′ with its formulation. Equation 3.20 is derived from Equation
3.18 in Lemma 3.2. Equation 3.21 gives emphasis on selection in T ′QIT and T ′SNT . Since the two selections
are disjoint and compliments of each other, the union of the two gives original table T .
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Example 2. Given query πAddress,Disease(PatientQIT,PatientSNT); S = {1} then all other groups (i.e. {2, 3, 4})
can be projected without the knowledge of actual link between PatientQIT, PatientSNT. Intermediate tables
are shown in Figure 5.

Address Disease

Lafayette Cough

Lafayette Flu

Richmond Fever

Richmond Flu

(a) R′

Address SEQ

Dayton 1

Richmond 2

(b) T ′
QIT

Address SEQ

Hk2 (1) Cold

Hk2 (2) Fever

(c) T ′
SNT

Address Disease

Dayton Cold

Lafayette Cough

Lafayette Flu

Richmond Fever

Richmond Flu

(d) R′′

Fig. 5. Intermediate tables in Example 2

3.3 Join

Join is problematic, as it can be an expensive operation. We detail below a natural join. The key is to push
join as late as possible, as it only results in reduction on the sub-tables containing the join criterion (e.g., the
QIT sub-tables); the other sub-tables can only be reduced to the extent that the join eliminates complete
anatomization groups.

Definition 3.6 (Server-side Join Query). Given Z1 = QIT1, Z2 = QIT2 and their corresponding sen-
sitive attribute tables, Z3 = SNT1 and Z4 = SNT2, derived from table T1 and T2 respectively using anat-
omization, join query written as (QIT1, SNT1) on (QIT2, SNT2) returns three tables based on which tables
have the join criteria

〈R1, R2, R3〉 = 〈Zi on Zj , Zk, Zl〉

where ∃a : a ∈ AZi ∩AZj and 1 ≤ i 6= j 6= k 6= l ≤ 4.

Definition 3.7 (Client-side Join Query). Given 〈R1, R2, R3〉 tables computed by the server; for every
Ri having attribute SEQj the client updates each tuple of Ri by replacing the value of SEQj attribute with
its corresponding keyed hash value (i.e. sj → Hkdj

(sj)) where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2. Then the final join

query would be computed as

R = R1 on R2 on R3

Theorem 3.3. Given QIT1, QIT2, SNT1 and SNT2; R derived according to Definition 3.6 and 3.7 is equal
to T1 on T2 if the pairs, 〈QIT1, SNT1〉 and 〈QIT2, SNT2〉, are anatomizations of table T1 and T2 respectively.

Proof. When each possible formulation of 〈R1, R2, R3〉 in Definition 3.6 joined together as in Definition 3.7
is the same as joining all sub-tables altogether (i.e. (QIT1 on SNT1) on (QIT2 on SNT2)) after SEQ fields
are updated. The only difference between the possible formulations of 〈R1, R2, R3〉 is the order of the join
operation.

Example 3. According to Definition 3.6 and 3.7, given query

(PhysicianQIT,PhysicianSNT) on (PatientQIT,PatientSNT)

results in R1 = PhysicianSNT on PhysicianSNT, R2 = PhysicianQIT, and R3 = PatientSNT. After updating
the SEQ attributes, R1 on R2 on R3 is the same as

PhysicianQIT on (PhysicianSNT on PatientQIT) on PatientSNT

11



3.4 Group-By

Group-by is challenging, as it is also an expensive operation, but can in some cases be done largely at the
server. This is dependent on the type of aggregate being computed. In some cases, an anatomization group
may be contained entirely in a group-by group; if so, an aggregate such as MAX need only return a single
value for that anatomization group. However, if the values in an anatomization group are split across multiple
group-by groups, all tuples must be returned, as the server has no way of knowing which tuple goes in which
group.

We now show how to apply this optimization (when all tuples in an anatomization group are in the same
group-by group) for several classes of aggregates.

Definition 3.8 (Aggregate Function Set). Given a three sets of attributes, XQIT , XSNT and X∗, defined
as a subset of AQIT , ASNT , and {∗} respectively; a group-by aggregate function set, F , consists of individual
functions (e.g. COUNT, AVG) each defined on one of the attributes of X.

F (X) = {f1(x1), f2(x2), . . . , fk(xk)} where X = XQIT ∪XSNT ∪X∗

Definition 3.9 (Auxiliary Function Set). Given an aggregate function set F defined as in Definition 3.8
along with its input set X, an auxiliary function set F ′ is defined such that

• if AV G(xi) ∈ F (X) then also COUNT (xi) ∈ F (X) ∪ F ′(X)
• if S(xi) ∈ F (X) then both COUNT (xi) and AV G(xi) are also in F (X) ∪ F ′(X) where S could be

STDEV, VAR, STDEVP, or VARP.

Definition 3.10 (ȯn operator). Given two tables QIT and SNT derived from T by anonymization based
on Anatomy model, QIT ȯnSNT merges the two tables vertically such that each tuple of QIT in each group is
joined with only one of the tuples in the same group of SNT without taking SEQ and HSEQ into account.

Algorithm 1 gives a pseudo-code for evaluating ȯn operator based on a single equivalence class.

Algorithm 1: Calculation of ȯn Operator for an equivalence class

input : Two sets of tuples, T1 = πA′
QIT

(σGID=jQIT ) and T2 = πA′
SNT

(σGID=jSNT ) for some j, A′
QIT , and

A′
SNT

output: T = T1ȯnT2

for i = 1 to |T1| do
t1 ← the next tuple in T1;
t2 ← the next tuple in T2;
write t = t1|t2 into T ; /* Bar | between t1 and t2 represents concatenation */

end

Definition 3.11 (Server-side Group-By Query). Given QIT and SNT tables derived from a table T
using Anatomy model anonymization, a set of attributes for the grouping, A′, and a set of aggregate functions
defined as in Definition 3.8; a group-by query is written as

γA′ F (X)(QIT, SNT )

where A′ = A′QIT ∪A′SNT . The above group-by query returns a set of tables R based on the grouping attributes
A′,

R =



{
R′, T ′QIT , T

′
SNT

}
if A′QIT 6= ∅ and A′SNT 6= ∅

γA′ F (X) (QIT ) if A′QIT 6= ∅ and A′SNT = ∅ and XSNT = ∅
γA′ F (X) (SNT ) if A′QIT = ∅ and A′SNT 6= ∅ and XQIT = ∅
γA F (X)(QIT, SNT ) otherwise
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where tables R′, T ′QIT , and T ′SNT ; defined as

R′ = γA′ F (X),F ′(X)

(
σGID∈S

(
R′QIT ȯnR′SNT

))
T ′QIT = πA′QIT ,SEQ,XQIT (σGID/∈SQIT )

T ′SNT = πA′SNT ,HSEQ,XSNT (σGID/∈SSNT )

and F ′ is as in Definition 3.9 and R′QIT , R′SNT , and S; are defined as

R′QIT = πdA′QIT ,GID,XQIT
(QIT )

R′SNT = πdA′SNT ,GID,XSNT
(SNT )

S =
{
i : |σGID=i(πA′QIT ,GIDR

′
QIT )| = 1 ∧ |σGID=i(πA′SNT ,GIDR

′
SNT )| = 1

}
∪
{
i :
∣∣σGID=i

(
distinct(R′QIT )

)∣∣ = 1 ∨ |σGID=i (distinct(R′SNT ))| = 1
}

Lemma 3.3. Given R′ and S defined in Definition 3.11,

R′ = γA′ F (X),F ′(X) (σGID∈S (QITupdated on SNT ))

Proof. There are three types of groups (i.e. equivalence class) that the set S can have according to its
formulation in Definition 3.11

1. The number of distinct tuples after all grouping attributes, A′QIT and A′SNT , are projected is 1 for both
T1 = σGID=iQIT and T2 = σGID=iSNT tables respectively where i is the identifier for the group. In
this case any group-by query, Q = γA′ F (X) (T1 on T2), has only one tuple in its result. This implies that
there is no need to know the actual link between T1 and T2 to calculate Q. The tuples of T1 and T2 can
be randomly 1:1 mapped.

2. The number of distinct tuples after the grouping attributes, A′QIT , and the attributes, XQIT , are pro-
jected is 1 for T1 = σGID=iQIT table where i is the identifier for the group. In this case, each tuple in
T2 = σGID=iSNT has to match with the single tuple resulted from the projection of T1. Therefore there
is again no need to know the actual link between T1 and T2 to calculate Q.

3. Same as 2, only this time
∣∣πA′SNT ,XSNT (σGID=iSNT )

∣∣ = 1.

Since there is no need to know the actual link between QIT and SNT to calculate the group-by query Q
for these three types of groups explained above, the server can use ȯn operator to calculate Q.

Definition 3.12 (∪̇ operator). Given two disjoint tables T1 and T2 having identical schemas, ∪̇ operator
merges two group-by query results:

g′(T1)∪̇g′(T2) = g(T1 ∪ T2)

where g′ : T 7→ γA′ F (X),F ′(X)T and g : T 7→ γA′ F (X)T for some set of attributes, A′, and a set of aggregate
functions defined as in Definition 3.8 and 3.9.

Remark 2. There are three types of aggregate functions:

1. Functions having the property f(f(X), f(Y )) = f(X,Y ) where X and Y are single valued datasets.
Hence the results of such functions can be combined to get a single result for multiple datasets (e.g.
MAX, MIN, SUM, COUNT).

2. Functions not having the above property since they require every single value in the dataset to evaluate
the result (e.g. CHECKSUM, MEDIAN). The whole dataset should be given as an input to this type of
functions.
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3. Functions not having the above property unless there is some auxiliary information given about the
dataset. For instance, the results of average function of multiple dataset cannot be combined unless the
count of values in each dataset is also given. Similarly standard deviation or variation results can be
combined when both average and count of values in each dataset is given.

The ∪̇ operator in Definition 3.12 is general such that it covers both the first and third type of functions.
If the aggregate functions are only of the first type, there is no need to include an auxiliary function set,
F ′(X), in the formulation.

In Algorithm 2, we present an algorithm that calculates the ∪̇ operator.

Algorithm 2: Calculation of ∪̇ operator

input : Tables, T ′1 = γA′ F (X),F ′(X)T1 and T ′2 = γA′ F (X),F ′(X)T2

output: Table T = T ′1∪̇T ′2
sort T ′1 and T ′2 on attribute list A′ if they are not sorted already;
b1 ← 1; b2 ← 1;
while T ′1 and T ′2 has more tuples do

if b1 = 1 then t1 ← the next tuple in T ′1;
if b2 = 1 then t2 ← the next tuple in T ′2;
if t1.A

′ < t2.A
′ then

write t1 into table T , b1 ← 1, b2 ← 0;
else if t2.A

′ < t1.A
′ then

write t2 into table T , b2 ← 1, b1 ← 0;
else

t.A′ ← t1.A
′;

foreach fi(xi) ∈ F (X) do
if fi(· ) is type 1 then

t.fi(xi)← fi(t1.fi(xi), t2.fi(xi));
else if fi(· ) is type 2 then

t.fi(xi)← undefined;
else if fi(· ) is type 3 then
∃COUNT(xi) ∈ F (X) ∪ F ′(X);

AV Gxi ←
∑2
j=1 tj .AVG(xi)×tj .COUNT(xi)∑2

j=1 tj .COUNT(xi)
;

if fi(· ) = AVG then t.fi(xi)← AV Gxi ;
else if fi(· ) = STDEV then
∃AVG(xi) ∈ F (X) ∪ F ′(X);

t.fi(xi)←
√∑2

j=1(tj .AVG(xi)2+tj .STDEV(xi)2)×tj .COUNT(xi)∑2
j=1 tj .COUNT(xi)

−AV G2
xi ;

else if fi(· ) = VAR then
∃AVG(xi) ∈ F (X) ∪ F ′(X);

t.fi(xi)←
∑2
j=1(tj .AVG(xi)

2+tj .VAR(xi))×tj .COUNT(xi)∑2
j=1 tj .COUNT(xi)

−AV G2
xi ;

end

end

end
write t into table T ;

end

end
write all remaining tuples of T ′1 and T ′2 into T ;

Definition 3.13 (Client-side Group-By Query). Given the set of tables, R, computed by the server;
if |R| = 1 then the client outputs the only table in R without any processing. Otherwise, the client updates
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each tuple of T ′QIT by replacing the values of SEQ attribute with their corresponding keyed hash value (i.e.

s → Hk(s)). Then the final result of group-by query is computed by using special ∪̇ operator in Definition
3.12,

R′′ = R′∪̇
(

γA′ F (X),F ′(X)

(
T ′QITupdated on T ′SNT

))
Theorem 3.4. Given QIT, SNT, a set of attributes, A′, for grouping and aggregate functions f1 through
fk along with their inputs x1 through xk; R′′ derived according to Definition 3.11, 3.12 and 3.13 is equal to
γA′ F (X)T if the pair 〈QIT, SNT 〉 is an anonymization of table T based on Anatomy model.

Proof. Simply substituting variables in the formulation of R′′ according to their definitions shows the equality
in Theorem 3.4,

R′′ = R′∪̇
(

γA′ F (X),F ′(X)

(
T ′QITupdated on T ′SNT

))
= γA′ F (X),F ′(X)

(
σGID∈S

(
R′QIT ȯnR′SNT

))
∪̇
(

γA′ F (X),F ′(X)

(
T ′QITupdated on T ′SNT

))
(3.22)

= γA′ F (X),F ′(X)

(
σGID∈S

(
R′QITupdated on R′SNT

))
∪̇
(

γA′ F (X),F ′(X)

(
T ′QITupdate on T ′SNT

))
(3.23)

= γA′ F (X)

(
σGID∈S

(
R′QITupdated on R′SNT

)
∪
(
T ′QITupdate on T ′SNT

))
(3.24)

= γA′ F (X) (QITupdated on SNT ) = γA′ F (X)T (3.25)

We get equation 3.22 when we substitute R′ in the definition of R′′ and by using Lemma 3.3 we substitute
the first term (i.e. R′’s substitute) with the updated R′QIT table joining with R′SNT in equation 3.23. Due

to the property of ∪̇ operator, we can rewrite equation 3.23 as in equation 3.24. Since the union operation
in equation 3.24 is disjoint where the first term has all tuples with GID ∈ S and the second term has all
tuples with GID /∈ S, we can combine them as the join of QITupdated and SNT which results in γA′ F (X)T .

Example 4. According to Definition 3.11 and 3.13, given query

γGender,Address AV G(AGE)(PhysicianQIT,PhysicianSNT on PatientQIT)

all groups in S = {1, 2, 3} can be projected without knowing the link between PhysicianQIT and PhysicianSNT.
Intermediate tables are shown in Figure 6.

Gender Address AVG(AGE) COUNT(*)

Female Dayton 41 1

Female Richmond 31 3

Male Lafayette 32.5 2

(a) R′

Gender SEQ

Male 7

Female 8

(b) T ′
QIT

HSEQ Age Address

Hk1 (7) 45 Lafayette

Hk1 (8) 30 Lafayette

(c) T ′
SNT

Gender Address AVG(AGE)

Female Dayton 41

Female Lafayette 30

Female Richmond 31

Male Lafayette 32

(d) R′′

Fig. 6. Intermediate tables in Example 4
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4 Query Analysis

We now give the cost analysis of each query operator given in Section 3. First we give algorithms for the
query operators since relational algebra cannot express certain improvements on the evaluation of the query
operators due to special properties of anatomization. Then we analyse the cost of each query operator
based on its algorithm assuming reading or writing each tuple results in one I/O operation. Although this
assumption is too strong especially for the write operations, cost analysis becomes simpler and easier to
follow and since we follow the same assumption for all query operators, comparison of query operators stays
unaffected. Table 1 gives the notations used in our cost analysis.

Table 1. Query Cost Notations

n number of tuples in table T

m number of groups (i.e. equivalence classes) in table QIT and SNT

c average number of tuples in a single group in table QIT and SNT

rfP reduction factor for a predicate P in CNF form in table T

grfP reduction factor for a predicate P in CNF form among the groups (i.e. equivalence classes) of T

rfπA reduction factor for a duplicate eliminating πA operation

PA′ the probability that πA′(EQIT , ESNT ) can be calculated by the server where E is a single group.

Pγ the probability that γA′ F (X)(EQIT , ESNT ) can be calculated by the server where E is a single group.

B the number of disk pages the server/client can hold in memory.

Algorithm 3: Server-side selection in absence of index

input : QIT , SNT tables and predicate P in CNF form
output: QIT ′′ SNT ′′ tables
sort QIT and SNT tables on attribute GID if they are not sorted already;
for g = 1 to max(GID) do

T1 ← tuples with GID = g in QIT ;
T2 ← tuples with GID = g in SNT ;
T ′1 ← σPQIT T1;
T ′2 ← σPSNT T2;
if T ′1 6= ∅ and T ′2 6= ∅ then

select success← 1;
for i = β + 1 to n do

if σPQITi
T ′1 = ∅ and σPSNTi

T ′2 = ∅ then

select success← 0; break;
end

end
if select success then

write tuples in T ′1 and T ′2 into QIT ′′ and SNT ′′ respectively;
end

end

end

4.1 Selection

We analyse selection without assuming any index on the attributes that the predicate P checks. The only
assumption made is that QIT and SNT tables are sorted on attribute GID. This assumption is not far
fetched since equivalence classes are sorted at the end of any anonymization algorithm and the server can
store the equivalence classes in sorted order after receiving it for the first time from the client.
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Server-side Considering the relational algebra operations for server-side selection in Definition 3.2, checking
PQIT , PSNT and PQS against the tuples of QIT and SNT is not necessarily done separately since tuples
in the same group are checked for all three predicates. Server-side selection can be done as in Algorithm
3 in a single pass of retrieving tuples of both QIT and SNT . The number of I/O operations done is
2n assuming that the server has enough memory to hold T1 and T2 (i.e. tuples from a group of QIT
and SNT respectively) and there is no need to write resulting tuples into disk since they can be sent to
the client as produced. The number of tuples sent from the server to the client is approximately Ns =
2n× rfPQIT × rfPSNT × grfPQIT × grfPSNT × grfPQS .

Client-side Client-side selection is given in Algorithm 4. Upon getting the results of the selection, the
client joins the tuples from the same group, checks the resulting tuples against predicate PQS and prints
the tuples if the check is successful. Since T1 can only join with the tuples from the same group in SNT ,
there is no need to materialize the results coming from the server. Instead the tuples can be processed
on the fly as they come assuming once the client gets the first T1 and T2, it has enough memory to hold
m × (t1 − t2) × Ns/(m × t2) = Ns × (t1/t2 − 1) tuples where t1 is the average time to process any T1 and
T2 pair, t2 is the average time to receive any T1 and T2 pair from the server and Ns/(m × t2) denote the
number of tuples received per second. Therefore there is no I/O cost in the client side and the number of
tuples at the end of the selection is n× rfP

Algorithm 4: Client-side selection in absence of index

input : QIT ′′, SNT ′′ tables and predicate PQS in CNF form
output: table R
for g = min(GID) to max(GID) do

T1 ← tuples with GID = g in QIT ′′;
T2 ← tuples with GID = g in SNT ′′;
foreach t1 ∈ T1 do

t1.SEQ← Hk(t1.SEQ);
foreach t2 ∈ T2 do

if t1.SEQ = t2.HSEQ and t← t1|t2 satisfies PQS then
write t into R;

end

end

end

end

4.2 Projection

We give two different projection algorithm for both server and client. The first one has an improved commu-
nication complexity with respect to the second algorithm however the client has less computation and I/O
overhead in the second algorithm than it has in the first algorithm. First algorithm is the naive approach
directly based on relational algebra operations in Definition 3.4 and 3.5 whereas second algorithm, while
obeying the given relational algebra operations most of the time, outsources most of the client’s workload to
the server.

Server-side version 1 Algorithm 5 shows how to evaluate the tables given in Definition 3.4. Since T1 and
T2 is in memory, duplicate elimination in calculating T ′1 and T ′2 is done in memory. Therefore the number
of tuples read is 2n which requires 2n I/O’s and in memory sorting takes O(mclogc) = O(nlogc) time
which is dominated by I/O operations. If the tuples are sent to the client while they are produced, there
is no need of write operation hence we do not include the I/O cost for write operations. However we need
to write R′ into disk since the duplicates need to be removed. The cost of writing R′ is mcPA′ and the
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cost of external sort is 2mcPA′(dlogB−1mcPA′e + 1). The number of tuples sent to client is approximately
rfπA′mcPA′ + 2mc(1 − PA′) assuming most of the time R′ has c many tuples for a single group instead of
having less than c.

Algorithm 5: Server-side projection version 1

input : QIT , SNT tables and projection attributes A′ = A′QIT ∪A′SNT
output: R′, T ′QIT , and T ′SNT tables

sort QIT and SNT tables on attribute GID if they are not sorted already;
for g = 1 to max(GID) do

T1 ← tuples with GID = g in QIT ;
T2 ← tuples with GID = g in SNT ;
T ′1 ← πA′QIT T1;

T ′2 ← πA′SNT T2;

if |T ′1| = 1 or |T ′2| = 1 then
write T ′1 on T ′2 into R′;

else
write πA′QIT ,GID,SEQT1 and πA′SNT ,GID,HSEQT2 into T ′QIT , and T ′SNT respectively;

end

end
eliminate duplicates in R′;

Algorithm 6: Client-side projection version 1

input : R′, T ′QIT , and T ′SNT tables and projection attributes A′

output: table R
for g = min(GID) to max(GID) do

T1 ← tuples with GID = g in T ′QIT ;

T2 ← tuples with GID = g in T ′SNT ;
foreach t1 ∈ T1 do

t1.SEQ← Hk(t1.SEQ);
foreach t2 ∈ T2 do

if t1.SEQ = t2.HSEQ then write πA′t into T ′ ;
end

end

end
sort T ′ on A′;
b1 ← 1; b2 ← 1;
while T ′ and R′ has more tuples do

if b1 = 1 then t1 ← the next tuple in R′;
if b2 = 1 then t2 ← the next tuple different from t2 in T ′;
if t1 < t2 then

write t1 into table R; b1 ← 1; b2 ← 0;
else if t2 < t1 then

write t2 into table R; b2 ← 1; b1 ← 0;
else

write t2 into table R; b1 ← 1; b2 ← 1;
end

end
write all remaining tuples of R′ and distinct tuples of T ′ into R;
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Client-side version 1 Algorithm 6 gives the client-side steps of the first projection version. The for loop
joins T ′QIT and T ′SNT tables into table T ′. This operation does not require any I/O operation however table
T ′ needs to be materialized so as R′ since T ′ needs to be sorted on attributes A′ after the join. The write
operation requires NR′+T ′ = rfπA′mcPA′+mc(1−PA′) number of I/O’s. The number of tuples in each T ′QIT
and T ′SNT is NT ′ = mc(1 − PA′) as given in previous subsection. Assuming merge sort is used for external
sorting of T ′, 2NT ′d(logB−1(NT ′)e + 1) number of I/O’s need to be done. In the while block, R′ and T ′ is
read once to get the combined result of the projection which is done in NR′+T ′ I/O’s. The total number of
I/O’s required for the whole client-side projection is 2NR′+T ′ + 2NT ′d(logB−1(NT ′)e+ 1).

Server-side version 2 The server-side of projection version 2 is given in Algorithm 7. In the for loop,
QIT and SNT tables are read once and approximately mcPA′ number of tuples is written into R̄ if the
projection can be done in the server. Otherwise, all possible matchings are written into R̄. For each group,
such a join operation produces c2 tuples and since there are m(1 − PA′) such groups, the total number of
tuples written into R̄ is NR̄ = mcPA′ + mc2(1 − PA′) = nc − n(c − 1)PA′ . External sorting of R̄ requires
2NR̄(dlogB−1(NR̄)e + 1) I/O’s. Then R̄ is read once more to eliminate all tuples identical to the projected
tuples in the server-side. Let PR̄ denote the probability of eliminating a tuple in the last while block of
Algorithm 7 then the number of tuples in R̄ is reduced to (1 − PR̄)NR′ . Losslessly decomposing R̄ into R′

and T ′ results in rfπA(1−PR̄)NR′ number of tuples in R′ and (1−PR̄)NR′ number of tuples in T ′. All the
tuples in R′ and T ′ are sent to the client.

Algorithm 7: Server-side projection version 2

input : QIT , SNT tables and projection attributes A′ = A′QIT ∪A′SNT
output: R′, T ′ tables
sort QIT and SNT tables on attribute GID if they are not sorted already;
for g = 1 to max(GID) do

T1 ← tuples with GID = g in QIT ;
T2 ← tuples with GID = g in SNT ;
T ′1 ← πA′QIT T1;

T ′2 ← πA′SNT T2;

if |T ′1| = 1 or |T ′2| = 1 then
write (T ′1 on T ′2)× 〈−1,−1〉 into R̄;

else
write πdA′,SEQ,HSEQ(T1 on T2) into R̄;

end

end
sort R̄ on A′, SEQ; t′ ← undefined;
while R̄ has more tuples do

t← the next tuple in R̄;
if t.SEQ = −1 and t.HSEQ = −1 then t′ ← πA′t;
else if t′ is defined and t′ = πA′t then

delete t from R̄;
else

t′ ← undefined;
end

end
Losslessly decompose R̄ into R′ with schema (A′1, . . . , A

′
k, id) and T ′ with schema (id, SEQ,HSEQ);

Client-side version 2 Algorithm 8 outlines the client-side of the second version projection. If the size of
a tuple in R′ is much bigger than the size of a tuple in T ′, then the client can process T ′ as it receives
the tuples and simultaneously checks whether tuples not deleted from T ′ semi-joins with R′. If not, only R′
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needs to be written into disk and the while loop can be done on the fly as the tuples of T ′ received. Then
the client reads R′ once for semi-join assuming the id’s of the qualified tuples of T ′ can be stored in memory.

Algorithm 8: Client-side projection version 2

input : R′ and T ′ tables
output: table R
while T ′ has more tuples do

t← the next tuple in R′;
if t.SEQ 6= −1 and t.HSEQ 6= −1 and Hk(t.SEQ) 6= t.HSEQ then

delete t from T ′;
end

end
R = πA′(R

′ n T ′)

4.3 Group-by

We give only one algorithm for group-by queries. Since projection eliminating duplicates is similar to the
group-by, the reader can easily see how to introduce a second version of the group-by algorithm just like
in the projection operator case. However it should be noted that communication would be worse than the
projection since all possible inputs for aggregate functions should be sent to the client. Now we give the
direct approach based on the Definition 3.11 and 3.13.

Server-side Group-by Algorithm 9 presents the server-side of the group-by operator. QIT and SNT
tables are read once which leads to 2n I/O’s. Intermediate table R′ needs to be written to disk since at the
end of the algorithm, group-by query is executed based on it. However tuples of T ′QIT and T ′SNT can be sent
to the client as they produced. The cost of writing R′ to the disk is nPγ number of I/O’s in the worst case.
The result of group-by query at the end requires external sorting of R′ on attributes A′ then the approximate
cost of group-by is 2nPγ(dlogB−1(nPγ)e + 1) number of I/O’s and the results can be sent to the client as
they are produced.

Algorithm 9: Server-side group-by

input : QIT , SNT tables, grouping attributes A′ = A′QIT ∪A′SNT and aggregate function set F (X)
output: R′, T ′QIT , and T ′SNT tables

sort QIT and SNT tables on attribute GID if they are not sorted already;
for g = 1 to max(GID) do

T1 ← tuples with GID = g in QIT ;
T2 ← tuples with GID = g in SNT ;
T ′1 ← πA′QIT ,XQIT T1;

T ′2 ← πA′SNT ,XSNT T2;

if (|πA′QIT T1| = 1 and |πA′SNT T2| = 1) or (|T ′1| = 1 or |T ′2| = 1) then

write
(
πdA′QIT ,XQIT

T1ȯnπdA′SNT ,XSNT T2

)
into R′;

else
write πA′QIT ,XQIT ,GID,SEQT1 and πA′SNT ,XSNT ,GID,HSEQT2 into T ′QIT , and T ′SNT respectively;

end

end
R′ ← γA′ F (X),F ′(X)R

′;

Client-side Group-by Algorithm 10 outlines the client-side of the group-by operator. T ′QIT and T ′SNT
tables are read once in the for loop which has a cost of 2n(1 − Pγ) I/O’s. T ′, the join result of T ′QIT and
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T ′SNT , needs to be written to disk since group-by query is executed on it right after the for loop. Writing T ′

into disk results in n(1−Pγ) number of I/O’s. Executing the group-by query on T ′ requires external sorting
in which 2n(1−Pγ)(dlogB−1(n(1−Pγ))e+ 1) number of I/O’s are made. For the evaluation of ∪̇ operator,
each table is read once so the number of I/O’s made for evaluating ∪̇ operator is |R′|+ |T ′|.

Algorithm 10: Client-side group-by

input : R′, T ′QIT , and T ′SNT tables, grouping attributes A′ and aggregate function set F (X)
output: table R
for g = min(GID) to max(GID) do

T1 ← tuples with GID = g in T ′QIT ;

T2 ← tuples with GID = g in T ′SNT ;
foreach t1 ∈ T1 do

t1.SEQ← Hk(t1.SEQ);
foreach t2 ∈ T2 do

if t1.SEQ = t2.HSEQ then write πA′,Xt into T ′ ;
end

end

end
T ′ ← γA′ F (X),F ′(X)T

′;

R← R′∪̇T ′ ; /* calculated with Algorithm 2 */

5 Conclusions and Further Work

We have shown how given an anatomization of a database that meets privacy constraints, we can store that
database at an untrusted (semi-honest) server and perform queries that minimize the load on the client.
This frees the server from constraints imposed by privacy law, allowing it to provide a service while avoiding
concerns over privacy.

There has been extensive work on storing and processing encrypted data. Our approach is to minimize
the encryption, while still satisfying privacy constraints. This provides not only significant performance
advantages, but also allows the server to provide “value-added” services. Such services could include address
correction and normalization (cleaning individual data) as well as data analysis (e.g., medical product safety
monitoring such as the FDA’s Sentinel initiative [9].) Such services provide a more compelling business case
for private data outsourcing than an “encrypt everything” approach, while still ensuring that outsourcing
does not pose a privacy risk.

This paper looks only at a fixed database and read-only queries. Insert, update, and delete pose additional
challenges, and are left as future work. Another challenge that arises is data modeling: given a database and
privacy constraints, what is the appropriate normalization for an anatomized database?
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