
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2011

Using Past Queries for Resource Selection in Distributed Using Past Queries for Resource Selection in Distributed

Information Retrieval Information Retrieval

Sulleyman Cetintas
Purdue University, scetinta@cs.purdue.edu

Luo Si
Purdue University, lsi@cs.purdue.edu

Hao Yuan
Purdue University, yuan3@cs.purdue.edu

Report Number:
11-012

Cetintas, Sulleyman; Si, Luo; and Yuan, Hao, "Using Past Queries for Resource Selection in Distributed
Information Retrieval" (2011). Department of Computer Science Technical Reports. Paper 1743.
https://docs.lib.purdue.edu/cstech/1743

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

1

Using Past Queries for Resource Selection in Distributed

Information Retrieval

Suleyman Cetintas
1
 SCETINTA@CS.PURDUE.EDU

Department of Computer Sciences

Purdue University

West Lafayette, I�, 47907, USA

Luo Si LSI@CS.PURDUE.EDU
Departments of Computer Sciences and Statistics

Purdue University

West Lafayette, I�, 47907, USA

Hao Yuan YUAN3@ CS.PURDUE.EDU

Department of Computer Sciences

Purdue University

West Lafayette, I�, 47907, USA

Abstract

Federated text search provides a unified search interface for multiple search engines of distributed

text information sources. Resource selection is an important component for federated text search,

which selects a small number of information sources that contain the largest number of relevant

documents for a user query. Most prior research of resource selection focused on selecting

information sources by analyzing static information of available information sources that is

sampled in the offline manner. On the other hand, most prior research ignored a large amount of

valuable information like the results from past queries.

This paper proposes a new resource selection technique (which is called qSim) that utilizes the

search results of past queries for estimating the utilities of available information sources for a

specific user query. The new algorithm calculates the query similarities between a specific query

and all past queries, and then estimates the utilities of available information sources by the

weighted combination of results of past queries with respect to the query similarities. The new

resource selection algorithm is practical as it does not require relevance judgment of past queries

and it only utilizes regression based results merging method to rank the results of past queries.

Furthermore, a combined resource selection approach is proposed to integrate the two approaches

of learning from past queries and using static sampled information. An extensive set of

experiments demonstrate the effectiveness of the new resource selection algorithm of learning

from past queries as well as the combined resource selection algorithm in several configurations.

Keywords: Past Queries, Resource Selection, Federated Search

1 Corresponding Author: Phone: (765) 494-9165 & Fax: (765) 494-0739

2

1 Introduction

The proliferation of searchable text information sources on local area networks and the Internet

creates a problem of finding information that is distributed among many text information sources

(federated text search) (Callan 2000; Craswell 2000; Meng et al. 2002). Federated text search, also

known as distributed information retrieval, includes three sub-problems. First, information about

the contents of each individual information source must be acquired. This task is called resource

representation (Baillie et al. 2009; Callan 2000; Gravano et al. 1997; Nottelmann and Fuhr 2003;

Si and Callan 2003a). Second, a small number of text information sources should be selected for

search for a specific user query (Cetintas et al. 2009; Craswell 2000; French et al. 1999; Fuhr

1999; Gravano et al. 1999; Hawking and Thistlewaite 1999; Ipeirotis and Gravano 2002;

Nottelmann and Fuhr 2003; Powell et al. 2000; Shokouhi 2007; Shokouhi and Zobel 2007; Si and

Callan 2003a; Si and Callan 2004; Zhai and Lafferty 2001). This task is called resource selection

or collection selection. Third, after results are returned from selected information sources, the

individual ranked lists should be merged into a single final ranked list. This task is called results

merging (Callan 2000; Cetintas and Si 2007; Kirsch 1997; Larson 2002; Le Calv and Savoy 2000;

Lu et al. 2005; Si and Callan 2003b; Xu and Callan 1998).

Most prior research work of resource selection focused on selecting information sources by

analyzing the static information which is sampled from available information sources in an offline

manner. For example, the ReDDE (Relevant Document Distribution Estimation (Si and Callan

2003a)) algorithm first tries to build a centralized sampled database based on query-based-

sampling, and then uses the information of the centralized sampled database to estimate the

distribution of relevant documents for resource selection.

However, most previous research ignored a large amount of valuable information like the

resource selection results of past queries. For example, in a real world search engine, there are

many similar or even duplicated queries every day. The results from those similar past queries are

very valuable to guide the resource selection decision of a current user query. One can imagine

that if two user queries are very similar, their corresponding resource selection results should also

be close.

In this paper, we propose a new resource selection technique (i.e., qSim) that utilizes the

search results of past queries for estimating the utilities of available information sources for a

specific user query. The new algorithm calculates the query similarities between a specific query

and all past queries, and then estimates the utilities of available information sources by the

weighted combination of search results of past queries with respect to the query similarities. The

new resource selection algorithm is practical as it does not require relevance judgment of past

queries, and it only utilizes regression based results merging method to rank the results of past

queries.

Furthermore, a combined resource selection approach is proposed to integrate the two types of

approaches: learning from past queries and using static sampled information. It has its advantages

to integrate two types of evidence. In particular, the combined approach generates the resource

selection results by integrating the results of the qSim selection algorithm and the ReDDE

selection algorithm.

3

Empirical studies are conducted on two testbeds with several configurations to show the

advantage of the new resource selection algorithms. In particular, we compare the performance of

the new algorithms with a state-of-the-art resource selection algorithm as ReDDE (Si and Callan

2003a) (relevant document distribution estimation). In our experiments in research environments,

we followed two different approaches to generate the set of past queries: i) we sampled queries for

each test/online query by extracting the titles of some top ranking documents in the search results

of that particular test query; ii) we generated simulated queries by randomly removing some terms

from test queries, and used these simulated queries as past queries. The set of all sampled queries

and simulated queries for each test query forms the set of similar past queries in either approach.

Under the usual scenario that there exist similar queries among past queries and online queries, our

new qSim algorithm performs better than the prior state-of-the-art ReDDE algorithm. The larger

amount of past queries we have or the more similar the past queries are to online queries, the better

results we can get. Furthermore, a combined resource selection approach can provide even better

resource selection results than both the qSim and the ReDDE algorithms. Therefore when the

system receives a new rare test/online query, it will utilize the combined approach and perform at

least as good as the ReDDE algorithm or even better than that.

The rest of the paper is arranged as follows: Section 2 discusses the related work. Section 3

proposes the new resource selection approaches, i.e. i) the resource selection approach by learning

from past queries and ii) the combined resource selection approach. Section 4 discusses the

experimental methodology. Section 5 presents the experimental results; and finally, Section 6

concludes this work.

2 Related Work

There has been considerable research on all of the three sub-tasks of federated search: i.e. i)

acquiring resource description, ii) resource selection and iii) results merging. Since this paper

focuses on the resource selection task, we mainly survey related work in resource selection and

briefly discuss the works in resource description and results merging.

The STARTS (Gravano et al. 1997) protocol is one of the solutions to acquire the resource

descriptions. It requires explicit cooperation from each information source. Although STARTS is a

good solution in environments where cooperation can be guaranteed, it doesn’t work in multi-party

environments where some information sources may not cooperate. Query Based Sampling (QBS)

(Callan 2000; Callan and Connell 2001) is an alternative approach for acquiring resource

descriptions since it doesn’t require explicit cooperation from available sources. QBS only uses

the normal process of running queries and retrieving a list of downloadable documents to construct

resource descriptions. This solution has been shown to acquire rather accurate resource

descriptions using a relatively small number of randomly generated queries to retrieve relatively

small number of documents.

There is a large body of prior research on resource selection (e.g., Cetintas et al. 2009;

Craswell 2000; French et al. 1999; Fuhr 1999; Gravano et al. 1999; Hawking and Thistlewaite

1999; Ipeirotis and Gravano 2002; Nottelmann and Fuhr 2003; Powell et al. 2000; Shokouhi 2007;

Shokouhi and Zobel 2007; Si and Callan 2003a; Si and Callan 2004; Zhai and Lafferty 2001).

4

Space limitations preclude discussing it all, so we restrict our attention to a few that have been

studied often or recently in prior research.

A large body of resource selection algorithms follows the “Big Document” approach by

representing each information source as a single big document. The similarities between the “Big

Documents” and a user query are calculated to rank available information sources. “Big

Document” methods include CORI (Callan 2000; Callan et al. 1995), gGlOSS (Gravano et al.

1997; Gravano et al. 1999) and CVV (Yuwono and Lee 1997).

Particularly, the CORI resource selection algorithm has been shown to be one of the most

stable and effective “Big Document” resource selection algorithms in prior studies (e.g, Craswell

2000; French et al. 1999). The CORI resource selection algorithm (Callan 2000; Callan et al.

1995) represents each information source by using the words that it contains, their frequencies, and

a small number of corpus statistics. Resource ranking is generated by using a Bayesian inference

network and an adaptation of the Okapi term frequency normalization. Details can be found in

(Callan 2000; Callan et al. 1995).

However, the “Big Document” approach does not consider information source sizes, which is

a big problem for searching in the environment of a mixture of “small” and “very large”

information sources (Si and Callan 2003a).

ReDDE (Si and Callan 2003a) resource selection algorithm was proposed to address the above

issue. It explicitly estimates the distribution of relevant documents among available information

sources for resource selection. ReDDE utilizes database size estimation and a centralized sample

database (CSDb) that consists of the documents obtained by query based sampling as resource

descriptions. The CSDb is a representative subset of the centralized complete database (CCDb)

which is the union of all the documents in available information sources. Since the CCDb is not

available in the federated search environment, ReDDE uses the CSDb (which has already been

generated by QBS) to simulate the property of CCDb. In summary, ReDDE issues a query to an

index created over CSDb and scores each resource i) proportional to the number of top-ranked

documents originating from that resource and ii) considering the estimated size of that resource.

More detailed information about CCDb and CSDb databases can be seen on Figure 1.

In particular, ReDDE utilizes the ranked list of a user query on CSDb to simulate the ranked

list of this user query on CCDb. With the ranked list of a user query on CSDb, ReDDE estimates

the number of relevant documents to query q in an information source
jC as follows:

^ ^

__

1
Re _ () (|)* *

j

ji j

i C
C sampd C samp

l q j P rel d �
�

∈

= ∑
(1)

where
∧

jCN is the estimated database size for the information source jC (e.g., by Sample-

Resample method [24]); j_sampC is the set of documents that are sampled from database jC ;

and _sampC j
N is the number of documents in j_sampC (i.e. the size of j_sampC). The only unknown in

Equation 1 is P(rel | di), i.e. the probability of relevance given a specific document.

)d|P(rel i , the probability of relevance of a specific document in Equation 1, is defined as the

probability of relevance given document rank when a CCDb is searched by an effective retrieval

method (i.e., iRank_central(d)) as follows:

5

()
ˆ_ ()

|
0

q i all
i

C if Rank central d ratio �
P rel d

otherwise

 < ∗
=

 (2)

where Cq is a query dependent constant,
∧

allN is the estimated total number of documents in the

CCDb and ratio is a parameter which is set to be 0.003 as in prior experiments (Si and Callan

2003a). Although this approximation of relevance probability is rather rough, similar methods

have been used by many automatic relevance feedback methods.

Rank_central(di), the rank of a document di in the CCDb, is calculated as follows:

^

()

() _

_ () _ ()

_ ()
j

jj

j i

c d

i
c d sampd

Rank Samp d Rank Samp d

�
Rank central d

�

<

= ∑ (3)

where Rank_Samp(di) is the corresponding rank in CSDb.

^

Rel_q(j) can be calculated by plugging Equations 3 and 2 into Equation 1, so that the

distribution of relevant documents in different information sources is acquired without a need for

relevance judgment. The distribution of relevant documents among information sources is

sufficient to rank the available information sources for the resource selection task.

However, all the above prior research of resource selection focused on selecting information

sources by analyzing static information of available information sources that is sampled in the

offline manner. The prior research ignored a large amount of valuable information like the results

from past queries or query logs. In most real world applications, there is often substantial

similarity between users’ queries; and even many of them are duplicates of each other. This fact

not only motivates the research to make use of the results of past queries, but also makes it

possible to use the combined approach of utilizing both the valuable results from past queries and

the static information of available information sources for the resource selection decision of a

current user query.

Voorhees et al.’s work considered using results of past queries (1995). However, the task they

are dealing with is not exactly resource selection since their method retrieves documents from all

information sources. For the decision of how many documents to retrieve from each source, the

work in (Voorhess et al. 1995) proposed two approaches. One method is to calculate the relevant

document distribution among information sources for a query q by averaging the relevant

document distributions (among all sources) of k most similar past queries with q. The other

method is to compute the weights of each information source’s most similar query cluster with the

query q and use these weights. Both of these methods require relevance judgment.

Some recent research has been conducted for selecting vertical search engines (e.g., Arguello

et al. 2009; Diaz et al. 2009). In particular, research work has been conducted to utilize query log

and user feedback information to improve vertical search engine selection. However, the research

of selecting vertical engines was different from our proposed work in several perspectives. First,

they only studied and evaluated selecting one vertical engine for each user query while there are

often quite a few relevant resources for each user query in traditional distributed information

retrieval applications (e.g., digital libraries). Second, they treated vertical engine selection as a

6

classification approach, while our work ranks resources by the number of relevant documents

contained in available resources. Third, they utilized human relevance judgment, while the

proposed work only utilizes results from past queries that are automatically generated. Finally,

their approach is a pure resource selection method, while the proposed method is a more complete

solution that includes results merging.

Recently, Cetintas et al. showed that using the search results of past queries improves the

effectiveness of resource selection; however, their work was limited. Particularly, they did not

integrate the two approaches of learning from past queries and using static sampled information.

Furthermore, they did not explore the effect of i) using larger amount of past queries, ii) more

similar past queries, iii) selecting more information sources, iv) using different query similarity

estimation techniques on resource selection effectiveness (2009).

The last step of distributed information retrieval is merging ranked lists produced by different

search engines. It is usually treated as a problem of transforming database-specific document

scores into database-independent document scores. The CORI results merging formula (Callan

2000) is a heuristic linear combination of the database score and the document score. The Semi-

Supervised Learning (SSL) algorithm (Si and Callan 2003b) uses the documents acquired by

query-based sampling as training data and utilizes linear regression to learn merging models.

When it is necessary, the Semi-Supervised Learning method downloads a small number of

documents on the fly to create training data for building the regression models. Please note that

SSL will be used in this word for estimating the relevance of information sources to past queries.

The documents downloaded by SSL will be an important data source that will be explained later.

More detailed information about the set of SSL-downloaded documents along with CCDb, CSDb

databases and how they are used in this work can be seen on Figure 1.

3 %ew Resource Selection Algorithms

Since there tends to be many similar queries in a real world federated search system, the valuable

information of past queries can help us provide better resource selection results. In this section, we

propose a novel algorithm, which is called qSim, to utilize the valuable information to guide the

decision of resource selection. Furthermore, we propose a combined resource selection approach

that utilizes both the information from past queries and the static information from query-based

sampling for more accurate resource selection.

The first subsection presents the qSim algorithm for how to use search results from past

queries to guide resource selection for online user queries. The second subsection describes the

combined resource selection approach.

3.1 Resource Selection by Learning the Results from Past Queries

Assume that there exists a set of past queries, which is denoted by P = {p1, p2, …, pM}, where pi

represents the i
th

 past query. For an online user query q, assume that we have a specific method to

measure the similarity between q and pi (details of the query similarity estimation approaches used

in this work can be found in Section 3.1.2), let us denote the similarity by Sim(pi

| q). Denote the

7

set of information sources by S = {s1, s2, …, sN }. For a query q, we use Rel(sj | q) to represent how

likely it is for the information source sj to be relevant to the query q, or what (estimated)

percentage of the relevant documents for the query q is in sj. We are interested in ranking the

available information sources by comparing their values of the Rel function. Please note that the

absolute values of Sim(pi | q) and Rel(sj | q) are not important. Only the relative difference between

Sim(pi1 | q) and Sim(pi2 | q) is important, for any pair of pi1 and pi2 while q is fixed; which is also

the case for Rel(sj | q).

In qSim, we can estimate the value of Rel(sj | pi) for all past queries. For an online query q, the

task is to estimate Rel(sj | q) based on the information of Rel(sj | pi) and Sim(pi | q).

The algorithmic framework of qSim is as follows:

1. Estimate the relevance of an information source sj to a past query pi, i.e. estimate

Rel(sj | pi).

This can be done in an offline manner for past queries. After the federated search

system has processed an online query, this query can also be added to the set of past

queries for future reference.

2. Estimate the similarity between a past query pi and an online/test query q, i.e.

estimate Sim(pi | q).

3. Estimate the relevance of an information source sj to an online/test query q, i.e.

estimate Rel(sj | q), according to the estimated relevance information of similar past

queries (to this online query q).

4. Rank the information sources according to Rel(sj | q), which will give the most

relevant information sources to the online query q.

3.1.1 Estimating the Relevance of Information Sources to Past Queries (i.e. Rel(sj | pi))

Any resource selection algorithm can be applied to estimate the value of Rel(sj | pi). If a

resource selection algorithm can explicitly give scores for all information sources, we can directly

map those scores to Rel(sj | pi). For example, in the ReDDE algorithm, we can set Rel(sj | pi) ~

^

i (j)Rel_p , where
^

i (j)Rel_p is the estimated number of relevant documents in sj with respect to pi

by ReDDE.

In this work, a regression-based results merging approach (Si and Callan 2003b) is used to get

a much more precise Rel(sj | pi) estimation by utilizing the search results from past queries, no

matter whether a prior resource selection has been made for pi or not. The key intuition underlying

this approach is that the more relevant documents from an information source are in the merged

ranked list of past query pi, the more relevant this information source to pi is. The process of this

approach is as follows:

First, assume that a set of sources (denoted by SEL_pi) are selected for pi. For the case that no

prior resource selection has been mode, we can have SEL_pi=S, i.e. all information sources.

8

RelCombined(sj | q)

RelqSim(sj | q)
RelReDDE(sj | q)

Centralized Sampled Database

(CSDb)

The collection of documents

that are sampled by Query

Based Sampling

Centralized Complete Database

(CCDb)

The collection of all documents

in all information sources

Source #1,

S1

Source #2,

S2

Source #N,

SN

Resource

Description for

Source #1,

S1

Resource

Description for

Source #2,

S2

Resource

Description for

Source #N,

SN

Set of Documents

downloaded by SSL

The set of documents

downloaded by the SSL

results merging algorithm

Docs downloaded

from Source #1 by

SSL

Docs downloaded

from Source #2 by

SSL

Docs downloaded

from Source #N

by SSL

SSL

Rel(si | pi)Past Query

pi

Test Query

q

Sim(pi | q)

QBS

ReDDE

Past Queries

pi

Queries Generated by

Query Based Sampling

Fig. 1 Sources of evidence for ReDDE and qSim resource selection approaches. A

federated search environment consists of several information sources. The set of all

documents in all information sources constitute the Centralized Complete Database

(CCDd) (shown on left). Note that CCDb is a hypothetical database, which is not

available in a federated search environment. Therefore Query Based Sampling (QBS)

samples documents from every information source in order to acquire the resource

descriptions. The set of all documents sampled by QBS form the centralized sampled

database (CSDb) which is used by ReDDE resource selection algorithm (Callan 2000;

Callan and Connell 2001). In this work, the combined resource selection approach that

uses the resource selection decisions of ReDDE, indirectly uses the CSDb (since ReDDE

uses it). For estimating of the relevance of information sources to past queries, SSL results

merging algorithm (Si and Callan 2003b) is used. In order to build the regression models,

SSL downloads a particular number of documents from each source; and the set of all

downloaded document constitute the SSL-downloaded documents database (shown on

right). Note that SSL-downloaded documents are used for the estimation of relevance of

information sources to past queries (i.e. Rel(sj | pi)) and for retrieval-based query

similarity estimation (i.e. Sim(pi | q)). Some statistics about the number of documents in

each database can be found in the discussion in Section 4.3

Second, we use the regression based Semi-Supervised Learning (SSL) method (Si and Callan

2003b) to merge the search results from those sources in SEL_pi into a single ranked list. SSL will

give us the ranked list of the most relevant documents from all information sources in SEL_pi to

the past query pi.

9

Third, the information sources in SEL_pi are assigned relevance scores proportional to how

many of their documents are in the single ranked list of relevant documents to pi (as; if a source is

more relevant to pi, more documents from this source will appear in the ranked list). Particularly,

if a source sj is not in SEL_pi, then Rel(sj | pi) = 0. If the source sj is in SEL_pi, then Rel(sj | pi) is

estimated by:

where T is a pre-defined number, and

1, ;
Re (|)

0, .

j

j

if doc s
l s doc

otherwise

∈
=

 (5)

The value T, i.e. how many documents are considered in the single ranked list, can be very small

like 20. In our experiments, it is set to 20. This helps to minimize the number of interactions with

information sources. A typical search engine (such as Google, Yahoo, etc.) only returns 10 or 20

search results or document ids in one page by default.

Please note that the SSL algorithm needs to download some documents for each past query pi

as training data to build the regression models for merging the search results from information

sources in SEL_pi in order to generate the single ranked list for that past query pi. This is due to

the fact although SSL can use the documents in the CSDb as the training documents to build the

regression models, it is not allowed to do so in order to evaluate the resource selection approach of

learning from past queries in a strict manner. The set of all SSL downloaded training documents

for all past queries create the database that is used for i) for the estimation of the relevance of

information sources to past queries, and ii) for the estimation of the similarities of past queries and

online queries (will be explained in the next section). In this work, 3 top documents are

downloaded as the training data for each past query pi to build the regression models for results

merging, in a similar manner as the minimum downloading method of the SSL results merging

algorithm (Si and Callan 2003b).

3.1.2 Estimating the Similarity Between Past Queries and Online Queries (i.e.

Sim(pi | q))

There are many ways to measure the similarities between queries (i.e. between past queries

and an online query), such as term-based approach (cosine measure, edit distance, latent semantic

analysis, etc.), selection-based approach and retrieval-based approach (by comparing the retrieval

lists). In our experiments, we use two approaches: i) a retrieval-based approach and ii) term-based

approach (cosine similarity) to calculate the similarities. Although the retrieval-based approach is

used as the default approach to calculate the query similarities, the results acquired with term-

based approach is also used to test the robustness of the proposed algorithms (i.e. to make sure that

the proposed techniques work well regardless of the different characteristics of different query

similarity estimation approaches).

Re (|)
Re (|)

j

j i

top T docs in the
merged ranked list

l s doc
l s p

T
∝ ∑

(4)

10

i) Retrieval-Based Query Similarity Estimation

Retrieval-based query similarity estimation approach compares a past query pi and an online

query q by comparing the similarity of the retrieval results of those queries on a collection. In this

work, the set of SSL-downloaded documents (explained in Section 3.1.1.) are used as the

collection that queries to be compared are searched on.

Particularly, let R_pi (or R_q) denote the search results (i.e. the ranked lists) of pi (or q) on the

SSL-downloaded documents database. The similarity of pi with respect to q is measured by

_ _

_ _ _

1
(|) (, ,)

| |
p qi

p doc p qi i
RR

Sim p q Score doc R R
i R ∈ ∩

∝ ∑
(6a)

where the score function for a matching document is given by:

_ _

_ _

_ _

(, ,)

)
1

i

i

i

p q

p q

p q

Score doc R R

doc rank in R doc rank in R

R R
= − −

(6b)

The value of Sim(pi | q) will be higher if the set of documents that are common to R_pi and R_q

rank similarly in R_pi and R_q. In practice, we cut each search results (R_pi and R_q) by only

focusing on the top 20% returned documents in their rank lists; and normalize the values of Sim(pi

| q) in a simple approach as follows:

_ max (|)

_ 0.8 _

i iMAXSIM q Sim p q

SIMTHRES q MAXSIM q

=

= ×
 (7)

_

((|) - _)

(_ - _)

 0, (|) ;

, .(|) i

i

i

SIMTHRES q

Sim p q SIMTHRES q

MAXSIM q SIMTHRES q

if Sim p q
normalized

otherwiseSim p q

<

∝

(8)

Retrieval-based similarity estimation approach is used as the default query similarity

estimation approach in this work due to the fact that term-based similarity estimation approaches

are not as successful in finding the similarity between past and online queries when queries have

limited number of terms. More detailed discussion on the comparison of retrieval-based similarity

approach and term-based similarity approach can be seen on Figure 2.

ii) Term-Based Query Similarity Estimation (Cosine Measure)

As a second method of calculating the similarities between past queries and online queries, we

use the common cosine similarity (Baeza-Yates and Ribeiro-Neto 1999). If we denote the bag-of-

words vector representations of past query pi and online query q as ip
���

and q
�

, the cosine similarity

is given by:

(|) cos(,) i
i

i

p q
Sim p q p q

i p q

•
∝ =

∗

��� �

��� �

��� �

(9)

where “ • ” is the dot product of these vectors. We use the common Okapi weighting scheme to

calculate similarities between past queries and online queries; and do normalization to scale the

similarity scores between 0 and 1.

11

We use term-based similarity as the secondary method of query similarity estimation approach

and used it only with the retrieval-based query similarity approach to test the robustness of the

proposed algorithms (i.e. to make sure that the proposed techniques work well regardless of the

different characteristics of different query similarity estimation approaches). More detailed

discussion on the comparison of retrieval-based similarity approach and term-based similarity

approach can be seen on Figure 2.

3.1.3 Estimating the Relevance of Information Sources to Online Queries (i.e. Rel(sj |

q))

For an online query q, we predict the relevance of information sources (i.e. Rel(sj | q)) based

on the estimated relevance information from similar past queries. It is calculated by:

Rel(|) Rel(|)Sim(|)j j i i

i

s q s p p q∝∑
(10)

In practice, we only consider the K most similar past queries when we calculate the above

summation. In our experiments, K is set to 5.

3.1.4 Resource Selection According to Rel(sj | q)

The last step is to simply rank the information sources according to the values of Rel(sj | q). A

larger value of Rel(sj | q) means that it is more likely for the source sj to contain more relevant

information with respect to q.

As we mentioned before, we can add a query q into the set of past queries after this query has

been processed.

3.1.5 Different Levels of Past Search Results

For a past query pi, the amount of search results will affect the quality of the estimated Rel(sj |

pi). The amount of results is measured by the number of information sources selected and searched

for generating search results. If more sources have been searched, the amount of search results for

the past query is more comprehensive.

We call the qSim algorithm by “qSim-Cut-X” where the number of sources selected and

searched for pi is X, or in other words |SEL_pi,|=X. In a real world federated search application

with N=100 information sources, the typical number of sources that are chosen for the search task

is about X = 5, 10 or at most 20.

3.2 Combined Approach for Resource Selection

In this subsection, we propose a simple way to combine qSim with other resource selection

algorithms like ReDDE to achieve better performance.

In particular, we focus on the combination of qSim and ReDDE. Assume that ReDDE

generates the score of a particular information source sj as Rel_ReDDE(sj | q) for resource selection.

We denote the corresponding resource selection score from qSim as Rel_qSim(sj | q), and then we

can simply combine the values of Rel_ReDDE(sj | q) and Rel_qSim(sj | q) in a linear way:

12

where λ is a real number within [0,1]. In our experiments, λ is set to 1/3. Finally, we generate the

resource selection results according to the values of Rel_combined(sj | q).

4 Experimental Methodology

It is most desirable to evaluate federated search algorithms with real world applications. However,

real world applications are usually short of relevance judgment data and it is difficult to obtain full

control of different components of the systems (e.g., varying retrieval algorithms of each

information source). These difficulties prevent us from doing thorough study with real world

applications. Instead, an extensive set of experiments was designed in research environments to

simulate real world applications such as (Avrahami et al. 2006).

4.1 Testbeds

Experiments were carried out on Trec123 and Trec4 testbeds. Details about Trec123 and

Trec4 datasets are given in Table 1.

Trec123-100col-bysource (Trec123): 100 information sources were created from TREC CDs

1, 2 and 3. They are organized by source and publication date.

Trec4-bysource (Trec4): 100 information sources were created from TREC4 according to the

sources of the documents in TREC4.

For Trec123 testbed, 50 queries were created from the title fields of TREC topics 51-100. For

Trec4, another 50 queries were created from the description fields of TREC topics 201-250. These

queries will be used as the set of test/online queries and will be referred to test, online or real

queries throughout the paper. The detailed statistics about the test queries can be found in Table 2.

All the 100 information sources were assigned one of three types of retrieval algorithms as

INQUERY (Callan et al. 1995), a unigram language model with linear smoothing (Lemur Toolkit;

Zhai and Lafferty 2001) and a TFIDF retrieval algorithm with the “ltc” weighing schema (Si and

Callan 2003b). All the algorithms were implemented with the lemur toolkit (Lemur Toolkit,

Ogilvie and Callan 2001).

4.2 Sampled and Simulated Past Query Sets

In a real world federated search system, there often exist many similar queries. However in

Trec123 and Trec4 testbeds, we don’t have many similar queries. In order to better simulate the

characteristics of a real world federated search system, we use two different approaches to

generate two different sets of past queries using the test queries that are available in Trec123 and

Trec4 datasets. Then the set of real queries that are available from Trec123 and Trec4 datasets are

used as the set of test/online queries and either one of the two sets of generated past queries are

_qSim

_combined

_qsimj

_ReDDE

_ReDDE

Rel (|)
Rel (|)

max Rel (|)

Rel (|)
 (1-)

max Rel (|)

j

j

j

j

j j

s q
s q

s q

s q

s q

λ

λ

∝

+

(11)

13

used as the set of past queries. Specifically the experiments are conducted separately on the two

sets of generated past queries to test the robustness of the proposed algorithms (i.e. to make sure

that the proposed techniques work well regardless of the different characteristics of the sets of

generated past queries).

The first approach of generating the set of past queries samples queries for each test/online

query by extracting the titles of some top ranking documents in the search results of that particular

test query. The past queries generated by this approach will be referred as sampled past queries.

The second approach of generating the set of past queries creates the past queries from test queries

by randomly removing some terms from the test queries. The past queries generated by this

approach will be referred as simulated past queries. To reiterate; the experiments are using either

the sampled past queries or the simulated past queries as the set of past queries. More detailed

explanation of these two approaches is given in the following two subsections.

4.2.1 Sampled Past Queries

This subsection describes the first approach to generate the sampled past queries. Two sets of

sampled past queries are generated for Trec123, which are called Trec123_T20 and Trec123_T10.

The past queries in Trec123_T20 (or Trec123_T10) were generated in the following way:

� A new Trec123 database called Sub_Trec123 is constructed, which consists of the

documents that exist in the original Trec123 database and that do not exist in the

CSDB of the ReDDE algorithm. The documents in CSDB of ReDDE are particularly

excluded in order not to exploit the advantage of the documents of CSDB of ReDDE

that are used as resource descriptors.

� For each test query, TOPX most similar documents that have a title (not all the

documents have a title) are retrieved from Sub_Trec123 database. The titles of these

TOPX documents construct the set of X sampled queries for this test query (i.e. each

title becomes a new sampled past query). Please note that X is 10 for Trec123_T10

and 20 for Trec123_T20 query set.

For 50 test queries, the above sampling process is repeated and a total of 1000 past queries are

acquired for Trec123_T20 and a total of 500 past queries are acquired for Trec123_T10. In the

Table 1. Summary statistics for Trec123 and Trec4 distributed IR testbeds.

Testbed

Size

(GB)

%umber of Documents

(x1000)

Size (MB)

Min Avg Max Min Avg Max
Trec123 3.2 0.7 10.8 39.7 28 32 42

Trec4 2.0 5.6 5.6 5.6 4 20 138

Table 2. TREC query set statistics.

Collections TREC

Topic Set

TREC Topic Field Average Length

(Words)

Trec123 51-100 Title 2.92
Trec4 201-250 Description 8.82

14

same way described above, two sets of sampled past queries are also generated for Trec4 testbed,

which are called Trec4_T20 and Trec4_T10. Trec4_T20 & Trec4_T10 have 1000 & 500 sampled

queries respectively.

In the experiments that used the sampled past queries as the set of past queries; the 50 real

queries are treated as test/online user queries, and the 1000 sampled past queries (i.e. the past

queries in Trec123_T20 or Trec4_T20 sampled past query sets) or 500 sampled queries (i.e. in

Trec123_T10 or Trec4_T10 sampled past query sets) are treated as the past queries. Details about

sampled past queries can be seen in Table 3a.

4.2.2 Simulated Past Queries

This subsection describes the second approach to generate the simulated past queries. Two

sets of simulated past queries are generated for Trec123, which are called Trec123_R1 and

Trec123_R2. Each set contains 50 simulated queries. The past queries in Trec123_R1 (or

Trec123_R2) were generated in the following way:

� For each test query, 1 (or 2) term(s) is (are) removed to generate a simulated past

query;

� For each simulated past query at least 2 terms are kept to make sure the simulated

past query is not too short to be meaningful. (e.g., in Trec123_R2, if a real query

only contains 3 terms, only 1 term is removed instead of 2 to make sure the simulated

query contains at least 2 terms.)

For Trec4 testbed, two levels of simulated past queries are also generated, which are called

Trec4_R2 and Trec4_R3. Each set contains 50 simulated queries. The past queries in Trec4_R2 (or

Trec4_R3) were generated by the following way:

� For each test query, 2 (or 3) terms are randomly removed to generate a simulated past

query;

� For each simulated past query at least 3 terms are kept.

Table 3a. Statistics of sampled past queries.

Collections

Sampled Past

Query Set

of TOP Docs

(titles extracted)

Average Length

(Words)

Trec123 Trec123_T20 20 8.98
Trec123 Trec123_T10 10 8.80

Trec4 Trec4_T20 20 8.53
Trec4 Trec4_T10 10 8.42

Table 3b. Statistics of simulated past queries.

Collections

Simulated Past

Query Set

of Words

Removed

Average Length

(Words)

Trec123 Trec123_R1 1 2.60
Trec123 Trec123_R2 2 2.16

Trec4 Trec4_R2 2 6.92
Trec4 Trec4_R3 3 6.12

15

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

Past Query Rank

N
o

rm
a
li

z
e
d

 S
im

il
a
ri

ty
 S

c
o

re

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Past Query Rank

N
o

rm
a
li

z
e
d

 S
im

il
a
ri

ty
 S

c
o

re

a) retrieval-based similarity on

Trec123_T20 past query set

b) term-based similarity on

Trec123_T20 past query set

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Past Query Rank

N
o

rm
a
li

z
e
d

 S
im

il
a
ri

ty
 S

c
o

re

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Past Query Rank

N
o

rm
a
li

z
e
d

 S
im

il
a
ri

ty
 S

c
o

re

c) retrieval-based similarity on

Trec123_R1 past query set

d) term-based similarity on

Trec123_R1 past query set

Fig. 2 Statistics of Retrieval-Based and Term-Based Similarity measures over Trec123_T20

and Trec123_R1 past query sets. Each online/test query has a set of similar past queries sorted

with respect to the normalized similarity scores while determining the set of most similar past

queries. The distribution of the normalized similarity scores between an online query and the

set of past queries give the information of the normalized similarity score of the most similar

past query at a particular rank with respect to an online query (i.e. the normalized similarity

score of the k
th

 most similar past query with the online query q). The average of the distribution

of normalized similarity scores across all online queries (y-axes) for ranks 1-to-50 (x-axes) is

calculated for Trec123_T20 and Trec123_R1 past query datasets with retrieval-based and term-

based similarity measures and is reported in each graph. Detailed view of each graph for the

top 10 most similar past queries (note that in this work we only choose the top 5 most similar

past queries for each test query) can be seen on the smaller graphs on the right top of each

graph.

An important observation is that for queries that have very limited number of terms (such

as Trec123_R1 and Trec123_R2) term-based similarity measure cannot calculate the similarity

between the past and online queries as precise as the retrieval based similarity approach as

shown on Graphs c & d. This is due to the fact that although there is some similarity between a

past query and an online query, term-based approach cannot detect it if there are no common

terms. But when the queries have enough number of terms, term-based approach also performs

as good as the retrieval-based approach in finding the similarity between past and online

queries as shown on Graphs a & b.

In the experiments that used the simulated past queries as the set of past queries; the 50 real

queries are treated as test/online user queries, and the 50 simulated queries (i.e. in Trec123_R1,

Trec123_R2, Trec4_R2 or Trec4_R3 simulated past query sets) are treated as past queries.

Generally speaking, simulated past queries in Trec123_R1 are more similar than Trec123_R2 with

0 2 4 6 8 10
0.4

0.6

0.8

1

Past Query Rank

N
o

rm
a
li
z
e
d

 S
im

il
a
ri

ty
 S

c
o

re

0 2 4 6 8 10
0.4

0.6

0.8

1

Past Query Rank

N
o

rm
a
li
z
e
d

 S
im

il
a
ri

ty
 S

c
o

re

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Past Query Rank

N
o

rm
a
li
z
e
d

 S
im

il
a
ri

ty
 S

c
o

re

0 2 4 6 8 10
0.4

0.6

0.8

1

Past Query Rank

N
o

rm
a
li
z
e
d

 S
im

il
a
ri

ty
 S

c
o

re

16

respect to the Trec123 online queries and simulated past queries in Trec4_R2 are more similar

than Trec4_R3 with respect to the Trec4 online queries. Details about simulated past queries can

be seen in Table 3b.

Since the processes of generating the simulating queries include randomness, each set of

simulated queries (e.g., Trec123_R1) has been generated for 15 times. Accordingly, the resource

selection experiments that use simulated past queries are run 15 times for each set of simulated

queries and the average results of all of these runs are reported for evaluation.

4.3 Baseline Method

In the experiments, we use ReDDE to do resource selection for past queries (i.e. to determine

SEL_pi). Also, ReDDE is a baseline resource selection algorithm to compare with qSim.

For qSim, there are either 1000 or 500 past queries at most (i.e. for sampled queries), and for

each past query 3 top documents per source are downloaded by SSL in order to build a regression

model to merge search results into a single ranked list. So in total, we need to download at most

3000 or 1500 documents per source. The number is actually much smaller than 3000 or 1500 as

only a very small portion of sources are selected for searching each past query: for qSim-Cut-10 on

Trec123(or Trec4)_T10 we download about 150 and for qSim-Cut-10 on Trec123(or Trec4)_T20

we download about 300 documents per source on average.

For ReDDE, we build the CSDb, which contains 150 documents per source by QBS. All other

parameters in ReDDE are the same as that in [23].

Although the types of evidence that qSim and ReDDE use are different and it will not be

perfectly fair to make a comparison, they are still comparable by the amount of documents they

use.

4.4 Evaluation Metric

The recall metric Rk has been commonly used to evaluate resource selection algorithms

[2,7,23]. Let B denote a desirable ranking of available information sources by Relevance-Based

Ranking (i.e., ranking of sources by the actual number of relevant documents), and E a ranking

provided by a resource selection algorithm. Let Bi and Ei denote the number of relevant documents

in the ith ranked database of B or E. The metric Rk is defined as follows:

∑
∑

=

==
k

i
i

k

i
i

k

B

E
R

1

1 (11)

The metric above measures what percentage the difference is between the estimated ranking and

the most desirable ranking. Therefore, at a fixed k, a larger Rk value indicates a better ranking.

5 Experiment Results

An extensive set of experiments are conducted to address the following six questions:

17

1. How good is the new resource selection algorithm by learning results from past

queries? Experiments are conducted to compare the new resource selection algorithm

with the state-of-the-art ReDDE resource selection that uses static sampled

information for resource selection.

2. How does the new resource selection algorithm behave when different amount of

information sources have been searched for past queries? Experiments are

conducted to show the performance of the new resource selection algorithm when

different amount of information sources have been searched for past queries.

3. How does the new resource selection algorithm behave with different amount of past

queries? Experiments are conducted to show the performance of the new resource

selection algorithm with more or less amount of past queries.

4. How does the new resource selection algorithm behave with different characteristics

of past queries? Experiments are conducted to show the performance of the new

resource selection algorithm with more or less similar past queries.

Table 4a. Comparison between ReDDE with qSim-Cut-10 and qSim-Cut-20 on Trec123

dataset with Trec123_T20 sampled past query set. Please note that the results for qSim-

Cut-10 on Trec123 dataset with Trec123_T20 sampled past query set has been reported

in our previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec123

qSim-Cut-10 on

Trec123_T20

qSim-Cut-20 on

Trec123_T20

1 0.2445 0.3414 (39.66%) 0.3961 (62.02%)
2 0.3121 0.3675 (17.73%) 0.4317 (38.30%)
3 0.3188 0.4021 (26.15%) 0.4108 (28.86%)
4 0.3350 0.3929 (17.31%) 0.4326 (29.17%)
5 0.3503 0.4108 (17.26%) 0.4332 (23.67%)
6 0.3745 0.4093 (09.30%) 0.4370 (16.70%)
7 0.3889 0.4194 (07.84%) 0.4475 (15.08%)
8 0.4025 0.4373 (08.66%) 0.4686 (16.44%)
9 0.4108 0.4429 (07.83%) 0.4865 (18.45%)
10 0.4325 0.4577 (05.83%) 0.5101 (17.94%)

Overall Improvement 15.76% 26.67%

Table 4b. Comparison between ReDDE with qSim-Cut-10 and qSim-Cut-20 on Trec4

dataset with Trec4_T20 sampled past query set. Please note that the results for qSim-

Cut-10 on Trec4 dataset with Trec4_T20 sampled past query set has been reported in

our previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec4
qSim-Cut-10 on

Trec4_T20

qSim-Cut-20 on

Trec4_T20

1 0.2739 0.3221 (17.65%) 0.2514 (-08.16%)
2 0.3375 0.3288 (-02.56%) 0.3675 (08.89%)
3 0.3031 0.3295 (08.73%) 0.3642 (20.17%)
4 0.3101 0.3499 (12.85%) 0.3551 (14.51%)
5 0.3095 0.3590 (16.01%) 0.3606 (16.51%)
6 0.3247 0.3623 (11.60%) 0.3746 (15.39%)
7 0.3339 0.3654 (09.44%) 0.3842 (15.08%)
8 0.3599 0.3681 (02.29%) 0.3974 (10.42%)
9 0.3753 0.3678 (-01.96%) 0.4010 (06.87%)
10 0.3905 0.3767 (-03.52%) 0.4077 (04.41%)

Overall Improvement 7.05% 10.41%

18

5. How does the new resource selection algorithm behave when different query

similarity estimation approaches are used to calculate the similarity between a test

query and the set of past queries? Experiments are conducted to show the

performance of the new resource selection algorithm with retrieval-based query

similarity estimation approach and term-based query similarity estimation approach.

6. Can the combined resource selection approach further improve the accuracy of

resource selection? Experiments are conducted to compare the combined approach

with the two approaches of either learning from past queries or using static sampled

information.

5.1 Comparison between qSim and ReDDE

Table 4a and Table 4b show the results of qSim and ReDDE on the Trec123 and Trec4

testbeds with Trec123_T20 and Trec4_T20 sampled query sets. In the same way Table 5a and

Table 5b show the corresponding results with Trec123_R1 and Trec4_R2 simulated query sets.

Table 5a. Comparison between ReDDE with qSim-Cut-10 and qSim-Cut-20 on Trec123

dataset with Trec123_R1 simulated past query set. Please note that the results for qSim-

Cut-10 on Trec123 dataset with Trec123_R1 sampled past query set has been reported in

our previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec123

qSim-Cut-10 on

Trec123_R1

qSim-Cut-20 on

Trec123_R1

1 0.2445 0.4003 (63.71%) 0.4126 (68.78%)

2 0.3121 0.4229 (35.47%) 0.4523 (44.91%)

3 0.3188 0.4242 (33.06%) 0.4653 (45.94%)

4 0.3350 0.4372 (30.53%) 0.4784 (42.81%)

5 0.3503 0.4410 (25.90%) 0.4812 (37.35%)

6 0.3745 0.4336 (15.79%) 0.4790 (27.91%)

7 0.3889 0.4356 (12.02%) 0.4830 (24.21%)

8 0.4025 0.4392 (09.15%) 0.4969 (23.47%)

9 0.4108 0.4454 (08.43%) 0.4995 (21.62%)

10 0.4325 0.4461 (03.14%) 0.5062 (17.06%)

Overall Improvement 23.72% 35.41%

Table 5b. Comparison between ReDDE with qSim-Cut-10 and qSim-Cut-20 on Trec4

dataset with Trec4_R2 simulated past query set. Please note that the results for qSim-

Cut-10 on Trec4 dataset with Trec4_R2 sampled past query set has been reported in our

previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec4

qSim-Cut-10 on

Trec4_R2

qSim-Cut-20 on

Trec4_R2

1 0.2739 0.2882 (05.23%) 0.3096 (13.07%)
2 0.3375 0.3065 (-09.20%) 0.3294 (-02.41%)
3 0.3031 0.3176 (04.80%) 0.3433 (13.28%)
4 0.3101 0.3306 (06.62%) 0.3473 (11.98%)
5 0.3095 0.3447 (11.37%) 0.3627 (17.19%)
6 0.3247 0.3554 (09.45%) 0.3707 (14.17%)
7 0.3339 0.3665 (09.76%) 0.3794 (13.62%)
8 0.3599 0.3788 (05.24%) 0.3923 (09.00%)
9 0.3753 0.3896 (03.83%) 0.4008 (06.82%)
10 0.3905 0.3972 (01.74%) 0.4159 (06.51%)

Overall Improvement 4.88% 10.32%

19

The performance is evaluated by the Recall metric Rk defined in section 4.4, where “# Selected

Sources” in the table is the k in Rk. The percentages within the parentheses are the relative

improvements of qSim over ReDDE. The overall improvement is calculated by taking the average

of the improvement percentages when 1,2,…,10 sources are selected.

As shown from Table 4a, Table 4b, Table 5a and Table 5b, qSim-Cut-10 always generates

much better results than ReDDE. Thus, qSim can be considered as a very effective algorithm for

resource selection.

5.2 The Performance of qSim with Different Amounts of Search Results from

Past Queries

Table 4a & Table 4b (with sampled past queries) and Table 5a & Table 5b (with simulated past

queries) also show that searching more information sources (i.e. X = 20 in this case) for past

queries can help us do a better resource selection for online queries (than searching fewer

information sources (i.e. X=10)). This is a reasonable result as the search results of past queries in

qSim-Cut-20 provide more information than the search results of past queries in qSim-Cut-10.

Table 6a. Comparison between different amounts of sampled past query sets on Trec123

dataset with Trec123_T10 and Trec123_T20 sampled past query sets. Please note that

the results for qSim-Cut-10 on Trec123 dataset with Trec123_T20 sampled past query

set has been reported in our previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec123

qSim-Cut-10 on

Trec123_T10

qSim-Cut-10 on

Trec123_T20

1 0.2445 0.2702 (10.54%) 0.3414 (39.66%)
2 0.3121 0.3445 (10.37%) 0.3675 (17.73%)
3 0.3188 0.3529 (10.70%) 0.4021 (26.15%)
4 0.3350 0.3701 (10.49%) 0.3929 (17.31%)
5 0.3503 0.3901 (11.36%) 0.4108 (17.26%)
6 0.3745 0.3916 (04.58%) 0.4093 (09.30%)
7 0.3889 0.4062 (04.47%) 0.4194 (07.84%)
8 0.4025 0.4184 (03.97%) 0.4373 (08.66%)
9 0.4108 0.4193 (02.08%) 0.4429 (07.83%)
10 0.4325 0.4334 (00.22%) 0.4577 (05.83%)

Overall Improvement 6.88% 15.76%

Table 6b. Comparison between different amounts of sampled past query sets on Trec4

dataset with Trec4_T10 and Trec4_T20 sampled past query sets. Please note that the

results for qSim-Cut-10 on Trec4 dataset with Trec4_T20 sampled past query set has

been reported in our previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec4

qSim-Cut-10 on

Trec4_T10

qSim-Cut-10 on

Trec4_T20

1 0.2739 0.3329 (21.56%) 0.3221 (17.65%)
2 0.3375 0.3222 (04.52%) 0.3288 (-02.56%)
3 0.3031 0.3366 (11.07%) 0.3295 (08.73%)
4 0.3101 0.3345 (07.89%) 0.3499 (12.85%)
5 0.3095 0.3217 (03.96%) 0.3590 (16.01%)
6 0.3247 0.3363 (03.57%) 0.3623 (11.60%)
7 0.3339 0.3455 (03.49%) 0.3654 (09.44%)
8 0.3599 0.3448 (-04.20%) 0.3681 (20.29%)
9 0.3753 0.3441 (-08.29%) 0.3678 (-01.96%)

10 0.3905 0.3592 (-07.98%) 0.3767 (-03.52%)

Overall Improvement 2.65% 7.05%

20

However, we should be aware that searching more information sources will increase the

costs, i.e. it will require more documents to be downloaded and lead to more computational costs

for merging the search results. In a federated search environment of 100 information sources,

qSim-Cut-10 may be a more practical algorithm for resource selection.

5.3 The Performance of qSim with Different Amounts of Past Queries

The results in Table 6a and Table 6b indicate that the performance of qSim-Cut-10 is better with

Trec123_T20 and Trec4_T20 past query sets than Trec123_T10 and Trec4_T10 past query sets

respectively. This demonstrates that more past queries can provide better information for qSim to

achieve better resource selection recalls. In a real world scenario, user queries may be similar or

even duplicates. Therefore, a search system can effectively utilize the search results of more

amounts of past queries to get better performance.

Table 7a. Comparison between different similarity levels of simulated past query sets on

Trec123 dataset with Trec123_R2 and Trec123_R1 simulated past query sets. Please

note that the results for qSim-Cut-10 on Trec123 dataset with Trec123_R1 sampled past

query set has been reported in our previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec123

qSim-Cut-10 on

Trec123_R2

qSim-Cut-10 on

Trec123_R1

1 0.2445 0.3745 (53.16%) 0.4003 (63.71%)
2 0.3121 0.3887 (24.53%) 0.4229 (35.47%)
3 0.3188 0.3923 (23.03%) 0.4242 (33.06%)
4 0.3350 0.3996 (19.31%) 0.4372 (30.53%)
5 0.3503 0.4042 (15.38%) 0.4410 (25.90%)
6 0.3745 0.4053 (08.25%) 0.4336 (15.79%)
7 0.3889 0.4106 (05.58%) 0.4356 (12.02%)
8 0.4025 0.4228 (05.07%) 0.4392 (09.15%)
9 0.4108 0.4294 (04.56%) 0.4454 (08.43%)
10 0.4325 0.4309 (-00.35%) 0.4461 (03.14%)

Overall Improvement 15.85% 23.72%

Table 7b. Comparison between different similarity levels of simulated past query sets on

Trec4 dataset with Trec4_R3 and Trec4_R2 simulated past query sets. Please note that

the results for qSim-Cut-10 on Trec4 dataset with Trec4_R2 sampled past query set has

been reported in our previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec4

qSim-Cut-10 on

Trec4_R3

qSim-Cut-10 on

Trec4_R2

1 0.2739 0.2828 (03.27%) 0.2882 (05.23%)
2 0.3375 0.3065 (-09.20%) 0.3065 (-09.20%)
3 0.3031 0.3183 (05.04%) 0.3176 (04.80%)
4 0.3101 0.3237 (04.38%) 0.3306 (06.62%)
5 0.3095 0.3340 (07.92%) 0.3447 (11.37%)
6 0.3247 0.3424 (05.44%) 0.3554 (09.45%)
7 0.3339 0.3567 (06.84%) 0.3665 (09.76%)
8 0.3599 0.3727 (03.55%) 0.3788 (05.24%)
9 0.3753 0.3823 (01.86%) 0.3896 (03.83%)

10 0.3905 0.3901 (-00.09%) 0.3972 (01.74%)

Overall Improvement 2.90% 4.88%

21

5.4 The Performance of qSim with Different Similarity Levels of Past Queries

The results in Table 7a and Table 7b indicate that the performance of qSim-Cut-10 is better with

Trec123_R1 and Trec4_R2 past query sets than Trec123_R2 and Trec4_R3 past query sets

respectively. This demonstrates that more similar past queries with respect to online/test queries

can provide better information for qSim to achieve better resource selection recalls. A search

system can effectively utilize the search results of more similar past queries to get better

performance.

5.5 The Performance of qSim with Different Query Similarity Estimation

Approaches

Table 8a and Table 8b show the results of qSim and ReDDE on the Trec123 testbed with

Trec123_T20 sampled query sets. As shown from Table 8a and Table 8b, qSim-Cut-10 always

generates much better results than ReDDE when either of the two query similarity estimation

Table 8a. Comparison between qSim-Cut-10 with retrieval-based similarity and qSim-Cut-

10 with term-based similarity on Trec123 dataset with Trec123_T20 sampled past query set.

Please note that the results for qSim-Cut-10 on Trec123 dataset with Trec123_T20 sampled

past query set has been reported in our previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec123

qSim-Cut-10 with

Retrieval-Based Similarity

on Trec123_T20

qSim-Cut-10 with

Term-Based Similarity

on Trec123_T20

1 0.2445 0.3414 (39.66%) 0.3951 (61.60%)
2 0.3121 0.3675 (17.73%) 0.3982 (27.55%)
3 0.3188 0.4021 (26.15%) 0.4558 (42.95%)
4 0.3350 0.3929 (17.31%) 0.4537 (35.47%)
5 0.3503 0.4108 (17.26%) 0.4782 (36.50%)
6 0.3745 0.4093 (09.30%) 0.4798 (28.12%)
7 0.3889 0.4194 (07.84%) 0.4883 (25.57%)
8 0.4025 0.4373 (08.66%) 0.4989 (23.97%)
9 0.4108 0.4429 (07.83%) 0.5061 (23.21%)
10 0.4325 0.4577 (05.83%) 0.5030 (16.31%)

Overall Improvement 15.76% 32.12%

Table 8b. Comparison between qSim-Cut-10 with retrieval-based similarity and qSim-Cut-

10 with term-based similarity on Trec4 dataset with Trec4_T20 sampled past query set.

Please note that the results for qSim-Cut-10 on Trec4 dataset with Trec4_T20 sampled past

query set has been reported in our previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec4

qSim-Cut-10 with

Retrieval-Based Similarity

on Trec4_T20

qSim-Cut-10 with

Term-Based Similarity

on Trec4_T20

1 0.2739 0.3221 (17.65%) 0.3437 (25.49%)
2 0.3375 0.3288 (-02.56%) 0.4067 (20.51%)
3 0.3031 0.3295 (08.73%) 0.3955 (30.50%)
4 0.3101 0.3499 (12.85%) 0.3750 (20.93%)
5 0.3095 0.3590 (16.01%) 0.3713 (19.97%)
6 0.3247 0.3623 (11.60%) 0.3802 (17.10%)
7 0.3339 0.3654 (09.44%) 0.4031 (20.72%)
8 0.3599 0.3681 (02.29%) 0.4114 (14.29%)
9 0.3753 0.3678 (-01.96%) 0.4152 (10.64%)

10 0.3905 0.3767 (-03.52%) 0.4211 (07.85%)

Overall Improvement 7.05% 18.80%

22

approaches, namely retrieval-based query similarity estimation and term-based query similarity

estimation, is used. Thus, qSim can be considered as a very effective algorithm for resource

selection regardless of the query similarity estimation approach. In this set of experiments, only

Trec123_T20 dataset is used. This is because of the fact that both of retrieval-based query

similarity estimation and term-based similarity estimation approaches can find the similarities of

past queries and online queries successfully on this past query dataset as shown and discussed on

Figure 2.

An interesting observation with this set of experiments is that qSim with term-based query

similarity estimation approach significantly outperforms qSim with retrieval-based similarity

estimation approach. Although it is an interesting direction to explore the effect of using different

query similarity estimation approaches on the resource selection effectiveness, it is beyond the

scope of this paper. In this paper, we utilize retrieval-based similarity measurement in all of the

experiments since this measurement is available for different types of queries and testbeds. As

mentioned before, in this set of experiments we are only interested in the robustness of qSim

algorithm with respect to different query similarity estimation approaches.

Table 9a. Comparison between qSim-Cut-10 with the Combined Approach on Trec123

dataset with Trec123_T20 sampled past query set. Please note that the results for qSim-

Cut-10 on Trec123 dataset with Trec123_T20 sampled past query set has been reported

in our previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec123

qSim-Cut-10 on

Trec123_T20

Combined Approach on

Trec123_T20

1 0.2445 0.3414 (39.66%) 0.3580 (46.41%)
2 0.3121 0.3675 (17.73%) 0.3758 (20.38%)
3 0.3188 0.4021 (26.15%) 0.3884 (21.82%)
4 0.3350 0.3929 (17.31%) 0.4035 (20.46%)
5 0.3503 0.4108 (17.26%) 0.4213 (16.21%)
6 0.3745 0.4093 (09.30%) 0.4352 (16.21%)
7 0.3889 0.4194 (07.84%) 0.4432 (13.98%)
8 0.4025 0.4373 (08.66%) 0.4467 (11.00%)
9 0.4108 0.4429 (07.83%) 0.4448 (08.28%)

10 0.4325 0.4577 (05.83%) 0.4567 (05.61%)

Overall Improvement 15.76% 18.44%

Table 9b. Comparison between qSim-Cut-10 with the Combined Approach on Trec4

dataset with Trec4_T20 sampled past query set. Please note that the results for qSim-Cut-

10 on Trec4 dataset with Trec4_T20 sampled past query set has been reported in our

previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec4

qSim-Cut-10 on

Trec4_T20

Combined Approach

on Trec4_T20

1 0.2739 0.3221 (17.65%) 0.3347 (22.22%)
2 0.3375 0.3288 (-02.56%) 0.3370 (-00.15%)
3 0.3031 0.3295 (08.73%) 0.3374 (11.32%)
4 0.3101 0.3499 (12.85%) 0.3397 (09.54%)
5 0.3095 0.3590 (16.01%) 0.3627 (17.19%)
6 0.3247 0.3623 (11.60%) 0.3607 (11.10%)
7 0.3339 0.3654 (09.44%) 0.3737 (11.91%)
8 0.3599 0.3681 (02.29%) 0.3751 (04.20%)
9 0.3753 0.3678 (-01.96%) 0.3848 (02.55%)
10 0.3905 0.3767 (-03.52%) 0.3949 (01.16%)

Overall Improvement 7.05% 9.10%

23

5.6 The Performance of Combining qSim and ReDDE

Table 9a & Table 9b (with sampled past queries) and Table 10a & Table 10b (with simulated past

queries) compare the performances of ReDDE, qSim and the combined approach. The results

show that the combined approach further improves the performance of qSim. The improvement is

due to the integration of the two types of approaches: learning from past queries and using static

sampled information. It has its advantages to integrate two types of evidence. Especially when a

new rare test/online query is encountered, the combined approach will be a good choice for the

system to perform at least as good as the ReDDE algorithm or even better than that. Since a real

world federated search system usually has access to both types of evidence, the combined

approach is a practical solution.

Table 10a. Comparison between qSim-Cut-10 with the Combined Approach on Trec123

dataset with Trec123_R1 simulated past query set. Please note that the results for qSim-

Cut-10 on Trec123 dataset with Trec123_R1 sampled past query set has been reported in

our previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec123

qSim-Cut-10 on

Trec123_R1

Combined Approach on

Trec123_R1

1 0.2445 0.4003 (63.71%) 0.3982 (62.87%)
2 0.3121 0.4229 (35.47%) 0.4205 (34.72%)
3 0.3188 0.4242 (33.06%) 0.4355 (36.59%)
4 0.3350 0.4372 (30.53%) 0.4407 (31.58%)
5 0.3503 0.4410 (25.90%) 0.4513 (28.80%)
6 0.3745 0.4336 (15.79%) 0.4442 (18.60%)
7 0.3889 0.4356 (12.02%) 0.4390 (12.88%)
8 0.4025 0.4392 (09.15%) 0.4472 (11.11%)
9 0.4108 0.4454 (08.43%) 0.4560 (11.01%)
10 0.4325 0.4461 (03.14%) 0.4543 (05.04%)

Overall Improvement 23.72% 25.32%

Table 10b. Comparison between qSim-Cut-10 with the Combined Approach on Trec4

dataset with Trec4_R2 simulated past query set. Please note that the results for qSim-Cut-

10 on Trec4 dataset with Trec4_R2 sampled past query set has been reported in our

previous work (Cetintas et al. 2009).

Selected

Sources

ReDDE on

Trec4

qSim-Cut-10 on

Trec4_R2

Combined Approach

on Trec4_R2

1 0.2739 0.2882 (05.23%) 0.2953 (07.84%)
2 0.3375 0.3065 (-09.20%) 0.3126 (-07.39%)
3 0.3031 0.3176 (04.80%) 0.3169 (04.55%)
4 0.3101 0.3306 (06.62%) 0.3288 (06.04%)
5 0.3095 0.3447 (11.37%) 0.3465 (11.96%)
6 0.3247 0.3554 (09.45%) 0.3626 (11.67%)
7 0.3339 0.3665 (09.76%) 0.3713 (11.22%)
8 0.3599 0.3788 (05.24%) 0.3813 (05.95%)
9 0.3753 0.3896 (03.83%) 0.3961 (05.54%)
10 0.3905 0.3972 (01.74%) 0.4094 (04.86%)

Overall Improvement 4.88% 6.22%

24

6 Conclusion

Resource selection is an important component for a federated text search system. A large body of

resource selection algorithms has been proposed in prior research. Most prior research of resource

selection utilized static information of available information sources that is sampled in the offline

manner and estimated the utilities of information sources.

However, most prior research ignored a large amount of information of the results from past

queries. In a real world federated search system, there often exist many similar queries like the

case of Web search. The results of similar past queries may provide very valuable information to

guide the resource selection decision of a current user query.

This paper proposes a new resource selection approach called qSim to utilize the search

results of past queries for estimating the utilities of available information sources for a specific

user query. For a user query, the algorithm first calculates the similarity measurements between

the current user query and the past queries. The qSim algorithm then estimates the utilities of

available information sources by the weighted combination of search results of past queries with

respect to the query similarity measurements. The qSim algorithm does not require relevance

judgment of past queries and only uses the ranked lists of past queries, which are generated by

regression based results merging method. Furthermore, a combined resource selection approach is

proposed in this paper to combine the resource selection results of the qSim algorithm and the

ReDDE algorithm that uses static information.

An extensive set of experiments are conducted on two testbeds with several configurations to

show the effectiveness of the new resource selection algorithms. The proposed qSim resource

selection algorithm is compared with the ReDDE algorithm. When there exist similar past queries

for test queries, our new qSim algorithm performs better than the ReDDE algorithm. Furthermore

when there are new online queries for which there are no similar past queries, the qSim algorithm

mostly utilizes the combined approach and still generates substantial improvements over the

ReDDE algorithm.

There are several directions to extend the research in this paper. For example, we have shown

that different query similarity estimation approaches have different performance gains; therefore a

more detailed analysis of several query similarity estimation approaches and utilization of a more

sophisticated query similarity estimation approach may help better identify similar past queries for

more accurate resource selection results. Another possibility is that we can propose query-specific

combination approach, which automatically adjusts the weights on the ranked lists from qSim and

ReDDE with respect to the characteristics of user queries.

7 References

Avrahami , T. T., Yau, L., Si, L., and Callan, J. (2006). The FedLemur project: Federated search in

the real world. Journal of the American Society for Information Science and Technology.

Arguello, J., Diaz, F., Callan, J., and Crespo, J. (2009). Sources of evidence for vertical selection.

In Proceedings of the 32nd international ACM SIGIR Conference on Research and

Development in information Retrieval.

25

Baillie, M., Carman, M. J. and Crestani, F. (2009). A topic-based measure of resource description

quality for distributed information retrieval. In Proceedings of the 31st European Conference

on Information Retrieval, pp. 485-496.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. ACM Press,

Series/Addison Wesley, 75-82.

Callan, J. (2000). Distributed information retrieval. In W.B. Croft, editor, Advances in Information

Retrieval. Kluwer Academic Publishers. (pp. 127-150).

Callan, J. and Connell, M. (2001). Query Based Sampling of Text Databases. In ACM

Transactions on Information Systems, 19(2). (pp. 97-130).

Callan, J., Croft, W.B., and Broglio, J. (1995). TREC and TIPSTER experiments with INQUERY.

Information Processing and Management, 31(3). (pp. 327-343).

Cetintas, S. and Si, L. (2007). Exploration of the tradeoff between effectiveness and efficiency for

results merging in federated search. In Proceedings of the 30th Annual international ACM

SIGIR Conference on Research and Development in information Retrieval.

Cetintas, S., Si, L., and Yuan, H. (2009). Learning from past queries for resource selection. In

Proceedings of the 18
th

 International Conference on Information and Knowledge

Management. (to appear in 4 pages).

Craswell, N. (2000). Methods for distributed information retrieval. Ph. D. thesis, The Australian

Nation University.

Diaz, F. and Arguello, J. (2009). Adaptation of offline vertical selection predictions in the

presence of user feedback. In Proceedings of the 32nd international ACM SIGIR Conference

on Research and Development in information Retrieval.

D'Souza, D., Thom, J., and Zobel, J. (2000). A comparison of techniques for selecting text

collections. In Proceedings of the 11th Australasian Database Conference

French, J.C., Powell, A.L., Callan, J., Viles, C.L., Emmitt, T., Prey, K.J., and Mou, Y. (1999).

Comparing the performance of database selection algorithms. In Proceedings of the 22nd

Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval.

Fuhr, N. (1999). A Decision-Theoretic approach to database selection in networked IR. ACM

Transactions on Information Systems, 17(3). (pp. 229-249).

Gravano, L., Chang, C., Garcia-Molina, H., and Paepcke, A. (1997). STARTS: Stanford proposal

for internet meta-searching. In Proceedings of the 20th ACM-SIGMOD International

Conference on Management of Data.

Gravano, L., Ipeirotis, P. and Sahami, M. (1999). GlOSS: Text-Source discovery over the Internet.

ACM Transactions on Information Systems.

Hawking, D. and Thistlewaite, P. (1999). Methods for information server selection. ACM

Transactions on Information Systems, 17(1). (pp. 40-76).

Ipeirotis, P. and Gravano, L. (2002). Distributed search over the hidden web: Hierarchical database

sampling and selection. In Proceedings of the 28th International Conference on Very Large

Databases (VLDB).

Kirsch, S. T. (1997). Document retrieval over networks wherein ranking and relevance scores are

computed at the client for multiple database documents. U.S. Patent 5,659,732.

Larson, R. (2002). A logistic regression approach to distributed information retrieval. In

Proceedings of the 25
th

 Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval.

Le Calv, A., Savoy, J. (2000). Database merging strategy based on logistic regression.

Information Processing & Management, 36(3).

The lemur toolkit. http://www.cs.cmu.edu/~lemur

Lu, J. and Callan, J. (2003). Content-based information retrieval in peer-to-peer networks. In

Proceedings of the 12th International Conference on Information and Knowledge

Management.

Lu, Y., Meng, W., Shu, L., Yu, C. T. and Liu, K. (2005). Evaluation of results merging strategies

for metasearch engines. In Proceedings of the 6
th

 International Conference on Web

Information Systems Engineering.

Meng, W., Yu, C.T. and Liu, K.L. (2002). Building efficient and effective metasearch engines.

ACM Computing Survey 34(1).

Nottelmann, H. and Fuhr, N. (2003). Evaluating different method of estimating retrieval quality

for resource selection. In Proceedings of the 25th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval.

26

Nottelmann, H. and Fuhr, N. (2003). The MIND architecture for heterogeneous multimedia

federated digital libraries. ACM SIGIR 2003 Workshop on Distributed Information Retrieval.

Ogilvie, P. and Callan, J. (2001) Experiments using the Lemur toolkit. In the Proceedings of the

10th Text Retrieval Conference, TREC 2001. NIST Special Publication 500-250, pp. 103-108

Powell, A.L., French, J.C., Callan, J., Connell, M., and Viles, C.L. (2000). The impact of database

selection on distributed searching. In Proceedings of the 23rd Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval.

Shokouhi, M. (2007). Central-rank-based collection selection in uncooperative distributed

information retrieval. In Proceedings of the 29
th

 European Conference on Information

Retrieval, pp.160-172.

Shokouhi, M. and Zobel, J. (2007). Federated text retrieval from uncooperative overlapped

collections. In Proceedings of the 30th Annual international ACM SIGIR Conference on

Research and Development in information Retrieval

Si, L. and Callan, J. (2003a). Relevant document distribution estimation method for resource

selection. In Proceedings of the 26th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval.

Si, L. and Callan, J. (2003b). A Semi-Supervised learning method to merge search engine results.

ACM Transactions on Information Systems, 21(4). (pp. 457-491).

Si, L. and Callan, J. (2004). Unified Utility Maximization Framework for Resource Selection. In

Proceedings of the 9th International Conference on Information and Knowledge Management.

Voorhees, E., Gupta, N. K., and Laird, B. J. (1995). Learning collection fusion strategies. In Proc.

of the 18
th

 Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval.

Xu, J. and Callan, J. (1998). Effective retrieval with distributed collections. In Proceedings of the

21
st

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval.

Yuwono, B. and Lee, D. (1997). Server ranking for distributed text retrieval systems on the

internet. In Proceedings of the 5th International Conference on Database Systems for

Advanced Applications (DASFAA).

Zhai, C.X. and Lafferty, J. (2001). A study of smoothing methods for language models applied to

ad hoc information retrieval. In Proceedings of the 26th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval.

	Using Past Queries for Resource Selection in Distributed Information Retrieval
	Report Number:
	

	tmp.1336503974.pdf.2EABi

