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ABSTRACT
In order to efficiently study the characteristics of network domains
and support development of network systems (e.g. algorithms, pro-
tocols that operate on networks), it is often necessary to sample
a representative subgraph from a large complex network. While
prior research has shown that topological (e.g. random-walk based)
sampling methods produce more accurate samples than approaches
based on node or edge sampling, they still do not produce samples
that closely match the distributions of graph properties (e.g., de-
gree) found in the original graph. In this paper, we observe that
part of the problem is that any sampling process fundamentally bi-
ases the structure of the sampled subgraph, since all neighbors of
a sample node may not be included in the sampled subgraph. We
address this problem using a novel sampling algorithm called TIES
that (1) aims to offset this bias by using edge-based node selection,
which favors selection of high-degree nodes, and (2) uses a graph
induction step to select additional edges between sampled nodes
to restore connectivity and bring the structure closer to that of the
original graph. To understand the properties of TIES we compare it
analytically to random node and edge sampling. We also evaluate
the efficacy of TIES empirically using several real-world data sets.
Across all datasets, we found that TIES produces samples that bet-
ter match the original distributions. In terms of two distributional
distance metrics, KS distance and skew divergence, we found that
samples produced by TIES consistently outperform other sampling
algorithms—with up to 2× reduction in KS distance and up to 3-
7× reduction in skew divergence, compared to the current state-of-
the-art algorithms.

1. INTRODUCTION
Many real-world complex systems can be represented as graphs

and networks—from information networks, to communication net-
works, to biological networks. Recently there has been a surge of
interest in studying the characteristics of these networks, model-
ing their structure, as well as developing algorithms and systems
that operate on the networks. However, many of the real-world net-
works are too large to efficiently acquire, store and/or analyze (e.g.
there are 3 billion emails per day worldwide). Although the data
mining community focuses on developing scalable analytic meth-
ods for very large datasets, in order to facilitate the development
and testing of systems for network domains it is often necessary
to sample smaller subgraphs from the larger network structure. A
sampled subgraph can be used to drive realistic simulations and ex-
perimentation before deploying new protocols and systems in the
field—for example, new Internet protocols, social/viral marketing
schemes, and/or fraud detection algorithms. In order to make ac-
curate assessments about the performance of such systems, it is
important to have sampling methods that can select a representa-

tive subgraph from the larger network. In addition, since it can
be costly or difficult to acquire the full network structure (i.e. due
to temporal evolution or restricted access), many datasets naturally
comprise a subset of the network data. In this case, it is impor-
tant to understand the effects of data collection mechanisms on the
properties of the sampled subgraph.

The standard graph sampling formulation is as follows: Assume
an input graph G = (V,E) from which the sampling algorithm
selects a subset of the nodes (Vs ⊂ V ) and/or edges (Es ⊂ E).
Within this framework, past work on network sampling has focused
on two sampling objectives: (1) To use the nodes Vs and/or edges
Es to accurately estimate network parameters in the original graph
G (e.g., degree, diameter), (2) to select a representative subgraph
Gs = (Vs, Es) from the original graph G (i.e., such that Gs has
structure similar to G).

Several sampling approaches (e.g., [25, 5, 9, 23]) focus primarily
on the first goal. Sampling, in these works, is used to quickly ex-
plore and estimate characteristics of network topology in domains
that are either hard to explore completely or that have significant
amounts of churn in the structure. Other sampling methods focus
on the second goal with an aim of sampling subgraphs from net-
work domains where the structure is both known and accessible,
but where it is costly to acquire the sample (e.g., crawling large
social networks) and/or costly to operate on the full network struc-
ture (e.g., when testing network protocols). For example, to col-
lect data from large online social networks, researchers often use
snowball sampling (e.g., [5]), random walk sampling (e.g., [18]),
or enhanced versions of node sampling that improve the subgraph
properties through direct optimization [11].

In this work, we focus on objective (2), i.e., how to sample a rep-
resentative subgraphGs given the original graphG. Since the rep-
resentativeness of the graph structure is difficult to evaluate directly,
our aim is to select a subgraph Gs such that it simultaneously pre-
serves many properties of G (e.g., degree distribution, path length
distribution). While recent work in this direction, notably [18,
11], have produced sampling algorithms that are more accurate than
simple random node or edge sampling algorithms (NS and ES re-
spectively), they still do not produce samples that closely match the
distributions of various properties in the original graph G.

We observe that the problem is intrinsic to the process of sub-
graph formation itself (used to construct the sample), since sam-
pling fundamentally biases the structure of the sampled subgraph.
For instance, when a node is selected for inclusion in the sample,
it is unlikely that all of its neighbors will be included in the sub-
graph, and thus, sampled degrees of nodes tend to be smaller than
original degrees. Thus, conventional wisdom of selecting nodes
in an unbiased manner (e.g., uniformly at random) may not yield
representative subgraphs that match the properties of the original



graph.
To address this problem, we propose a new sampling approach

that effectively offsets the bias of subgraph formation process, thus
enabling a closer match between the samples and the original graph,
compared to previous sampling algorithms. Specifically, we pro-
pose a sampling algorithm called totally-induced edge sampling
(TIES) that is based on two key ideas: First, in order to mitigate
the effects of the downward bias, we use edge sampling (ES) that
naturally exhibits an upward bias, i.e., it selects high degree nodes
with higher probability [23], for node selection. Second, while ES
does a good job selecting the high degree nodes, the connectivity
in its resulting sampled subgraph is quite sparse since each edge is
sampled independently. To counter this, we use a graph induction
step to add all edges that exist between the sampled nodes. This
step improves the connectivity of the sampled subgraph and brings
the distributions close(r) to those of the original graph.

We evaluate TIES over a number of real world (e.g., Facebook,
Twitter, arXiv, Enron) datasets collected by other researchers ([2,
26]), and an email network constructed from two weeks of Purdue
email traffic. Across all datasets, we observed that TIES produces
samples that better match the distributions of degree, path length
and clustering compared to other existing algorithms. In terms of
two distributional distance metrics, KS distance and skew diver-
gence [15], we found that samples produced by TIES consistently
outperform other sampling algorithms—with up to 2× reduction
in KS distance and up to 3-7× reduction in skew, compared to the
current state-of-the-art Forest Fire sampling algorithm [18].

Another major strength of TIES is that it is amenable to a stream-
ing implementation. In domains where the network graph is con-
structed from a sequence of edges over time (e.g. email, social
collaboration applications), it is important for the sampling algo-
rithm to incrementally compute the sampled graph as the edges
are streamed in. TIES by itself cannot be efficiently implemented
in a streaming fashion, but we develop a simple modification to
TIES, that induces the graph in the forward direction, i.e., includes
an edge among a pair of sampled nodes if it occurs after both
nodes have been added to the sample. We refer to this algorithm
as partially-induced edge sampling (PIES). PIES essentially retains
the core strengths of TIES, and thus, outperforms other algorithms
similar to TIES, and yet can be implemented in a streaming fashion.

The rest of the paper is organized as follows. We first present
a background on sampling methods in Section 2. Next, we out-
line our proposed sampling algorithm, TIES, explore its properties
analytically, and discuss the streaming implementation of TIES in
Section 3. We compare TIES with other state-of-the-art sampling
algorithms in Section 4. We briefly review other prior work in
Section 5 before we conclude in Section 6.

2. BACKGROUND
In this section, we formally state the sampling problem and out-

line a few state-of-the-art sampling mechanisms briefly.

2.1 Problem definition
Let G = (V,E) represent the graph, where V is the set of nodes

and E is the set of edges in the graph. Each edge e ∈ E can be
described as a tuple of the form (vi, vj) where vi, vj ∈ V . Given
a sampling fraction φ, the goal is to create a sample graph Gs =
(Vs, Es) such that |Vs|/|V | = φ, that preserves the structure of the
original network. Note that we assume that we have access to the
full graph G to begin with, i.e., the sampling algorithm can access
all the nodes and edges in the full graph to create the sampled graph.

In order to assess the representativeness ofGs, we evaluate whether
the sampled graph is able to simultaneously preserve the distribu-

tions of several characteristic measures of G such as degree, path
length, clustering coefficients, and size of connected components.
The degree and clustering coefficient distributions capture the lo-
cal properties of nodes in the graph, while path length and con-
nected component distributions capture its global topological fea-
tures. We consider distributions mainly since they capture intrinsic
graph structure and connectivity better than point statistics such as
average degree.

Most graph sampling algorithms have two basic components: (1)
node selection, and (2) induced graph formation. The node selec-
tion step identifies a sample set of nodes (Vs), while the graph in-
duction step selects the set of edges (Es) to be included in the sam-
pled graph. We distinguish between two different approaches to
graph induction—total and partial graph induction—which differ
by whether all or some of the edges incident on the sampled nodes
are included in the sampled graph. The resulting sampled graphs
are referred to as the induced subgraph and partially induced sub-
graph respectively.

2.2 Current sampling methods
State-of-the-art sampling techniques can be broadly classified as

node-based, edge-based, and topology-based techniques.

Node sampling (NS). In classic node sampling, nodes are chosen
independently and uniformly at random from the original graph for
inclusion in the sampled graph. For a target fraction φ of nodes re-
quired, each node is simply sampled with a probability of φ. Once
the nodes are selected, the sampled graph consists of the induced
subgraph over the selected nodes, i.e., all edges among the sampled
nodes are added to form the sampled graph.

Sampled subgraphs produced by node sampling can be further
refined using the Metropolis algorithms proposed in [11]. The key
idea is to replace sampled nodes with other potential nodes that
will better match the original degree distribution (or other met-
rics). Of course, this assumes that we have computed the desired
distributions from the original graph, which may be quite difficult
on very large graphs. In addition, since the Metropolis algorithm
searches in the space of possible node sets, the search is computa-
tionally intensive for large sampled graphs (e.g., >1000 nodes). In
our work we found the optimization process of [11] was ineffective
for larger samples— producing graphs with characteristics compa-
rable to NS. We conjecture that this is due to the increased search
space of possible candidate swaps, which significantly increases
the time needed for the Markov chain to converge. Since we found
that [11] produced graphs with characteristics comparable to NS,
but with runtimes significantly higher, we only report NS result in
this paper.

Edge sampling (ES). Edge sampling focuses on the selection of
edges rather than nodes to populate the sample. Thus, the node se-
lection step in edge sampling algorithm proceeds by just sampling
edges, and including both nodes when a particular edge is sam-
pled. The partially induced graph is created just out of the sampled
edges; which means no extra edges are added in addition to those
chosen during the random edge selection process.

Topology-based sampling. Due to the known limitations of NS [24,
16] and ES (bias toward high degree nodes), researchers have also
considered many other topology-based sampling methods. One ex-
ample is snowball sampling, which selects nodes using breadth-first
search from a randomly selected seed node. Snowball sampling
accurately maintains the network connectivity within the snowball,
however it suffers from a boundary bias in that many peripheral
nodes (i.e., those sampled on the last round) will be missing a large



number of neighbors [16].
In [18], Leskovec et al. analyze various sampling algorithms for

sampling large graphs, and propose a Forest Fire Sampling (FFS)
method. FFS is a hybrid combination of snowball sampling and
random-walk sampling that has been shown to produce quite accu-
rate samples in practice. It starts by picking a node uniformly at
random and adding it to the sample. It then ‘burns’ a fraction of
its outgoing links with the nodes attached to them. The fraction is
a random number drawn from a geometric distribution with mean
pf/(1−pf )). (The authors recommend pf = 0.7, which means on
average each selected node burns 2.33 nodes from its neighbors).
This process is recursively repeated for each burnt neighbor until
no new node is selected, and a new random node is chosen to start
the process until we obtain the desired sample size.

In general, topology-based sampling approaches such as FFS
are considered the state-of-the-art sampling algorithms. However,
while they do better than NS and ES, they still do not match the
original distributions precisely. In addition, FFS is difficult to im-
plement easily for time-varying graphs (as we shall argue in
Section 3.4).

3. EDGE-BASED NODE SAMPLING WITH
GRAPH INDUCTION

In this section, we propose a novel graph sampling approach
based on edge-based node selection with graph induction.

3.1 Key intuition
Our approach exploits two key observations: First, we observe

that edge sampling is inherently biased towards selection of nodes
with higher degrees, resulting in an upward bias in the degree dis-
tributions of sampled nodes compared to nodes in the original graph
[23]. However, in all sampled subgraphs, degrees are naturally un-
derestimated since only a fraction of neighbors may be selected.
This results in a downward bias, regardless of the actual sampling
algorithm used. While the upward bias of edge sampling can help
offset this downward bias to some extent, it alone is not sufficient to
fully offset the bias. Because ES samples each edge independently,
it is unlikely that the structure of the graph surrounding the high
degree nodes will be preserved. Thus, the second observation we
make is that a simple graph induction step over the edge-sampled
node set (where we sample all the edges between any sampled
nodes in the graph) can recover much of the connectivity around the
high degree nodes—offsetting the downward degree bias as well as
improving local clustering in the sampled graph.

These observations, while simple, makes the sampled graphs ap-
proximate the characteristics of the original graph much more ac-
curately, even better than topology-based sampling algorithms. We
use both theoretical analysis (Section 3.3) as well as empirical eval-
uation (Section 4) to validate the efficacy of our approach. Further,
as we shall show in Section 3.4, our approach lends itself to a scal-
able streaming implementation that makes it even more attractive
for sampling large-scale temporally-varying activity graphs.

3.2 TIES algorithm
In our approach, we select nodes in pairs by sampling edges in

the same manner as the classic edge sampling approach. The key
difference between our approach and ES is in the induced graph
step; we augment the edges selected by the edge sampling step by
including other edges between the set of sampled nodes. For exam-
ple, suppose edges e1 = (v1, v2) and e2 = (v3, v4) are sampled,
that leads to the addition of the vertices v1, ..., v4 into the sam-
pled graph. In conventional edge sampling only these two edges
e1 and e2 will be added to the sampled graph. In our approach,

Algorithm 1 TIES (sample fraction φ, edge set E)
1: Assume edges in E are stored in an array
2: . Vs = ∅, Es = ∅
3: // Edge-based node sampling step
4: while |Vs| < φ× |V | do
5: r = random (1, |E|) // uniformly random
6: . (u, v) = er
7: Vs = Vs ∪ {u, v}
8: end while
9: // Graph induction step

10: for k = 1 : |E| do
11: . (u, v) = ek,
12: if u ∈ Vs AND v ∈ Vs then
13: Es = Es ∪ {ek}
14: end if
15: end for
16: Output Gs = (Vs, Es)

however, we add any other edges that exist in the original graph be-
tween any of these sampled nodes (e.g., edge e3 = (v1, v3), edge
e4 = (v2, v4), or any other such combinations). We refer to this
algorithm as totally-induced edge sampling (TIES) and specify it
formally in Algorithm 1.

The algorithm runs in an iterative fashion, picking an edge at
random from the original graph and adding both the nodes to the
sampled node set in each iteration. It stops adding nodes once a
target fraction φ of nodes are collected. After this, the algorithm
proceeds to the graph induction step where it walks through all the
edges in the graph and forms the induced graph by adding all edges
which have both end-points already in the sampled node set.

3.3 Analytical comparison with ES and NS
In this section, we compare TIES analytically with ES and NS

in order to illustrate the characteristics of TIES that lead to im-
proved sampling accuracy. As noted before, there are two com-
ponents to graph sampling procedures: (1) node selection, and (2)
induced graph formation. TIES shares some similarity with NS and
ES along each of these dimensions.

3.3.1 Node selection
First, consider the node selection process. Let V and E be the

number of nodes and edges in the original graph. Let fD(k) be
the number of nodes of degree k in the original graph. Let Vs be
the target number of nodes in the sample graph (i.e.., φ = Vs

V
).

Let pv = Vs
V

be the probability of sampling a node in NS. Let
Es be the number of sampled edges in ES and TIES such that the
sample will have Vs nodes. Then, pe = Es

E
is the probability of

sampling a particular edge in ES or TIES (before graph induction).
Let E∗[|dk|] refer to the expected number of sampled nodes that
have degree k in the original graph, where * refers to any sampling
method. Then:

ENS [|dk|] = fD(k) · pv
EES [|dk|] = fD(k) · [1− (1− pe)k]

ETIES [|dk|] = fD(k) · [1− (1− pe)k]

The first result is easy to see because for node sampling, each node
has a uniform probability of being sampled. For edge sampling
and TIES, the probability of selection is proportional to a node’s
degree. More specifically, the likelihood of selection corresponds
to the complement of the probability that none of the node’s k edges
is sampled. Now we can show that ES (and by extension, TIES)
selects high degree nodes with greater probability than NS.



LEMMA 3.3.1. For degrees k > log(1− pv)/log(1− pe), ES
will sample degree k nodes at a higher rate than NS (i.e.,EES [|dk|] >
ENS [|dk|]).

Proof: Consider the threshold k at which the expected number of
sampled nodes is greater for ES:

ENS [|dk|] ≤ EES [|dk|]
0 ≤ EES [|dk|]− ENS [|dk|]

= fD(k) · [1− (1− pe)k]− fD(k) · pv
= (1− pv)− (1− pe)k

(1− pe)k ≤ (1− pv)

k ≥ log(1− pv)/log(1− pe)

2

For example, when pv = 0.20 and pe = 0.05, then log(1 −
pv)/log(1 − pe) = 4.35, thus nodes with degree greater than 4
will have higher probability of selection in ES compared to NS.
Since TIES samples nodes in the same manner as ES, the same
result holds for TIES.

3.3.2 Induced graph formation
Now consider the graph induction process. Here instead of fo-

cusing on the degrees in the original graph dk, we need to consider
the sampled degrees in the induced (or partially-induced) graphGs.
Let dsk represent the sampled degree (in Gs) of a node that had de-
gree k in the original graph G. Then, letting di refer to the degree
of a neighboring node i:

ENS [dsk] =
∑

k pv = k · pv
EES [dsk] =

∑
k−1 pe + 1 = (k − 1)pe + 1

ETIES [dsk] =
∑k−1

i=1

[
1− (1− pe)di

]
+ 1

The sampled degree dsk depends on the manner in which the in-
duced graph is formed. For NS, the graph is fully induced so the
sampled degree depends on the probability that each neighbor is
sampled. For ES, the induced graph consists of only the edges that
were originally sampled in Es. This means that sampled degree
will be determined by the edge selection process. Note that the
expectation is over k − 1 neighbors since we know that in ES a
minimum of one neighbor exists for each sampled node (i.e., the
edge that added the node to the sample). For TIES, the induced
graph consists of all edges that occur between the sampled nodes.
In this case, the expected degree will be a function of the likelihood
of the neighboring nodes’ selection. Clearly the expected sampled
degrees will be greater in TIES than in ES.

Note that all the expectations above are less than k, so this shows
how the sampled degrees will underestimate original degrees for all
the algorithms. TIES however, is less affected by this downward
bias, due to its use of edge-based selection and induction process.
We illustrate the difference between the sampled and original de-
grees, i.e., degrees of the sampled nodes in the sample and original
graphs, in Figure 1. The example shows that NS selects nodes in an
unbiased manner with respect to their degrees in the original graph
(see Figure 1a), but then, those degrees are underestimated in the
sampled graph (Figure 1b) (i.e. NS curve shifts to left). In con-
trast, ES, FFS, and TIES overestimate the degrees in the original
graph (1a). However, when the overestimation is combined with
the FFS or TIES subgraph formation process, it results in a more
accurate distribution of degrees in the sampled graph (1b) com-
pared to NS. Because of its induction step, however, TIES com-
pensates for the downward bias more than all other algorithms and
thus, comes close to the original distribution.

(a) dk (b) dsk

Figure 1: Illustration of original and sampled degrees for nodes
selected in NS, ES, TIES, and FFS, on CondMAT network.

We can show how the downward bias in sampled degree has a
larger impact on NS, by considering the expected number of nodes
with sampled degree of 0.

LEMMA 3.3.2. Let E∗[|ds∗ = d|] refer to the expected number
of nodes with degree d in the sampled graph GS = (Vs, Es) Then
ENS [|ds∗ = 0|] > EES [|ds∗ = 0|] = 0.

Proof: In ES, each node is added to the sample through the se-
lection of one of its incident edges. Thus every node will have a
minimum degree of 1 in the induced graph. In NS, the expected
number of degree 0 nodes can be calculated by considering, for
each selected node, the likelihood that none of its neighbors are
chosen to be added to the sample: ENS [|ds∗ = 0|] =

∑
k fD(k) ·

pv · (1− pv)k > 0. 2

As pv decreases, the likelihood that NS selects none of a node’s
neighbors increases, which will result in both an increase in nodes
with degree 0, as well as an increase in the number of disconnected
components. In contrast, TIES selects nodes through their incident
edges, thus they will have the same property as ES and have a min-
imum sampled degree of 1 for each node in Vs.

Next, we consider the expected sample degrees of ES and NS,
and show that ES will more accurately estimate lower degree nodes
due to its selection of at least one neighbor for each sampled node.

LEMMA 3.3.3. For degrees k < 1−pe
pv−pe

in the original graph
G, the expected sample degree dsk will be larger for ES compared
to NS: EES [dsk] > ENS [dsk].

Proof: Consider the threshold k at which the expected sampled
degree is greater for ES:

ENS [dsk] ≤ EES [dsk]

0 ≤ EES [dsk]− ENS [dsk]

= [(k − 1)pe + 1]− [k · pv]

k(pv − pe) ≤ (1− pe)

k ≤ 1− pe
pv − pe

Thus for values of k < 1−pe
pv−pe

the expected sample degree of nodes
with degree k in G will be greater for ES compared to NS. 2

For example, when pv = 0.20 and pe = 0.05, then 1−pe
pv−pe

=
6.33, thus nodes with degree less than 6 will have larger induced
degree in ES samples compared to NS samples. Since the induced
degrees of TIES will be larger than the induced degrees of ES, this
bound also applies to TIES.

Summary. The analysis above illustrates the reasons for the accu-
racy of TIES sampling. Based on its uniform sampling, NS will
select nodes that accurately represent the original degree distribu-
tion (Lemma 3.3.1). However, since the nodes are sampled in-
dependently, the sample degrees in the NS induced graph will be



much lower than the original degrees (Lemma 3.3.2-3.3.3). Con-
sequently, many of the low degree nodes will be disconnected in
the sample due to expected degrees less than one. ES, on the other
hand, samples high degree nodes more frequently than NS (Lemma
3.3.1), but since it only includes the selected edges in the sample
graph the sampled degrees of those nodes will be even lower (since
pe is typically less than pv). However, sampling of nodes via edges
implies that the ES graphs are likely to be more connected than NS
graphs (Lemma 3.3.3). In TIES, we add induction to the ES pro-
cess, thus increasing the expected degrees of the sampled nodes. In
addition, since high degree neighbors are also more likely to be in-
cluded in the sample (and connected through induction), the clus-
tering and connectivity of the sampled graphs will increase even
further coming closer to the original graph.

3.4 Algorithm implementation
While so far our goal has been devising a sampling algorithm

that preserves various graph characteristics, another dimension of
importance is the implementation complexity. In particular, many
real world networks are quite large and naturally evolve over time
in a streaming fashion as edges are added over time, especially in
the context of collaborative and sharing applications. In these envi-
ronments, it is important that the sampling algorithm be amenable
to a streaming implementation where the edge is either sampled or
not and is not visited again in the future. To the best of our knowl-
edge, the notion of streaming graph sampling algorithms has not
been discussed before in literature, although streaming algorithms
are generally quite popular among both database and networking
communities. The following formulation captures our notion of
streaming graph sampling.

We let G(V,E[0,T )) represent the temporally-varying network
graph, where V is the set of nodes and E[0,T ) is the set of edges
e = (vi, vj , t), vi, vj ∈ V and t ∈ [0, T ) is the timestamp of the
edge. As each edge e arrives, the sampling algorithm π needs to
decide whether to include the edge or not as the edge is streamed
in. The sampling algorithm π may also maintain state Ψ, and con-
sult the state to determine whether to sample a subsequent edge or
not, but the total storage associated with Ψ should be of the or-
der the size of the output sampled graph Gs, i.e., |Ψ| = O(|Gs|).
Note that this requirement is potentially larger than the o(N, t)
(preferably, polylog(N, t)) that streaming algorithms typically re-
quire [21]. But, since the algorithm cannot require less space than
the output, we relax this requirement in our definition as follows.

Definition 3.1. We define a streaming graph sampling algorithm
as any sampling algorithm π that produces a sampled graph Gs

such that |Vs|/|V | = φ, which (1) samples edges of the original
graph G(V,E(0,T )) in a sequential order (i.e., not random access)
in one pass; and, (2) maintains state Ψ that is of the order of the
size of the sampled graph Gs, i.e., |Ψ| = O(|Gs|).

From Algorithm 1, we can observe that TIES takes at least two
passes through the data—first to select nodes by sampling edges
at random, and second to form the induced graph by adding all
edges among the sampled nodes. So, while the amount of storage
maintained is not more than O(Gs), the fact that it requires two
passes through the data, violates our one-pass requirement through
the data according to the criteria (1).

We can also observe that NS and FFS are not streaming algo-
rithms either. NS requires at least two passes, one to select nodes
probabilistically and another for graph induction, thus violating
constraint (1). Implementing FFS as described in [18] requires
maintaining the graph in more sophisticated data structures (to rep-
resent connectivity across nodes) than a simple sequential list of

nodes, and also requires at least two passes through the data. This
is since FFS can only determine the neighbor by looking at edges,
which means, it needs to wait till all edges ((u, v1), (u, v2), etc.),
are streamed in, the last of which can be as late as the last edge.

Although TIES is not a strict streaming algorithm, we note that
we can transform into a streaming algorithm that requires only one
pass through the data with a simple modification. Instead of full
induction, we can utilize partial induction by combining the edge-
based node sampling with the graph induction in Algorithm 1 into
a single step. Specifically, the algorithm will simply run over the
edges in a single pass, selecting each edge in a single pass with
some probability pe (assumed given for the moment) and if se-
lected, add the incident nodes to the sampled graph. At each step,
it will also add the edge if its two incident nodes are already in
the sampled node set (to produce a partial induction effect). By
combining node selection and induction, we can achieve single-
pass streaming algorithm, we call partially-induced edge sampling
(PIES) as shown in Algorithm 2.

Algorithm 2 PIES (probability pe, edge set E)
1: Assume edges in E are sorted by time
2: . Vs = ∅, Es = ∅
3: for k = 1 : |E| do
4: . (u, v) = ek,
5: if u ∈ Vs AND v ∈ Vs then
6: Es = Es ∪ {ek}
7: else
8: Sample ek with probability pe.
9: if ek is sampled then

10: Vs = Vs ∪ {u, v}
11: Es = Es ∪ {ek}
12: end if
13: end if
14: end for
15: Output Gs = (Vs, Es)

Proposition 1: The expected sample degree of nodes in PIES will
be bounded from below by the expected sample degree in ES and
bounded from above by the expected sample degree in TIES.

We omit the proof for brevity, but intuitively, we can see that
PIES lies between the full induction of TIES and no induction in
ES. This illustrates the relationship between ES, TIES, and PIES.
The longer PIES collects edges among the sampled nodes, the more
its sample graph will converge to that of TIES.

A key parameter in PIES is the edge sampling probability pe with
which edges are sampled at random. In this paper, we consider the
online estimation and calibration of pe as part of our future work.
(For evaluation purposes, we assume we know the right value of
pe that gives us the target fraction of nodes.) One way to set the
parameter in practice would be to calibrate pe on a small portion of
the initial sequence of edges to observe the relationship between pe
and φ, and then, generalize to the larger stream.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the efficacy of both our sampling

algorithms, TIES and PIES, on several real data sets ranging from
about 10,000 - 200,000 nodes, with from 30,000 - 1.3 million edges.

Data sets for analysis. In our experiments, we consider six real
networks: a citation network, a collaboration network, two email
communication networks, and two online social networks. For our



Graph Metric HepPH Twitter Facebook (NO) email-Enron CondMAT Email PU
Nodes 34,546 8,581 46,952 36,692 23,133 214,893
Edges 420,877 27,889 183,412 183,831 93,439 1,270,285
No. of components 61 162 842 1,065 567 24
Giant component 34,401 8,214 43,953 33,696 21,363 212,622
Average path length 4.33 4.17 5.6 4.03 5.35 3.91
Density 0.0007 0.0007 0.0002 0.0003 0.0004 0.000055
Clustering coefficient 0.146 0.061 0.085 0.085 0.264 0.0018

Table 1: Characteristics of Networks

evaluations, we focus mainly on simplified, undirected graphs, with
only one edge between any pair of nodes, and without self-loops
to facilitate fair comparison with prior work (FFS), but our results
generally hold for unsimplified graphs. Table 1 summarizes the
characteristics of the (simplified) real networks.

The three data sets titled HepPH, CondMAT, and Enron cor-
respond to a citation graph, collaboration graph, and email com-
munication graph respectively, provided by Leskovec et al. [2].
The Facebook data corresponds to Wall communications among
users that belong to a city collected by Mislove et al. [26]. The
Twitter dataset contains tweets of users in discussion surrounding
the United Nations climate change conference in Dec. 2009. Fi-
nally, the Purdue University email data corresponds to two weeks of
data we collected from the email logs on the Purdue mailserver(s),
where we considered Purdue accounts that had at least one incom-
ing and outgoing edge in the trace.

Note that while the main focus of our paper is on the activ-
ity graphs in social networks (e.g., Facebook, email, and Twitter
graphs fit this category), we also examined other types of data sets
(e.g., citation and collaboration graphs) to demonstrate the gener-
ality and wider applicability of our algorithms and approach.

Evaluation measures. Our evaluation is primarily along four main
properties—degree, path length, clustering coefficient, and size of
weakly connected components. We measure the performance of a
sampling algorithm by how well the sampled subgraphs preserve
the probability density function (PDF) and cumulative distribution
function (CDF) of each of these four properties. Unlike other mea-
sure based on aggregate statistics (e.g., density, reciprocity), these
four measures represent the distribution of properties across the
nodes and edges in the sample, which facilitates detailed compari-
son and evaluation of sample representativeness.

In addition to visually comparing the similarity of the distribu-
tions on the sampled subgraphs to those of the original networks,
we also compute two statistics to compare the distributions quan-
titatively. First, we use the Kolmogorov-Smirnov (KS) statistic to
assess the distance between two CDFs. The KS-statistic is a widely
used measure of the agreement between two distributions; the au-
thors of [18] also have used the KS distance to illustrate the accu-
racy of FFS samples in the past. It is computed as the maximum
vertical distance between the two distributions, where x represents
the range of the random variable and F1 and F2 represent two
CDFs: KS(F1, F2) = maxx|F1(x)− F2(x)|. Second, we use
the skew divergence [15] (SD) to assess the difference between two
PDFs. Skew divergence is used to measure the Kullback-Leibler
(KL) divergence between two distribution that do not have contin-
uous support over the range of values (e.g. skewed degree). KL
measures the average number of extra bits required to represent
samples from the original distribution when using the sampled dis-
tribution. However, since KL divergence is not defined for dis-
tributions that have some values with zero probabilities, skew di-
vergence smoothes the PDFs before computing the KL divergence:

SD(P1, P2, α) = KL[αP1 + (1 − α)P2 || αP2 + (1 − α)P1].
The results shown in [15] indicate that using SD yields better re-
sults than other methods to approximate KL divergence on non-
smoothed distributions. In this work, as in [15], we use α = 0.99.

4.1 Results
In our experiments, we focus on obtaining a sample between 5–

50% (φ = 0.05 to 0.50) of the original graph. We picked this sam-
pling range to illustrate how the different sampled graphs (produced
by different sampling algorithms) converge to match the properties
of the original graph as we increase the sampling fraction. For each
sample fraction, we experiment with ten different runs, and in each
run, we generate a sample from a new random seed. For the case
of PIES, we randomly sort the edges of the graph in each run to
simulate the streaming aspect of time-evolving graphs.

We first compare these algorithms visually based on their cu-
mulative distributions—for degree, path length, and clustering co-
efficient distributions. We then compute the average KS and SD
distances, across the ten different runs and the six networks. We
plot both the averages and the standard errors.

Distributions. We plot the distributions of the three metrics in Fig-
ure 2 for HepPH (a-c), Facebook (d-f), and Email PU (g-i) at 20%
sampling fraction. We picked the 20% sampling fraction as a rea-
sonable sample size to show the difference between the distribution
of the different sampling algorithms. However, other sampling pro-
portions show similar relative behavior among the algorithms. Note
that, due to the space limitations, we don’t show the plots for the
other three datasets, but we include their results when we compute
the average KS and SD statistics.

Degree distribution. Figures 2(a), 2(d), and 2(g) show the de-
gree distribution for the three networks. From the figures, we can
observe that NS under-estimates the degree of the nodes, resulting
in a large fraction of zero-degree (low-degree) nodes in its sample
across the three networks. FFS often exhibits a similar characteris-
tic, although it is better than NS on both Facebook and Email PU.
However, NS performs better than FFS in the case of HepPH.

For two of the three networks, TIES and PIES are clearly more
accurate at preserving degree distributions than either NS or FFS.
As expected (and proved in Lemma 3.3.1), both PIES and TIES
capture higher degree nodes than NS and FFS. However, with the
induced graph formation step, the expected sampled degree of the
nodes is higher in both PIES and TIES than ES—which allows
them to match the degree distributions more accurately. However,
the results for the Email PU network are less clear. We note that the
Email PU network has a high proportion (>50%) of degree 1 nodes.
While FFS is able to estimate the amount of low degree nodes bet-
ter than PIES and TIES, at the same time, FFS underestimates the
amount of high degree nodes compared to PIES and TIES.

Although PIES seems to perform slightly better than TIES for
Facebook and Email PU, it is opposite for the HepPH network.
This is likely because both Facebook and Email PU are less dense
compared to HepPH (see Table 1). Since TIES uses total induction,



(a) Degree (b) Path length (c) Clustering Coeff.

(d) Degree (e) Path length (f) Clustering Coeff.

(g) Degree (h) Path length (i) Clustering Coeff.

Figure 2: Results at 20% sampling fraction: (a-c) HepPH, (d-f) Facebook, (g-i) Email Purdue.

it captures more edges in the sample than PIES, therefore, which in-
dicates that it will estimate the degree distribution more accurately
than PIES for more dense graphs, but it will overestimates the de-
gree distribution for the less dense graphs. This is an interesting
result, since it appears that total induction may not always be the
best sampling approach, and that partial induction may be desir-
able not just for its lower implementation complexity, but even for
its ability to better match the degree distributions of the original
graph than TIES for certain data sets. In general, it appears that we
might be able to devise a ‘tuning knob’ to control the amount of
induction to better match the properties of the original graph; we
however leave such exploration as part of our future work.

Path length distribution. Figures 2(b), 2(e), and 2(h) show the
path length distribution for the three networks. From the figures,
we observe that FFS and NS samples have a high fraction of long
path lengths compared to TIES, and PIES. This illustrates the effect
of the induced graph formation which enhances the overall connec-
tivity of the sampled graph, and hence produces shorter (and more
accurately matching) path lengths. This explains why NS also typ-
ically performs better than FFS (due to its increased graph induc-
tion). But, graph induction alone is not sufficient, as we can observe
both TIES and PIES perform better than NS, because of the ability
of these algorithms to select high degree nodes.

Clustering coefficient. In the case of clustering coefficient (as
shown in Figures 2(c), 2(f), and 2(i)), FFS shows a high fraction
of low (zero) clustered nodes since it explores on average only 2.3
nodes from the neighbors of the burned node. FFS also tends to
miss several edges among the sampled nodes. In order to further
emphasize the effect of the induced graph step, we observe that
NS, TIES and PIES perform better than FFS. We also observe that
TIES performs better than NS and PIES in HepPH. However, PIES
performs slightly better than TIES and NS on Facebook. The pos-

sible reason behind this observation is that Facebook exhibits less
clustering and thus, the partial induction process of PIES would
produce samples that match the original distribution better. On the
other hand, the total induction process of TIES could overestimate
the clustering distribution. Also notice that NS tends to produce a
high fraction of low clustered nodes since the nodes are selected
uniformly independent from the graph.

Summary. With a few exception, both TIES and PIES outper-
form NS, FFS and ES in the distributions of degree, path length,
and clustering coefficient, across the three datasets. The edge-based
node selection feature helps TIES and PIES to capture the high de-
gree nodes, while the induced graph formation feature enhances
the overall connectivity of the sampled graph. NS underestimates
the degree of the nodes since it selects the nodes uniformly from
the graph. However, the induced graph formation step helps NS to
capture the clustering coefficient better than FFS. FFS matches the
degree distribution better than NS, but it tend to miss several edges
based on its burning process. Therefore, FFS should perform better
if it is combined with the induced graph formation step.

In general, TIES performs slightly better than PIES, however, we
conjecture that their performance is based on the properties of the
original graph. If the graph is dense and highly clustered, then PIES
will produce samples that underestimate the properties of the orig-
inal graph based on its partial induction process. Therefore, TIES
will perform better. On the other hand, if the graph is less dense
and less clustered, then TIES will produce samples that overesti-
mate the properties of the original graph. Thus, PIES will be better
in this case. Note that, PIES is also amenable to a streaming im-
plementation while TIES is not as, we discussed before. We aim to
study the full induction versus the partial induction with a parame-
terized version of PIES in the future.
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Figure 3: (a-d) Average KS distance and (e-h) average skew divergence, across 5 datasets.

KS-statistic. We compute the average of both of these measures
across the five datasets and ten runs for each metric. Figures 3(a)–
3(d) show the average KS-statistic as well as the standard errors
for degree, path length, clustering coefficient and size of connected
components respectively. Across the four metrics, we observe that
both TIES and PIES outperform NS, FFS, and ES (by up to 2×
lower than FFS). Overall, all sampling algorithms that include an
induced graph step in their process perform well for the cases of
path length and clustering coefficient as they capture more edges
between the sampled nodes. ES, TIES and PIES perform better
for the size of connected components due to their edge-based node
selection feature. However, for the degree metric both the edge-
based node selection and the induced graph formation are effective
to help match the degrees of the original graph. Moreover, both
TIES and PIES produce better quality samples than NS and FFS on
small sampling fractions (5% – 20%).

Skew divergence. While KS-statistic observes the maximum dis-
tance between two distributions, the skew divergence shown in Fig-
ures 3(e)–3(h) captures the divergence across the entire range of
values. We can observe that both TIES and PIES exhibit much
lesser skew compared to other sampling algorithms including FFS.
Specifically, we can observe upto 3-7× lesser skew than FFS in
degree, path length and clustering. Among all metrics, component
sizes are not as well preserved, but even here, the divergence is the
least among all sampling algorithms.

5. RELATED WORK
The problem of sampling graphs has been of interest in many

different fields of research. The work in [16, 29, 24] studies the
statistical properties of samples of complex networks produced by
traditional sampling algorithms like node sampling, edge sampling
and random-walk based sampling and discusses the biases in es-
timates of graph metrics due to sampling. In addition, there have
been a number of sampling algorithms in other communities such
as in peer-to-peer networks [25, 10, 8], Internet modeling research
community [13, 7, 4] and the WWW information retrieval commu-
nity has focussed on random walk based sampling algorithms like
PageRank [22, 12]. In social networks context, recent work [23]
uses random walks to estimate node properties in G (e.g., degree

distributions in online social networks). These different sampling
algorithms large focused on estimating either the local or global
properties of the original graph, but not to sample a representative
subgraph of the original graph which is our goal. In the literature,
the most closely related efforts are that of Leskovec et al. in [18]
and Hubler et al. in [11], which were both discussed in Section 2.

Due to the popularity of online social networks such as Face-
book [1] and Twitter [3], there has been a lot of work [20, 19, 17,
14, 5, 6] studying the growth and evolution of these online social
networks. While most of them have been on static graphs, recent
works [28, 27] have started focusing on interactions in social net-
works. These efforts focus more on characterizing social networks
and thus are orthogonal to our research.

6. CONCLUSIONS
Much of the past efforts on sampling networks have focused on

accurately estimating properties of the original graph. However, it
is also important to have sampling mechanisms to select a repre-
sentative subgraph for study and evaluation of real protocols and
systems. Although there are recent algorithms for sampling sub-
graphs, these methods still fail to accurately capture many distri-
butional properties of the original graph. We make the key obser-
vation that there is an inherent bias resulting from the subgraph
formation process, leading to an underestimation of degrees and
thereby, connectivity in the sampled subgraph. We propose a novel
sampling approach based on edge-based node selection and graph
induction that offsets this natural downward bias due to subgraph
sampling, yielding samples that better match the distributions of
graph properties in the sampled graphs with those of the original
graph. Moreover, our method is simple and efficient to implement
in a streaming fashion for large time-varying communication and
activity graphs where edges accumulate over time (e.g., email).
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