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On the Efficacy of Fine-Grained Traffic Splitting
Protocols in Data Center Networks

Advait Dixit, Pawan Prakash, Ramana Rao Kompella
Department of Computer Science

Purdue University

Abstract—Multi-rooted tree topologies are commonly used to
construct high-bandwidth data center network fabrics. In these
networks, switches typically rely on equal-cost multipath (ECMP)
routing techniques to split traffic across multiple paths, where
each flow is routed through one of the available paths, but packets
within a flow traverse the same end-to-end path. Unfortunately,
since ECMP splits traffic based on flow-granularity, it can cause
load imbalance across multiple paths resulting in poor utiliza-
tion of network resources. More fine-grained traffic splitting
techniques are typically not preferred because they can cause
packet reordering that can, according to conventional wisdom,
lead to severe TCP throughput degradation. In this paper, we
revisit this fact in the context of regular data center topologies
such as fat-tree architectures. We argue that packet-level traffic
splitting, where packets belong to a given flow are sprayed
through all available paths, would lead to a better load-balanced
network, which in turn leads to significantly more balanced
queues and much higher throughput compared to ECMP. We
conduct extensive simulations to corroborate this claim.

I. INTRODUCTION

In the recent years, data centers have become the corner-
stones of modern computing infrastructure. Many distributed
processing applications (e.g., search, social collaboration,
high-performance computing) are routinely run in large-scale
data centers, that may contain upwards of 100,000 servers.
Because of the inherently distributed nature of computation,
the network fabric that connects these different servers be-
comes quite critical in determining the performance of these
applications. To scale the data center network to provide the
level of connectivity required, most data center network fabrics
are organized in the form of a multi-rooted tree topology.
Further, they use multipathing between servers so that load
is balanced among several alternate paths and the chances of
congestion are reduced.

One popular multipathing mechanism used in data centers
today is equal-cost multipath (ECMP), where different flows
(as identified by the TCP 4-tuple) between a given pair of
servers are routed via different paths. The switches basically
compute all the available shortest paths using regular routing
protocols (such as OSPF) and select a path by hashing the
flow key to index into one of the possible next hops. By
spreading flows across different paths, ECMP ensures that the
load in the network is balanced. However, because all flows
are not identical either in their size (number of bytes) or in
their duration, this simple strategy is not sufficient to prevent
the occurrence of hot-spots in the network. Particularly, two
long-lived flows may hash to the same path for a long time,

and hence may observe reduced performance, while there may
be spare capacity through alternate paths in the network that
could have been utilized.

Many recent works have identified the load imbalance that
can arise under ECMP and suggested different approaches
for making the load more balanced across the different avail-
able paths. In particular, Hedera [3] relies on a centralized
flow scheduler that periodically obtains information about
‘elephant’ flows in a dynamic fashion and schedules these
elephants so that they do not conflict with each other as
much as possible. Another recent approach, called multipath-
TCP (MP-TCP) focuses on solving this problem at the TCP-
level by breaking a flow into several sub-flows that can be
striped across several ECMP paths and the receiver performs
the re-assembly of the stream from these sub-flows. By
maintaining a separate congestion window across the sub-
flows, MP-TCP splits traffic in proportion to the levels of
congestion (i.e., a lightly loaded path carries more traffic than
a heavily congested flow). Both these schemes, however, have
their disadvantages. Hedera requires centralized knowledge
making it harder to scale, while MP-TCP requires a complete
replacement of TCP at all end-hosts, which may not be feasible
in certain environments (e.g., public cloud platforms).

We consider an alternate approach that essentially does not
require replacing TCP with a new protocol, or centralized
knowledge for scheduling heavy hitters. Yet, this approach is
quite simple to implement, and is in fact, already implemented
to some extent in many commodity switches (e.g., cisco [1]).
The approach is based on packet-level traffic splitting (PLTS)
where each packets that belong to a single flow are forwarded
across multiple paths that are available between the source
and the destination. This idea of spreading packets within a
flow across different paths is not novel by itself. However,
this approach is not typically preferred because conventional
wisdom suggests that TCP will confuse reordered packets
with lost packets, that will in turn result in the reduction
of the congestion window significantly, thereby losing out on
throughput.

In this paper, we revisit this myth surrounding TCP’s poor
interaction with reordering. Specifically, we argue that if the
switches were to spray packets within a given flow across
all available paths, and further, if they apply this mechanism
to each and every flow in the network, because of the nearly
perfect load balancing in the network, the impact on TCP may
potentially be quite minimal. By revisiting this conventional



wisdom, our goal in this paper is to suggest that, packet
reordering may not be that harmful when all flows in the net-
work uniformly spray packets across all available paths. The
simplicity of implementation of this approach is a sufficiently
strong motivation to, at the least, study these approaches
in more detail, rather than clinging on to the conventional
wisdom that TCP interacts poorly with reordering.

Specifically, in this paper, we set out to show using
simulations that for several traffic patterns, PLTS achieves
much higher overall network throughput compared to ECMP.
Further, because potentially most links are similarly loaded,
the amount of reordering is quite small. Some flows do suffer
slightly, but that is true in ECMP as well due to the possibility
of a flow getting routed through a congested path. In that
sense, our scheme is not worse than ECMP, but has the effect
of making the data center network evenly loaded and more
predictable.

Thus, the main contributions of the paper include the
following.

• We revisit the conventional wisdom that packet-level
traffic splitting is inherently harmful to TCP. Specifically,
our observation is grounded on the fact that many popular
data center network designs such as the fat-tree, or more
generally, multi-rooted tree topologies are symmetric in
their architecture, and by spraying packets across dif-
ferent paths leads to a more balanced and predictable
network architecture, that interacts well with TCP.

• We propose different variants of the per-packet load
balancing algorithms in this paper that exploit the basic
idea, but vary depending on the amount of state each
of the solution maintains in the routers. We also propose
different algorithms based on a hypervisor-based solution
that can offer some assistance to mitigate any negative
effects of reordering caused by the striping packets within
a flow across different packets.

• Using simulations, we compare these various strategies
in terms of TCP throughput achieved. We also compare
them against ECMP on various network parameters like
latency, queue sizes, link utilization etc. Specifically, we
show that per-packet load balancing outperforms ECMP
in all the dimensions—1.5× better throughput and 6×
better latency at the 99th percentile.

The rest of the paper is organized as follows. We first start
with background and motivation in Section II. We discuss
the various packet-level traffic splitting (PLTS) schemes in
Section III. In Section IV, we discuss our simulation setup
and evaluation results.

II. BACKGROUND AND MOTIVATION

Many data center applications today require significant
network bandwidth. For example, MapReduce [11], a com-
monly used data center application relies on shuffling massive
amounts of data from various nodes and hence the job com-
pletion time is directly dependent on the available bandwidth
between these servers. Large-scale online services are another
class of applications that are hosted in massive data centers.

For instance, Google, Microsoft, Facebook rely on data centers
to host their critical services such as search, recommendation
and social collaboration applications and other Web services.
These services are typically organized in a three-tier fashion
with load balancers, front-end web servers and other backend
servers such as SQL servers. Thus, a single client query
incurs potentially transferring significant amounts of data
between these various tiers. Network performance thus directly
impacts the end-to-end query latency, which translates to user
satisfaction and ultimately money for the service provider.

While network performance is clearly important, data center
operators also want the flexibility of placing any server at
any data center node. This gives data center operators more
choices in optimizing various resources such as power, storage
and computation. Such flexibility, however, means that the data
center network design cannot pre-assume a given traffic matrix
and optimize the routing and forwarding to that given matrix.
In fact, recent papers characterizing data center traffic have
found that there exists a tremendous amount of spatial and
temporal variation in traffic volumes [15], [19], [7]. Thus, the
recent trend towards network fabric designs that can achieve
full bi-section bandwidth such as the fat-tree architecture [2].

While in theory the fat-tree architecture provides full bi-
section bandwidth, achieving this is hard in practice because
it is dependent on the underlying routing scheme. Traditional
single-path forwarding mechanisms are inadequate since the
full bi-section bandwidth guarantee assumes that all paths that
exist between servers can be fully utilized. To mitigate this
problem, a simple multipathing algorithm based on equal-
cost multipath (ECMP) has been used as the de facto routing
algorithm. ECMP essentially routes different flows through
different paths, so that all the available paths are utilized thus
achieving the full bisection bandwidth.

Unfortunately, ECMP only provides coarse-grained load
balancing and can lead to many scenarios where paths are not
fully balanced. This occurs partly because of the presence of
long-lived flows that carry a significant amount of traffic. For
example, in [19] study, the authors find that 90% of the traffic
volume is actually contained in 10% of the flows (the heavy-
hitters). If two long-lived flows hash to the same path, then
this can cause significant dip in the performance. For example,
we can see the existence of such collisions in Figure 1 where
two long flows, A and C, collide along the link A1 − C1,
while the remaining paths are less loaded. If A and C choose
link-disjoint paths, then both would potentially achieve better
performance. (In this example, the destinations of all the flows
are outside of the pod consisting of the aggregate switches A1
and A2, and ToR switches T1 and T2, which required going
through the core routers.)

The goal of this paper is to mitigate this problem with the
help of a more fine-grained traffic splitting approach, one that
involves load-balancing at the granularity of a single packet.
Specifically, we start with the basic ECMP traffic splitting
that hashes the flow key of a packet to identify the next hop
for forwarding. Since all packets for a given flow share the
same flow key, this mechanism ensures all packets for that
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Fig. 1. Motivating example comparing ECMP with packet-level traffic splitting techniques. In ECMP, the four flows A − D are routed by hashing and it
could happen that flows A and C traverse the same link while C the link between switches A2 and C2 is idle. In PLTS, we can observe that all the four
links between aggregation switches A1, A2 and C1− C4 are equally loaded with fractions of all the flows across the different paths.

flow traverse the same end-to-end path. Our approach in this
paper is to study traffic splitting mechanisms that eliminate
this restriction and splits traffic equally among all the paths
even within the flow. In the ideal case, we have perfect load
balancing as shown in Figure 1 (right side). For the same
example as before, we can see now that a quarter of A’s and
C’s traffic is carried on all the four core routers, in addition
to a quarter of B’ and D’s traffic. Within the pod, however,
links T1−A1 and T1−A2 are in one equivalence class, with
each carrying half of A’s and B’s traffic, while the other links
are in another equivalence class carrying C’s and D’s traffic.

PLTS however suffers from the obvious downside of packet
reordering on TCP. This is because back-to-back packets
within a given flow may now traverse a completely different
route to the destination. Depending on the traffic conditions
along these individual paths, the packets may arrive out of
order at the receiver. While it is well-known that TCP interacts
poorly with packet reordering, we argue that these fine-grained
traffic splitting schemes improve performance on regular data
center network architectures such as the fat-tree. Our intuition
is rooted in three basic observations.

1) Low queue sizes. Per-packet traffic splitting avoids un-
even queue build-up along any path to the destination.
This leads to fewer packet drops and uniformly low
round-trip times for all flows.

2) Better load balancing. All flows between a source (or
sources within the same rack) and a destination (or
destinations with the same rack) traverse the same set of
paths and experience similar network conditions, leading
to better and fairer sharing of resources.

3) Independence from flow-size distribution. Algorithms
that split traffic at a packet granularity are not affected
by changes in flow size distribution.

Of course, PLTS will also suffer from reordering due to the
potentially different latencies of packets along different paths.
This reordering will typically cause the TCP receiver to send

duplicate ACKs that may trigger congestion avoidance activity
at the TCP sender, causing it to reduce its congestion window
significantly thus leading to a reduction in the achieved
throughput. We argue, however, that when all flows are split
equally between all possible paths, queue lengths along all
the paths are typically equally loaded which causes a small
number of reorderings, but not enough to cause congestion
window reductions and fast retransmits. We discuss these
issues in more detail in the next section.

III. PACKET-LEVEL TRAFFIC SPLITTING

In this section, we discuss different techniques that employ
packet-level traffic splitting (PLTS) at switches. We also
discuss the adverse effects of PLTS on the TCP throughput in
the context of fat-tree network topologies. Finally, we discuss
different techniques that can be utilized to mitigate the negative
effects of PLTS using simple solutions that can be deployed
at the receiver TCP stack or within the end-host hypervisor.

A. Mechanisms

We use three simple techniques—random, counter-based
and round-robin—to demonstrate the power and limitations
of PLTS. All these techniques essentially split traffic within a
flow across all available paths, but differ based on the amount
of state maintained at the switches. Random picks an arbitrary
port at random (among the multiple next hops) to forward
a packet, and hence requires no state to implement. At the
other end of the spectrum, we discuss a per-flow round robin
technique where packets within a flow are transmitted in a
round robin fashion. However, it requires remembering the
last port used on a per-flow basis making it more complicated
than the random. A variant of this algorithm, where packets for
the same destination are transmitted in a round-robin fashion,
is already implemented in many commercial switches (e.g.,
Cisco). Intuitively speaking, per-flow round robin achieves
better load-balancing than destination-based; hence, we chose
this in our list of techniques.



In addition to the above, we also propose a new algorithm
that splits traffic based on local port counters. This reduces
the amount of state required significantly, but also results in
slightly worse load balancing in the network (as we shall
see) and consequently, a slight loss in throughput. While this
list of algorithms is not meant to be exhaustive, we chose
these three schemes as potential candidates since they can be
implemented in a rather straight-forward fashion. We discuss
these algorithms in more detail in the next few paragraphs.

1) Random path selection: One of the simplest techniques
is to randomly forward the packets of a given flow along one
of the available paths to the destination. In this scheme called
PLTS-Random, for any incoming packet, the switch uses a
random number generator to decide the port on which the
packet should be forwarded. The forwarding decision about
the next incoming packet for the same flow is independent of
the previous packets and switch does not need to maintain any
flow level state about the port on which the last packet was
forwarded.

A uniform random number generator guarantees that all
paths will be equally loaded over a long interval of time. How-
ever, this scheme may suffer from some short-term imbalance
due to the completely random choice. This imbalance may re-
sult in momentary increases in queue lengths along one of the
paths while leaving some other path underutilized ultimately
resulting in less efficient use of the network resources. But this
approach is simple to implement; thus, we focus on analyzing
its performance in this paper.

2) Counter-based load balancing: We can address the
short-term load imbalance due to the random choices by
explicitly storing a counter for each port and choose the
next-hop that is least loaded. This approach tries to keep the
local queue sizes comparable across all the ports at a switch.
Specifically, the switch maintains a counter corresponding to
each output port. While forwarding a packet, it selects the
output port with the smallest counter value and increments the
counter by the corresponding packet size (in bytes). Clearly,
this technique results in a keeping all the ports as balanced
as possible within the switch. For implementing this scheme
(referred to as PLTS-Counter), the only extra state required
are the counters corresponding to ports of the switch.

PLTS-Counter however can potentially lead to slightly sub-
optimal traffic splitting. For example, in Figure 2, we show an
example scenario where the load may be slightly imbalanced
compared to the ideal. In the example, there are three flows
marked A, B and C of equal size. Among the three, B’s
destination is within the pod. Let us suppose that B’s packets
and A’s packets are perfectly interleaved at the switch T1, in
which case, A’s packets go via T1−A1 link and B’s packets
go via T1 − A2 link. (In general, the skew may depend on
the level of interleaving.) Because of this interleaving, all of
A’s packets are routed to A1 which means only two paths are
available for these packets. Meanwhile, since B’s destination
is within the pod, B’s packets do not compete for resources
at the links between A2 and the core switches C3 and C4. In
this scenario, we can see that first two core links A1−C1 and
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T1 T2

C:500

B:1000

B:1000

C:250
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Fig. 2. One scenario where counter-based approach may lead to load
imbalance.

A1−C2 carry half of A’s packets and a quarter of C’s packets
each, while the other two carry a quarter of C’s packets each.
In the ideal case where we do perfect traffic splitting of every
flow, as the next algorithm achieves, we would observe that
each of the core links would carry a quarter of A’s packets
and a quarter of C’s packets, similar to the scenario discussed
in Figure 1 example.

3) Round-robin across paths: The last mechanism we dis-
cuss, that will address the sub-optimality associated with the
previous scheme at the cost of extra state in the router, is
the per-flow round robin scheme (referred to as PLTS-RR). In
PLTS-RR, each switch uses a round-robin policy to select the
port on which the packet corresponding to a particular flow
has to be forwarded. To do this, it maintains the next hop taken
by the previous packet of that flow. This information needs to
be consulted and updated for every packet corresponding to
the flow.

One small issue with round-robin based traffic splitting is
that packets can suffer from small delays due to synchro-
nization problems. For example, the two incoming flows at
a switch can get synchronized in the selection of port using
round robin technique. They choose, say, port 1 for their first
packet and then in a round robin fashion port 2 for their second
packet and so on. But for this to be a major problem, the packet
arrival rates of the two flows has to also synchronize. We can
solve this problem to some extent by introducing a little bit
of randomness in the way round-robin operates. It, however,
requires a more detailed analysis that is outside the scope of
this paper.

While we have presented this algorithm assuming switches
can store one piece of extra state per-flow to remember the
last port that was used to forward a packet for that flow,
this may not be feasible in practice as the number of flows
may be huge. We note however that weaker variants of this
algorithm are easily possible. For example, since all servers
within a rack are part of the same destination subnet, instead
of maintaining the state on a per-flow basis, we could maintain



the port information on a per-prefix basis. Since forwarding
may be prefix-based anyways, this requires just one extra
counter per entry in the forwarding table. While we do not
compare this scheme in this paper, we note that we believe
the performance of this variant will lie somewhere between
the pure per-flow round robin and the counter-based approach.
(In our evaluation, the gap between the two is about 10%.)

B. Adverse effects of packet-level traffic splitting

The packet forwarding techniques described above opti-
mizes the use of network resource available. We discussed
the various advantages of packet-level traffic splitting in
Section II, but the obvious down-side of fine grained traffic
splitting is packet reordering in a flow which can adversely
affect TCP performance. Specifically, there are two types of
reordering that can happen—forward-path and reverse-path—
reordering that we explain next.

1) Forward-Path Reordering: Forward-path reordering is
the reordering of data packets, which results in the genera-
tion of duplicate acknowledgements (DUPACKs). If the TCP
receiver receives packets out of order, it would generate a
DUPACK that correspond to the last packet received in order.
While eventually the receiver would obtain all the packets
and would advance the acknowledgement number in ACKs,
the sender upon seeing three DUPACKs assumes that there
was a packet loss in the network because the window is
too high. Correspondingly, it would perform fast-retransmit
and reduce the window by half (other variants may reduce
it by a different amount). Unfortunately, both these actions
would not have actually been necessary and in fact cause two
major problems. First, the unnecessary retransmissions would
waste precious bandwidth resources in the network. Second,
and perhaps more importantly, the reduction in the congestion
window causes TCP sender to be not as aggressive and thus
would not fully utilize the available bandwidth. Both these ill-
effects are the main reason why ECMP (and other mechanisms
such as Hedera [3]) did not disturb the ordering of packets
within a given flow.

In addition to these direct effects, there are also two in-
direct effects. First, RTT estimators for flows not using TCP
timestamp option can, at least in theory, suffer from packet
reordering. But as discussed in [6], it turns out that this is not
a big problem in practice. Second, the TCP receiver is forced
to buffer out-of-order data packets and data is released to the
application in bursts. Of course, buffering itself is not such a
big deal as end hosts typically are reasonably well-provisioned
in terms of memory. Bursty release of data to the application,
however, can be a bit of a concern for multimedia applications
(which use UDP anyway precisely for this reason), but not so
much for bulk transfer applications.

2) Reverse-Path Reordering: If ACKs are reordered and
one ACK arrives early and acknowledges a large amount of
data, TCP sender is likely to transmit a series of new segments
at once. So we may see bursts of TCP segments from the
sender. One potential fix to this problem is that we can choose
to do ECMP-based forwarding for ACK packets. On the other

hand, there may not be a need for such a fix since back-to-
back packets may now take completely different routes; so,
the bursts are likely to be spread out throughout the network.

In the context of data center networks, PLTS scheme ensures
even-sized queues at the switches (see section IV), thus
keeping the network free of any hot-spots. The packets of
a given flow travelling on parallel paths to the receiver would
encounter similar queue sizes along their paths. Thus, even if
some of the packets get reordered, not all of them trigger the
congestion control mechanism of TCP. The ill-effects of packet
reordering, which can be pretty severe in case of the Internet,
are relatively quite mild in data center networks. The latencies
observed across multiple paths are similar, the receiver does
not have to buffer a large number of out-of-order packets and
not all the reordered packets lead to fast retransmission. In
order to further reduce the adverse effects of PLTS, we discuss
a few potential techniques that can be implemented at the end
host.

C. Reducing spurious fast retransmissions

We can potentially mitigate the ill-effects of spurious fast
retransmits and improve TCP’s performance if we can some-
how detect and suppress spurious DUPACKs that are generated
due to reordering. While some research has been done to
distinguish packet reordering from a packet loss event [8], the
problem remains considerably difficult in the general setting.
We can use some simple mechanisms to prevent the TCP
sender from reacting to DUPACKs too aggressively, since if
we implement PLTS, most DUPACKs will be due to transient
reordering. We discuss two techniques—the first involves
changes in the receiver TCP stack, while the second focusses
on a hypervisor-based solution at the end host.

1) Adjusting DUPACK threshold for Fast Retransmission:
One straightforward technique, that was studied in prior
work RR-TCP[24] and TCP-PR [9], we can employ is to
dynamically adjust the TCP DUPACK threshold. In RR-TCP,
the receiver uses TCP-DSACK [13] to report the receipt of
duplicate segments to the TCP sender. Even without TCP-
DSACK, a TCP sender can assume that a fast retransmission is
spurious if it receives an acknowledgement for a retransmitted
segment in less than a fraction RTTmin [5]. In either case,
when a TCP sender detects a spurious retransmission, it can
undo the congestion window reduction that occurred in the
fast recovery phase. [8] lists many modifications to TCP to
make it robust to packet reordering that can also be used
in our setting. In data center networks, where the effect of
packet reordering is not so severe, this simple adjustment to
the DUPACK threshold can help mitigate most of the ill-effects
due to PLTS.

2) An agent to filter DUPACKs: In a public cloud envi-
ronment, an end host runs multiple guest virtual machines
(VM). These VMs are rented out to tenants, who may be
using customized protocols for end to end communication.
For PLTS to be practical in such a setting, we cannot make
any assumptions about the higher layer protocols. Fortunately,
the hypervisor running below the VMs and the entire data



center network is administered by a central entity, and provides
the opportunity to design and deploy techniques that require
interactions between intermediate switches and end hosts’
hypervisors to counter the effects of packet reordering. Such a
technique would be completely transparent to the guest VMs
belonging to clients.

We assume the presence of an agent that runs in the
hypervisor layer (either sender’s or receiver’s) that can inspect
every incoming packet. The agent essentially drops, modifies
or delays duplicate acknowledgements to control the TCP
stack’s view of packet reordering. If the agent blindly stops
all the DUPACKs, then it prevents the TCP fast recovery in
case of an actual packet loss. This can cause TCP timeout
resulting in a drastic decrease in TCP throughput—a situation
we want to avoid. Thus, the agent essentially needs to store
information about the ACK packet last seen for each flow,
using which it can easily detect the DUPACKs in a flow. The
actions of the agent are dependent on whether the switches in
the network employ RED [12] and ECN [21] or use droptail
queueing policy.

RED/ECN queue management policy. In a network where
routers use RED and ECN for congestion control, the TCP
receiver echos any network congestion back to the sender
by copying the CE (Congestion Encountered) bit of the data
packet onto the corresponding acknowledgement packet as
the ECE (ECN-Echo) bit. In case there is congestion, the
TCP sender acknowledges it by setting the CWR (Congestion
Window Reduced) bit in data packets. The filtering agent can
then use it to differentiate a packet reordering event from a
packet loss event. The agent can keep dropping DUPACKs
until it sees a packet with the ECE bit set. This behavior
assumes that any packet drop would happen only after some
kind of congestion in the network. If the agent receives a
DUPACK with ECE bit set, then it allows it go through so
that TCP can take the required action necessitated by the
congestion in the network. It would keep on allowing the
DUPACKs until their ECE bit are set. We implemented this
simple agent, but found that while it performs much better
compared to ECMP, it does not yield any significant benefits
beyond the basic PLTS schemes. Perhaps other techniques that
can better exploit these markings may exist; a more detailed
study however is outside the scope of this paper.

DropTail queue management policy. In case of drop tail queue
management policy, it is difficult to differentiate a packet
reordering from a packet loss event. However, we can use
a scheme similar to RR-TCP [24] to adjust the DUPACK
threshold dynamically. Specifically, the agent maintains multi-
ple counters corresponding to different numbers of consecutive
sequences of DUPACKs (i.e., number of times it received 3, 4
or 5 consecutive DUPACKs). When the agent receives the first
two consecutive DUPACKs, it delivers them to the guest VM.
It drops the following DUPACKs until the length of the current
sequence of consecutive DUPACKs reaches the top 90th per-
centile of sequence lengths seen earlier. When this DUPACK
is delivered to the VM, it triggers a fast retransmission at the

TCP sender. The algorithm has the effect of avoiding 90%
fast retransmissions and allowing only those that would have
resulted from the longest sequence of consecutive duplicate
acknowledgements. PLTS enabled with this simple agent gives
slightly (by about 5%) better performance than PLTS alone as
shown in section IV.

IV. EVALUATION

We now evaluate the various packet-level traffic splitting
schemes we have discussed in Section III. Specifically, our
evaluation goals are three-fold. First, we wish to compare
the various variants of PLTS (PLTS-Random, PLTS-Counter
and PLTS-RR) with other prior schemes such as ECMP and
MPTCP [14] in terms of their overall throughput achieved.
Second, we wish to understand other characteristics such as
packet latencies, queue length and fairness properties of PLTS.
Finally, we want to study the impact of different traffic patterns
and packet sizes on PLTS.

A. Experimental setup

Most of our experiments in this paper are based on sim-
ulations using QualNet [23], a packet-level discrete event
simulator. Given the large number of TCP variants in the
wild, we chose to focus on one of the most widely used
TCP variants, namely NewReno. We used 1MB TCP receive
and send windows. Typically, operating systems reserve a few
hundred kilobytes for TCP windows. However, we inflated
this value slightly so that the TCP window sizes do not limit
the network throughput. This ensures that changes in the TCP
congestion window size always affect the network throughput.
We summarize the most significant simulation parameters for
TCP in Table I.

TABLE I
SIMULATION PARAMETERS.

Parameter Value
Algorithm NewReno

Send Window 1MB
Receive Window 1MB
Delayed ACKs Disabled

Nagle’s Algorithm Disabled
Link Bandwidth 100Mbps

Output Port Buffers 512KB

For evaluating PLTS, we focus mainly on fat-tree archi-
tecture. However, the results shown should hold good in any
topology with multiple equal-cost paths between end hosts.
We do note that topologies BCube provide a large number of
paths between end hosts, but some paths may traverse more
links than others and hence their cost may be different.

B. Performance comparison between PLTS and ECMP

We compare PLTS and ECMP with respect to different
network parameters. The goal of these comparisons is to
identify the benefits of PLTS technique over ECMP in different
dimensions which are of interest to network operators.
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Fig. 3. Throughput comparison across different routing mechanisms. We also show the queue length and link utilization comparisons across PLTS and
ECMP.

1) Throughput comparison: We first compare the through-
put of PLTS compared to other schemes such as ECMP and
MP-TCP. For this evaluation, we simulate a 6-pod fat tree
topology with 54 end-hosts and create 27 FTP applications
which run for the entire duration of the simulation. The end
hosts for each FTP application are chosen at random while
ensuring that each end host executes either one FTP server or
client. Since a fat-tree topology offers full bisection bandwidth,
ideally each FTP application should be able to transfer data at
full link capacity. We have evaluated the TCP throughputs with
two queue management policies at the routers—DropTail and
RED with ECN. Figure 3(a) demonstrates that the through-
put values are almost identical for PLTS in both the cases.
Henceforth, for brevity reasons, all the experimental results for
PLTS are shown with DropTail policy. The results for RED
with ECN policy are similar.

Figure 3(a) shows the average throughput observed by FTP
applications, under different schemes, as a percentage of the
ideal throughput. The throughput achieved by ECMP is similar
to that reported in [20]. The low average throughput in case of
ECMP-based forwarding can be attributed to the fact that two
or more ECMP flows may be forward over the same core link
which becomes a bottleneck. And for the entire flow duration
that link remains the host spot in the network while leaving
other links underutilized. Due to static allocation of paths in
ECMP, if some of the flows are unlucky and are routed through
a congested link, then they suffer permanently for the entire
duration resulting in a poor throughput.

All the three PLTS techniques achieve better throughput
than ECMP as shown in Figure 3(a). [14] reports that MP-TCP
achieves almost 90% utilization for the same experimental
setup, which is comparable to what the PLTS-RR achieves.
Among packet-level traffic splitting, PLTS-RND attains the
least throughput because skews in short sequences of random
numbers increases variability in latencies across different path.
This leads to more packet reordering and fast retransmissions.
Hence, we will not explore PLTS-RND further. PLTS-CNT
attains around 81% of the ideal throughput. In PLTS-CNT
technique, packets from a given flow may not be scattered
across all the paths always. It tries to make the best local
decision by choosing the smallest queue-size path at the router.
Depending on queue sizes at intermediate routers, packets of

a particular flow may momentarily favor one of the available
paths. After some time, changes in network conditions can
change the distribution of packets across available paths. So
we observe small oscillations among the subset of paths a flow
is forwarded to.

PLTS-RR ensures that all the paths between source and
destinations are utilized. In case the round robin policy is used
for all the flows at all the routers, the traffic load in similar
across all the paths and packets for a given flow are believed to
encounter similar queues and latencies across multiple parallel
paths. This evenness and uniformity in the network usage
prevents any hot spots in network and helps all the flows to
fully utilize the network capacity. Figure 3(a) confirms this
behavior and PLTS-RR is able to achieve almost 92% of the
ideal throughput.

2) Comparison of queue lengths and link utilization: It
is well known that ECMP based forwarding mechanism can
result in uneven load on network components [3], [14]. Even
in case of a uniform traffic matrix, different part of the network
could be very differently loaded. The result is uneven queue
sizes and link utilization across the network. In contrast, as
our intuition suggests, we expect that PLTS should keep the
queue sizes and utilization balanced throughout the network,
which we evaluate next.

In a 6-pod fat tree data center network, carrying 54 active
flows in the network, we isolate a total of 9 links originating
from all the 9 core switches and connecting them to a
particular pod of the fat tree. We want to analyze the variation
in queue lengths and link utilizations of these links which
are bringing traffic into this pod. We divide an interval of 1
second into hundred 10 milliseconds sub-intervals. At the end
of each sub-intervals, we record the queue lengths and the
link utilization values across all the 9 links selected above.
For both the metrics, we take the difference between the
maximum and minimum of the 9 values for a sub-interval. This
difference gives us the maximum variation in queue lengths
and link utilizations for that sub-interval. At the end of 1
second interval, we sort these 100 values and plot them to
demonstrate the variability of these metrics over a period of
1 second.

Figure 3(b) demonstrates that in case of PLTS, the differ-
ence between the queue lengths of longest and the smallest
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Fig. 4. Packet Latency values for a sample of 180 packets in ECMP versus PLTS. We also compare the throughput achieved by different flows for fairness.

queue never exceeded 500 bytes in the analysis interval of
1 second. In ECMP, there are times when the difference in
queue sizes has increased all the way to 100KB. PLTS does
not only has smaller average queue length but it also has
lesser variation across multiple queues under consideration.
Figure 3(c) plots the variability in link utilization across the 9
links. It demonstrate a similar behavior where ECMP suffers
from huge difference of workload across different links while
PLTS maintains uniformity. The graphs support our claim
that packets will experience similar queueing delays along all
paths. The small difference in link utilizations indicates that
PLTS is less prone to hot-spots than ECMP.

3) Comparison of latencies: In the same setup as described
in the previous section, we compare the latencies experienced
by a sample of 180 packets of a long-lived flow between two
hosts in different pods. We measure the latencies between the
top-of-the-rack switches connected to the end points of the
flow. This isolates the latencies experienced in the network
from the latency at the access links. We compare the laten-
cies experienced by the sampled packets in three scenarios:
PLTS-RR and ECMP with drop-tail queues and ECMP with
RED/ECN active queue management. The latencies for the
sampled packets are ranked and plotted in figure 4(a).

For ECMP, the latency values for drop-tail policy are worse
than the latency values of RED/ECN (as drop-tail allows
large queue build ups). PLTS with the drop-tail policy shows
significantly better latency values experienced by the sampled
packets as compared to ECMP with RED/ECN. While for
most of the packets the latency values for the two situations
are comparable, a packet in PLTS experiences only one-third
of the packet latency of ECMP with RED/ECN at the 90th

percentile and one-sixth of the packet latency at the 99th

percentile. In most of the partition-aggregate type workload
today [4], the latency at the 99th percentile is of utmost
importance. It decides how well a service can perform within
SLA (Service Level Agreements) up time [4], which ultimately
would affect customer experience in public cloud. The results
indicate the opportunities which PLTS could provide to sig-

nificantly improve the operation of public clouds.
4) Throughput fairness: In PLTS, flows achieve better TCP

throughput on an average as compared to flows with ECMP
forwarding. But we also need to analyze how the increased
throughput performance is shared among all these flows. Given
the uniform nature of PLTS, we expect high fairness among
different flows simultaneously enabled in the data center
network. We show that the gains in throughput offered by
PLTS are evenly distributed among all flows in the network.
In an 8-pod fat tree network with 128 FTP applications,
we analyze the throughput achieved by each individual flow
over the duration of the simulation. Figure 4(b) shows the
throughput observed by all flows. Flow throughputs for ECMP
show a huge variability as compared to those of PLTS. There
is an order of magnitude of difference between the highest and
lowest throughput seen by ECMP. So the number of unlucky
and lucky flows are large in case of ECMP forwarding. In case
of PLTS we see high degree of fairness among all the flows.
Hence, PLTS provides more predictability in flow throughput.

C. Effect of Over Subscription

Most of the evaluation results have shown that PLTS out-
performs ECMP in all dimensions in a data center network
with full bisection bandwidth. In this section, we compare
the two techniques in more constrained networks with higher
oversubscription ratios. iAn oversubscription ratio of 4:1 at
aggregate switches means that the uplink capacity of aggregate
switches to the core are four times less than the uplink capacity
of top of rack switches to the aggregate switches. We study
the effect of oversubscription on the performance of ECMP
and PLTS.

We begin with an 8-pod fat tree (which has 16 core switches
and 128 end hosts) topology which has 1:1 oversubscription
ratio, meaning that we have a full fat-tree network. In order to
constrain this network topology, we remove 4 core switches
(out of the 16 core switches) and the corresponding links to
get an oversubscription ratio of 4:3 at the aggregate switches.
We further remove 4 core nodes to get a ratio of 2:1 and so
on. We simulate 128 FTP applications in the network. Each
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Fig. 5. Performance of PLTS under cases of over-subscribed data center network, randomized traffic matrix and with different packet sizes.

end host act as an FTP server for one application and client
for another. The FTP clients and servers are paired up at
random (while ensuring that they are in different pods). The
FTP applications run for the entire duration of the simulation.
Figure 5(a) shows the goodput (total bytes transferred) by
PLTS-RR and ECMP. With a full bisection bandwidth, PLTS
achieves almost 1.5 times the goodput offered by ECMP.
However, as the oversubscription ratio increases, the capacity
in the core of as well as the number of parallel paths in the
data center decreases. The gain of PLTS over ECMP begins
to decrease when fewer paths are available. But even in case
of 4:1 oversubscription PLTS performs better.

D. Goodput comparison with randomized traffic matrix

In most of the evaluation experiments, we have used a uni-
form traffic load where each end host is sending or receiving
or doing both at a time. This is not the case in real traffic
load, where some of the end hosts may not be involved in
communication at all, or some have multiple TCP connections
simultaneously. In order to simulate such behavior we did an
experiment similar to one described in [14]. To simulate a
more realistic scenario, we started a fixed number of FTP
flows between randomly chosen hosts in a 6-pod fat tree data
center network. Flow sizes were chosen from the distribution
described in [15], which are representative of real flows in
data center networks. When a flow finishes, it was replaced
with another flow between two randomly chosen hosts. The
experiment was run for 10 seconds and we calculate the total
number of bytes transferred by all the flows in the entire
duration.

Figure 5(b) shows the total number of bytes transferred by
the PLTS-CNT and PLTS-RR technique. The X-axis is the
number of active flows (which remains constant throughout the
simulation) as a fraction of the number of hosts. We observe
that PLTS outperforms ECMP consistently, and more so in
case there are larger number of active flows in the network.
Since it was a different kind of traffic workload, we also
want to compare the two PLTS techniques. PLTS-CNT and
PLTS-RR have comparable performance in most of the cases.
Note that since the traffic in each experimental run is created
randomly, the performance of a specific technique would also
depend on the kind of traffic load it has to work with. So the
general conclusion from this experiment is that PLTS performs

better than ECMP with both RR and CNT schemes having
comparable performance.

E. Effect of variable packet sizes

We do most of the evaluation by simulating FTP applica-
tions in which all flows have same packet sizes (though data
and ACK packets differ in size). We also get near optimal
performance of PLTS in such scenarios without needing any
assistance from the agent. In this section, we vary the packet
sizes across different flows and evaluate the performance of
PLTS with and without the agent. Since we are introducing
variability in packet sizes, we expect more variability in
latencies experienced by packets travelling across different
paths. A flow may experience more reordering and in such
a situation we would like to evaluate the performance of our
agent which tries to handle packet reordering in a given flow.

To vary packet size in the network, we set the MSS for
every flow (total 54 active flows in a 6-pod fat tree) randomly
between 64 to 1500 bytes. Figure 5(c) shows goodput gain
observed in this simulation environment. Even with the in-
creased variability, PLTS still outperforms ECMP. PLTS-RR
without any agent is approximately 1.35 times better. In such
a scheme, an agent, which dynamically adjusts the threshold
of duplicate acknowledgement for fast retransmission, helps
to improve the performance of PLTS.

V. RELATED WORK

The most related to our work are those mechanisms that
rely on flow-level traffic splitting such as ECMP and Hed-
era [3]. Mahout [10] is a recent scheme that uses end-host
mechanisms to identify elephants, and uses flow scheduling
schemes similar to Hedera. BCube [17] proposes a server-
centric network architecture and source routing mechanism for
selecting paths for flows. When a host needs to route a new
flow, it probes multiple paths to the destination and selects
the one with the highest available bandwidth. Techniques like
Hedera, Mahout and BCube which select a path for a flow
based on current network conditions suffer from a common
problem: When network conditions change over time, the
selected path may no longer be the optimal one. To overcome
this problem, they periodically re-execute their path selection
algorithm. VL2[15] and Monsoon[16] propose using Valiant



Load Balancing (VLB) at a per-flow granularity, but they too
do not split an individual flow across multiple paths.

Two research efforts propose traffic splitting at a sub-
flow granularity. The first effort is MPTCP[14] splits a TCP
flow into multiple flows at the end hosts. [20] evaluates the
performance benefits of using MPTCP for load balancing in
a data center network. The ECMP protocol running at each
router may route each TCP sub-flow over different paths in
the network. The receiving end host aggregates the TCP sub-
flows and resequences packets. The second effort, although in
the context of the Internet, is FLARE [22]. FLARE exploits
the inherent burstiness of TCP flows to break up a flow into
bursts called flowlets, and route each flowlet along a different
path to the destination. However, FLARE requires each router
to maintain some per-flow state and estimate the latency to the
destination. We did experiment with some simple variants of
FLARE, such as keeping a small number of packets of a flow
go through the same path. But we observed that any simple
variant of FLARE does not achieve as good a throughput
as our PLTS, since bursts of packets may actually lead to
disparity in queue lengths across different paths, which in
turn causes much more packet reordering and reduction in
throughput.

VI. CONCLUSION

With many data center applications requiring large amount
of intra-cluster bandwidth, there is a lot of interest in designing
network fabrics that provide full bisection bandwidth. Multi-
rooted tree topologies have emerged as the architecture of
choice for many such environments. Unfortunately, however,
default multipath routing protocols such as ECMP can lead to
significant load imbalance resulting in underutilizing the avail-
able network resources. Previous solutions such as Hedera and
MP-TCP address this problem to some extent, but are typically
complicated to implement or deploy. In contrast, we show that
simple packet-level traffic splitting mechanims can, somewhat
surprisingly, yield significant benefits in keeping the network
load balanced resulting in better overall utilization, despite
the well-known fact that TCP interacts poorly with reordered
packets. These schemes are also readily implementable and
are of low complexity making them an appealing alternative to
ECMP and other complicated mechanisms. While more work
needs to be done, we believe that the myth that TCP interacts
poorly with reordering, while may be true in more general
settings, does not seem to hold true in regular data center
topologies.
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