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Privacy Preserving Regression Residual Analysis

John Ross Wallrabenstein∗ Chris Clifton†

Abstract

Regression analysis is one of the most basic statistical
tools for generating predictive models that describe the
relationship between variables. Once a model has been
generated, numerous goodness-of-fit measures are used
to evaluate the degree to which the model characterizes
the relationship between the variables under consider-
ation. The analysis of regression residuals is one such
measure, where residuals may be subjectively examined
for the presence of structure. However, the residual
plots reveal substantial information about each partic-
ipant’s private data. This issue is most pronounced in
the two party case, where the violation of privacy is
complete. In this work, we describe an algorithmic ap-
proach drawn from random graph theory to evaluate the
degree of deviation of the regression residuals from an
ideal model. We demonstrate that our approach is effec-
tive at characterizing accurate and poor models where
previously proposed measures remain neutral or are not
applicable. Finally, we provide an efficient privacy pre-
serving protocol for computing our proposed goodness-
of-fit measure.

1 Introduction

Regression analysis on data aggregated from multiple
autonomous sources will likely result in the discovery of
more general and useful relationships. Indeed, regres-
sion analysis is a widely used and powerful statistical
modeling tool. Such a protocol presents a problem, as
determining the goodness-of-fit for for the model may
result in a violation of privacy. Specifically, the residual
plots reveal substantial information about each partic-
ipant’s private data. This issue is most pronounced in
the two party case, where the violation of privacy is
complete [24]. That is, examining the residual plot for
regression involving a single independent and dependent
variable reveals the private input of the other party in
its entirety.

As an example, suppose that Alice manufactures
catalytic converters, and Bob is an auto manufacturer
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working on a new engine design. Alice would like to
know the relationship between varying levels of plat-
inum and emissions, to optimize the cost of materials
vs. size of the converter. However, revealing this to
Bob would give Bob an advantage in price negotiations.
Bob does not want to reveal the total emissions, as diffi-
culties with engine management software are leading to
high variance in these amounts. Disclosing this would
instill fear that the new engine will be delayed, and lead
consumers towards competing products. To solve this
dilemma, they agree to use privacy preserving regres-
sion approaches [1, 7, 21, 9] so Alice can learn the pa-
rameters for potential models relating platinum content
to emissions. But which model is best? Analysis of
the regression residuals is a common method for deter-
mining a model’s goodness-of-fit. Numerous statistics
exist to evaluate the residuals for desirable properties
under specific assumptions about the type of regression
model or the distribution of the residuals. However,
these measures require that the residuals be known to
both parties. This is undesirable, as in the two-party
case, the input of the other player is disclosed given the
regression equation and the residuals.

We seek a privacy preserving solution to the prob-
lem of determining the residual’s distance from an ideal
residual model. To accomplish this, we build on previ-
ous results from the study of entropy in arbitrary graphs
[8, 11, 22]. We derive and evaluate an area of influence
measure for residuals, and build an undirected graph
from the residual points based on the induced adja-
cency matrix. With a graph constructed from the resid-
ual plot, we evaluate the entropy content of the graph
against a modified version of the Erdős-Rényi random
graph model to decide whether or not the residuals im-
ply a proper regression model.

We present an algorithm that, for sufficiently large
sets of points, distinguishes accurately between proper
and poor residual sets. The accuracy of our algorithm
quickly approaches 1 for graphs with more than 26 ver-
tices. To the best of the authors’ knowledge, this work
is a novel first step towards applying random graph the-
ory to the problem of analyzing regression residual plots
as a measure of goodness-of-fit.

We develop a privacy preserving protocol that eval-
uates the distance of arbitrary residual plots from an



ideal model. We consider the general two party sce-
nario where Alice has private input X = {x1, · · · , xm}
and Bob has private input Y = {y1, · · · , ym}. We pro-
vide the result of the function to both parties, however
it may be distributed arbitrarily. We show that our
model correctly evaluates our algorithm for determin-
ing a residual plot’s deviation from the ideal case, and
that it is secure in the semi-honest model. While privacy
preserving protocols for regression have been proposed
in the literature [1, 7, 21, 9], even the most promis-
ing approach has only provided a solution for privately
computing the correlation coefficient of the regression
model. We demonstrate that this measure alone is in-
sufficient for proper model selection, and compare our
proposed measure to currently available statistics.

2 Problem Definition

We consider the case of classical regression:

(2.1) y = βx+ ε

The dependent variable y is a column vector of T
elements, x is the T ×Λ matrix of values taken by the Λ
independent variables, β is the column vector of Λ pa-
rameters to be estimated by the model, and ε a column
vector of T model disturbances. Classical regression is
concerned with finding the best parameter estimates for
β that minimize the model disturbances ε. Although we
review only classical regression, our algorithms apply to
more advanced models as well.

Once such a model has been found, a common
method for verifying the goodness-of-fit is to examine
the residual plot visually for patterns. If any patterns
or structure are present in the residual plot, the model
validity is called into question. Specifically, the residual
plot shows the relationship between the dependent vari-
able y and the residuals ri,0≤i≤T = yi− ŷi, the distance
between the observed value of the dependent variable,
yi, and the value predicted by the regression model, ŷi.
If the model is a good fit, the residual plot should ap-
pear random. However, when simple linear regression
is applied to variables exhibiting heteroscedasticity or
a non-linear association, the residual plot will exhibit
structure. Unless otherwise specified, we deal exclu-
sively with the set of standardized residuals.

More formally, it is desirable that the residuals ex-
hibit the following three properties:

1. Normality: The magnitude of the residuals essen-
tially follows a Gaussian distribution.

2. Homoskedasticity: The residuals have similar vari-
ance.

3. Serial Independence: The residuals are not cross-
correlated with themselves.

Numerous test statistics have been proposed to val-
idate whether or not regression residuals satisfy one or
more of these properties [2, 3, 4, 5, 10, 13, 15, 16, 20, 23].
We propose a novel method based on random graph the-
ory to evaluate the goodness-of-fit of regression models
based on the residuals. We show that our measure is
capable of proper model selection where other measures
remain neutral or are not applicable.

Figure 1 illustrates the 1993 Auto MPG data set
from the UCI Machine Learning Repository [12] as
described by three candidate regression models. The
model a + b

x fits the data well, and the corresponding
standardized residual plot is depicted in Figure 1b. Al-
though the residual plot is not truly uniform, the resid-
uals are roughly partitioned by the x-axis and display
minimal structure. Note that this model is the best fit
to the data, yet the residuals exhibit heteroscedasticity.
The model a + b

2x captures the general trend, but is a
poor fit to the data. Note that the residual plot, illus-
trated in Figure 1d, exhibits a high degree of clustering
and a clear downward trend. The model a + bx does
not capture the fact that at high horsepower, increased
horsepower does not have nearly the impact on mileage
that it does at low horsepower. The model’s residuals in
Figure 1f show signs of underlying structure, although
to a lesser extent than Figure 1d.

The goal of our algorithm is to distinguish these
residual plots algorithmically, rather than visually, to
characterize the regression model’s goodness-of-fit. Our
algorithm operates on the residual points of the form
{i, ri}0≤i≤n, where n is the number of data points. That
is, we consider the residuals plotted in sequence against
the x-axis. These plots are illustrated in Figures 1c, 1e
and 1g. Note that the structure that was clearly ap-
parent when the residuals were plotted against the in-
dependent variable (xi = MPG) is obfuscated in these
plots. However, our measure is able to correctly differ-
entiate between the regression models using plots of the
form {i, ri}0≤i≤n, in addition to plots of the residuals
versus the independent variable. All scores for our mea-
sure are computed over plots of the form {i, ri}0≤i≤n,
rather than plots of residuals against the independent
variable.

We begin by reviewing previously proposed mea-
sures for the analysis of regression residuals in Section
3. We describe our measure in Section 4, and provide
an empirical evaluation in Section 5. In Section 6, we
discuss its relation to existing residual measures. We
describe the privacy preserving protocol for computing
our measure in Section 7, and conclude with Section 8.



(a) UCI Automotive Dataset

(b) Residuals for Y = A+ (B/X) vs. MPG (c) Residuals for Y = A+ (B/X) vs. X

(d) Residuals for Y = A+ 2−X vs. MPG (e) Residuals for Y = A+ 2−X vs. X

(f) Residuals for Y = A+BX vs. MPG (g) Residuals for Y = A+BX vs. X

Figure 1: Figures 1b, 1d and 1f are of the form {xi, ri}, where xi is the independent variable (xi = MPG).
Similarly, Figures 1c, 1e and 1g are of the form {i, ri}, where ri is the standardized residual.



3 Related Work

We review previously proposed measures for determin-
ing whether or not regression residuals satisfy normality,
homoskedasticity and serial independence.

Of these characteristics, most attention has been fo-
cused on the assumption that the residuals can be accu-
rately modeled under the normal distribution. The well-
known Jarque-Bera (JB) Lagrange Multiplier method
[16] is perhaps the most common test for residual nor-
mality. Although the JB statistic is asymptotically op-
timal, the true distribution of the residuals is assumed
to be a member of the Pearson family. Additionally, the
χ2-approximation holds only for large sample sizes, and
frequently rejects the null hypothesis of normality when
it is indeed true.

Another Lagrange Multiplier test, the Breusch-
Pagan (BP) statistic [5], is commonly used to test
residuals for heteroscedasticity. The statistic is robust
[17], however the test only addresses the issue of het-
eroscedasticity, and is limited in scope to linear regres-
sion.

The Breusch-Godfrey (BG) statistic [4, 13] is used
to test for the presence of autocorrelation; the lack of
serial independence. The statistic is more generally ap-
plicable than the similar Durbin-Watson test for serial
correlation [10]. However, the test is again limited in
scope to addressing autocorrelation in linear regression
models.

Jarque and Bera originally proposed a more general
statistic for testing normality, homoscedasticity and se-
rial independence of regression residuals simultaneously
[15]. However, as with the JB test for normality, the
statistic assumes that the true distribution of the resid-
uals are drawn from the Pearson family.

To date, little work exists in the literature with re-
spect to privacy preserving regression in the two party
case. The issue was examined briefly by Sanil et. al.
[21]. However, the authors argue that the residuals
should be made publicly available to perform standard
goodness-of-fit tests. While some notion of privacy is
preserved in this manner when more than two parties
are involved, no such notion exists in the two-party case.
Chaudhuri and Monteleoni approach the issue of disclo-
sure through the residual plot from a different approach
[7]. The authors introduce random noise into the pri-
vate values input by the parties. However, this approach
results in a suboptimal regression model. Further, an
adversary learns substantial information concerning the
bounds of the other party’s input. Recent work by
Amirbekyan and Estivill-Castro has made progress to-
ward a true privacy preserving model diagnosis for linear
regression in the two-party case [1]. The authors show
how to privately compute the coefficient of determina-

tion, which is commonly used as a standalone model
diagnostic. However, our algorithm goes beyond these
approaches by providing an additional goodness-of-fit
measure, and does not require commodity servers. Fur-
ther, our algorithm is capable of distinguishing between
models when the coefficient of determination is neutral.

4 Residual Analysis

We begin by reviewing Erdős and Rényi’s work on
random graph theory. Based on this, we give a measure
of graph connectedness that measures how far a residual
graph differs from an ideal residual graph. We then
show how we induce a graph from the residual plot,
allowing us to use the graph connectedness measure
to characterize the regression model’s goodness-of-fit to
the data.

4.1 Erdős-Rényi Random Graphs The measure
we consider to differentiate between arbitrary residual
graphs and ideal residual graphs is given by Erdős
and Rényi [11]. In their model, a random graph of
m vertices are connected by edges with independently
chosen probability 0 < p < 1, denoted by G(m, p). The
probability of a given graph G with k edges is given by:

(4.2) P (G) = pk(1− p)(
m
2 )−k

Thus, each edge is viewed as a single Bernoulli trial
occurring with probability p, while the entire edge set
is represented as a Binomial distribution.

Rather than evaluate the probability of a graph
directly, we modify Erdős and Rényi’s model to evaluate
the ratio of connected edges to the number of points
in the regression model. Our goal is to provide an
equally meaningful measure while avoiding the following
observation, which is inevitable when 0 < p < 1:

(4.3) lim
k→∞

pk(1− p)(
m
2 )−k = 0

Clearly a straightforward application of Erdős and
Rényi’s G(m, p) measure would be ineffective for large
data sets. Thus, we introduce the notion of graph
connectedness as:

(4.4) C(G) =
|EG |
|V|

We have that C(G) = 0 when no structure is present
in the induced graph, and C(G) > 0 indicates the degree
of structure present. We discuss the derivation of this
measure and its relation to ideal regression models in
Section 4.2.



4.2 Inducing A Graph We aim to map a set of
points P 7→ G = {V, E}. The mapping from P 7→ V
is trivial: the vertex set V is simply the set of points
P. In order to complete our induced graph G over the
set of residual points P, we must define the criteria
that governs whether or not an edge exists between
pi, pj ∈ P, i 6= j. We first introduce the necessary
building blocks before discussing the mapping from
P 7→ E in Section 4.2.3.

4.2.1 Ideal Regression Models We consider ideal
regression models to be those where all data points
lie on the regression line. Thus, given an arbitrary
point pi = (xi, ri), pi ∈ P, we have that ∀ri, ri = 0
as yi = ŷi =⇒ yi − ŷi = 0 = ri. We require that any
regression model that is ideal satisfy:

(4.5) C(GIdeal) = 0

Further, any deviation of a real regression model
GReal from the ideal model GIdeal should be penalized
in proportion to the theoretical distance between the
two models. Thus, ∀G 6= GIdeal, C(G) ≥ 0. That is, C(G)
represents the extent to which the residual graph G lacks
the ideal properties of normality, homoscedasticity and
serial independence.

4.2.2 Radius of Influence We define the radius of
influence of a point pi ∈ P as |ri|, or the non-negative
distance of the residual from the x-axis. Clearly,
residuals for data points farther from the regression line
have a greater radius of influence than those closer to
the predicted value ŷi. Thus, the area of influence of a
given residual ri is:

(4.6) Influence = π · (|ri|)2

We now show how to map P 7→ E using our
definition of a residual’s radius of influence.

4.2.3 Edge Connections We say that an edge exists
between two points pi, pj ∈ P iff dist(pi, pj) < |ri|+|rj |.
That is:

√
(xi − xj)2 + (ri − rj)2 < |ri|+ |rj | =⇒ eij ∈ E

Theorem 4.1. ∀G,G ∈ GIdeal =⇒ C(G) = 0

Proof. Recall that ∀ri, rj ∈ GIdeal, ri = rj = 0. Thus,
for any two consecutive points pi, pj where xj = xi + 1,
we have that:

dist(pi, pj) =
√

(xi − (xi + 1))2 + (0− 0)2

=
√

(1)2 + 0
= 1 > |ri|+ |rj | = 0

=⇒ C(G) = 0

Thus, none of the residuals in an ideal regression
model are connected.

For the privacy preserving computation of our mea-
sure, we square the Euclidean distance between pi, pj ,
and the sum |ri| + |rj |. This eliminates computing the
root for the Euclidean distance, which is difficult under
Zn, while preserving the relationship between the two
values.

4.3 Residual Entropy Algorithm To analyze a
residual plot algorithmically, we first construct a graph
G = {V, E} over the residual points, as described
in Section 4.2. The calculation of C(G) is given in
Algorithm 4.3.1.

Algorithm 4.3.1 Residual Entropy Algorithm
Given: A set of points pi ∈ P
Number of adjacent edges N ← 0
for all pi ∈ P do

for all pj ∈ P, i 6= j, j > i do
if dist(pi, pj) < |ri|+ |rj | then
N ← N + 1

end if
end for

end for
return C(G) = N

|V|

4.4 Algorithm Example Consider the following re-
gression example, where the data are related by the re-
gression equation y = 0.2733 + 0.7743x:

x 1 2 3 4 5 6
y 1.3 1.3 3.5 2.5 4 5.3
ri−µr

σr
0.51 -0.86 1.39 -1.33 -0.24 0.77

The regression line accurately models the data and
represents a good fit, displayed in Figure 2a. The
residuals are distributed randomly, and are divided
in half by the x-axis, displayed in Figure 2b. The
algorithm proceeds by finding the distance between each
pair of residuals by computing the standard Euclidean
distance metric. In this example, there are two sets of
residuals with overlapping areas of influence, so |E| = 2.



(a) Example Regression Model (b) Example Residuals

Figure 2: Plot 2a illustrates the example data fit to the regression equation y = 0.6762 + 0.8629x. Plot 2b
illustrates the corresponding standardized residuals. The circles denote the area of influence for each residual,
where overlapping influence areas imply an edge between the residuals.

Given that there are six data points, we compute C(Gex)
by Equation 4.4:

C(Gex) =
|EG |
|V|

=
2
6

=
1
3

Figure 2b illustrates the radius of influence for
the residuals, and shows the edges induced when the
influence area of residuals overlap.

5 Empirical Evaluation

We now give several examples, including a comparison
with other measures on the real data example of Figure
1, and synthetic data examples that demonstrate the
ability of the measure to detect failures to meet nor-
mality, homoscedasticity, and serial independence.

5.0.1 Ideal Examples We present two ideal regres-
sion models for data following the trend y = x2. In the
ideal model, all data points lie on the regression line,
and have corresponding residual values ri = 0. Two ex-
amples of data satisfying the ideal regression model are
illustrated in Figure 3.

Recall that our measure is evaluated over data of
the form {i, ri}0≤i≤n, rather than the residuals versus
the independent variable as {xi, ri}0≤i≤n. The residuals
of both models score C(G) = 0, as predicted by Theorem
4.1.

5.1 UCI Automotive Data We evaluate three re-
gression models that describe the relationship between
horsepower and miles per gallon in automobiles. The

first model has the general form y = a + (b/x), the
second follows y = a + (b/(2x)), and the third follows
y = a+ bx. Our rationale for selecting these forms is to
demonstrate that our measure C(G) captures a different
characteristic than currently available statistics. Addi-
tionally, the goodness-of-fit for the models can be eas-
ily determined through visualization. Thus, we demon-
strate how our algorithm facilitates this classification
algorithmically. The three models are illustrated in Fig-
ure 1. In each case, the parameters a and b are chosen
to give a best fit given the nature of the model, and the
linear and geometric models would both seem plausi-
ble. Based on the residual plot, the first model visually
provides an accurate description of the data, while the
other two models stand out as a poor representation of
the data.

Several analytic measures are given in the following
table:

y = a+ (b/x) y = a+ b/(2x) y = a+ bx
RMS 1.00 1.03 1.00
R2 0.97 0.90 0.61
JB 180, p = 0 331,p = 0 74,p=0
BP n/a n/a 24.5, p=0
BG n/a n/a 85.8, p=0
C(G) 0.518 0.753 0.640

We see that our algorithm correctly picks the best
model, as does R2 analysis of the data itself. However,
the R2 analysis suggests that the exponential model
is better than the linear model, giving the implausible
implication that at high horsepowers, additional horse-
power can be gained at almost no cost in mileage. Note
that our algorithm ranks models based on the distance
of the residuals from an ideal residual set, which differs



(a) Ideal Model with Data ∈ N(50, 30) (b) Ideal Model with Uniform Data

(c) Residuals for Figure 3a (d) Residuals for Figure 3b

Figure 3: Two example ideal regression models following y = x2.



from the characteristics addressed by existing statistics.
We now give a somewhat deeper analysis of how

the three goals of the analysis are met, and how they
compare with measures specific to those goals.

5.1.1 Normality We use the Jarque-Bera (JB)
statistic [16] to test the assumption that the residu-
als are normally distributed. For all models, the JB
statistic indicates that the residuals are not normally
distributed. That is, each model returned a JB statistic
with a p-value of 0, which rejects the null hypothesis
that the data are normally distributed. The JB statis-
tic often rejects the null hypothesis for small samples.
The distribution of residuals for each model are given
in Figure 4.

5.1.2 Homoscedasticity We use the Breusch-
Pagan (BP) statistic [5] to test the assumption that
the residuals of the linear regression model are ho-
moscedastic. Recall that the BP statistic is only defined
for linear regression models. The BP statistic correctly
indicates that the residuals for the linear regression
model in Figure 1f are heteroscedastic. That is, the
BP statistic gives a p-value of 0, which rejects the null
hypothesis of homoscedasticity.

5.1.3 Serial Independence We use the Breusch-
Godfrey (BG) statistic [4, 13] to test the assumption
that the residuals of the linear regression model are
serially independent. Recall that the BG statistic is
only defined for linear regression models. The BG
statistic incorrectly indicates that the residuals for the
linear regression model in Figure 1f are autocorrelated.
This is clearly no the case for the relationship between
automobile horsepower and MPG. That is, the BG
statistic gives a p-value of 0, which rejects the null
hypothesis of serial independence.

5.1.4 Coefficient of Determination A primary
benefit of our measure is that it can distinguish between
models with the same R2 value, favoring the residual
plots of models with lower structural content. Our mea-
sure is capable of determining the best fit model even
when the coefficient of determination values provide no
guidance. We explore this aspect in greater detail in
Section 5.2.

5.2 Synthetic Data We evaluate the accuracy of our
algorithm on the residuals from synthetic data gener-
ated using Mathematica. The distributions were chosen
to illustrate the ability of our measure to calculate the
residuals’ distance from an ideal model, despite the R2

values for both distributions being identical.

Figure 5 illustrates a linear regression model applied
to datasets that roughly follow y = x and y = x+sin(x),
respectively. The errors added to the data are normally
distributed, as N(µ = 0, σ = 1). Clearly the linear
model represents a good fit to the data in Figure 5a,
while the model poorly characterizes the non-linear
association exhibited by the data in Figure 5b.

Figure 5a Figure 5b
RMS 1.00 1.00
R2 0.8005 0.8007
JB 4.52, p = 0.1 10.4,p = 0.01
BP 0.0016, p = 0.97 0.0799, p=0.78
BG 0.5867, p = 0.44 289, p=0
C(G) 0.432 0.848

5.2.1 Normality We use the Jarque-Bera (JB)
statistic [16] to test the assumption that the residuals
are normally distributed. Assuming a significance level
of α = 0.01, the JB statistic indicates that the residuals
for both models are normally distributed, although the
result for the data of Figure 5b is a borderline case. The
distribution of residuals for Figure 5a and Figure 5b are
given in Figure 5e and Figure 5f, respectively.

5.2.2 Homoscedasticity We use the Breusch-
Pagan (BP) statistic [5] to test the assumption that the
residuals of the two synthetic models are homoscedastic.
The BP statistic correctly indicates that the residuals
for both models are homoscedastic. That is, the BP
statistic gives p-values of 0.97 and 0.78 for Figure 5c
and Figure 5d, respectively, which are both greater
than α = 0.01.

5.2.3 Serial Independence We use the Breusch-
Godfrey (BG) statistic [4, 13] to test the assumption
that the residuals of the two synthetic models are seri-
ally independent. The BG statistic correctly indicates
that the residuals in Figure 5c are serially independent,
while the residuals of Figure 5d are not serially inde-
pendent. That is, the BG statistic gives a p-value of
0.44 > α = 0.01 for the residuals in Figure 5c, so we
accept the null hypothesis of serial independence. Sim-
ilarly, the BG statistic gives a p-value of 0 < α = 0.01
for the residuals in Figure 5d, so we reject the null hy-
pothesis of serial independence and conclude that the
values are autocorrelated.

5.2.4 Coefficient of Determination Examining
the residual plots, we see that both Figure 5c and
Figure 5d yield identical R2 values of approximately
8
10±0.0002. However, it is visually apparent that Figure
5d exhibits structure, while Figure 5c is essentially ran-
dom. Given that the R2 measure cannot differentiate



(a) Residual Distribution for y = 9.9 + (1977.4/x) (b) Residual Distribution for y = 100.6 + (126833 ∗ 2−x)

(c) Residual Distribution for y = 194.5− 3.8x

Figure 4: The residual distribution plots for the three candidate regression models of Figure 1.



(a) Y = X +N(µ = 0, σ = 1) (b) Y = X +N(µ = 0, σ = 1) + 200 · sin( x
26 )

(c) Standardized Residuals for Plot 5a (d) Standardized Residuals for Plot 5b, Y = 12 +X

(e) Standardized Residual Distribution for Plot 5c (f) Standardized Residual Distribution for Plot 5d

(g) Standardized Residuals for for Plot 5b, Y = −3000 + 7X (h) Residual Distribution for Plot 5g

Figure 5: Synthetic Regression Data



Figure 6: Algorithm Accuracy

between these two distributions, we observe that C(G)
accurately characterizes Figure 5d as more structured
than Figure 5c.

5.2.5 Worse Case Scores As a counterpart to the
demonstration on an ideal model in Section 3, we now
give an example of an extremely poor model. We again
use the data of Figure 5b, but with the poorly fit linear
model illustrated by the dashed line. For residual plots
of the form {i, ri}0≤i≤n, where n is the number of data
points, C(G) > 1 for very poor models. Symmetrically,
assuming the same form, C(G) ≈ 0 for accurate models.
As an example of the worst case scenario, consider the
second model of Figure 5b. This model clearly fails to
properly characterize the trend in the data, and this is
easily observed by examining the corresponding residual
plot in Figure 5g. The second model of Figure 5b
evaluates to C(G) = 1.244, which is expected given the
model’s poor fit to the original data.

5.2.6 Sampling Accuracy We generate five inde-
pendent samples from each distribution of size 2i, 3 ≤
i ≤ 9 and evaluate the ability of our algorithm to dis-
tinguish between the residuals of Figure 5c and Figure
5d. That is, when C(5c) < C(5d), we claim that our al-
gorithm accurately distinguished between the data from
Figure 5c and Figure 5d. Our accuracy results are given
in Figure 6. Even with small sample sizes, our algo-
rithm scores samples from Figure 5d higher than Figure
5c, implying that the model is a better fit to Figure 5a
than to Figure 5b. Thus, for large graphs it is sufficient
to examine a small sample chosen uniformly at random
to serve as a characterization of the data.

6 Discussion

We have demonstrated that our algorithm is capable
of distinguishing poor models from those that more
accurately characterize the trend of the dataset. In

this section, we present an analysis of the strengths
and weaknesses of our approach, having illustrated these
aspects for existing measures.

6.1 Normality Our measure is biased towards resid-
uals drawn from a normal distribution. As our measure
penalizes residuals proportional to their distance from
ri = 0, C(G) yields a worse score for uniformly dis-
tributed residuals than for normally distributed resid-
uals, all else being equal. That is, residuals drawn from
a normal distribution N(µ, σ) are preferred over a uni-
form distribution when µ = 0, as they have a smaller
area of influence.

6.2 Homoscedasticity Our measure is biased
against heteroscedasticity, which follows again from
the observation that any deviation in the residuals
from ri = 0 is penalized by a greater area of influence.
Clearly, this results in residuals further from zero begin
connected to more neighboring residuals, which in
turn increases C(G). As we deal with the standardized
residuals, the presence of heteroscedasticity necessarily
implies that the residuals are more dispersed in certain
areas, and thus further from zero, than a similar
homoscedastic plot.

6.3 Serial Independence Our measure does not
directly test for the presence of serial independence.
However, the synthetic data of Figure 5b gives evidence
that autocorrelated residuals are scored higher than
those that are serially independent; for example, the
synthetic data of Figure 5a.

6.4 Related Measures Although our measure does
not explicitly test for the desirable properties of resid-
uals, it is able to differentiate between models when
existing measures are neutral (e.g. R2 of Figures 5a
and 5b) or are not applicable due to restrictions on the
residual distribution or regression model under consid-
eration. Further, our measure addresses an inherently
different characteristic than existing measures; the dis-
tance of the regression residuals from an ideal residual
model.

7 Privacy Preserving Residual Analysis

The problem becomes more interesting from a privacy
perspective. The goal of Secure Multi-Party Computa-
tion is to allow n parties to privately compute the result
of some public function f(x1, · · · , xn). At the conclu-
sion of the protocol, the result is made available to some
subset of the parties, while their inputs x1, · · · , xn re-
main private. While it has been shown that any polyno-
mial time function can be securely computed in polyno-



mial time [25], the general scrambled circuit evaluation
method is computationally expensive for complex cir-
cuits to the point of being prohibitive. Thus, domain
specific protocols are developed in response.

The goal of our privacy preserving protocol is to
allow Alice and Bob to determine whether or not the
residual plot of a regression model exhibits structure.
If the residual plot lacks entropy, the regression model
is not a good fit for the data. Without loss of gener-
ality, assume that Alice and Bob possess m values for
the independent (respect dependent) variable. Assume
that Alice has a private input set X = {x1, · · · , xm},
and Bob has a private input set Y = {y1, · · · , ym}. Let
f(X,Y ) → N denote our algorithm for evaluating the
deviation of a given graph G = {V, E} from an ideal
residual graph, where N denotes the size of the induced
edge set |EG |. Our goal is an algorithm that evaluates
f(X,Y ) and is secure under the semi-honest adversary
model.

7.1 Additively Homomorphic Cryptosystem
Our algorithm requires an additively homomorphic
cryptosystem. Let EP (·) represent encryption under
party P ’s public key, and let DP (·) represent decryption
under party P ’s private key. We require the homomor-
phic cryptosystem to satisfy the following properties:

E(x) · E(y) = E(x+ y)
E(x)c = E(x · c)

That is, the product of two ciphertexts yields the
ciphertext of their sum. Similarly, exponentiation by a
plaintext constant c yields the product of the encrypted
value and the constant. For our implementation, we
use Paillier’s cryptosystem [19]. Plaintext elements
under this cryptosystem are represented in Zn, and the
encryption function maps plaintext values to ciphertext
values in Z∗n2 .

7.2 Product Protocol Π It is also necessary in our
protocol to obtain the product of two ciphertexts with-
out revealing the inputs to either party. We require
that the result be encrypted and blinded from both
parties. The product protocol is a dialogue between
Alice, the sender A, and Bob, the receiver B, where A
has input EB(x), EB(y) and wishes to obtain EB(x · y)
under an additively homomorphic encryption system
using the receiver’s public key EB . We denote the
product protocol functionality as Π(EB(x), EB(y)) →
EB(x · y). Alice additively blinds x, y using indepen-
dently generated random numbers R1, R2 ∈ Zn and
sends 〈EB(x+R1), EB(y+R2)〉 to B, the receiver. Bob
decrypts and computes P = (x+R1) · (y+R2), return-

ing EB((x+R1) · (y +R2)) = EB(P ) to Alice who un-
blinds the result in encrypted form. Recall the additive
homomorphic properties when evaluating operations on
encrypted data.

Algorithm 7.2.1 Product Protocol Π
Alice:
R1 ← random e ∈ Zn
R2 ← random e ∈ Zn
EB(x′)← EB(x) · EB(R1)
EB(y′)← EB(y) · EB(R2)
Bob← 〈EB(x′), EB(y′)〉

Bob:
x′ ← DB(EB(x′))
y′ ← DB(EB(y′))
Alice← EB(x′ · y′)

Alice:
EB(x · y) ← EB(x′ · y′) · EB(x′)−R2 · EB(y′)−R1 ·
EB(−(R1 ·R2))

We omit the trivial proof that the final step cor-
rectly produces the desired result, EB(x · y).

7.3 Comparison Protocol λ Our protocol requires
that a comparison operation can be evaluated over
two ciphertexts without revealing the inputs to either
party. In the protocol, Alice has two ciphertexts
EB(x), EB(y) encrypted with Bob’s public key for an
additively homomorphic cryptosystem. The outcome of
the protocol gives Alice EB(1) when x < y, and EB(0)
otherwise. To accomplish this, we use the FairPlay [18]
implementation of Yao’s scrambled circuit evaluation
protocol [25].

7.4 Adapter Protocol α As our protocol will be
used in addition to existing algorithms for computing
regression models, we provide an adapter functionality
to translate the output of a regression algorithm split
between two parties to the input for our residual pro-
tocol. Our algorithm is designed as the functionality
f(x, r) → N , where Alice’s private input x are the in-
dependent variable’s values, and Bob’s private input r
is the set of residuals ri = yi − ŷi. If the residuals
are not computed during the regression algorithm, our
adapter protocol provides the necessary transition func-
tionality α((x, f(x)), y) → {r,⊥}. Alice’s private input
(x, f(x)) are the independent variable’s values and the
regression equation, and Bob’s private input y is the set
of dependent variable’s values. We assume that both
players know f(x) from the output of the regression al-
gorithm, although it is only necessary that Alice knows



f(x). The adapter protocol returns the residual set r en-
crypted with Bob’s key to Alice, and ⊥ to Bob, where
⊥ denotes no output.

Algorithm 7.4.1 Adapter Protocol α
Bob:
Publicize EB , n
for all yi ∈ Y do
y′i ← EB(yi)

end for
Alice← Y ′

Alice:
Computed residual set Z
for all y′i ∈ Y ′ do
ȳi ← EB(−1 · f(xi))
zi ← y′i · ȳi

end for

7.5 Privacy Preserving Residual Algorithm ρ
Our privacy preserving algorithm is a dialogue between
Alice, in possession of the m independent values xi ∈ X,
and Bob, in possession of the m dependent values yi ∈
Y . The encryption function of Paillier’s cryptosystem
[19] is only defined over inputs in Zn, so all plaintext
values are mapped from R 7→ Zn through the ceiling
function to facilitate encryption.

Our algorithm is given as requiring the adapter pro-
tocol α. That is, we assume that neither party has
the plaintext residuals, and that Alice must compute
them given encryptions of Bob’s input, Y . After run-
ning the adapter protocol, Alice needs to compute the
distance between every point in the residual graph. This
is computed in pieces; first by computing the distance
between the x-components i and j, and then comput-
ing the distance between the y-components EB(ri) and
EB(rj). Recall that we compute our measure on graphs
of the form {i, ri}, so Alice simply increments i for each
residual rather than using her private value xi. The
x-component distances are stored in Dx, and the y-
component distances are stored in Dr. These are com-
bined into D ← Dx ·Dr to finish the computation of the
squared Euclidean distance. Recall that we square this
computation, and the area of influence, to avoid com-
puting roots. The influence of each residual pair is com-
puted by summing the encrypted residuals as I ← ri ·rj ,
as the encryption scheme is additively homomorphic.

The most expensive portion of the protocol is com-
puting λ(dk, Ik) for all the distances between vertices
dk. If dk ≤ (|ri| + |rj |)2, (ri, rj ∈ Ik), the output of
λ(dk, Ik) = 1, which is then used to increment the num-
ber of edgesN . Note that the output of λ is not know to

either party; the encrypted result is multiplied with the
encryption of N , which yields an encryption of their
sum. Otherwise, Alice would deduce which edges are
connected. The algorithm outputs the number of con-
nected edges in the graph N as the measure of deviation
from an ideal residual model.

Algorithm 7.5.1 Residual Analysis ρ
Bob:
Publicize EB , n

Alice:
Residuals R, ri ∈ R
R← α(x, f(x)), y)
Residual Distances Dr, drk ∈ Dr

X-axis Distances Dx, dxk ∈ Dx

Combined Distances D, dk ∈ D
Influence I, Ik ∈ I
for ri ∈ R do

for rj ∈ R, i < j do
drk ← π(ri · r−1

j , ri · r−1
j )

dxk ← EB(d(i− j)2e)
dk ← dxk · drk
Ik ← ri · rj

end for
end for
Number of edges N ← EB(0)
for all dk ∈ D do
N ← N · λ(dk, Ik)

end for
result← N

7.6 Security under the Semi-Honest Model In
our analysis, we assume that the players are semi-
honest. That is, they follow the protocol specification
but attempt to learn additional information from the
protocol transcript. We assume all players are bound to
probabilistic polynomial time (PPT), and our notation
for the underlying cryptosystem follows Paillier’s con-
struction [19]. Our proof follows the definition of two-
party security for semi-honest PPT adversaries under
the simulation paradigm described by Goldreich [14].

Lemma 7.1. Π is secure under the semi-honest model.

Proof. Recall that we assume the existence of a seman-
tically secure additively homomorphic public cryptosys-
tem.

Alice: The view for Alice consists of a series of ci-
phertexts encrypted under Bob’s public key EB , which
can be efficiently simulated with random elements in
Z∗n2 .



Bob: Bob’s view of the protocol consists of two
ciphertexts c1, c2 that decrypt to the plaintext values
x′ = x + R1 mod n, y′ = y + R2 mod n. As R1, R2

are chosen uniformly at random from Zn, both c1 and
c2 can be simulated with random elements from Z∗n2 ,
which decrypt to random elements in Zn.

Lemma 7.2. λ is secure under the semi-honest model.

For the security proof, see [25, 18].

Lemma 7.3. α is secure under the semi-honest model.

Proof. Bob: Bob does not receive any messages during
the protocol, so the simulator runs his portion of the
protocol with Alice.

Alice: We assume that the modulus n is known by
both parties, as is |Y |. As EB is produced by Bob inde-
pendent of the data, the simulator can generate EB in
the same manner. Alice also receives Y ; given the se-
mantic security of the cryptosystem, the simulator can
choose values uniformly from Z∗n2 to simulate EB(yi).
The remainder of the simulation proceeds using Alice’s
protocol; given the semantic security of the cryptosys-
tem, the resulting encrypted distances will be compu-
tationally indistinguishable from a uniform distribution
over the range of Z∗n2 regardless of the input.

Theorem 7.1. ρ is secure under the semi-honest
model.

Proof. We first show that Alice can simulate her view.
At the final step, the result is part of the view from
the ideal model; N can be simulated to yield the proper
connectedness measure of the graph. Given the security
of α, Π and λ, by the composition theorem [6] we show
that ρ is secure under the semi-honest model.

Alice receives no messages, except from the output
of α, which has already been shown to be secure.
As with protocol α, n is assumed public and EB is
easily simulated. Due to the semantic security of the
cryptosystem, the encryption of the residual values
EB(ri) can be simulated with values drawn uniformly
from Z∗n2 . This simulator proceeds using Alice’s
protocol with the simulated values for EB(ri). The
composition theorem [6] and semantic security of the
output of Π and λ enable simulation of the remaining
operations performed over the simulated values EB(ri).
The exception is the final encryption of N , which must
decrypt to the correct result. This is simulated by
computing EB(result), as the simulator knows the final
outcome.

Bob receives no messages except through the prod-
uct and comparison protocols, Π and λ respectively.
This simulator can thus proceed to run Bob’s algorithm,
with simulations of the output of Π and λ generated as
above. The composition theorem completes the proof.

8 Conclusion

We have introduced a new goodness-of-fit measure for
regression models, and demonstrated its effectiveness at
proper model selection. We have shown that the mea-
sure is broadly applicable to any residual plot, regardless
of the distribution the original data follows. Our mea-
sure is able to select the best regression model where
other measures are limited by the type of regression
performed, the distribution of the original data, or are
neutral with respect to the models under consideration.
Further, we give algorithms for computing our measure
in a secure manner, which has important implications
for privacy preserving data mining.
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[11] P. Erdős and A. Rényi. Asymmetric graphs. Acta
Math. Acad. Sci. Hungary, 14:295–315, 1963.

[12] A. Frank and A. Asuncion. UCI machine learning
repository, 2010.

[13] L. G. Godfrey. Testing against general autoregressive
and moving average error models when the regressors
include lagged dependent variables. Econometrica,
46(6):pp. 1293–1301, 1978.

[14] O. Goldreich. Foundations of Cryptography, volume 2.
Cambridge University Press, 2004.

[15] Carlos M. Jarque and Anil K. Bera. Efficient tests for
normality, homoscedasticity and serial independence of
regression residuals. Economics Letters, 6(3):255 – 259,
1980.

[16] M. Jarque, Anil K. Bera, Carlos M. Jarque, and
Anil K. Bera. A test for normality of observations and
regression residuals. Internat. Statist. Rev, pages 163–
172, 1987.

[17] John D. Lyon and Chih-Ling Tsai. A comparison of
tests for heteroscedasticity. Journal of the Royal Sta-
tistical Society. Series D (The Statistician), 45(3):pp.
337–349, 1996.

[18] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron
Sella. Fairplay; a secure two-party computation sys-
tem. In Proceedings of the 13th conference on USENIX
Security Symposium - Volume 13, SSYM’04, pages 20–
20, Berkeley, CA, USA, 2004. USENIX Association.

[19] Pascal Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In EURO-
CRYPT’99: Proceedings of the 17th international con-
ference on Theory and application of cryptographic
techniques, pages 223–238, Berlin, Heidelberg, 1999.
Springer-Verlag.

[20] Donald A. Pierce and Kenneth J. Kopecky. Testing
goodness of fit for the distribution of errors in regres-
sion models. Biometrika, 66(1):pp. 1–5, 1979.

[21] Ashish P. Sanil, Alan F. Karr, Xiaodong Lin, and
Jerome P. Reiter. Privacy preserving regression mod-
elling via distributed computation. In Proceedings of
the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’04, pages
677–682, New York, NY, USA, 2004. ACM.

[22] G. Simonyi. Graph entropy: A survey. In Combinato-
rial Optimization, volume 20, pages 399–441. DIMACS
Series in Discrete Mathematics and Theoretical Com-
puter Science, 1995.

[23] H. Theil. The analysis of disturbances in regression
analysis. Journal of the American Statistical Associa-
tion, 60(312):pp. 1067–1079, 1965.

[24] J. Vaidya, C. Clifton, and Y.M. Zhu. Privacy Preserv-
ing Data Mining. Springer, first edition, 2006.

[25] Andrew C. Yao. How to generate and exchange secrets.
In SFCS ’86: Proceedings of the 27th Annual Sympo-
sium on Foundations of Computer Science, pages 162–
167, Washington, DC, USA, 1986. IEEE Computer So-

ciety.


	Privacy Preserving Regression Residual Analysis
	Report Number:
	

	tmp.1336502601.pdf.l6qQ_

