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Abstract  

 

Federated text search provides a unified search interface for multiple search engines of distributed 

text information sources. Resource selection is an important component for federated text search, 

which selects a small number of information sources that contain the largest number of relevant 

documents for a user query. Most prior research of resource selection focused on selecting 

information sources by analyzing static information of available information sources that is 

sampled in the offline manner. On the other hand, most prior research ignored a large amount of 

valuable information like the results from past queries. 

This paper proposes a new resource selection technique (which is called qSim) that utilizes the 

search results of past queries for estimating the utilities of available information sources for a 

specific user query. The new algorithm calculates the query similarities between a specific query 

and all past queries, and then estimates the utilities of available information sources by the 

weighted combination of results of past queries with respect to the query similarities. The new 

resource selection algorithm is practical as it does not require relevance judgment of past queries 

and it only utilizes regression based results merging method to rank the results of past queries. 

Furthermore, a combined resource selection approach is proposed to integrate the two approaches 

of learning from past queries and using static sampled information. An extensive set of 

experiments demonstrate the effectiveness of the new resource selection algorithm of learning 

from past queries as well as the combined resource selection algorithm in several configurations. 

 

Keywords:  Past Queries, Resource Selection, Federated Search 
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1 Introduction 

 

The proliferation of searchable text information sources on local area networks and the Internet 

creates a problem of finding information that is distributed among many text information sources 

(federated text search) (Callan 2000; Craswell 2000; Meng et al. 2002). Federated text search, also 

known as distributed information retrieval, includes three sub-problems. First, information about 

the contents of each individual information source must be acquired. This task is called resource 

representation (Baillie et al. 2009; Callan 2000; Gravano et al. 1997; Nottelmann and Fuhr 2003; 

Si and Callan 2003a). Second, a small number of text information sources should be selected for 

search for a specific user query (Cetintas et al. 2009; Craswell 2000; French et al. 1999; Fuhr 

1999; Gravano et al. 1999; Hawking and Thistlewaite 1999; Ipeirotis and Gravano 2002; 

Nottelmann and Fuhr 2003; Powell et al. 2000; Shokouhi 2007; Shokouhi and Zobel 2007; Si and 

Callan 2003a; Si and Callan 2004; Zhai and Lafferty 2001). This task is called resource selection 

or collection selection. Third, after results are returned from selected information sources, the 

individual ranked lists should be merged into a single final ranked list. This task is called results 

merging (Callan 2000; Cetintas and Si 2007; Kirsch 1997; Larson 2002; Le Calv and Savoy 2000; 

Lu et al. 2005; Si and Callan 2003b; Xu and Callan 1998).  

Most prior research work of resource selection focused on selecting information sources by 

analyzing the static information which is sampled from available information sources in an offline 

manner. For example, the ReDDE (Relevant Document Distribution Estimation (Si and Callan 

2003a)) algorithm first tries to build a centralized sampled database based on query-based-

sampling, and then uses the information of the centralized sampled database to estimate the 

distribution of relevant documents for resource selection. 

However, most previous research ignored a large amount of valuable information like the 

resource selection results of past queries. For example, in a real world search engine, there are 

many similar or even duplicated queries every day. The results from those similar past queries are 

very valuable to guide the resource selection decision of a current user query. One can imagine 

that if two user queries are very similar, their corresponding resource selection results should also 

be close. 

In this paper, we propose a new resource selection technique (i.e., qSim) that utilizes the 

search results of past queries for estimating the utilities of available information sources for a 

specific user query. The new algorithm calculates the query similarities between a specific query 

and all past queries, and then estimates the utilities of available information sources by the 

weighted combination of search results of past queries with respect to the query similarities. The 

new resource selection algorithm is practical as it does not require relevance judgment of past 

queries, and it only utilizes regression based results merging method to rank the results of past 

queries. 

Furthermore, a combined resource selection approach is proposed to integrate the two types of 

approaches: learning from past queries and using static sampled information. It has its advantages 

to integrate two types of evidence. In particular, the combined approach generates the resource 

selection results by integrating the results of the qSim selection algorithm and the ReDDE 

selection algorithm. 
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Empirical studies are conducted on two testbeds with several configurations to show the 

advantage of the new resource selection algorithms. In particular, we compare the performance of 

the new algorithms with a state-of-the-art resource selection algorithm as ReDDE (Si and Callan 

2003a) (relevant document distribution estimation). In our experiments in research environments, 

we followed two different approaches to generate the set of past queries: i) we sampled queries for 

each test/online query by extracting the titles of some top ranking documents in the search results 

of that particular test query; ii) we generated simulated queries by randomly removing some terms 

from test queries, and used these simulated queries as past queries. The set of all sampled queries 

and simulated queries for each test query forms the set of similar past queries in either approach. 

Under the usual scenario that there exist similar queries among past queries and online queries, our 

new qSim algorithm performs better than the prior state-of-the-art ReDDE algorithm. The larger 

amount of past queries we have or the more similar the past queries are to online queries, the better 

results we can get. Furthermore, a combined resource selection approach can provide even better 

resource selection results than both the qSim and the ReDDE algorithms. Therefore when the 

system receives a new rare test/online query, it will utilize the combined approach and perform at 

least as good as the ReDDE algorithm or even better than that. 

The rest of the paper is arranged as follows: Section 2 discusses the related work. Section 3 

proposes the new resource selection approaches, i.e. i) the resource selection approach by learning 

from past queries and ii) the combined resource selection approach. Section 4 discusses the 

experimental methodology. Section 5 presents the experimental results; and finally, Section 6 

concludes this work. 

2 Related Work 

 

There has been considerable research on all of the three sub-tasks of federated search: i.e. i) 

acquiring resource description, ii) resource selection and iii) results merging. Since this paper 

focuses on the resource selection task, we mainly survey related work in resource selection and 

briefly discuss the works in resource description and results merging. 

The STARTS (Gravano et al. 1997) protocol is one of the solutions to acquire the resource 

descriptions. It requires explicit cooperation from each information source. Although STARTS is a 

good solution in environments where cooperation can be guaranteed, it doesn’t work in multi-party 

environments where some information sources may not cooperate. Query Based Sampling (QBS) 

(Callan 2000; Callan and Connell 2001) is an alternative approach for acquiring resource 

descriptions since it doesn’t require explicit cooperation from available sources.  QBS only uses 

the normal process of running queries and retrieving a list of downloadable documents to construct 

resource descriptions. This solution has been shown to acquire rather accurate resource 

descriptions using a relatively small number of randomly generated queries to retrieve relatively 

small number of documents. 

There is a large body of prior research on resource selection (e.g., Cetintas et al. 2009; 

Craswell 2000; French et al. 1999; Fuhr 1999; Gravano et al. 1999; Hawking and Thistlewaite 

1999; Ipeirotis and Gravano 2002; Nottelmann and Fuhr 2003; Powell et al. 2000; Shokouhi 2007; 

Shokouhi and Zobel 2007; Si and Callan 2003a; Si and Callan 2004; Zhai and Lafferty 2001). 
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Space limitations preclude discussing it all, so we restrict our attention to a few that have been 

studied often or recently in prior research. 

A large body of resource selection algorithms follows the “Big Document” approach by 

representing each information source as a single big document. The similarities between the “Big 

Documents” and a user query are calculated to rank available information sources. “Big 

Document” methods include CORI (Callan 2000; Callan et al. 1995), gGlOSS (Gravano et al. 

1997; Gravano et al. 1999) and CVV (Yuwono and Lee 1997). 

Particularly, the CORI resource selection algorithm has been shown to be one of the most 

stable and effective “Big Document” resource selection algorithms in prior studies (e.g, Craswell 

2000; French et al. 1999). The CORI resource selection algorithm (Callan 2000; Callan et al. 

1995) represents each information source by using the words that it contains, their frequencies, and 

a small number of corpus statistics. Resource ranking is generated by using a Bayesian inference 

network and an adaptation of the Okapi term frequency normalization. Details can be found in 

(Callan 2000; Callan et al. 1995). 

However, the “Big Document” approach does not consider information source sizes, which is 

a big problem for searching in the environment of a mixture of “small” and “very large” 

information sources (Si and Callan 2003a).  

ReDDE (Si and Callan 2003a) resource selection algorithm was proposed to address the above 

issue. It explicitly estimates the distribution of relevant documents among available information 

sources for resource selection. ReDDE utilizes database size estimation and a centralized sample 

database (CSDb) that consists of the documents obtained by query based sampling as resource 

descriptions. The CSDb is a representative subset of the centralized complete database (CCDb) 

which is the union of all the documents in available information sources. Since the CCDb is not 

available in the federated search environment, ReDDE uses the CSDb (which has already been 

generated by QBS) to simulate the property of CCDb. In summary, ReDDE issues a query to an 

index created over CSDb and scores each resource i) proportional to the number of top-ranked 

documents originating from that resource and ii) considering the estimated size of that resource. 

More detailed information about CCDb and CSDb databases can be seen on Figure 1. 

In particular, ReDDE utilizes the ranked list of a user query on CSDb to simulate the ranked 

list of this user query on CCDb. With the ranked list of a user query on CSDb, ReDDE estimates 

the number of relevant documents to query q in an information source 
jC as follows: 

^ ^

__

1
Re _ ( ) ( | )* *

j

ji j

i C
C sampd C samp

l q j P rel d �
�

∈

= ∑  
(1) 

where 
∧

jCN is the estimated database size for the information source jC  (e.g., by Sample-

Resample method [24]); j_sampC  is the set of documents that are sampled from database jC ; 

and _sampC j
N  is the number of documents in j_sampC (i.e. the size of j_sampC ). The only unknown in 

Equation 1 is P(rel | di), i.e. the probability of relevance given a specific document. 

)d|P(rel i , the probability of relevance of a specific document in Equation 1, is defined as the 

probability of relevance given document rank when a CCDb is searched by an effective retrieval 

method (i.e., iRank_central(d ) ) as follows:  
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( )
ˆ_ ( )

|
0

q i all
i

C if Rank central d ratio �
P rel d

otherwise

 < ∗
= 


 (2) 

where Cq is a query dependent constant, 
∧

allN is the estimated total number of documents in the 

CCDb and ratio is a parameter which is set to be 0.003 as in prior experiments (Si and Callan 

2003a). Although this approximation of relevance probability is rather rough, similar methods 

have been used by many automatic relevance feedback methods. 

Rank_central(di), the rank of a document di in the CCDb, is calculated as follows: 

^

( )

( ) _

_ ( ) _ ( )

_ (  )
j

jj

j i

c d

i
c d sampd

Rank Samp d Rank Samp d

�
Rank central d

�

<

= ∑  (3) 

where Rank_Samp(di) is the corresponding rank in CSDb.  

^

Rel_q(j) can be calculated by plugging Equations 3 and 2 into Equation 1, so that the 

distribution of relevant documents in different information sources is acquired without a need for 

relevance judgment. The distribution of relevant documents among information sources is 

sufficient to rank the available information sources for the resource selection task. 

However, all the above prior research of resource selection focused on selecting information 

sources by analyzing static information of available information sources that is sampled in the 

offline manner. The prior research ignored a large amount of valuable information like the results 

from past queries or query logs. In most real world applications, there is often substantial 

similarity between users’ queries; and even many of them are duplicates of each other. This fact 

not only motivates the research to make use of the results of past queries, but also makes it 

possible to use the combined approach of utilizing both the valuable results from past queries and 

the static information of available information sources for the resource selection decision of a 

current user query. 

Voorhees et al.’s work considered using results of past queries (1995). However, the task they 

are dealing with is not exactly resource selection since their method retrieves documents from all 

information sources. For the decision of how many documents to retrieve from each source, the 

work in (Voorhess et al. 1995) proposed two approaches. One method is to calculate the relevant 

document distribution among information sources for a query q by averaging the relevant 

document distributions (among all sources) of k most similar past queries with q. The other 

method is to compute the weights of each information source’s most similar query cluster with the 

query q and use these weights. Both of these methods require relevance judgment.  

Some recent research has been conducted for selecting vertical search engines (e.g., Arguello 

et al. 2009; Diaz et al. 2009). In particular, research work has been conducted to utilize query log 

and user feedback information to improve vertical search engine selection. However, the research 

of selecting vertical engines was different from our proposed work in several perspectives. First, 

they only studied and evaluated selecting one vertical engine for each user query while there are 

often quite a few relevant resources for each user query in traditional distributed information 

retrieval applications (e.g., digital libraries). Second, they treated vertical engine selection as a 
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classification approach, while our work ranks resources by the number of relevant documents 

contained in available resources. Third, they utilized human relevance judgment, while the 

proposed work only utilizes results from past queries that are automatically generated. Finally, 

their approach is a pure resource selection method, while the proposed method is a more complete 

solution that includes results merging. 

Recently, Cetintas et al. showed that using the search results of past queries improves the 

effectiveness of resource selection; however, their work was limited. Particularly, they did not 

integrate the two approaches of learning from past queries and using static sampled information. 

Furthermore, they did not explore the effect of  i) using larger amount of past queries, ii) more 

similar past queries,  iii) selecting more information sources, iv) using different query similarity 

estimation techniques on resource selection effectiveness (2009). 

The last step of distributed information retrieval is merging ranked lists produced by different 

search engines. It is usually treated as a problem of transforming database-specific document 

scores into database-independent document scores. The CORI results merging formula (Callan 

2000) is a heuristic linear combination of the database score and the document score. The Semi-

Supervised Learning (SSL) algorithm (Si and Callan 2003b) uses the documents acquired by 

query-based sampling as training data and utilizes linear regression to learn merging models. 

When it is necessary, the Semi-Supervised Learning method downloads a small number of 

documents on the fly to create training data for building the regression models. Please note that 

SSL will be used in this word for estimating the relevance of information sources to past queries. 

The documents downloaded by SSL will be an important data source that will be explained later. 

More detailed information about the set of SSL-downloaded documents along with CCDb, CSDb 

databases and how they are used in this work can be seen on Figure 1. 

3 %ew Resource Selection Algorithms 

 

Since there tends to be many similar queries in a real world federated search system, the valuable 

information of past queries can help us provide better resource selection results. In this section, we 

propose a novel algorithm, which is called qSim, to utilize the valuable information to guide the 

decision of resource selection. Furthermore, we propose a combined resource selection approach 

that utilizes both the information from past queries and the static information from query-based 

sampling for more accurate resource selection. 

The first subsection presents the qSim algorithm for how to use search results from past 

queries to guide resource selection for online user queries. The second subsection describes the 

combined resource selection approach. 

3.1 Resource Selection by Learning the Results from Past Queries 

 

Assume that there exists a set of past queries, which is denoted by P = {p1, p2, …, pM}, where pi 

represents the i
th

 past query. For an online user query q, assume that we have a specific method to 

measure the similarity between q and pi (details of the query similarity estimation approaches used 

in this work can be found in Section 3.1.2), let us denote the similarity by Sim(pi
 
| q). Denote the 
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set of information sources by S = {s1, s2, …, sN }. For a query q, we use Rel(sj | q) to represent how 

likely it is for the information source sj to be relevant to the query q, or what (estimated) 

percentage of the relevant documents for the query q is in sj. We are interested in ranking the 

available information sources by comparing their values of the Rel function. Please note that the 

absolute values of Sim(pi | q) and Rel(sj | q) are not important. Only the relative difference between 

Sim(pi1 | q) and Sim(pi2 | q) is important, for any pair of pi1 and pi2 while q is fixed; which is also 

the case for Rel(sj | q). 

In qSim, we can estimate the value of Rel(sj | pi) for all past queries. For an online query q, the 

task is to estimate Rel(sj | q) based on the information of Rel(sj | pi) and Sim(pi | q). 

The algorithmic framework of qSim is as follows: 

1. Estimate the relevance of an information source sj to a past query pi, i.e. estimate 

Rel(sj | pi).  

This can be done in an offline manner for past queries. After the federated search 

system has processed an online query, this query can also be added to the set of past 

queries for future reference. 

2. Estimate the similarity between a past query pi and an online/test query q, i.e. 

estimate Sim(pi | q).  

3. Estimate the relevance of an information source sj to an online/test query q, i.e. 

estimate Rel(sj | q), according to the estimated relevance information of similar past 

queries (to this online query q). 

4. Rank the information sources according to Rel(sj | q), which will give the most 

relevant information sources to the online query q. 

3.1.1 Estimating the Relevance of Information Sources to Past Queries (i.e. Rel(sj | pi) ) 
 

Any resource selection algorithm can be applied to estimate the value of Rel(sj | pi). If a 

resource selection algorithm can explicitly give scores for all information sources, we can directly 

map those scores to Rel(sj | pi). For example, in the ReDDE algorithm, we can set Rel(sj | pi) ~ 

^

i (j)Rel_p , where 
^

i (j)Rel_p  is the estimated number of relevant documents in sj with respect to pi 

by ReDDE. 

In this work, a regression-based results merging approach (Si and Callan 2003b) is used to get 

a much more precise Rel(sj | pi) estimation by utilizing the search results from past queries, no 

matter whether a prior resource selection has been made for pi or not. The key intuition underlying 

this approach is that the more relevant documents from an information source are in the merged 

ranked list of past query pi, the more relevant this information source to pi is. The process of this 

approach is as follows: 

First, assume that a set of sources (denoted by SEL_pi) are selected for pi. For the case that no 

prior resource selection has been mode, we can have SEL_pi=S, i.e. all information sources. 
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Fig. 1 Sources of evidence for ReDDE and qSim resource selection approaches. A 

federated search environment consists of several information sources. The set of all 

documents in all information sources constitute the Centralized Complete Database 

(CCDd) (shown on left). Note that CCDb is a hypothetical database, which is not 

available in a federated search environment. Therefore Query Based Sampling (QBS) 

samples documents from every information source in order to acquire the resource 

descriptions. The set of all documents sampled by QBS form the centralized sampled 

database (CSDb) which is used by ReDDE resource selection algorithm (Callan 2000; 

Callan and Connell 2001). In this work, the combined resource selection approach that 

uses the resource selection decisions of ReDDE, indirectly uses the CSDb (since ReDDE 

uses it). For estimating of the relevance of information sources to past queries, SSL results 

merging algorithm (Si and Callan 2003b) is used. In order to build the regression models, 

SSL downloads a particular number of documents from each source; and the set of all 

downloaded document constitute the SSL-downloaded documents database (shown on 

right). Note that SSL-downloaded documents are used for the estimation of relevance of 

information sources to past queries (i.e. Rel(sj | pi)) and for retrieval-based query 

similarity estimation (i.e. Sim(pi | q)). Some statistics about the number of documents in 

each database can be found in the discussion in Section 4.3 

 

 

Second, we use the regression based Semi-Supervised Learning (SSL) method (Si and Callan 

2003b) to merge the search results from those sources in SEL_pi into a single ranked list. SSL will  

give us the ranked list of the most relevant documents from all information sources in SEL_pi to 

the past query pi.  
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Third, the information sources in SEL_pi are assigned relevance scores proportional to how 

many of their documents are in the single ranked list of relevant documents to pi (as; if a source is 

more relevant to pi, more documents from this source will appear in the ranked list). Particularly, 

if a source sj is not in SEL_pi, then Rel(sj | pi) = 0. If the source sj is in SEL_pi, then Rel(sj | pi) is 

estimated by: 

where T is a pre-defined number, and 

1,  ;
Re (  |   )                 

0, .

j

j

if doc s
l s doc

otherwise

∈
= 


 (5) 

The value T, i.e. how many documents are considered in the single ranked list, can be very small 

like 20. In our experiments, it is set to 20. This helps to minimize the number of interactions with 

information sources. A typical search engine (such as Google, Yahoo, etc.) only returns 10 or 20 

search results or document ids in one page by default. 

Please note that the SSL algorithm needs to download some documents for each past query pi 

as training data to build the regression models for merging the search results from information 

sources in SEL_pi in order to generate the single ranked list for that past query pi. This is due to 

the fact although SSL can use the documents in the CSDb as the training documents to build the 

regression models, it is not allowed to do so in order to evaluate the resource selection approach of 

learning from past queries in a strict manner. The set of all SSL downloaded training documents 

for all past queries create the database that is used for i) for the estimation of the relevance of 

information sources to past queries, and ii) for the estimation of the similarities of past queries and 

online queries (will be explained in the next section). In this work, 3 top documents are 

downloaded as the training data for each past query pi to build the regression models for results 

merging, in a similar manner as the minimum downloading method of the SSL results merging 

algorithm (Si and Callan 2003b). 

3.1.2 Estimating the Similarity Between Past Queries and Online Queries (i.e.        

Sim(pi | q) )  
 

There are many ways to measure the similarities between queries (i.e. between past queries 

and an online query), such as term-based approach (cosine measure, edit distance, latent semantic 

analysis, etc.), selection-based approach and retrieval-based approach (by comparing the retrieval 

lists). In our experiments, we use two approaches: i) a retrieval-based approach and ii) term-based 

approach (cosine similarity) to calculate the similarities. Although the retrieval-based approach is 

used as the default approach to calculate the query similarities, the results acquired with term-

based approach is also used to test the robustness of the proposed algorithms (i.e. to make sure that 

the proposed techniques work well regardless of the different characteristics of different query 

similarity estimation approaches).  

 

 

     
  

Re ( | )
Re ( | )

j

j i

top T docs in the
merged ranked list

l s doc
l s p

T
∝ ∑  

(4) 
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i) Retrieval-Based Query Similarity Estimation 

 

Retrieval-based query similarity estimation approach compares a past query pi and an online 

query q by comparing the similarity of the retrieval results of those queries on a collection. In this 

work, the set of SSL-downloaded documents (explained in Section 3.1.1.) are used as the 

collection that queries to be compared are searched on.  

Particularly, let R_pi (or R_q) denote the search results (i.e. the ranked lists) of pi (or q) on the 

SSL-downloaded documents database. The similarity of pi with respect to q is measured by  

_ _

_ _ _

1
( | ) ( , , )

| |
p qi

p doc p qi i
RR

Sim p q Score doc R R
i R ∈ ∩

∝ ∑  
(6a) 

where the score function for a matching document is given by: 

_ _

_ _

_ _

( , , )

      )
1

i

i

i

p q

p q

p q

Score doc R R

doc rank in R doc rank in R

R R
= − −

 
(6b) 

The value of Sim(pi | q) will be higher if the set of documents that are common to R_pi and R_q 

rank similarly in R_pi and R_q. In practice, we cut each search results (R_pi and R_q) by only 

focusing on the top 20% returned documents in their rank lists; and normalize the values of Sim(pi 

| q) in a simple approach as follows: 

_ max ( | )

_ 0.8 _

i iMAXSIM q  Sim p  q

SIMTHRES q MAXSIM q

=

= ×
 (7) 

_

( ( | ) - _ )

( _ - _ )

           0,                                        ( | ) ;

,                                  .( | ) i

i

i

SIMTHRES q

Sim p q SIMTHRES q

MAXSIM q SIMTHRES q

if Sim p q
normalized

otherwiseSim p q

<


∝ 



 
(8) 

Retrieval-based similarity estimation approach is used as the default query similarity 

estimation approach in this work due to the fact that term-based similarity estimation approaches 

are not as successful in finding the similarity between past and online queries when queries have 

limited number of terms. More detailed discussion on the comparison of retrieval-based similarity 

approach and term-based similarity approach can be seen on Figure 2.  

ii) Term-Based Query Similarity Estimation (Cosine Measure) 

 

As a second method of calculating the similarities between past queries and online queries, we 

use the common cosine similarity (Baeza-Yates and Ribeiro-Neto 1999). If we denote the bag-of-

words vector representations of past query pi and online query q as ip
���

and q
�

, the cosine similarity 

is given by: 

( | ) cos( , ) i
i

i

p q
Sim p q p q

i p q

•
∝ =

∗

��� �

��� �

��� �

 
(9) 

where “ • ” is the dot product of these vectors. We use the common Okapi weighting scheme to 

calculate similarities between past queries and online queries; and do normalization to scale the 

similarity scores between 0 and 1. 
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We use term-based similarity as the secondary method of query similarity estimation approach 

and used it only with the retrieval-based query similarity approach to test the robustness of the 

proposed algorithms (i.e. to make sure that the proposed techniques work well regardless of the 

different characteristics of different query similarity estimation approaches). More detailed 

discussion on the comparison of retrieval-based similarity approach and term-based similarity 

approach can be seen on Figure 2.  

3.1.3 Estimating the Relevance of Information Sources to Online Queries (i.e. Rel(sj | 

q)) 
 

For an online query q, we predict the relevance of information sources (i.e. Rel(sj | q)) based 

on the estimated relevance information from similar past queries. It is calculated by: 

Rel( | ) Rel( | )Sim( | )j j i i

i

s q s p p q∝∑  
(10) 

In practice, we only consider the K most similar past queries when we calculate the above 

summation. In our experiments, K is set to 5. 

3.1.4 Resource Selection According to Rel(sj | q) 
 

The last step is to simply rank the information sources according to the values of Rel(sj | q). A 

larger value of Rel(sj | q) means that it is more likely for the source sj to contain more relevant 

information with respect to q. 

As we mentioned before, we can add a query q into the set of past queries after this query has 

been processed. 

3.1.5 Different Levels of Past Search Results 
 

For a past query pi, the amount of search results will affect the quality of the estimated Rel(sj | 

pi). The amount of results is measured by the number of information sources selected and searched 

for generating search results. If more sources have been searched, the amount of search results for 

the past query is more comprehensive. 

We call the qSim algorithm by “qSim-Cut-X” where the number of sources selected and 

searched for pi is X, or in other words |SEL_pi,|=X. In a real world federated search application 

with N=100 information sources, the typical number of sources that are chosen for the search task 

is about X = 5, 10 or at most 20. 

3.2 Combined Approach for Resource Selection 

 

In this subsection, we propose a simple way to combine qSim with other resource selection 

algorithms like ReDDE to achieve better performance. 

In particular, we focus on the combination of qSim and ReDDE. Assume that ReDDE 

generates the score of a particular information source sj as Rel_ReDDE(sj | q) for resource selection. 

We denote the corresponding resource selection score from qSim as Rel_qSim(sj | q), and then we 

can simply combine the values of Rel_ReDDE(sj | q) and Rel_qSim(sj | q) in a linear way: 
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where λ is a real number within [0,1]. In our experiments, λ is set to 1/3. Finally, we generate the 

resource selection results according to the values of Rel_combined(sj | q). 

4 Experimental Methodology 

 
It is most desirable to evaluate federated search algorithms with real world applications. However, 

real world applications are usually short of relevance judgment data and it is difficult to obtain full 

control of different components of the systems (e.g., varying retrieval algorithms of each 

information source). These difficulties prevent us from doing thorough study with real world 

applications. Instead, an extensive set of experiments was designed in research environments to 

simulate real world applications such as (Avrahami et al. 2006). 

4.1 Testbeds 

 

Experiments were carried out on Trec123 and Trec4 testbeds. Details about Trec123 and 

Trec4 datasets are given in Table 1. 

Trec123-100col-bysource (Trec123): 100 information sources were created from TREC CDs 

1, 2 and 3. They are organized by source and publication date. 

Trec4-bysource (Trec4): 100 information sources were created from TREC4 according to the 

sources of the documents in TREC4. 

For Trec123 testbed, 50 queries were created from the title fields of TREC topics 51-100. For 

Trec4, another 50 queries were created from the description fields of TREC topics 201-250. These 

queries will be used as the set of test/online queries and will be referred to test, online or real 

queries throughout the paper. The detailed statistics about the test queries can be found in Table 2. 

All the 100 information sources were assigned one of three types of retrieval algorithms as 

INQUERY (Callan et al. 1995), a unigram language model with linear smoothing (Lemur Toolkit; 

Zhai and Lafferty 2001) and a TFIDF retrieval algorithm with the “ltc” weighing schema (Si and 

Callan 2003b). All the algorithms were implemented with the lemur toolkit (Lemur Toolkit, 

Ogilvie and Callan 2001). 

 

4.2 Sampled and Simulated Past Query Sets 
 

In a real world federated search system, there often exist many similar queries. However in 

Trec123 and Trec4 testbeds, we don’t have many similar queries. In order to better simulate the 

characteristics of a real world federated search system, we use two different approaches to 

generate two different sets of past queries using the test queries that are available in Trec123 and 

Trec4 datasets. Then the set of real queries that are available from Trec123 and Trec4 datasets are 

used as the set of test/online queries and either one of the two sets of generated past queries are 

_qSim

_combined

_qsimj

_ReDDE

_ReDDE

Rel ( | )
Rel ( | )  

max Rel ( | )

Rel ( | )
                   (1- )

max Rel ( | )

j

j

j

j

j j

s q
s q

s q

s q

s q

λ

λ

∝

+

 
(11) 
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used as the set of past queries. Specifically the experiments are conducted separately on the two 

sets of generated past queries to test the robustness of the proposed algorithms (i.e. to make sure 

that the proposed techniques work well regardless of the different characteristics of the sets of 

generated past queries).  

The first approach of generating the set of past queries samples queries for each test/online 

query by extracting the titles of some top ranking documents in the search results of that particular 

test query. The past queries generated by this approach will be referred as sampled past queries. 

The second approach of generating the set of past queries creates the past queries from test queries 

by randomly removing some terms from the test queries. The past queries generated by this 

approach will be referred as simulated past queries. To reiterate; the experiments are using either 

the sampled past queries or the simulated past queries as the set of past queries. More detailed 

explanation of these two approaches is given in the following two subsections. 

4.2.1 Sampled Past Queries 
 

This subsection describes the first approach to generate the sampled past queries. Two sets of 

sampled past queries are generated for Trec123, which are called Trec123_T20 and Trec123_T10. 

The past queries in Trec123_T20 (or Trec123_T10) were generated in the following way: 

� A new Trec123 database called Sub_Trec123 is constructed, which consists of the 

documents that exist in the original Trec123 database and that do not exist in the 

CSDB of the ReDDE algorithm. The documents in CSDB of ReDDE are particularly 

excluded in order not to exploit the advantage of the documents of CSDB of ReDDE 

that are used as resource descriptors. 

� For each test query, TOPX most similar documents that have a title (not all the 

documents have a title) are retrieved from Sub_Trec123 database. The titles of these 

TOPX documents construct the set of X sampled queries for this test query (i.e. each 

title becomes a new sampled past query). Please note that X is 10 for Trec123_T10 

and 20 for Trec123_T20 query set. 

For 50 test queries, the above sampling process is repeated and a total of 1000 past queries are 

acquired for Trec123_T20 and a total of 500 past queries are acquired for Trec123_T10. In the 

Table 1. Summary statistics for Trec123 and Trec4 distributed IR testbeds. 

 

 

Testbed 

Size 

(GB) 

%umber of Documents 

(x1000) 

Size (MB) 

Min Avg Max Min Avg Max 
Trec123 3.2 0.7 10.8 39.7 28 32 42 

Trec4 2.0 5.6 5.6 5.6 4 20 138 

 

 

Table 2.  TREC query set statistics. 

 

Collections TREC 

Topic Set 

TREC Topic Field Average Length 

(Words) 

Trec123 51-100 Title 2.92 
Trec4 201-250 Description 8.82 

 

 



14 

same way described above, two sets of sampled past queries are also generated for Trec4 testbed, 

which are called Trec4_T20 and Trec4_T10. Trec4_T20 & Trec4_T10 have 1000 & 500 sampled 

queries respectively. 

In the experiments that used the sampled past queries as the set of past queries; the 50 real 

queries are treated as test/online user queries, and the 1000 sampled past queries (i.e. the past 

queries in Trec123_T20 or Trec4_T20 sampled past query sets) or 500 sampled queries (i.e. in 

Trec123_T10 or Trec4_T10 sampled past query sets) are treated as the past queries. Details about 

sampled past queries can be seen in Table 3a. 

4.2.2 Simulated Past Queries 
 

This subsection describes the second approach to generate the simulated past queries. Two 

sets of simulated past queries are generated for Trec123, which are called Trec123_R1 and 

Trec123_R2. Each set contains 50 simulated queries. The past queries in Trec123_R1 (or 

Trec123_R2) were generated in the following way:  

� For each test query, 1 (or 2) term(s) is (are) removed to generate a simulated past 

query; 

� For each simulated past query at least 2 terms are kept to make sure the simulated 

past query is not too short to be meaningful. (e.g., in Trec123_R2, if a real query 

only contains 3 terms, only 1 term is removed instead of 2 to make sure the simulated 

query contains at least 2 terms.) 

For Trec4 testbed, two levels of simulated past queries are also generated, which are called 

Trec4_R2 and Trec4_R3. Each set contains 50 simulated queries. The past queries in Trec4_R2 (or 

Trec4_R3) were generated by the following way:  

� For each test query, 2 (or 3) terms are randomly removed to generate a simulated past 

query; 

� For each simulated past query at least 3 terms are kept. 

Table 3a. Statistics of sampled past queries. 

 

Collections 

 

Sampled Past 

Query Set 

# of TOP Docs 

(titles extracted) 

Average Length 

(Words) 

Trec123 Trec123_T20 20 8.98 
Trec123 Trec123_T10 10 8.80 

Trec4 Trec4_T20 20 8.53 
Trec4 Trec4_T10 10 8.42 

 

 
Table 3b. Statistics of simulated past queries. 

 

Collections 

 

Simulated Past 

Query Set 

# of Words 

Removed 

Average Length 

(Words) 

Trec123 Trec123_R1 1 2.60 
Trec123 Trec123_R2 2 2.16 

Trec4 Trec4_R2 2 6.92 
Trec4 Trec4_R3 3 6.12 
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a) retrieval-based similarity on 

Trec123_T20 past query set 
 

 

b) term-based similarity on 

Trec123_T20 past query set 
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c) retrieval-based similarity on 

Trec123_R1 past query set 
 

 

d) term-based similarity on 

Trec123_R1 past query set 

 

Fig. 2 Statistics of Retrieval-Based and Term-Based Similarity measures over Trec123_T20 

and Trec123_R1 past query sets. Each online/test query has a set of similar past queries sorted 

with respect to the normalized similarity scores while determining the set of most similar past 

queries. The distribution of the normalized similarity scores between an online query and the 

set of past queries give the information of the normalized similarity score of the most similar 

past query at a particular rank with respect to an online query (i.e. the normalized similarity 

score of the k
th

 most similar past query with the online query q). The average of the distribution 

of normalized similarity scores across all online queries (y-axes) for ranks 1-to-50 (x-axes) is 

calculated for Trec123_T20 and Trec123_R1 past query datasets with retrieval-based and term-

based similarity measures and is reported in each graph. Detailed view of each graph for the 

top 10 most similar past queries (note that  in this work we only choose the top 5 most similar 

past queries for each test query) can be seen on the smaller graphs on the right top of each 

graph. 

An important observation is that for queries that have very limited number of terms (such 

as Trec123_R1 and Trec123_R2) term-based similarity measure cannot calculate the similarity 

between the past and online queries as precise as the retrieval based similarity approach as 

shown on Graphs c & d. This is due to the fact that although there is some similarity between a 

past query and an online query, term-based approach cannot detect it if there are no common 

terms. But when the queries have enough number of terms, term-based approach also performs 

as good as the retrieval-based approach in finding the similarity between past and online 

queries as shown on Graphs a & b. 

 

In the experiments that used the simulated past queries as the set of past queries; the 50 real 

queries are treated as test/online user queries, and the 50 simulated queries (i.e. in Trec123_R1, 

Trec123_R2, Trec4_R2 or Trec4_R3 simulated past query sets) are treated as past queries. 

Generally speaking, simulated past queries in Trec123_R1 are more similar than Trec123_R2 with 
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respect to the Trec123 online queries and simulated past queries in Trec4_R2 are more similar 

than Trec4_R3 with respect to the Trec4 online queries. Details about simulated past queries can 

be seen in Table 3b. 

Since the processes of generating the simulating queries include randomness, each set of 

simulated queries (e.g., Trec123_R1) has been generated for 15 times. Accordingly, the resource 

selection experiments that use simulated past queries are run 15 times for each set of simulated 

queries and the average results of all of these runs are reported for evaluation. 

 

4.3 Baseline Method 
 

In the experiments, we use ReDDE to do resource selection for past queries (i.e. to determine 

SEL_pi). Also, ReDDE is a baseline resource selection algorithm to compare with qSim.  

For qSim, there are either 1000 or 500 past queries at most (i.e. for sampled queries), and for 

each past query 3 top documents per source are downloaded by SSL in order to build a regression 

model to merge search results into a single ranked list. So in total, we need to download at most 

3000 or 1500 documents per source. The number is actually much smaller than 3000 or 1500 as 

only a very small portion of sources are selected for searching each past query: for qSim-Cut-10 on 

Trec123(or Trec4)_T10 we download about 150 and for qSim-Cut-10 on Trec123(or Trec4)_T20 

we download about 300 documents per source on average.  

For ReDDE, we build the CSDb, which contains 150 documents per source by QBS. All other 

parameters in ReDDE are the same as that in [23]. 

Although the types of evidence that qSim and ReDDE use are different and it will not be 

perfectly fair to make a comparison, they are still comparable by the amount of documents they 

use.  

 

4.4 Evaluation Metric 
 

The recall metric Rk has been commonly used to evaluate resource selection algorithms 

[2,7,23]. Let B denote a desirable ranking of available information sources by Relevance-Based 

Ranking (i.e., ranking of sources by the actual number of relevant documents), and E a ranking 

provided by a resource selection algorithm. Let Bi and Ei denote the number of relevant documents 

in the ith ranked database of B or E.  The metric Rk is defined as follows: 

∑
∑

=

==
k

i
i

k

i
i

k

B

E
R

1

1  (11) 

The metric above measures what percentage the difference is between the estimated ranking and 

the most desirable ranking. Therefore, at a fixed k, a larger Rk value indicates a better ranking.  

 

5 Experiment Results 
 

An extensive set of experiments are conducted to address the following six questions: 
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1. How good is the new resource selection algorithm by learning results from past 

queries? Experiments are conducted to compare the new resource selection algorithm 

with the state-of-the-art ReDDE resource selection that uses static sampled 

information for resource selection. 

2. How does the new resource selection algorithm behave when different amount of 

information sources have been searched for past queries? Experiments are 

conducted to show the performance of the new resource selection algorithm when 

different amount of information sources have been searched for past queries. 

3. How does the new resource selection algorithm behave with different amount of past 

queries? Experiments are conducted to show the performance of the new resource 

selection algorithm with more or less amount of past queries. 

4. How does the new resource selection algorithm behave with different characteristics 

of past queries? Experiments are conducted to show the performance of the new 

resource selection algorithm with more or less similar past queries. 

Table 4a. Comparison between ReDDE with qSim-Cut-10 and qSim-Cut-20 on Trec123 

dataset with Trec123_T20 sampled past query set. Please note that the results for qSim-

Cut-10 on Trec123 dataset with Trec123_T20 sampled past query set has been reported 

in our previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on 

Trec123 

qSim-Cut-10 on 

Trec123_T20 

qSim-Cut-20 on 

Trec123_T20 

1 0.2445 0.3414 (39.66%) 0.3961 (62.02%) 
2 0.3121 0.3675 (17.73%) 0.4317 (38.30%) 
3 0.3188 0.4021 (26.15%) 0.4108 (28.86%) 
4 0.3350 0.3929 (17.31%) 0.4326 (29.17%) 
5 0.3503 0.4108 (17.26%) 0.4332 (23.67%) 
6 0.3745 0.4093 (09.30%) 0.4370 (16.70%) 
7 0.3889 0.4194 (07.84%) 0.4475 (15.08%) 
8 0.4025 0.4373 (08.66%) 0.4686 (16.44%) 
9 0.4108 0.4429 (07.83%) 0.4865 (18.45%) 
10 0.4325 0.4577 (05.83%) 0.5101 (17.94%) 

Overall Improvement 15.76% 26.67% 

  

 
Table 4b. Comparison between ReDDE with qSim-Cut-10 and qSim-Cut-20 on Trec4 

dataset with Trec4_T20 sampled past query set. Please note that the results for qSim-

Cut-10 on Trec4 dataset with Trec4_T20 sampled past query set has been reported in 

our previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on 

Trec4 
qSim-Cut-10 on 

Trec4_T20 

qSim-Cut-20 on 

Trec4_T20 

1 0.2739 0.3221 (17.65%) 0.2514 (-08.16%) 
2 0.3375 0.3288 (-02.56%) 0.3675 (08.89%) 
3 0.3031 0.3295 (08.73%) 0.3642 (20.17%) 
4 0.3101 0.3499 (12.85%) 0.3551 (14.51%) 
5 0.3095 0.3590 (16.01%) 0.3606 (16.51%) 
6 0.3247 0.3623 (11.60%) 0.3746 (15.39%) 
7 0.3339 0.3654 (09.44%) 0.3842 (15.08%) 
8 0.3599 0.3681 (02.29%) 0.3974 (10.42%) 
9 0.3753 0.3678 (-01.96%) 0.4010 (06.87%) 
10 0.3905 0.3767 (-03.52%) 0.4077 (04.41%) 

Overall Improvement 7.05% 10.41% 
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5. How does the new resource selection algorithm behave when different query 

similarity estimation approaches are used to calculate the similarity between a test 

query and the set of past queries? Experiments are conducted to show the 

performance of the new resource selection algorithm with retrieval-based query 

similarity estimation approach and term-based query similarity estimation approach. 

6. Can the combined resource selection approach further improve the accuracy of 

resource selection? Experiments are conducted to compare the combined approach 

with the two approaches of either learning from past queries or using static sampled 

information. 

 

5.1 Comparison between qSim and ReDDE 
 

Table 4a and Table 4b show the results of qSim and ReDDE on the Trec123 and Trec4 

testbeds with Trec123_T20 and Trec4_T20 sampled query sets. In the same way Table 5a and 

Table 5b show the corresponding results with Trec123_R1 and Trec4_R2 simulated query sets. 

Table 5a. Comparison between ReDDE with qSim-Cut-10 and qSim-Cut-20 on Trec123 

dataset with Trec123_R1 simulated past query set. Please note that the results for qSim-

Cut-10 on Trec123 dataset with Trec123_R1 sampled past query set has been reported in 

our previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on 

Trec123 

qSim-Cut-10 on 

Trec123_R1 

qSim-Cut-20 on 

Trec123_R1 

1 0.2445 0.4003 (63.71%) 0.4126 (68.78%) 

2 0.3121 0.4229 (35.47%) 0.4523 (44.91%) 

3 0.3188 0.4242 (33.06%) 0.4653 (45.94%) 

4 0.3350 0.4372 (30.53%) 0.4784 (42.81%) 

5 0.3503 0.4410 (25.90%) 0.4812 (37.35%) 

6 0.3745 0.4336 (15.79%) 0.4790 (27.91%) 

7 0.3889 0.4356 (12.02%) 0.4830 (24.21%) 

8 0.4025 0.4392 (09.15%) 0.4969 (23.47%) 

9 0.4108 0.4454 (08.43%) 0.4995 (21.62%) 

10 0.4325 0.4461 (03.14%) 0.5062 (17.06%) 

Overall Improvement 23.72% 35.41% 

  

 
Table 5b. Comparison between ReDDE with qSim-Cut-10 and qSim-Cut-20 on Trec4 

dataset with Trec4_R2 simulated past query set. Please note that the results for qSim-

Cut-10 on Trec4 dataset with Trec4_R2 sampled past query set has been reported in our 

previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on 

Trec4 

qSim-Cut-10 on 

Trec4_R2 

qSim-Cut-20 on 

Trec4_R2 

1 0.2739 0.2882 (05.23%) 0.3096 (13.07%) 
2 0.3375 0.3065 (-09.20%) 0.3294 (-02.41%) 
3 0.3031 0.3176 (04.80%) 0.3433 (13.28%) 
4 0.3101 0.3306 (06.62%) 0.3473 (11.98%) 
5 0.3095 0.3447 (11.37%) 0.3627 (17.19%) 
6 0.3247 0.3554 (09.45%) 0.3707 (14.17%) 
7 0.3339 0.3665 (09.76%) 0.3794 (13.62%) 
8 0.3599 0.3788 (05.24%) 0.3923 (09.00%) 
9 0.3753 0.3896 (03.83%) 0.4008 (06.82%) 
10 0.3905 0.3972 (01.74%) 0.4159 (06.51%) 

Overall Improvement 4.88% 10.32% 

 



19 

The performance is evaluated by the Recall metric Rk defined in section 4.4, where “# Selected 

Sources” in the table is the k in Rk. The percentages within the parentheses are the relative 

improvements of qSim over ReDDE. The overall improvement is calculated by taking the average 

of the improvement percentages when 1,2,…,10 sources are selected. 

As shown from Table 4a, Table 4b, Table 5a and Table 5b, qSim-Cut-10 always generates 

much better results than ReDDE. Thus, qSim can be considered as a very effective algorithm for 

resource selection. 

 

5.2 The Performance of qSim with Different Amounts of Search Results from 

Past Queries 
 

Table 4a & Table 4b (with sampled past queries) and Table 5a & Table 5b (with simulated past 

queries) also show that searching more information sources (i.e. X = 20 in this case) for past 

queries can help us do a better resource selection for online queries (than searching fewer 

information sources (i.e. X=10)). This is a reasonable result as the search results of past queries in 

qSim-Cut-20 provide more information than the search results of past queries in qSim-Cut-10. 

Table 6a. Comparison between different amounts of sampled past query sets on Trec123 

dataset with Trec123_T10 and Trec123_T20 sampled past query sets. Please note that 

the results for qSim-Cut-10 on Trec123 dataset with Trec123_T20 sampled past query 

set has been reported in our previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on 

Trec123 

qSim-Cut-10 on 

Trec123_T10 

qSim-Cut-10 on 

Trec123_T20 

1 0.2445 0.2702 (10.54%) 0.3414 (39.66%) 
2 0.3121 0.3445 (10.37%) 0.3675 (17.73%) 
3 0.3188 0.3529 (10.70%) 0.4021 (26.15%) 
4 0.3350 0.3701 (10.49%) 0.3929 (17.31%) 
5 0.3503 0.3901 (11.36%) 0.4108 (17.26%) 
6 0.3745 0.3916 (04.58%) 0.4093 (09.30%) 
7 0.3889 0.4062 (04.47%) 0.4194 (07.84%) 
8 0.4025 0.4184 (03.97%) 0.4373 (08.66%) 
9 0.4108 0.4193 (02.08%) 0.4429 (07.83%) 
10 0.4325 0.4334 (00.22%) 0.4577 (05.83%) 

Overall Improvement 6.88% 15.76% 

 

 
Table 6b. Comparison between different amounts of sampled past query sets on Trec4 

dataset with Trec4_T10 and Trec4_T20 sampled past query sets. Please note that the 

results for qSim-Cut-10 on Trec4 dataset with Trec4_T20 sampled past query set has 

been reported in our previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on 

Trec4 

qSim-Cut-10 on 

Trec4_T10 

qSim-Cut-10 on 

Trec4_T20 

1 0.2739 0.3329 (21.56%) 0.3221 (17.65%) 
2 0.3375 0.3222 (04.52%) 0.3288 (-02.56%) 
3 0.3031 0.3366 (11.07%) 0.3295 (08.73%) 
4 0.3101 0.3345 (07.89%) 0.3499 (12.85%) 
5 0.3095 0.3217 (03.96%) 0.3590 (16.01%) 
6 0.3247 0.3363 (03.57%) 0.3623 (11.60%) 
7 0.3339 0.3455 (03.49%) 0.3654 (09.44%) 
8 0.3599 0.3448 (-04.20%) 0.3681 (20.29%) 
9 0.3753 0.3441 (-08.29%) 0.3678 (-01.96%) 

10 0.3905 0.3592 (-07.98%) 0.3767 (-03.52%) 

Overall Improvement 2.65% 7.05% 
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However, we should be aware that searching more information sources will increase the 

costs, i.e. it will require more documents to be downloaded and lead to more computational costs 

for merging the search results. In a federated search environment of 100 information sources, 

qSim-Cut-10 may be a more practical algorithm for resource selection. 

 

5.3 The Performance of qSim with Different Amounts of Past Queries 
 

The results in Table 6a and Table 6b indicate that the performance of qSim-Cut-10 is better with 

Trec123_T20 and Trec4_T20 past query sets than Trec123_T10 and Trec4_T10 past query sets 

respectively. This demonstrates that more past queries can provide better information for qSim to 

achieve better resource selection recalls. In a real world scenario, user queries may be similar or 

even duplicates. Therefore, a search system can effectively utilize the search results of more 

amounts of past queries to get better performance. 

 

 

Table 7a. Comparison between different similarity levels of simulated past query sets on 

Trec123 dataset with Trec123_R2 and Trec123_R1 simulated past query sets. Please 

note that the results for qSim-Cut-10 on Trec123 dataset with Trec123_R1 sampled past 

query set has been reported in our previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on 

Trec123 

qSim-Cut-10 on 

Trec123_R2 

qSim-Cut-10 on 

Trec123_R1 

1 0.2445 0.3745 (53.16%) 0.4003 (63.71%) 
2 0.3121 0.3887 (24.53%) 0.4229 (35.47%) 
3 0.3188 0.3923 (23.03%) 0.4242 (33.06%) 
4 0.3350 0.3996 (19.31%) 0.4372 (30.53%) 
5 0.3503 0.4042 (15.38%) 0.4410 (25.90%) 
6 0.3745 0.4053 (08.25%) 0.4336 (15.79%) 
7 0.3889 0.4106 (05.58%) 0.4356 (12.02%) 
8 0.4025 0.4228 (05.07%) 0.4392 (09.15%) 
9 0.4108 0.4294 (04.56%) 0.4454 (08.43%) 
10 0.4325 0.4309 (-00.35%) 0.4461 (03.14%) 

Overall Improvement 15.85% 23.72% 

 
 

Table 7b. Comparison between different similarity levels of simulated past query sets on 

Trec4 dataset with Trec4_R3 and Trec4_R2 simulated past query sets. Please note that 

the results for qSim-Cut-10 on Trec4 dataset with Trec4_R2 sampled past query set has 

been reported in our previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on 

Trec4 

qSim-Cut-10 on 

Trec4_R3 

qSim-Cut-10 on 

Trec4_R2 

1 0.2739 0.2828 (03.27%) 0.2882 (05.23%) 
2 0.3375 0.3065 (-09.20%) 0.3065 (-09.20%) 
3 0.3031 0.3183 (05.04%) 0.3176 (04.80%) 
4 0.3101 0.3237 (04.38%) 0.3306 (06.62%) 
5 0.3095 0.3340 (07.92%) 0.3447 (11.37%) 
6 0.3247 0.3424 (05.44%) 0.3554 (09.45%) 
7 0.3339 0.3567 (06.84%) 0.3665 (09.76%) 
8 0.3599 0.3727 (03.55%) 0.3788 (05.24%) 
9 0.3753 0.3823 (01.86%) 0.3896 (03.83%) 

10 0.3905 0.3901 (-00.09%) 0.3972 (01.74%) 

Overall Improvement 2.90% 4.88% 
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5.4 The Performance of qSim with Different Similarity Levels of Past Queries 
 

The results in Table 7a and Table 7b indicate that the performance of qSim-Cut-10 is better with 

Trec123_R1 and Trec4_R2 past query sets than Trec123_R2 and Trec4_R3 past query sets 

respectively. This demonstrates that more similar past queries with respect to online/test queries 

can provide better information for qSim to achieve better resource selection recalls. A search 

system can effectively utilize the search results of more similar past queries to get better 

performance. 

 

5.5 The Performance of qSim with Different Query Similarity Estimation 

Approaches 
 

Table 8a and Table 8b show the results of qSim and ReDDE on the Trec123 testbed with 

Trec123_T20 sampled query sets. As shown from Table 8a and Table 8b, qSim-Cut-10 always 

generates much better results than ReDDE when either of the two query similarity estimation 

Table 8a. Comparison between qSim-Cut-10 with retrieval-based similarity and qSim-Cut-

10 with term-based similarity on Trec123 dataset with Trec123_T20 sampled past query set. 

Please note that the results for qSim-Cut-10 on Trec123 dataset with Trec123_T20 sampled 

past query set has been reported in our previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on 

Trec123 

qSim-Cut-10 with 

Retrieval-Based Similarity 

on Trec123_T20 

qSim-Cut-10 with 

Term-Based Similarity 

on  Trec123_T20 

1 0.2445 0.3414 (39.66%) 0.3951 (61.60%) 
2 0.3121 0.3675 (17.73%) 0.3982 (27.55%) 
3 0.3188 0.4021 (26.15%) 0.4558 (42.95%) 
4 0.3350 0.3929 (17.31%) 0.4537 (35.47%) 
5 0.3503 0.4108 (17.26%) 0.4782 (36.50%) 
6 0.3745 0.4093 (09.30%) 0.4798 (28.12%) 
7 0.3889 0.4194 (07.84%) 0.4883 (25.57%) 
8 0.4025 0.4373 (08.66%) 0.4989 (23.97%) 
9 0.4108 0.4429 (07.83%) 0.5061 (23.21%) 
10 0.4325 0.4577 (05.83%) 0.5030 (16.31%) 

Overall Improvement 15.76% 32.12% 

  

 
Table 8b. Comparison between qSim-Cut-10 with retrieval-based similarity and qSim-Cut-

10 with term-based similarity on Trec4 dataset with Trec4_T20 sampled past query set. 

Please note that the results for qSim-Cut-10 on Trec4 dataset with Trec4_T20 sampled past 

query set has been reported in our previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on 

Trec4 

qSim-Cut-10 with 

Retrieval-Based Similarity 

on Trec4_T20 

qSim-Cut-10 with 

Term-Based Similarity  

on Trec4_T20 

1 0.2739 0.3221 (17.65%) 0.3437 (25.49%) 
2 0.3375 0.3288 (-02.56%) 0.4067 (20.51%) 
3 0.3031 0.3295 (08.73%) 0.3955 (30.50%) 
4 0.3101 0.3499 (12.85%) 0.3750 (20.93%) 
5 0.3095 0.3590 (16.01%) 0.3713 (19.97%) 
6 0.3247 0.3623 (11.60%) 0.3802 (17.10%) 
7 0.3339 0.3654 (09.44%) 0.4031 (20.72%) 
8 0.3599 0.3681 (02.29%) 0.4114 (14.29%) 
9 0.3753 0.3678 (-01.96%) 0.4152 (10.64%) 

10 0.3905 0.3767 (-03.52%) 0.4211 (07.85%) 

Overall Improvement 7.05% 18.80% 
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approaches, namely retrieval-based query similarity estimation and term-based query similarity 

estimation, is used. Thus, qSim can be considered as a very effective algorithm for resource 

selection regardless of the query similarity estimation approach. In this set of experiments, only 

Trec123_T20 dataset is used. This is because of the fact that both of retrieval-based query 

similarity estimation and term-based similarity estimation approaches can find the similarities of 

past queries and online queries successfully on this past query dataset as shown and discussed on 

Figure 2.  

An interesting observation with this set of experiments is that qSim with term-based query 

similarity estimation approach significantly outperforms qSim with retrieval-based similarity 

estimation approach. Although it is an interesting direction to explore the effect of using different 

query similarity estimation approaches on the resource selection effectiveness, it is beyond the 

scope of this paper. In this paper, we utilize retrieval-based similarity measurement in all of the 

experiments since this measurement is available for different types of queries and testbeds. As 

mentioned before, in this set of experiments we are only interested in the robustness of qSim 

algorithm with respect to different query similarity estimation approaches. 

Table 9a. Comparison between qSim-Cut-10 with the Combined Approach on Trec123 

dataset with Trec123_T20 sampled past query set. Please note that the results for qSim-

Cut-10 on Trec123 dataset with Trec123_T20 sampled past query set has been reported 

in our previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on 

Trec123 

qSim-Cut-10 on 

Trec123_T20 

Combined Approach on  

Trec123_T20 

1 0.2445 0.3414 (39.66%) 0.3580 (46.41%) 
2 0.3121 0.3675 (17.73%) 0.3758 (20.38%) 
3 0.3188 0.4021 (26.15%) 0.3884 (21.82%) 
4 0.3350 0.3929 (17.31%) 0.4035 (20.46%) 
5 0.3503 0.4108 (17.26%) 0.4213 (16.21%) 
6 0.3745 0.4093 (09.30%) 0.4352 (16.21%) 
7 0.3889 0.4194 (07.84%) 0.4432 (13.98%) 
8 0.4025 0.4373 (08.66%) 0.4467 (11.00%) 
9 0.4108 0.4429 (07.83%) 0.4448 (08.28%) 

10 0.4325 0.4577 (05.83%) 0.4567 (05.61%) 

Overall Improvement 15.76% 18.44% 

  

 
Table 9b. Comparison between qSim-Cut-10 with the Combined Approach on Trec4 

dataset with Trec4_T20 sampled past query set. Please note that the results for qSim-Cut-

10 on Trec4 dataset with Trec4_T20 sampled past query set has been reported in our 

previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on 

Trec4 

qSim-Cut-10 on 

Trec4_T20 

Combined Approach 

on Trec4_T20 

1 0.2739 0.3221 (17.65%) 0.3347 (22.22%) 
2 0.3375 0.3288 (-02.56%) 0.3370 (-00.15%) 
3 0.3031 0.3295 (08.73%) 0.3374 (11.32%) 
4 0.3101 0.3499 (12.85%) 0.3397 (09.54%) 
5 0.3095 0.3590 (16.01%) 0.3627 (17.19%) 
6 0.3247 0.3623 (11.60%) 0.3607 (11.10%) 
7 0.3339 0.3654 (09.44%) 0.3737 (11.91%) 
8 0.3599 0.3681 (02.29%) 0.3751 (04.20%) 
9 0.3753 0.3678 (-01.96%) 0.3848 (02.55%) 
10 0.3905 0.3767 (-03.52%) 0.3949 (01.16%) 

Overall Improvement 7.05% 9.10% 
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5.6 The Performance of Combining qSim and ReDDE 
 

Table 9a & Table 9b (with sampled past queries) and Table 10a & Table 10b (with simulated past 

queries) compare the performances of ReDDE, qSim and the combined approach. The results 

show that the combined approach further improves the performance of qSim. The improvement is 

due to the integration of the two types of approaches: learning from past queries and using static 

sampled information. It has its advantages to integrate two types of evidence. Especially when a 

new rare test/online query is encountered, the combined approach will be a good choice for the 

system to perform at least as good as the ReDDE algorithm or even better than that. Since a real 

world federated search system usually has access to both types of evidence, the combined 

approach is a practical solution. 

 

 

 

Table 10a. Comparison between qSim-Cut-10 with the Combined Approach on Trec123 

dataset with Trec123_R1 simulated past query set. Please note that the results for qSim-

Cut-10 on Trec123 dataset with Trec123_R1 sampled past query set has been reported in 

our previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on  

Trec123 

qSim-Cut-10 on 

Trec123_R1 

Combined Approach on  

Trec123_R1 

1 0.2445 0.4003 (63.71%) 0.3982 (62.87%) 
2 0.3121 0.4229 (35.47%) 0.4205 (34.72%) 
3 0.3188 0.4242 (33.06%) 0.4355 (36.59%) 
4 0.3350 0.4372 (30.53%) 0.4407 (31.58%) 
5 0.3503 0.4410 (25.90%) 0.4513 (28.80%) 
6 0.3745 0.4336 (15.79%) 0.4442 (18.60%) 
7 0.3889 0.4356 (12.02%) 0.4390 (12.88%) 
8 0.4025 0.4392 (09.15%) 0.4472 (11.11%) 
9 0.4108 0.4454 (08.43%) 0.4560 (11.01%) 
10 0.4325 0.4461 (03.14%) 0.4543 (05.04%) 

Overall Improvement 23.72% 25.32% 

  

 
Table 10b. Comparison between qSim-Cut-10 with the Combined Approach on Trec4 

dataset with Trec4_R2 simulated past query set. Please note that the results for qSim-Cut-

10 on Trec4 dataset with Trec4_R2 sampled past query set has been reported in our 

previous work (Cetintas et al. 2009). 

# Selected 

Sources 

ReDDE on 

Trec4 

qSim-Cut-10 on 

Trec4_R2 

Combined Approach 

on Trec4_R2 

1 0.2739 0.2882 (05.23%) 0.2953 (07.84%) 
2 0.3375 0.3065 (-09.20%) 0.3126 (-07.39%) 
3 0.3031 0.3176 (04.80%) 0.3169 (04.55%) 
4 0.3101 0.3306 (06.62%) 0.3288 (06.04%) 
5 0.3095 0.3447 (11.37%) 0.3465 (11.96%) 
6 0.3247 0.3554 (09.45%) 0.3626 (11.67%) 
7 0.3339 0.3665 (09.76%) 0.3713 (11.22%) 
8 0.3599 0.3788 (05.24%) 0.3813 (05.95%) 
9 0.3753 0.3896 (03.83%) 0.3961 (05.54%) 
10 0.3905 0.3972 (01.74%) 0.4094 (04.86%) 

Overall Improvement 4.88% 6.22% 
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6 Conclusion 
 
Resource selection is an important component for a federated text search system. A large body of 

resource selection algorithms has been proposed in prior research. Most prior research of resource 

selection utilized static information of available information sources that is sampled in the offline 

manner and estimated the utilities of information sources. 

However, most prior research ignored a large amount of information of the results from past 

queries. In a real world federated search system, there often exist many similar queries like the 

case of Web search. The results of similar past queries may provide very valuable information to 

guide the resource selection decision of a current user query. 

This paper proposes a new resource selection approach called qSim to utilize the search 

results of past queries for estimating the utilities of available information sources for a specific 

user query. For a user query, the algorithm first calculates the similarity measurements between 

the current user query and the past queries. The qSim algorithm then estimates the utilities of 

available information sources by the weighted combination of search results of past queries with 

respect to the query similarity measurements. The qSim algorithm does not require relevance 

judgment of past queries and only uses the ranked lists of past queries, which are generated by 

regression based results merging method. Furthermore, a combined resource selection approach is 

proposed in this paper to combine the resource selection results of the qSim algorithm and the 

ReDDE algorithm that uses static information. 

An extensive set of experiments are conducted on two testbeds with several configurations to 

show the effectiveness of the new resource selection algorithms. The proposed qSim resource 

selection algorithm is compared with the ReDDE algorithm. When there exist similar past queries 

for test queries, our new qSim algorithm performs better than the ReDDE algorithm. Furthermore 

when there are new online queries for which there are no similar past queries, the qSim algorithm 

mostly utilizes the combined approach and still generates substantial improvements over the 

ReDDE algorithm. 

There are several directions to extend the research in this paper. For example, we have shown 

that different query similarity estimation approaches have different performance gains; therefore a 

more detailed analysis of several query similarity estimation approaches and utilization of a more 

sophisticated query similarity estimation approach may help better identify similar past queries for 

more accurate resource selection results. Another possibility is that we can propose query-specific 

combination approach, which automatically adjusts the weights on the ranked lists from qSim and 

ReDDE with respect to the characteristics of user queries. 
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