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Leave Them Microseconds Alone: Scalable Architecture
for Maintaining Packet Latency Measurements

Myungjin Lee†, Nick Duffield‡, Ramana Rao Kompella†
†Purdue University, ‡AT&T Labs–Research

ABSTRACT
Latency has become an important metric for network moni-
toring since the emergence of new latency-sensitive applica-
tions (e.g., algorithmic trading and high-performance com-
puting). To satisfy the need, researchers have proposed new
architectures such as LDA and RLI that can provide fine-
grained latency measurements. However, these architectures
are fundamentally ossified in their design as they are de-
signed to provide only a specific pre-configured aggregate
measurement—either average latency across all packets (LDA)
or per-flow latency measurements (RLI). Network operators,
however, need latency measurements at both finer (e.g., packet)
as well as flexible (e.g., flow subsets) levels of granularity. To
bridge this gap, we propose an architecture called MAPLE
that essentially stores packet-level latencies in routers and
allows network operators to query the latency of arbitrary
traffic sub-populations. MAPLE is built using scalable data
structures with small storage needs (uses only 12.8 bits/pkt),
and uses optimizations such as range queries to reduce the
query bandwidth significantly (by a factor of 10 compared
to the naive).

1. INTRODUCTION
For the longest time, networking engineers and researchers

have focused mainly on obtaining high end-to-end through-
put in IP networks. In recent years, however, latency has
evolved into a metric that is as important as throughput in
IP networks. While low latency is a desirable property for
any network-based application, this obsession towards low
end-to-end latency stems from the stringent requirements of
many new kinds of datacenter, cloud, and wide-area applica-
tions that have become popular in the recent times. For in-
stance, several cloud applications (e.g., Salesforce, Google
App Engine, modern Web services) involve complex back-
end processing, such as accessing storage, SQL database
transactions, etc. After removing time for computation and
wide-area RTTs, the budget for datacenter network accesses
is significantly reduced. Similar requirement exists for par-
tition/aggregate type workloads found in search, social col-
laboration applications, where jobs that do not finish within
a certain time are typically cancelled thus affecting the over-
all result, and in some cases, lost revenue [5].

Even more stringent latency requirements, in the order
of 10s of µseconds, exist for high-performance computing
(HPC) applications [1] and financial trading applications [28].
Finally, although in the past Internet applications did not re-
quire as stringent requirements, with the advent of multi-
media applications and social gaming, latency requirements
have become more stringent. Many ISPs today provide iron-
clad SLAs that leave little room for latency spikes outside of
the propagation delays [3].

Network operators managing such latency-sensitive ap-
plications need sophisticated tools for high-fidelity latency
measurements at various places in the network that will help
them identify root causes of SLA violations, determine of-
fending applications that may hurt the performance of oth-
ers, perform traffic engineering and so on. In light of the
importance of these measurements, there has been some re-
cent research on developing measurement mechanisms such
as the lossy difference aggregator (LDA) [23] and reference
latency interpolation (RLI) [24].

A key limitation of these existing techniques is that they
only obtain latency measurements at the granularity of a fixed
pre-configured aggregate (across all packets in LDA, and
per-flow latencies in RLI). By making the granularity of the
aggregates for latency measurements part of the architecture,
these prior architectures are quite ossified, lacking flexibil-
ity to obtain arbitrary latency measurements than what they
are already pre-programmed to achieve. What network op-
erators need instead is a holistic architecture that provides
the ability to obtain arbitrary latency measurements from
switches. Such an architecture would help network operators
with powerful tools to help debug and manage low-latency
applications in their networks. Designing such an architec-
ture is the main objective of this paper.

In our quest to obtain arbitrary latency measurements from
switches, we ask ourselves, “What is the finest granularity of
latency measurements a network operator may be interested
in ?” The LDA and RLI architectures implicitly assumed
that aggregate or flow-level granularity of measurements is
what operators may care about. In this paper, we argue in-
stead that there are many compelling scenarios where finer-
granularity measurements may be important. For example,
for diagnosing client delays in online services, it may be



critical to know whether a DNS query (that is typically a
single packet) got delayed, or whether a backend transaction
got delayed in the network, or whether there were process-
ing delays. Similarly, for financial trading applications, one
may care about the delay of a single stock trade (that may
be carried in one packet). For HPC applications built on
message passing libraries (e.g., MPI), latencies of even sin-
gle messages may be quite important. In addition, one may
wish to focus on latencies for a subset of packets that be-
long to a flow, perhaps to hone in on the ones that exhibited
abnormal latency, or to track the latency time-series of the
flow. Thus, clearly, in order to satisfy these requirements,
we need a more flexible architecture than the one-size-fits-
all approach of existing solutions such as LDA (aggregate)
or RLI (per-flow).

Since the finest granularity of latency measurements is on
a per-packet basis, we start with an architecture that achieves
these measurements in a scalable fashion. Then, any other
forms of aggregation (per-flow, per-prefix, all packets), that
may be of importance to network operators, are easily com-
posable from these packet-level measurements. Such an ar-
chitecture essentially decouples the collection of measure-
ments (at the granularity of a packet), and aggregation (across
arbitrary subpopulations) during query time. This key intu-
ition forms the the basis for our proposed architecture MAPLE.

MAPLE essentially consists of two main components—a
scalable packet latency store (PLS) and a query engine—
at each router. PLS stores the latencies of all packets that
appear at the router. In high speed networks, storing all
the packets and their associated latencies is going to be ex-
pensive; hence we store latencies only for a small amount
of time (e.g., 1s) in high-speed SRAM, and rely on flush-
ing them periodically to a higher capacity data store. Since
storing the entire packet and delay requires high storage (in
terms of bits/packet), we propose a novel approach that first
clusters packets and associates a delay value for each cluster,
and then, uses a novel hardware data structure called shared-
vector Bloom filter (SVBF) to significantly reduce the mem-
ory requirement. SVBF makes the architecture technologi-
cally feasible in high-speed switches where SRAM is a very
scarce and precious resource. We show how the entire PLS
can enable an efficient streaming implementation in hard-
ware that can keep up with line rates.

The second component of MAPLE, the query engine, es-
sentially allows end-hosts or a centralized entity to initiate
a query for the packet. These queries need to be within a
particular timeframe of the original packet, otherwise, the
store in the router may not have any history of the packet.
By constructing queries across arbitrary packets, end-hosts
can easily obtain per-packet latencies for all (or a sample) of
packets within a given subpopulation, using which they can
compose the aggregate latency measurements for that flow.
We also consider mechanisms to reduce query bandwidth by
providing the ability to perform range queries.

Thus, the main contributions in this paper are as follows:

1) We propose MAPLE for maintaining per-packet latency
measurements in a scalable fashion. Our architecture al-
lows network operators to obtain any aggregate of mea-
surements thus subsuming the functionality of existing
architectures, while providing newer and more powerful
capabilities such as computing aggregate latency mea-
surements across any sub-populations.

2) We propose novel mechanisms that use streaming al-
gorithms for clustering packet delays, and storing them
compactly using a novel data structure called SVBF that
is much more storage efficient (requires only 12.8 bits/pkt)
than a varaint of regular hash tables (that may require
147 bits/pkt) and also minimizes memory accesses for
inserts and lookups. We also propose range queries to
reduce the amount of query bandwidth required.

3) We built a software prototype of our architecture. In our
evaluations, we found that MAPLE achieves lower per-
packet latency estimate error (almost 6× lower) com-
pared to prior data structures for comparable storage. We
also found that the range query achieves significant re-
duction in query bandwidth (almost 10×) compared to
packet query.

The rest of the paper is organized as follows. We present
our measurement goals and the high-level ideas of our ar-
chitecture in §2. We discuss the two major components of
our architecture—packet latency store and query engine in
§3 and §4 respectively. We then discuss our evaluation of
the architecture in §5. We briefly outline how we can imple-
ment our architecture in high-speed routers in §6, followed
by related work in §7.

2. MAPLE ARCHITECTURE
In this section, we outline a flexible architecture for ob-

taining high-fidelity latency measurements in the network.
Before we describe the architecture, we first state our mea-
surement goals followed by a brief discussion on why previ-
ous solutions cannot satisfy these goals.

2.1 Measurement goals
Our goal is to enable a high-fidelity latency measurement

architecture that satisfies the following requirements:

• R1) Per-packet latency measurements. The architecture
should allow operators to obtain latency information about
a single packet at various routers in the network.
• R2) Measurements across arbitrary aggregates. It should

enable network operators to compute measurements across
arbitrary aggregates (e.g., per-prefix, application, flows,
sub-flows) easily.
• R3) Measurements across arbitrary locations. We need

support for latency measurements both within and across
routers to allow network operators complete freedom to
selectively turn on interfaces between which they need
measurements.

Such an architecture will provide detailed latency infor-
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Figure 1: MAPLE architecture.

mation that will help network operators to debug their net-
works and satisfy the demands of modern latency-sensitive
network applications.

2.2 Limitations of previous solutions
We consider mainly passive measurement solutions since,

as pointed by prior work [23, 24], it is difficult to estimate
packet-level latencies by injecting active probes. As men-
tioned before, there have been mainly two solutions, LDA [23]
and RLI [24], that have been proposed for fine-grained la-
tency measurements in the recent past. (Another solution for
per-flow latency measurements is Consistent NetFlow [25],
but it is quite similar in spirit to RLI, and arguments appli-
cable to RLI are applicable there too.)

LDA provides only aggregate measurements and cannot
be modified simply to satisfy all the requirements listed be-
fore. For instance, it cannot satisfy R1. Although R2 could
potentially be satisfied by configuring different LDAs on a
per-aggregate basis, but this approach will not scale well,
as all potential aggregates need to be pre-configured, and
there can be many such aggregates. RLI provides per-flow
measurements, and hence, it can satisfy R2 partially for ag-
gregates that can be obtained from individual per-flow mea-
surements. For example, one can aggregate all the flows per-
prefix from per-flow measurements but cannot obtain finer
granularity measurements than flow, such as a packet (or
flow subsets). In addition, LDA and RLI cannot easily sat-
isfy requirement R3, because of the FIFO ordering assump-
tion in LDA and temporal delay correlation assumption in
RLI, both of which may not hold true across arbitrary mea-
surement points.

2.3 Architecture
Given existing solutions fall short of satisfying the re-

quirements we outlined earlier, we propose Measurement
Architecture for Packet LatEncies (MAPLE). Our architec-

ture (shown in Figure 1) is based on three key ideas: First,
in order to satisfy requirementR1, we need MAPLE to store
per-packet latency measurements in some scalable way; any
form of aggregation within routers cannot be used to satisfy
R1. Thus, at its heart, MAPLE contains a scalable packet
latency store (called PLS) designed to simply store latencies
of all packets in a scalable and efficient fashion. Since stor-
ing all packets will mean significant storage requirement that
will be prohibitively expensive if not technologically infea-
sible, it only stores packet latencies only for a small amount
of time, τ , say 1-100s, in high speed memory. Every τ sec-
onds, the store will be (optionally) flushed to an off-chip sec-
ondary storage (e.g., DRAM, SSD), where it can be held for
a longer time. We discuss PLS in §3.

Second, to satisfy requirement R2, it essentially contains
a generic query engine that allows clients to query switches
about the latency of a packet (using its hash, for instance)
that has traversed that particular switch. These queries need
to be within the storage timeframe (either high-speed or op-
tional off-chip storage), otherwise the switch may lose the
packet latency record. We expect that queries are mostly go-
ing to be only for specific applications or customers which
are experiencing trouble. Instead of a per-packet query, we
also provide range query mechanisms (more details in §4) to
reduce query bandwidth. By querying latencies of specific
packets that form an aggregate, the client can obtain latency
measurements across arbitrary sub-populations. We discuss
the query component in more details in §4.

Finally, it is simpler to satisfy requirement R3, if we en-
able packet headers to carry timestamps (as shown in Fig-
ure 1). While we understand that it may be complicated in
the short-term to make header changes (as prior work [24,
23] pointed out), we believe this is a cleaner longer-term op-
tion that switch vendors are already considering. In our dis-
cussions with prominent switch vendors, they mention that
implementing a timestamp within the switch is not a prob-
lem, and, in some cases, such as Fulcrum [2], they already
have an internal timestamp within the switch. Thus, the as-
sumptions in LDA (FIFO ordering) and RLI (temporal delay
correlation) are no longer required in our architecture thus
enabling a more flexible architecture. However, if times-
tamping is not feasible, for restricted settings, such as pack-
ets within a router, or when there is a series of routers in a
FIFO order, we can still use temporal delay correlation as-
sumption made in prior work [24] and obtain approximate
delays on a per-packet basis. In that sense, our architec-
ture builds on any scheme to obtain one-way delay for each
packet.

Note that in all cases, we assume high precision time syn-
chronization (similar to prior solutions LDA and RLI) be-
tween the two measurement points, which has become feasi-
ble in modern times due to the increasing adoption of IEEE
1588 [16] and GPS-enabled clocks.

3. PACKET LATENCY STORE (PLS)



Simply put, the goal of PLS is to store a packet and its
associated latency value in a scalable fashion. In normal
settings, this goal would be relatively straightforward to ac-
complish using a simple linear-probing or linked-list-based
hashtable implementation [13]. Unfortunately, hashtables
are not efficient in their storage since they typically require
storing a packet hash (32 bits) and associated timestamp (20
bits). For a million packets, we need about 50 Mb which is
already quite expensive; for an OC-192 link, even this stor-
age will last only 0.2s unfortunately (assuming 5M packets
per second). Even if we use a slightly coarser timestamp (say
10 bits), it will reduce the memory need only slightly. Be-
sides, linear-probing or linked-list-based hashtables are not
easy to implement in a hardware in a pipelined fashion, and
may incur unpredictable insert times (depending on the num-
ber of accesses required to find an empty slot, or the length
of the collision chain).

If we need to store precise latency values for each and
every packet, relying on hashtables is probably the best re-
course unfortunately. Luckily, for the kind of applications
we envision, such as performance diagnosis or detecting SLA
violations, we can exploit the fact that the latency values for
each and every packet need not be precise, and can be ap-
proximate instead. If we assume some amount of inaccuracy
is tolerable, then we can significantly reduce the memory
usage—this is the key intuition behind our approach.

Our approach In our approach, we exploit two key ideas.
First, within a given measurement interval, there are typi-
cally only a few dominant latency values (depending on the
utilization) where most of the packet values are clustered. In
the worst case, the latency values can be all over the entire
permissible range, but in general, this is typically rare. Thus,
instead of storing packets and their associated timestamps,
we can first cluster packets into equivalence classes based
on the delay values, and associated a single delay value,
called cluster center, for all packets within the cluster. Sec-
ond, for each cluster, we can leverage approximate mem-
bership query data structures such as Bloom filters [8], that
have gained significant prominence in networking applica-
tions recently, for better efficiency in storage (in terms of
bits/packet) as well as implementation in hardware (just a
bit vector and few hash functions). We discuss these in more
detail next.

3.1 Selecting representative delays
Depending on whether the clusters are chosen statically

or dynamically, there are two broad choices for selecting the
cluster centers. For the static case, we consider logarith-
mic center selection, while we explore online clustering al-
gorithms (k-means and k-medians) for determining centers
dynamically.

Logarithmic delay selection. In this method, we first se-
lect a range of latency values that packets can experience,
and then divide this range into logarithmic sub-ranges. For
instance, if the delay range is 0.1-10,000 µs, we have 5 sub-

ranges; 0.1-10 µs, 1-10 µs, and so on. If we have n sub-
ranges, we assign k/n representative delays linearly for each
sub-range. If k = 50, and n = 5, each sub-range assigns 10
representative delays linearly. While this method does not
take the pattern of delays into account, the complexity of
choosing representative delays is minimal. Because the dis-
tance between two center delays in a sub-range is equal, the
relative and absolute error of a packet latency estimate re-
mains bounded and stable regardless of packet delay distri-
butions. However, accuracy may not be close to the optimal
accuracy as we can obtain with given k delay centers.

k-means and k-medians clustering. If we know distribu-
tion of packet delays in an interval a priori, selecting repre-
sentative delays can be formulated as a clustering problem.
In literature, there are two broad classes of algorithms—k-
means and k-medians—that can help determine good cluster
centers [20]. Typically, both types of algorithms minimize
the average absolute error of packet latencies, because they
choose centers that minimize total sum of distances between
each member with its closest center.

Formally, for observations x1, x2, . . . , xn, the k-means
algorithm aims to partition them into k sets, S1, . . . , Sk,
k ≤ n, so as to minimize the sum of squares of distances
within cluster from the center (mean), i.e.,

arg min
{µi}

k∑
i=1

∑
xj∈Si

||xj − µi||2

where µi is the mean of the cluster Si. k-medians clustering
algorithms minimize the distance to the median of a cluster
as opposed to the least-squares distance that k-means ob-
tains. The advantage of k-medians is that it is more resilient
to outliers which have too large or small values.

There are two key concerns with using these algorithms
directly in our setting though. First, the basic algorithms
cannot be directly implemented in a streaming fashion due
to their high run-time complexity, O(nk+1 log n). There ex-
ist heuristics such as the classic Lloyd’s algorithm [27], but
still it can be quite computationally intensive. Second, the
centers are determined after running the algorithm on all the
packets in a given measurement interval, but we need the
centers to be determined before the packets start streaming
in. We discuss how to address these issues next.

3.2 Streaming clustering
In order to address the first problem concerning the high

run-time complexity, we use a streaming version of k-medians
clustering algorithm complexity in our architecture. For the
second problem of lagged availability of centers, we use a
pipelined architecture, where computed centers from a pre-
vious epoch are used to cluster packets for this epoch.

Online version of clustering algorithm. There exist a few
time-efficient k-medians clustering algorithms [10, 19, 18]
in literature. In our architecture, we leverage an online clus-
tering algorithm proposed in [10] because the algorithm makes



no assumption about the characteristics of the streaming data
and is space-efficient. We need to make several modifica-
tions, which we describe later, to make the algorithm more
efficient than the version in [10]. We describe briefly how
the algorithm works and our modifications to speed up the
algorithm next.

Given a stream of n data points and k centers we wish to
find, this algorithm consists of two stages—online and of-
fline clustering. At a high level, the online clustering stage
works in many (not necessarily equal) phases over the en-
tire epoch to find O(k log n) candidate medians that the of-
fline clustering stage subsequently reduces to k centers. In
each phase, it uses Meyerson’s online facility location algo-
rithm [29], and chooses to open a new center with probabil-
ity δ/f , where δ is the distance of the current point x to the
closest already-open center, and f is the cost. In this algo-
rithm, cost f is L/(k(1+log n), where L is the lower bound
cost of the optimal. Note that L is refined at the beginning of
every phase by multiplying the previous value ofL by a fixed
constant β (we use β = 34 in our implementation). (Refer
to the PolyLogarithmic Space algorithm in page 4 of [10]
for the exact description.) The current phase is terminated
if either the number of opened centers or the associated cost
function exceeds some threshold (details in [10]). The al-
gorithm terminates when all the packets are consumed, and
leaves behind a set of O(k log n) candidate medians.

There are a few modifications we make to the original
algorithm to contain the run-time complexity. First, since
speed is critical, we use only one thread instead of 2 log n
parallel threads in the original algorithm in [10] (see PARA-
CLUSTER in page 4 of the paper). Second, the online al-
gorithm requires searching for the closest existing center out
of O(k log n) centers in each phase, which is hard even for
small k to do in 1 cycle. We therefore run on the online al-
gorithm only on sampled packets; a 10% sampling rate triv-
ially gives 10 cycles to do these lookups. For k = 50 and
n = 400, 000, we observe about 1000 centers which can be
looked up with a balanced binary tree using 10 memory ac-
cesses. We observe in our evaluations that 1-10% sampling
rate has virtually no effect on the quality of the centers pro-
duced by the algorithm.

Handling lagged availability of centers The problem here
is that we cannot compute the centers and cluster on the same
packet stream in one pass. Besides, the streaming algorithm
itself operates in two stages, online and offline. To address
this problem, we design a three-stage pipeline consisting of
the following stages to handle this issue: The first stage con-
sists of the online clustering algorithm that computes the
O(k log n) centers that operates on packets in epoch i. The
second stage consists of the offline clustering which will re-
sult in k centers by consuming these O(k log n) centers. Fi-
nally, we cluster the packets in epoch i + 2 depending on
the closest center that matches the packet’s latency in the
final stage. Since these stages operate in a pipelined fash-
ion, the centers computed will be based on the dynamics of
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Figure 2: Architecture for streaming representative de-
lay selection and storage provisioning.

packets computed two epochs back. Assuming some amount
of stationarity across measurement intervals (our evaluation
shows holds true in practice), this pipelined approach should
work well. However, to cover for the worst case where these
centers may be significantly dissimilar to each other, we pro-
pose a hybrid clustering approach that combines static al-
location using the logarithmic centers with the dynamic al-
location approach using the pipelined implementation of k-
medians algorithm as follows.

Hybrid clustering The basic idea of hybrid clustering is to
choose k/2 centers with logarithmic delay selection method
and rest k/2 centers are computed by streaming k-medians
algorithm. To enable hybrid clustering algorithm, we make
two more modifications in the online version of clustering
algorithm explained earlier. First, at the online clustering
stage, the centers chosen by logarithmic delay selection method
are always selected as a new center in each phase and the
number of data points added to the centers is incremented by
one. Second, when O(k log(np)) candidate centers need to
be processed at the offline clustering stage, we exclude the
k/2 centers picked by logarithmic delay selection method
fromO(k log(np)) centers, the rest candidate centers are fed
into the offline algorithm, and finally k/2 centers are ob-
tained. While we choose to split the total number of centers
equally between static and dynamic allocation schemes, this
equal split is somewhat arbitrary and other variants (e.g., 2/3-
1/3 split) could also work equally well (although we have not
explored this thoroughly yet).

3.3 Storage provisioning
So far, we have reduced the problem of storing < pi, li >

tuple to < pi, ci > where li is the actual latency of packet
pi and ci is the ith center. Once the k representative delays
are selected by the clustering algorithm, we need to deter-
mine how much storage is required to store packet latencies.
Depending on the data structure that one uses, the actual re-
quired memory size can be different. Note that the goal of
the data structures is essentially to store and lookup the cen-
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vector. SVBF has O(1) insert and O(1) lookup assuming reading the k vector takes 1 memory access.

ter id corresponding to a packet; the actual latency value cor-
responding to the center will need to be looked up in a sep-
arate table. During the lookup phase, instead of returning
the static latency value corresponding to the center, we can
dynamically return back the actual mean of all the packets
that map to a given center. Implementing this would require
essentially two additional counters per center (latency sum
and packet counts). We call these refined latency estimates.

3.3.1 Naive approach: PBF
Given these k cluster centers, we can now simply match

each incoming packet latency value to determine the right
center, and for each center maintain a separate Bloom filter
(BF) in which we record the packet’s presence. This naive
and intuitive data structure called Partitioned Bloom Filter
(PBF) as shown in Figure 3(a).

Insert To store a packet and its latency (lpkt), it finds the
right BF corresponding to the latency value by performing a
closest center match in parallel (shown in Figure 3(a)). Since
the number of centers k is quite small, doing this in parallel
in hardware should be relatively easy to do. It then accesses
the BF corresponding to this center, and inserts it into the BF
just like a regular BF insert, i.e., by hashing using multiple
hash functions and setting the bits indexed by the hash values
to 1. Since BF inserts are O(1), PBF insert time is O(1),
ignoring the small hardware cost for parallel match of the
packet latency with the various centers.

Lookup To lookup the latency corresponding to a packet,
PBF checks whether the packet is present in any of the BFs;
the delay represented by the BF that returns a match is the
estimated latency of the queried packet. Clearly, the com-
plexity of the lookup operation is O(k) since k BFs need
to be consulted. For a fixed k, since these BFs are strictly
partitioned, we can perform these lookups in parallel, thus
reducing the complexity to O(1).

Limitations A big problem with PBF is that, PBF needs
to allocate storage for each of the k groups differently since
the frequency counts for each group could be different. Of
course, PBF could use the estimated frequency counts, but
since our centers are calculated based on packets two epochs
back, these estimates may not be accurate. Thus, the only
options are to allocate higher amounts of storage per BF
than necessary, or once the capacity of a BF is reached, stop
adding packets leading to false negatives.

3.3.2 Prior approach: COMB
The second option we explore is using a recent generic

data structure called combinatorial Bloom filters (COMB)
designed for supporting multiset membership testing [17].
While PBF strictly partitions all BFs, COMB uses a single
BF, but represents different groups using different subsets of
hash functions. COMB contains three parameters, an f -bit
vector in which θ bits are set to 1 to indicate the code for
a group, and h different hash functions for each bit-position
(in total h · f hash functions).
Insert For a given group id gi, it first looks up the code
C(gi) corresponding to the group; for each bit position that
is set (θ bits will be set in each code), it picks the corre-
sponding set of hash functions to index into the BF, and set
the appropriate bits to 1 (just like a regular BF insert). Thus,
for each packet, it requires setting up to h · θ bits in the BF.
Lookup For each packet, it will test the positions indexed
by hashing the packet with all the h · f hash functions. The
f -bit code is formed by setting a bit position to 1, only if
all bits indexed by the hash functions associated with the bit
position indicate a 1 in the BF. The code will then correspond
to the group id.
Limitations The biggest advantage of COMB is that, un-
like PBF, it does not need to know the number of packets
in each group. However, storage requirement increases as
θ increases, which decreases storage efficiency (as we shall
compare shortly). Another limitation is that lookup com-
plexity is high since all the h · f hash functions need to be
queried, and all these bits are randomly located.

3.3.3 Our new data structure: SVBF
In the philosophy of maintaining one BF for all the groups,

we could consider another, perhaps simpler alternative. Here,
instead of storing each packet spkt directly, we can store its
concatenation with the group id, gi, i.e., s′pkt = spkt ⊕ gi,
where ⊕ is a concatenation operator. While inserts are fast,
lookups (that involve querying a packet with all concatena-
tions of group ids) are quite slow and will take k queries.
Further, these cannot be parallelized since all the bits are
scattered all across the BF. To address this problem, we pro-
pose a new data structure called SVBF that essentially pre-
serves the simplicity of a single BF, but reduces the lookup
complexity significantly. Specifically, we store the bits cor-
responding to different delay values for the same packet close-



Data structure #Hash Capacity (m/n) Insertion Lookup
hashtable 1 147 bits/pkt 1 1

PBF 9 12.8 bits/pkt 9 450
COMB(50, 1) 9 12.8 bits/pkt 9 450
COMB(11, 2) 7 18.5 bits/pkt 14 77
COMB(8, 3) 6 24.2 bits/pkt 18 48

SVBF 9 12.8 bits/pkt 9 27

Table 1: Example of complexity of storage data struc-
tures for single port memory. 32 bit word is assumed for
lookup in SVBF. Classification failure rate pCF = 0.1 and
k = 50. hashtable is tuned for pFC = 0.02.

by so that during queries we can read all the bits in a burst
instead of reading them sequentially from various bit posi-
tions.
Insert The insert operation is quite similar to a regular BF,
except for a small modification. In regular BF, each packet
is hashed using multiple hash functions, and bits at those
indices are set to 1. In SVBF, we use the hash function index
as an offset into a vector of delay values. Thus, we set the
bit corresponding to hi(spkt) + gi where gi ∈ [0, k − 1] is
the group number of the packet. This is shown in Figure 3(c)
where a packet that matches the second center c2 (group id
1) is added into the BF using hash functions H1 and H2. The
offset at which the bit is set is 1 for this second center.
Lookup Given a packet spkt, we first hash the packet to ob-
tain various hash indices hi(spkt). From each of these bases,
we read the next set of k bits, i.e., hi(spkt) to hi(spkt)+k−1,
to obtain bitmaps Bi. We compute the bit-wise AND across
all these bitmaps, B = B1&B2& . . .. In the final bitmap
(B), the offset where a bit is set to 1 is the group id.

The biggest advantage of this scheme is that, it relies on
‘burst reads’ which are simpler than random reads that COMB
suffers from. Thus, instead of k memory accesses, we only
need dk/we + 1 memory accesses for each hash index as
shown in Table 2. For example, for k = 50, we can obtain
the bit maps in a total of 3× h memory accesses assuming a
32-bit machine word, and h is the number of hash functions.
In Table 1, we show an example that outlines the storage
complexity, lookup and insertion times of SVBF compared
to other data structures.

3.3.4 Classification failures
BFs are typically known to suffer from false positives oc-

casionally, in which case a given element may not be in the
BF, but the BF may return back with a positive answer. In
PBF, this translates to a classification failure problem, since
two (or more) BFs, one legitimate and one (or more) false
positive may both (all) indicate a hit—the question is which
one to trust. Similarly, COMB too may suffer from classi-
fication failures where more than θ bits in the bit vector are
set to one. Finally, even SVBF may suffer from classification
failure, since the bit map B described above may have more
than 1 position set to 1 occasionally. We formally analyze
this in the next section.
Tie-breaking heuristic One option when classification fails

due to the false positives, is to just not return back an answer;
this may be an acceptable choice given the system inherently
trades-off some amount of accuracy in order to scale better.
We can also choose to resolve such conflicts using the fol-
lowing tie-breaking heuristic. When a packet can potentially
match many groups, we report the latency value of the group
with the largest number of packets among all conflicting
groups. For identifying this, we assume we can store run-
ning packet counts for each group in an extra counter. This
approach now can introduce false classification because the
decisions can be wrong. But, we observed that this heuristic
can work well when the distribution of the cardinalities of
BFs is skewed (e.g., long tailed, heavy tailed), and can im-
prove accuracy in many cases. However, as we mention in
§4, the result of a query will be explicitly tagged so that the
application which uses this data can be informed about the
‘guess’ing nature of the answer.

3.4 Analysis of PLS
In this section, we discuss why simple hash table cannot

scale in terms of space requirement while achieving O(1)
insert and lookup, and analyze the dependence of collision
performance of the proposed data structures on storage di-
mensioning.

3.4.1 Hash table
While hash tables are typically simple, at a minimum they

require the packet hash (32 bits) and group id (6 bits for 50
centers), thus requiring at least 38 bits per packet. Colli-
sion avoidance schemes present a further challenge for scal-
ing. Thus, in order to perform a comparison with a BF,
we consider a simpler hash table with no collision avoid-
ance scheme, in which the packet digest is used to address a
memory location in which the group id is stored (collisions
will override the group id). For our analysis we consider n
packets whose digest values are distributed independently
and uniformly across m locations. Following §3.3.4, the
false classification probability pFC is proportion of packets
allocated to already occupied locations: pFC = 1 − m

n (1 −
(1 − 1/m)n); see e.g. Section 3.3.2 of [22]. Although the
required capacity m is not given as an explicit function of
a target pFC, we have the approximation pFC ≈ n/(2m)
when n � m. For example, when pFC = 0.02 (a median
false classification rate that SVBF achieves in §5.3) then
m = 24.6n. Considering k = 50, each bucket is 6 bits.
Then, m/n = 147 bits/packet, even higher than the regular
hash tables. Thus, this simple variant does not scale.

3.4.2 Collision analysis & storage dimensions
We now analyze the frequencies of classification failures

due to storage collisions for queries on the PBF, COMB
and SVBF data structures. First, it is convenient to iden-
tify a generic collision analysis that applies to each storage
method. Following the terminology of Section 3.3, the false
positive probability pFP denotes a probability that a given set



Data structure #Hash functions Capacity (m/n) Insertion Lookup Note
PBF hPBF = − log2(1− (1− pCF)

1/(k−1)) ≥ hPBF/ log 2 hPBF k × hPBF lookup can be parallelized
COMB hCOMB = − log2(1− (1− pCF)

1/(f−θ)) θ × hCOMB/ log 2 θ × hCOMB f × hCOMB random access for lookup
SVBF hSVBF = − log2(1− (1− pCF)

1/(k−1)) hSVBF/ log 2 hSVBF (dk/we+ 1)× hSVBF serial burst read in the unit of word

Table 2: Complexity of storage data structures for single port memory. w is the size of memory word. log is natural log.

of storage locations pertaining to a single delay group are
occupied. Then, classification failure for a packet in delay
group i occurs unless it has no false positive in any other
delay group j: p(i)CF = 1−

∏
j 6=i(1− p

(j)
FP ).

Consider now specifically a BF with m locations and h
hash functions. We assume an independent hash digest dis-
tribution over all packets. For simplicity, we assume that the
query packet is mapped by the hash functions to h distinct
locations1. As is well known, the false positive probability
that a set of h bits are all set after the insertion of n back-
ground objects is pFP = p(m,n, h) = (1− (1− 1/m)nh)h.
Collisions in PBF. Each delay group i has capacity mi

(
∑
imi = m) and ni background packets allocated to it

(
∑
i ni = n). For a query on a packet in delay group i, clas-

sification failure occurs unless there is no false positive in
any other delay group. Thus, averaging over all n packets in
their respective delay groups, we have

pCF = 1−
∑
j

nj
n

∏
i 6=j

(1− p(mi, ni, h)) (1)

Since the operational allocationsmi and ni are not known in
advance, for design purposes one would assume uniformity,
in which case (1) reduces to (3) below.
Collisions in COMB. All delay group locations for the
query flow may be set by any of the background flows. Since
COMB uses θ bits to denote a group id in a code, it is equiv-
alent to virtually put θ · n items into m locations. Hence

pCF = 1− (1− p(m, θ · n, h))f−θ (2)

Collisions in SVBF. All delay group locations for the query
flow may be set by any of the background flows. Hence

pCF = 1− (1− p(m,n, h))k−1 (3)

When all BF sizes mi are equal, a standard convexity argu-
ment shows that pCF(SVBF) ≤ pCF(PBF) for any {ni}.
Storage Dimensioning. We use the foregoing analysis to
show how to dimension SVBF for given target classifica-
tion failure rate pCF. For large, n, p(m,n, h) ≈ q(n/m, h)
where q(α, h) = (1 − e−αh)h. As is well known, α 7→
q(α, h) is minimized at when h = α−1 log(2), in which
case, pCF(SVBF) = 1− (1− 2−h)k−1. Thus, given a target
pCF of ε > 0, we must choose h and α−1 log 2 to be bounded
below by− log2(1−(1−ε)1/(k−1)). The lower bound for h
and upper bound for α compatible with two possible target
classification failure rates ε = 10−1 and 10−5 are displayed
as a function of the number k of delay groups in Figure 4.
Observe that, due to the logarithmic dependence, after an
1This happens with probability m−hm!/(m−h)! ≥ 1−h2/(2m)
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Figure 4: Dimensioning SVBF: lower bound on #hash
functions h, and upper bound on load α = n/m, as func-
tion of #delay groups k, for two target pCF classification
failure rates ε = 10−1 and 10−5.

initial phase, the curves are relatively flat as a function of k.
They do not depend very strongly on the target rate: decreas-
ing ε by 4 orders of magnitude changes the bounds by only
about half an order of magnitude. Table 2 provides overview
of insert and lookup complexities and storage requirements
of the three data structures. Given ε = 10−1, parameter tun-
ing examples are shown in Table 1.

4. LATENCY QUERY INTERFACE
In this section, we describe the packet latency query inter-

face that allows a ‘querying client’ (henceforth, just client)
to query routers for specific packet latency measurements.

Query using packet hash In the very basic query, a client
can request a particular router for latency of a given packet
identified by the packet hash. This implicitly assumes that
the packets are first hashed using the invariant fields in a
packet header (e.g., IP addresses, IP id, port numbers) and
the packet payload (few bytes is often sufficient [15]) be-
fore inserting into the SVBF. We also assume that the client
knows that the path taken by the packet, otherwise, the client
needs to ask all the routers in the network which may in-
crease the number of bogus queries. We assume that it will
be possible to determine this based on the forwarding tables.

The switch then performs a lookup operation of the packet
in the SVBF to return back the latency estimate to the client.
Because of classification failure possibility in SVBF, we re-
turn latency estimates with a 2-bit type that identifies one of
three types: (1) Match that indicates that the packet was
uniquely identified in the SVBF. (2) Multi-Match indi-
cating that multiple matches were reported, but the latency
estimate corresponds to the answer using the tie-breaking
heuristic we discussed in §3.3.4. (3) No-Match that indi-
cates the packet’s latency estimate could not be located.



If the host wishes to obtain flow-level (or any other aggre-
gate) latency statistics, it needs to send all packet digests of
a particular flow of interest to the particular switch/router it
believes the packet may have traversed along the path from
the source to the destination. Sending one packet for query-
ing each packet to the switch may lead to too many packets.
Luckily, packet digests could be easily batched in one query
message (about 375 32-bit labels can be embedded within
one 1500 byte query packet). Since packet hashes are ran-
dom d-byte strings, this is the only way to form the aggre-
gate unfortunately. We can reduce the query bandwidth by
potentially querying only a sample corresponding to the ag-
gregate as opposed to all the packets, that may represent a
trade-off between query bandwidth and accuracy. While ex-
ploring this trade-off is outside the scope of this paper, we
briefly describe an idea next that has the potential to reduce
the query bandwidth significantly.

Query using flow key and IP identifier We can reduce
query bandwidth overhead with the help of a range search
capability. Since packet hashes do not lend themselves to
this range search easily, we consider an alternate scheme.
Instead of storing the packet hash, we store the concatena-
tion of the packet’s flow key and the IP identifier (IPID) field.
The benefit of using IPID field is that it is incremented lin-
early for each packet transmitted by end systems, allowing
us to support flow-level (or sub-flow level) queries quite eas-
ily. The implementation of IPID field can be error-prone
in some hosts, however. But, we assume that in datacen-
ter environments, because hosts are controlled by one single
owner, they can detect any anomalies or fix implementation
bugs through patches, if any.

The client in this case can query packets using the tuple
(fk, [IP idi, IP idj ]). Note that this does not stipulate that
all packets that belong to a flow will need to have contiguous
IDs. But since TCP transmits packets in bursts usually, we
can break down a flow in to several tuples

fk = (fk, [IP idi1, IP idi2]), (fk, [IP idi3, IP idi4]), . . . ,

and chain them together in one message. This reduces the
query bandwidth significantly, almost by a factor of 10× in
our evaluation (§5.4). The receiving router will sequentially
query all packets (fk, IP idi1), (fk, IP idi1+1), ..., (fi, IP idi2).
Further, we can make the query interface specify whether it
wants the individual latency values or the aggregate values,
so that the router can send either individual packet latency
values or aggregate them in its response. This will also re-
duce the response overhead significantly.

Query timing For both types of queries, we need the client
to mention a rough time of the packet as part of the query, so
that the router can lookup the appropriate SVBF data struc-
ture corresponding to the time when the packet may have
gone through the router. Given the fact that PLS resets the
SVBF’s every epoch, it is important to make sure that the
previous epoch and the next epoch are also queried for the
packet in order to make sure there are no fringe effects, i.e,

the timing is close to the start/end of an epoch and it may lie
before or after the epoch.

Querying clients Our architecture is largely oblivious to
who originates the query. In one scenario, we could envi-
sion end hosts could be the clients in some environments.
For example, an end host that is running a low-latency trad-
ing application or a high-performance computing applica-
tion, whenever it detects packet delays exceed some level,
may originate a query packet to determine which router is
responsible for the higher delay. Similarly, we can consider
private datacenter owners such as Google, Microsoft, etc.,
that may want to debug their systems may provide this abil-
ity for individual hosts to query routers periodically for ob-
taining latency statistics.

We can also consider public cloud environments such as
Amazon EC2 where customers may demand certain SLAs
on network performance. We could imagine the cloud provider
installing a debugging stub-module within the host hypervi-
sor (similar to other recent works [32]) that essentially, at
the signal of a management host controlled by the network
operator, can start storing each packet’s hash that matches a
given hurting application, or a hurting customer. It can then
query these packets along the route to its destination to deter-
mine its latency. In this case, it makes sense to put this stub
module within the hypervisor since it is the one that knows
which packets are going out of its system; the management
host cannot possibly know how to query for the packets since
it does not know either the packet hash or the IP id sequence
(for the compressed query).

In the first usage scenario, we essentially trust the end host
to not overwhelm the switch by injecting too many queries.
This is possible in a tightly controlled datacenter or cluster
environment, but may not be, for example, possible in a pub-
lic cloud environment such as Amazon EC2 (the second sce-
nario). In such cases, we need some other protection mech-
anisms (e.g., charging models, rate limiting) to ensure the
number of queries to switches does not exceed some limit.

5. EVALUATION
In this section, we evaluate the practicality of our MAPLE

architecture. Specifically, our experiments are designed to
answer the following questions. (1) How do the different
clustering algorithms perform ? (2) How do the various data
structures we discussed in §3.3 compare in terms of their
accuracy for a given storage budget ? (3) How efficient is
the query interface in terms of latency estimates of arbitrary
aggregates, bandwidth reduction and inaccuracies in query
timing ? How does it compare with previous approaches
such as RLI ? We first describe our experimental setup be-
fore answering these questions.

5.1 Experimental setup
While we envision the eventual deployment to be in the

form of a hardware prototype, for the purposes of evaluation,
we prototyped various pieces, notably the streaming clus-



tering algorithm and the storage data structure, of MAPLE
in software. We implemented the online portion of the k-
medians algorithm from scratch (about 300 lines of C++
code), while we used the C clustering library [4] for the of-
fline part. However, the library had to be modified to support
clustering data with weight (i.e., count of entries clustered to
a candidate center at the online stage). For most of the exper-
iments, we use 50 centers (k = 50) that, as we shall show,
represents a good balance between accuracy and complexity.

In our setup, we feed several packet traces (real router as
well as using synthetic queuing models) into the software
prototype to study its efficacy. We can however easily re-
place the packet traces with live traffic in our environment.
For the most part, we kept our evaluation setup very similar
to prior work [24]. We also used the same traces—a tier-
1 trace (BB ) collected at an OC-192 link and a real router
trace (RR )—as the authors of [24] to facilitate a fair com-
parison with prior work. While [7] have recently published
some data center traces, they belong to a university data cen-
ter edge router with data rates of 2-3Mbps and is not a suffi-
cient workload for testing the scalability of our architecture.

The BB trace we used in our setup has about 22.4M pack-
ets in a period of 60s. We divide the 60s period into 60
measurement epochs each with 1s duration. Recall that our
architecture operates in epochs and freezes the storage for
lookup after every epoch. Thus, average number of pack-
ets over 60 epochs is 373,850. The minimum and maximum
numbers of packets are 357,912 and 404,452 respectively.
We find about 40 thousand hosts and 4.2M flows (consider-
ing same flow key across two epochs as two different flows)
on average in each epoch. We also conducted experiments
using an RR trace set that contains two different traces; one
trace has 2.6 million packets for 5 minutes achieving 53%
utilization of an OC-3 link, and the other trace has 4.0 mil-
lion packets during the same period (88% link utilization).
The traffic source is artificial in that, it is generated by Har-
poon traffic generator, but all packets were subject to latency
factors in a real router. Qualitatively, we found consistent
results across both BB and RR traces and hence we do not
discuss the results on RR traces any further.

Following the setup in [24], we subject packets to a simple
queueing model with open-loop RED queue management
strategy with parameters configured similar to the setup in
[24]. We configure the packet processing time in terms of
byte/second and queue length in our queueing model. Real
packet lengths and inter-arrival distribution govern dynamics
of packet delay values and losses.

5.2 Performance of clustering algorithms
We first compare static (logarithmic), dynamic (pipelined

k-medians) and the hybrid strategy that combines the two.
For reference we also include a hypothetical non-pipelined
k-medians (called oracle) approach, that essentially runs the
k-medians on the data directly, determines the centers, and
then clusters the packets into these centers. In all algorithms,

we assume a perfect data structure for storing the approxi-
mate delays, i.e., no Bloom filters to introduce any interfer-
ence. This gives us a baseline for comparison. As mentioned
before, we compare these schemes assuming k = 50 centers.
While we conduct experiments with three traces of different
link utilization scenarios to comprehensively understand the
tradeoffs, we omit showing all the curves due to space limita-
tions. We show the absolute error CDF for only the moderate
utilization case in Figure 5(a).

In our experiments, we observe that oracle achieves the
smallest absolute error at higher quartiles among all methods
across all link utilization scenarios as it minimizes the sum-
mation of absolute distance between entries and their closest
centers, which is exactly the absolute error. Since its objec-
tive is to decrease the absolute error, it may allocate centers
that may increase the relative error for some packets, partic-
ularly the low-latency packets. We observe a similar trend in
the k-medians clustering method as well. Logarithmic clus-
tering generally achieves higher accuracy than other meth-
ods in terms of relative error except low utilization scenario
because its centers are placed at equal distances within each
sub-range (e.g., 1-10µs and 10-100µs). In low utilization
scenario, there is a larger fraction of packets whose delays
are far smaller than the nearest center leading to worse accu-
racy. Comparatively, the other schemes adjust to this trend
quickly and place more centers close to where the actual de-
lays are, leading to better accuracy.
k-medians clustering method has the similar performance

that the oracle has in terms of both absolute and relative er-
rors under low, moderate utilizations, and even the lower
quartiles of the higher utilizations. At higher quartiles of
higher utilization scenario, the k-medians clustering method
is worse than that of oracle because of the inherent varia-
tions across epochs; this is in essence the price we pay for
an online clustering algorithm. Finally, we observe that the
hybrid clustering approach balances both absolute and rela-
tive errors by inheriting the good properties of static and dy-
namic center determination approaches. For instance, in Fig-
ure 5(a), we can see how the hybrid scheme inherits the bet-
ter accuracy of logarithmic approach at lower quartiles and
better accuracy of k-medians at the higher quartiles. Hence-
forth, unless otherwise mentioned, we use the hybrid scheme
throughout the rest of the paper.

Impact of packet sampling. In §3.2, we discussed that we
employ packet sampling in the clustering phase to reduce the
processing overhead. We now study the impact of varying
the sampling rate on the accuracy of the per-packet latency
estimates. In our experiments, we found virtually no differ-
ence between the different absolute error CDFs (and hence,
refrain from showing the actual plots) between the sampled
and unsampled variants. One could imagine this happens be-
cause most packet delays are clustered to statically chosen
centers instead of those close to the k-medians. However,
this is not the case, as only 53% and 1.5% packets are clus-
tered to those static centers at high and low link utilizations
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Figure 5: Comparing different clustering schemes and
exploring trade-off between average error and maximum
running time for offline stage.

respectively. The actual reason is that the k centers output by
the algorithm are similar even when we sample packets. We
observe that the cosine similarity (defined as cos θ = A·B

|A||B| )
between two vectors A and B of k centers output by sam-
pled and unsampled k-medians algorithm is over 0.98 for
sampling rates as low as 1%.
Number of centers vs. running time. The running time of
the offline algorithm depends on the final number of centers
required, i.e., k, and the number of candidate centers output
by the online clustering stage. As k increases, the running
time of the algorithm increases, but the resulting error also
decreases. This is the main trade-off involved in choosing an
appropriate value of k. Figure 5(b) explores this trade-off as
k is increased from 10 to 100. (We only plot the curve cor-
responding to the sampling rate 0.1 here, but other sampling
rates also exhibited similar trends.) From the plot, we can
clearly observe the sweet spot that represents a reasonable
trade-off between running time and average absolute error is
k = 50. We can possibly choose up to 70 or 80 centers as
well as the running time is less than the epoch interval (1s).
Of course, depending on the target platform and computa-
tional resources we can expect on the processor, the number
of centers may vary. But the existence of this trade-off im-
plies we can easily determine the value of k appropriate for
the target platform.

5.3 Comparison of data structures for PLS
Next, we compare the performance of various data struc-

tures for PLS—SVBF, PBF and COMB. For fair compar-
isons, we configure all of these with the same amount of
memory, 5Mbits in total. It is not easy to fix the amount of
memory in PBF since the total memory needs to be explic-
itly partitioned across all the BFs. We split the total mem-
ory across each BF proportional to the number of packets
that are mapped to a given BF (according to the frequency
counts two epochs back). For the others, we can derive the
optimal parameter configurations, such as number of hash
functions, for different data structures using the formulae in
§3.4.2. For this memory, the theoretical analysis suggests us-
ing 9 hash functions for SVBF and PBF. For COMB, there
are two other parameters, θ (number of bits that need to be
set in the group code) and f (length of the code). Out of fea-

sible combinations to support k = 50 groups, we choose the
configuration with f=8 and θ=3 that has the smallest lookup
time (that is proportional to f ). By fixing these parameters,
the number of hash functions per bit h needs to be set to 3
according to the analysis in §3.4.2. Thus, all in all, we en-
sured that the comparisons are as fair as possible between
the various schemes.

In our comparisons, we mainly study the classification
failure rate, false classification rate, and finally the impact of
these on the accuracy of latency estimates. We search laten-
cies of all packets for 58 epochs (the first 2 epochs are used
for clustering only). For false classification rate, we use the
tie-breaking heuristic described in §3.3.4 and compute the
rate at which the heuristic leads to an incorrect answer.

Classification failure and false classification rates. We
show the classification failure rate of each data structure in
Figure 6(a). As we can observe, SVBF and PBF (as ex-
pected) achieve least classification failure rate of about 10%
at most across all epochs, while COMB obtains 50% at most—
almost 5× higher than SVBF. Note that for PBF due to the
fact that for a given BF, the number of packets may exceed
the capacity, we observed almost 24% of packets could not
be admitted altogether (false negatives). Applying the tie-
breaking heuristic results in a false classification rate that is
lower than the classification failure rate, but not by much.
Still, as we can see from the Figure 6(b), the median false
classification rate of COMB is almost 12× higher than SVBF.
This shows the efficacy of our SVBF compared to exist-
ing data structures such as COMB. As shown in Table 1,
COMB requires almost twice the number of bits per packet
to achieve the classification failure rates as SVBF. We next
study how this decrease in classification failure effects the
actual delay distribution.

Accuracy of per-packet latency estimation. Figure 6(c)
shows comparison results in terms of absolute errors of per-
packet latency estimates. In addition to these data structures,
there is an additional curve titled ‘Clustering’ that essen-
tially assumes a perfect data structure, but does not use the
refined latency estimates (described in §3.3) using the ob-
served mean of the data packets. (We can always plot that
too, and that would strictly be better than the rest, but we
chose this as a nice reference point to see the effects of the
refinement.)

We show mainly the upper quartile in this graph where the
difference is the most pronounced. Clearly, at lower quar-
tiles, either SVBF or COMB would return the same (correct)
group id if the packet is not misclassified; it is only for the
mis-classified packets that the accuracy is likely to be worse
since the tie-breaking heuristic may pick the wrong latency
estimate for the packet. (If we choose not to report them,
then they will be counted as false negatives.) We can notice
that COMB and PBF suffer from much higher discrepancies
as early as the 70%ile onwards, while in contrast we can see
that the Clustering and SVBF have an absolute error that is
significantly lower in comparison. For example the 85%ile
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Figure 6: Analysis of classification failure, false classification, and estimation accuracy.

absolute error for COMB is close to 116µs while SVBF has
an error of 19µ at the same percentile. From the figure, we
can see that not until almost the 98%ile onward do we see
any difference between Clustering and SVBF.

5.4 Query interface
Since our architecture can support querying any packet, it

can allow the querying host to compute aggregate statistics
across arbitrary traffic sub-populations.
Accuracy of aggregate statistics In the first experiment,
we verify the accuracy of obtained aggregate statistics (by
querying packets that belong to that aggregate) at different
levels–sub-flow, flow, host, and prefix/16. By performing
flow-level aggregation, i.e., by grouping packets with the
same flow key, our architecture achieves similar function-
ality as previous work RLI [24]. However, perhaps more
unique to our architecture, due to the fact that it stores mea-
surements on a per-packet basis, we can choose to aggregate
at sub-flow-level, while RLI cannot easily achieve this. We
compute the average delay of 10 consecutive packets within
the same flow key (among large flows whose size is more
than 10 packets) as the sub-flow average delay. Such a fea-
ture could be useful, for instance, to understand which set
of packets within a large flow are exhibiting abnormal laten-
cies.

Figure 7(a) shows the aggregate statistics in terms of rela-
tive error for the high link utilization scenario. We also draw
a curve for packet latencies as a reference curve. From the
figure, we observe that as aggregation level becomes higher,
relative error reduces. Latency estimates at sub-flow level,
however, has the least relative errors. This is not incon-
sistent, since many flow/host/prefix-level statistics, although
aggregated with packets within a given epoch, are computed
with only a single packet (46% flows, 41% hosts, and 13%
prefix/16), while sub-flow statistics are computed for flows
that at least have 10 packets. Thus, sub-flow latency esti-
mates get more influence on canceling individual errors out
by aggregation. Specifically, median relative error is 5.5%
at packet level, 3.9% at flow level, 3.6% at host level, 2.1%
at prefix/16 level and 1.9% at sub-flow level. Similar trends
are found under low and moderate utilization scenarios.

In terms of absolute errors, we observe that prefix/16 av-

erage latency is more accurate than other aggregation levels,
at low link utilization. As link utilization increases, however,
we find little difference in absolute error among all four ag-
gregation levels. We omit graphs for brevity, but we observe
a 95-percentile absolute error of less than 0.05µs, 2µs and
55µs across all four aggregation levels.

Compression of query bandwidth with IP ids. We study
the query bandwidth saving using the IPID idea outlined in
§4. For each flow within an epoch, we compare the band-
width of range query messages with individual packet queries.
Figure 7(b) shows CDF of compression ratio of flows having
more than 100 packets for 60 epochs with BB trace. From
the figure, we observe that we can achieve a median com-
pression ratio of about 10%—10× less bandwidth than the
naive—while the total compression ratio if we want query
for all flows is about 25%.

Impact of inaccurate query timing We evaluate the impact
of inaccurate query timing when clients issue per-packet la-
tencies. In the experiments, all packet queries in an epoch
i are asked to a SVBF of that epoch (true SVBF) and addi-
tional b number of SVBFs of previous epochs i − b (bogus
SVBFs). Multiple matches are resolved using the same tie-
breaking heuristic. In Figure 7(c), we show the results for
2 bogus SVBFs. Clearly, as the number of epochs consid-
ered increases, the accuracy decreases slightly. For instance,
95%ile absolute error shifts from 70 to 89 to 125µs as bo-
gus SVBFs are added, but the 75%ile errors are not that im-
pacted, increasing the error from 10.7 to 12.2µs.

5.5 Comparison with prior architecture
We now compare our MAPLE architecture with RLI [24],

that also averages approximate latencies of packets (obtained
via latency interpolation) that belong to a flow. In MAPLE,
we use accurate packet latencies (using timestamps) but store
them approximately in the SVBF data structure. MAPLE
also can use RLI-approximated latency for each packet, but
this leads to two sets of approximations (we denote this as
MAPLE-RLI). We study these various effects in Figure 8.
(For brevity, we only show the high utilization curve; the
trends for the other two utilizations were similar.)

From Figure 8, we make two observations from the fig-
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Figure 7: Average latency statistics at different aggregation levels, query message compression ratio about flows having
more than 100 packets with IPID field, and impact of query timing using high utilization scenario.
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ure. First, there is little difference in absolute error between
MAPLE-RLI and RLI, while RLI has slightly higher accu-
racy than MAPLE-RLI, which is expected. Specifically, un-
der high utilization scenario, RLI has 76µs absolute error
at 95 percentile, but MAPLE-RLI has 102µs at the same
percentile. Median error by RLI is 15µs and the error of
MAPLE-RLI is 17µs. The second observation is that MAPLE
(with true latencies) achieves much higher (half to one order
of magnitude higher) accuracy than RLI. For instance, about
90% flows have less than 1µs absolute error with MAPLE,
but RLI only has 50% flows with such absolute error under
moderate utilization scenario (not shown for brevity). Put
differently, in Figure 8, MAPLE achieves 5× less median er-
ror than RLI. This shows that MAPLE, if implemented, may
provide more accurate latency estimations than RLI, even
with the approximations in the storage data structure.

6. IMPLEMENTATION
We envision that the streaming k medians algorithm will

be implemented in software. We assume there is an addi-
tional processor (or core) devoted to implementing this ar-
chitecture. We assume that this core will perform the stream-
ing k-medians on the sampled data. There have been some
prior efforts [26] on implementing k-medians directly in hard-
ware that we can also leverage. In environments where there
is not enough processing capacity, we can rely on the static
clustering approach we discussed in §3. This will however
yield worse accuracy than the hybrid estimator.

The actual storage data structure, SVBF, outlined in Fig-
ure 2 will need to be implemented in hardware in high-speed
SRAM. Bloom filters in general require simple hashing op-
erations and updating bit maps and thus are amenable to
high-speed implementations (see [34] for example). For im-
plementing the hash functions, we can use the H3 [31] hash
functions or the BOB [21] hash functions that are amenable
to easy hardware implementations. We need to also main-
tain two extra counters per-center, one for tracking number,
and the other for sum of delays of all packets that map to a
given center. These counters will enable the refined latency
estimate heuristic (in §3.3) and the tie-breaking heuristic (in
§3.3.4). The SVBF data structure needs to be flushed ev-
ery epoch to an off-chip storage, which can be either DRAM
or SSDs. Along with each SVBF, the associated k centers
for that particular epoch need to be stored. For smaller k,
this is only a small amount of extra storage. Depending on
the technological constraints such as the amount of available
high-speed memory and link speeds, the epoch size could be
determined.

Assuming an OC-192 interface, we have roughly 5 mil-
lion packets per second, for which we will require about 60
Mbits of memory per second (assuming 12 bits/pkt). Of
course, this is assuming the interface is running at full ca-
pacity, which is often not the case. Thus, if we assume
10% utilization, we only require 6 Mbits of memory per sec-
ond. Thus, 16 GB of DRAM (which is commodity today)
could be used to store packet latencies for almost 40 min-
utes. Flash memory densities are even higher; today 256 GB
SSDs are possible which will enable storing packet latency
state for about 10 hours, which is enough time for network
operators to debug and process the information.

Queries will need to be handled in software. For each
query, depending on the approximate time of the packet in
the query, the appropriate SVBF (and the two neighbors just
in case) will be queried by the processor (or core) (perhaps
shared with the k-medians implementation). Only the words
corresponding to the hash indexes will need to be fetched
from the secondary memory (SSD or DRAM), which are
then looked up according to the algorithm outlined in §3.3.3.



7. RELATED WORK
There exists a lot of research in measuring per-hop laten-

cies, although in the wide-area context, where ISPs typi-
cally rely on injecting active probes and obtaining link or
hop latency statistics using tomographic approaches [12, 14,
35]. These approaches do not satisfy any of our high-fidelity
measurement requirements in §2.1 and thus we need high-
fidelity passive measurement mechanisms. In this regard, we
already discussed three prior approaches relevant to our—
LDA [23], RLI [24] and Consistent NetFlow [25].

The idea of storing packet-level information has been pur-
sued in other prior contexts; trajectory sampling for identi-
fying packet trajectories in [15] and SPIE for IP traceback
in [33]. Neither provides latency estimates unfortunately, al-
though trajectory sampling could be augmented with a times-
tamp, but only a small number of packets are sampled at each
router (see [23, 24] for comparison of these approaches with
trajectory sampling). SPIE on the other hand stores only
packets and not their associated timestamps; thus, a simple
Bloom filter was sufficient there, while we needed the clus-
tering and SVBF in our setting.

The idea of ‘in-band’ diagnosis was proposed in NetRe-
play [6] and Orchid [30]. NetReplay proposes the idea of
replaying packets to collect feedback from the network. Or-
chid [30] also propose the idea of in-band network trou-
bleshooting, where packets collect feedback from routers
along the path. Our approach, however is more focused on
estimating, storing and retrieving packet-level latency mea-
surements, and is complementary to these approaches.

Song et al. propose fast hash table [34] to provide con-
stant lookup time by exploiting counting bloom filter. Fast
hash table does not address large space requirement because
of an extra counting bloom filter and the need to store both
packet digest and its delay. Supporting membership check
across multiple groups is non-trivial for Bloom filter. Several
data structures [9, 11, 17] have been proposed to address this
problem. COMB [17] is a multi-group membership check
data structure that is highly relevant to our work and hence,
we discussed this before in §3.3.

8. CONCLUSION
This paper proposed a scalable and flexible measurement

architecture called MAPLE. The core of the architecture con-
sists of two novel mechanisms; a streaming clustering algo-
rithm to cluster packet latencies into small number of latency
clusters in a streaming fashion, and a data structure called
SVBF to store packet latencies efficiently in a router. In ad-
dition, it provides a flexible query interface for network op-
erators to query the latency of individual packets. Together,
the architecture provides both fine-grained as well as flexi-
ble latency measurements to help network operators manage
low-latency applications efficiently. Our evaluations using
a software prototype indicate that our architecture can scale
efficiently both in terms of storage needs as well as in terms
of query bandwidth.
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