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Atomicity Inference and Enforcement Using Correct Executions

Dasarath Weeratunge Xiangyu Zhang Suresh Jaganathan

Department of Computer Science, Purdue University
{dweeratu,xyzhang,suresh } @cs.purdue.edu

Abstract derstanding the reason for the failure, and more impostant|
preventing it, remains squarely on the programmer. Heisen-

Concurrency bugs are often due to inadequate synchroniza . o AR TR
bugs are triggered by race conditions, atomicity violagion

tion that fail to prevent specific (undesirable) thread rinte ) : o
leavings. Such errors, often referred toHmisenbugsare and unintended dependence ordering violations. In general

difficult to detect, prevent, and repair. In this paper, we these conditions do not directly and immediately lead tio fai

present a new technique to increase program robustnes!eS: but gradually contaminate program state; thus, the ac

against Heisenbugs. We profile correct executions from pro- (U@l point where a failure is triggered may be far removed
vided test suites to infer fine-grained atomicity propettie from the primary cause. Even if the root cause can be identi-

Additional deadlock-free locking is injected into the pro- fied, preventing the bug from occurring may require substan-

gram to guarantee these properties hold on production runsial non-local reasoning. For example, preventing an atemi
ity violation by adding locks may have the unintended con-

Notably, our technique does not rely on witnessing or ana- ) ) o
lyzing erroneous executions sequence of introducing a deadlock, or unnecessarily-limit
ing concurrency.

The end result is a scheme that only permits executions . . . .
which are guaranteed to preserve the atomicity properties Ve Delieve that expecting programmers to repair Heisen-
bugs by tedious analysis and meticulous reasoning of failed

derived from the profile. Evaluation results on large, real- : ) ble f | | d -
world, open-source programs show that our technique can€X€cutions Is untenable for complex real-world appliazio

effectively suppress subtle concurrency bugs, with small An alternative approach explored in this paper takes advan-

runtime overheads (typically less than 15%). tage of the fa(?t that Helsenbugs occur rarely — thus, the ex-
pected behavior of an executionnst to manifest the er-
ror. This observation leads us to focus on correct execsition

1. Introduction (the common case) to infer apparent atomicity properties.

Debugging concurrent programs is challenging because ofFOr lour purposes, theﬁe p:joperpe; caﬁture pairs thhread'
non-determinism induced by schedulers and unintended rac ocla acgesses to a share fvana he t st OCL;CUI’S\.NI'[.CI)U'[ ":'
behavior. Consequently, bugs that do manifest are often noti€rieaved remote accesses from other threads. ignificant

easily reproduced — even though a program may yield manyv;’]e do not requg%that trf1ese _palrt')s be (;elated Ie;lcallégli_thus
different results on the same input, only a small fraction of they can cross different function boundaries and condation

these may be erroneous; these failures are cadeigen- branches. Our teqhnique consider_s. these pairwise accesses
bugs There has been much recent work devoted to dis- as aset of co_nstralnts.Apath—;ensmve Ipc;lgng scheme-isd
covering these bugs. For example, logging and replay tech_nved by solving these constraints. Acquisitions and Isdsa
niques [13/2R] monitor program executions and allow re- of a set Of_ new Ioc_ks, generated by our ana!y5|s, are su_b-
play when failures do occur, albeit at the expense of some- sequent_ly injected into the program. Th_e locking scheme is
times substantial space and time overheads during normal.Safe asit qnly allows a subs_e tof executions that are allowed
execution. Alternatively, one could enrich testing styés in the or|g|n.al program - th|§ subset is ggaranteed fo pro-
to discover specific interleavings that lead to such fadure duce bghawor cop5|stent with the. atommny_propertles ob-
these techniques perform a directed and bounded search Ove:?erved n thg profile. Be.cause we infer atomic accesses that
program executions [23. 6], but assume that the failures are substantially more fine-grained than what programmers

have been observed and the failure inducing inputs are pro—c‘_"ln easily express using lexical bra_cketing O.f atomi(_: coder
vided. Unfortunately, discovering such inputs duringitest gions, the ?PPFO&C" enables effectsumpress!ormf Helser.1—.
for large code bases is often problematic. bugs with little loss of concurrency, and without requiring

Even if a specific interleaving can be automatically dis- P'09rammers to employ the low-level and non-modular rea-
covered to consistently reproduce a failure, the onus fer un
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soning that would otherwise be necessary to remedy the er-2.  Motivation

ror. o o Existing concurrency bug detection/fixing techniques [26,
_ Thus, the dls_tlngwshlng feg_ture of our technique is that 18] often rely on exploitingiegativeinformation - given the

it doesnot require the availability of.erroneous executions  ,pcarvation of a known or likely concurrency bug, acquire an
to prevent concurrency bugs that arise because of an atomyy ¢ that triggers the bug. The implication is that bug reme

'F'ty violation. !nstead, the injected mstrumentatprﬂeef. diation first requires either manifestation of the bug onide
tively only admits executions that respect the atomic R0 isication of likely sources. In contrast, our techniquesirst
inferred by prof|I|.ng correct runs. Notably, our approach is ,ential atomic regions from observed correct executions
not replay-based: the instrumented program allows differe 54 enforces atomicity in these regions, thereby guarantee
interleavings from those witnessed in the profile with respe 4 that atomicity invariants witnessed in these execition
to non-atomic regions, only guaranteeing the absence Of_'”'are automatically preserved; by doing so, it prevents bugs
_terleaved accesses in thos_,e thatare. Morepver, the teEhniq ¢ arise because an execution fails to preserve thesg inva
is safe: any execution realizable under the instrumented pr s \without the need for having a failure-inducing input.
gram is also realizable under the original; a corollary af ou  \ye conducted a detailed evaluation study to support our
;afety condition is that our injected instrumentation duoats intuition. Our study looked at 13 concurrency bugs from 6
introduce deadlocks. _ _ widely used concurrent applications including theache

Our contributions are summarized as follows: web server and theysql database server. (Talile jsql

« We propose a novel profile-based program analysis thatcomes with an extensive regression test suite, as well as

can be used to suppress Heisenbugs for complex |arge_several widely used database performance evaluation bench

scale concurrent applications. marks such asysbench-oltp andtpcc. Apache and the

. : . other programs do not have a their own test suites, but there
e Central to our approach is the inference of salient atom- . .
. : , . . are commonly used static/dynamic workloads that can be
icity properties from profiles of benign executions gener-

ated from test suites, without requiring the availabilify o U.S.ed as representative inputs. The test inputs used for pro-
) . S filing each benchmark are shown in Table 2.
failure-inducing inputs.

. ) ) . . These programs run correctly with the test inputs. We
* Our instrumentation algorithm injeg@th-sensitivéock  qy1ected atomicity profiles from these runs and analyzed

acquisition_s and releases to tolerate a_tomic_ sections tha'i/vhether enforcing these properties would suppress future
are not Iexpal (e.g., F’eFause the atomic region may Spanbugs, i.e. bugs reported after the program and the tesssuite
different lexically-delimited scopes). were released. Our atomicity criteria was based on observed
* We evaluate our technique on a set of large, real-world pajrwise atomic sections: a code region (not necessarily
open-source programs. Benchmark results show that ourjexical) bracketed by two accesses to the same variablein th
technique can effectively suppress subtle hard-to-iflenti - same thread, without any intervening access to that variabl
and repair concurrency bugs. Performance evaluation ONpy another thread.
realistic workloads indicate that the runtime overhead of  \we observed that the test suites collectively provide cov-
our technique is small, typically on the order of 15%.  erage over the faulty statements, even though they do not
The remainder of the paper is structured as follows. The trigger the failures. Indged, the key aFomlc pairs are'}aasn
observed from the passing test cases; these regions induce a

next section presents additional motivation and someldetai _ . . o
) . failure only with certain inputs that do not happen to be used
of the benchmark corpus we used in our study. Se€lion 3 ex-. . .
in the regressions and benchmarks, or under certain unfore-

amines one of these benchmarks as a case study to illustrate . N : .
. : Seen schedules. By enforcing atomicity in these regioes (i.
some of the technical challenges our technique mustaddress, "~ .~ . .
by injecting suitable locks), we were able to successfully

Sectior[ % gives an overview of our solution using this case revent these bugs: inputs identified from the bug reports
study as a representative example. We present the scope That were previously able to triager the bua no longer did
our technique with respect to the kinds of concurrency bugs =P y ) 199 ° bug 9 '
. . . : and the inserted locks prohibited previously allowed fault
it can suppress in Sectigh 5. We present details of the pro-
L . . . schedules. Thus, the transformed program suppresses these
filer in Sectior 6. The lock placement algorithm and instru- T .

bugs from occurring in the first place. Many of these bugs

resaluon algoritm 1 desoried in SecBh 5. Extensions 1" aysal 12848, 38739, 16333, 20850, angache
9 ) 44402 were difficult to deterministically reproduce and di-

to our approach are required to deal with conditional syn- o
o . . . agnose when they were reported, due to the special inputs
chronization and shared heap objects; these extensions are

described in Sectidd 9. We formalize the safety properties o requwgd, the large number of threads myolved and the long
oo X . ; execution time necessary to reach the failure. Indeedraeve
our solution in Sectior??. An evaluation study with respect

. o . of the bugs we consider have not been studied in the research
to overhead and effectiveness is given in Sedtidn 11. Relate .
o . ) . . . literature to the best of our knowledge. Note that we focus
work is given in Sectiof 12 and conclusions are provided in A o
Sectior IB on reported bugs only because it simplifies validation.
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program| bug, date | module affected, description atomic pair
aget, - A data race between threads downloading a web page and SIS¢N@l handler. When | bwritten needs read lock in
0.4 the data race occurs, the downloaded file is corrupted. Taedlvariable bwritten is savelog() in Resume.c:41.
consistently protected by lock bwrittenutex except inside the signal handler.
pbzip2, | - An order violation between the main thread and threads ddmgdimpression (consumer fifo->mut needs a read lock in
2.094 threads) on muteRifo->mut. The main thread may delete the mutex before all func. consumer() in
consumer threads are done using it. pbzip2.cpp:873-994
nszip, 342577, A data race in Mozilla nsZipArchive::SeekToltem on nsZa@pit:flags. The data race nsZipltem::flags needs write lock
1.8 23/6/2006 | corrupts the decompressed file. in func.
nsZipArchive::SeekToltem() in
nsZipArchive.cpp:1381-1408
apache, | 44402, In worker multi-processing module (mpm), the recycled pootgjets corrupted under recycledpool::next in
2.2.6 2/12/2008 | high concurrency causing server to crash. First observéle winning specweb99 static | fdqueue.c:104-107, func.
content workload with 1000 simultaneous connections and®@ads per worker. The | ap.queueinfo_setidle() needs
server would run for anything between 10 minutes to 4 hoursrkéf would crash. read lock.
apache, | 25520, In mod.log_config, log lines are corrupted at high volumes in access log. bufferedlog::outcnt needs write
2.0- 15/12/2003 lock in
head mod.log-config.c:1432-1469, in
func. apbufferedlog_writer()
spider- | 133773, An order violation bug in Mozilla JavaScript engine in furgDestroyContext() on JSRuntime::state needs read lod
monkey,| 27/3/2002 | JSRuntime::state leads to crash. in func. main().
15
mysql, 791, Inlog.cc (binlog), when SQL FLUSH LOGS is executed conauifyewith another SQL | MYSQL_LOG::log-type needs
4.0.12 4/7/2003 | statement, e.g. SQL INSERT, the latter may not be recordecindi write lock in log.cc:867-869,
func. MYSQLLOG::newfile()
mysql, 12848, In sgl.cache.cc (query cache), access to query cache while the tsalbben resized Query.cache::bins needs write
4.0.12 29/8/2005 | caused server to crash. The bug was reproduced by runnimg gaehe.test (size: 450 lock in sgLcache.cc:733-755, in
lines) in mysql-test suite for 1-2min. func. Querycache::resize()
mysql, 14747, In the index tree adaptive search module in Innobase datebagsee, two threads trying | buf_block struct::index needs
5.0.16 8/9/2005 | to drop a hash index could race with one another, leading énescrash. After the bug | write lock in btrOsea.c:893-1015
was first reported, the developers added diagnostics tootiee &and there was no activity | in func.
for several months until it was reported again. Even therethers no way to reliably btr_searchdrop_pagehashindex()
reproduce it except for the observation that crash happefted on big queries.
mysql, 38739, Transaction Manager, Falcon database engine; In Transdtdnager::startTransaction() Transaction::state needs write
6.0.6 12/8/2008 | it was possible for two threads to pick up the same transaotigect for reuse lock in
simultaneously leading to an assertion failure. The dewpsed 30 client threads that| TransactionManager.cpp:119-
execute single select statement for a random record frongéedable to reproduce this | 120, in func.
bug. startTransaction()
mysql, 35714, A data race between THD::awake() and thcheduler::threadetach() on varaible THD::mysysvar needs read lock
6.0.6 31/3/2008 | THD::mysysvar led to a server crash. sglclass.cc:859-893 in
THD::awake().
mysql, 16333, In the safemutex API, assertion failure occured in safeitexasserinotowner() due to | A multi-variable atomicity
5.0.19 10/1/2006 | inconsistent values in fieldsount andthread in safemutex objects. The crash was violation. safemutext::count
reproduced by running oltp test in sysbench benchmark. Tiverseould crash approx. | and safemutext::thread need
18min into the run when using 8 client connections and a teabdae having 1 million write lock in safemutexlock() in
records. thro-mutex.c:163-170
mysql, 20850, A data race occured between server termination code irskave;, and slave threads on | Masterinfo::run_lock needs read
5.0.24 4/7/2006 | variable Masteiinfo. The func. endslave could destroy the Mast@ifo object before all | lock in func. handleslaveio() in
slaves were done using it. To reproduce the bug the devalopeMySQL replication slave.cc:3414-3745
tests (size: 80 lines) in a loop with each iteration restgrthe server. It many take as
many as 36 iterations before the server would crash and telk beppens during server
shutdown.

Table 1. Some known data race/atomicity violation/order violatbugs and how they can be prevented by enforcing pairwise
atomicity observed in passing runs. Bugs 44402, 14747,Q88&333 have not been discussed in literature before. Many o
these bugs such agsql 12848, 38739, 16333, 20850, aapache 44402 were difficult to deterministically reproduce and
diagnose according to the bug reports, due to the speciatsnpquired, the large number of threads involved, anddhe |
execution time necessary to trigger the failure. Pleas tefTable[R for inputs used for profiling.

3 2011/4/25



foo() foo()
{ {
if (<COND1>){ if (<COND1>)A{
P = NULL; acquire(L)
3 P = NULL;
release(L)
if (P){ }
. = %xP;
} acquire(L)
} if (P){
... = %P;
}
release(L)
}

Figure 1. Aninput dependent atomicity violation. The orig-
inal code is shown on the left; the version instrumented by
our technique is on the right.

ment; these are statements inserted by our technique, and
are not present in the original program. At line 867 in func-
tion new_file() (the right-hand side code fragment), the
current log file reaches its size limit and is closed. A new log
file is supposed to be created at line 870 to continue logging.
Although there is a program lockOCK_log that protects

the main body ohew_file(), the lock is not consistently
held in other accesses bdg_type. For instance, in function
mysql_insert () (shown on the left-hand side), the call to
mysql_bin_log.is_open() at line 311 entails accessing
log_type (see the definition ois_open() on the top-left

of the figure), yet the access is not protected. In the failure
inducing schedule as shown by the arrows between the lines

311, 867 and 870, the value is setltdG_CLOSED by the
invocation toclose () first at line 867, the predicate at 311

is evaluated before the value is set again at line 870 and thus
takes the false branch, with the insert query not logged.

Like most Heisenbugs, this error illustrates two signifi-

To make our discussion concrete, consider the examplecant complexities: (a) finding the bug is challenging, and no
in figure[d, which is an abstraction of several real atomicity likely to be easily exposed by typical testing strategies} a

violations we have observed. Here,is a shared pointer

(b) even after the bug is found, there is a deep causal chain

which is not protected consistently with a lock. The functio ~ Of dependencies that must be followed in order to determine
foo () is called by multiple threads, leading to interleaving how best to repair it. For example, given knowledge of the

of accesses t®. The assignment that sebsto NULL is
guarded by the conditiogoND1. For all test inputs found
in the regression test suiteépND1 is always false. Hence,

bug and its cause, we might be tempted to lock the call to
is_open() atline 311. However, non-trivial reasoning must
be brought to bear to ensure that such a change is in fact

it is not possible to induce the bug even after exhaustively COITect.

exploring the possible schedules for the test runs.
Consequently, we do not observe any writePtérom
other threads; our profile, on the other hand, indicates that
the two reads t® are pairwise atomic — they occur with no
intervening access ®wby another thread. Since the reads are
not protected, our technique transforms the program to put
these accesses within an atomic section. In addition, even
though we have not seen the execution of the assignment to
P in our profile, enforcing the atomicity of the two reads re-
quires us to also instrument the write access to ensure that
it is not allowed to be interleaved with the reads. Our lock
injection mechanism guarantees that even wbexD1 is
true (under some new input provided later during a produc-
tion run), two threads will never be interleaved withiso ()
such that one setsto NULL between the two read accesses
to P.

3. Technical Challenges

Realizing our ideas for real world programs is challenging.
We use a concurrency bug found in MySQL-4.0.12 (bug id
791) to illustrate these challenges. This non-determinist
bug results in SQL queries not being properly logged. Log-
ging failure is problematic beausgrsql relies on its log

e |tis unclear if deadlocks would be introduced.

e The body ofnew_file() is protected by multiple locks
(not shown in the figure). There may be many other
accesses thog_type just like that at line 311, with some
of them already protected by some subset of the locks
in new_file(). It is hence difficult to determine which
lock(s) should be held in order to provide consistent
protection.

e Wrapping the access at line 311 with lotRCK_log
would still not resolve the bug because there is another
access tdog_type in the call tois_open() atline 1922.
Atomicity must be preserved between these two accesses
as well.

e \WWe might choose to simply protect the whole body of
mysql_insert () with lock LOCK_log. However, doing
so likely limits concurrency unnecessarily since only the
two accesses to the log need to be protected. The execu-
tion of the rest of the function body can be interleaved
with other threads.

4. Overview of Our Solution
Our technique is divided in three phasesrafiling phase

to revoke and replay queries in the presence of transac-collects pairwise atomicity information; lck placement
tional commit failures. The failure is caused by an atom- phase derives a locking scheme that satisfies the atomicity
icity violation. The relevant code snippets are shown in constraints collected by the profiler; anddeadlock reso-
Fig. [. Ignore all the highlighted statements for the mo- lution phase resolves possible deadlocks induced by the in-
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sql_class.h log.cc

MYSQL_LOG::bool is_open() { void MYSQL_LOG::new_file(...) {
150 return log_type != LOG_CLOSED; } acquire(READ(log_type), 805);
805 if (!is_open()) {
log.cc _
MYSQL_LOG::generate_new_name(){ releas<'e(READ(log_type));
124 | if (log_type = LOG_NORMAL) \ return;
} )
bool MYSQL LOG::open() { if (need_lock) {

acquire(EXCLUSIVE(log_type), 810);

143 log type=...;
810 pthread mutex lock(&LOCK log);

void MYSQL _LOG::close( ) { if (1no_rotate) {

1496 l.(.).g_type: LOG_CLOSED; 830 %f (generate_new_name(...)) ...
834 if (log_type == LOG_BIN) ...
i

sql_insert.cpp
int mysql_insert() {

ire(EXCLUSIVE(] 867);
@ acquire(READ(log_type), 311); 2L (log_type), 867);

| ———867| close(); /*present log full and closed*/

311 if (mysql_bin_log.is_open()) { i
\ 870 0 X . % #
; . . pen(...); /*start a new log*/
1922 if (mysql_bin_log.is_open()...) release(EXCLUSIVE(lo .
R g_type));
@ release(READ(log_type)); @ if (need_lock)
/* write to the log file*/ -

pthread_mutex_unlock(&LOCK _log);

}
@ else release(READ(log_type)); ;

Access Trace of log_type
[...:805:150] — /*remote reads*/ — [...:830:124] —... — ... —>[...:867:1496] — [...:870:143]

L J L J

/—QZ Atomic Pairs /—‘/

<805, 830, R> <830, 834, R> <834, 867, R> <867,870, X> <311,1922, R>
Figure 2. Areal bugin MySQL-4.0.12. The arrows between statemerw she failure inducing schedule before applying our
technique. The shared variablelisg_type. The access trace of the variable is shown below the codeetsipEach entry of
the trace is an access with context information. The pagatemicity profile is presented in the bottom. Each profikeyes a
triple. The first two elements are a pair of intraproceduragpam points with atomicity. The last element is the atatyiype.

R meangead atomicity i.e., remote reads have been observed to be interleavhdhigtpair. X meansexclusive atomicity
i.e. no interleaving remote access has been observed indfilepThe shaded statements are instrumentations addedrby
technique. Primitivecquire (READ (1log_type) ,805) means acquiring a read lock for variahleg_type, starting at 805.

serted locks. We illustrate these steps using the example inno interleaved remote accesses have been observed between
Fig.[d in the remainder of the section. entries[... : 867 : 1496] and[... : 870 : 143], which cor-
Profiling. Our technique first collects a set of traces. To respond to the accesses dliose() and open() respec-
simplify our discussion, we only present a trace relevant to tively, the atomic pair(867, 870, EXCLUSIVE is derived
variablelog_type below the code snippets. Each trace entry as shown, representing exclusive atomicity (i.e. no remote
represents an access annotated with its context. For gestan reads and writes are allowed).
the first entry[... : 805 : 150] means that the access is the Lock placement.Given a profiled trace, we infer synchro-
read at line 150 in functiotis_open (), which was invoked nizations that satisify all pairwise constraints. The high
at line 805, and so on. lighted statements are the synchronizations introduaged. |
We then consider each pair of consecutive thread-local nore the lock acquisition & for the moment. A read-lock
accesses to see if they have ever been interleaved with acis acquired at® to ensure read atomicity from 805 to 830.
cesses from other threads. For a given pair of local accessesThe lock is released @) since taking the false branch at 805
we identify an intraprocedural path such that locking that indicates line 830 is no longer reachable. The read atomic
path ensures atomicity of these accesses. Thus, our instrupairs(830, 834, READ) and(834, 867, READ do not lead to
mentation phase does not need to inject locking over arbi- new acquisitions as they can be considered as a continuation
trary inter-procedural paths. of the pair from 805 to 830. The lock is upgraded to exclu-
In the example, the common function body of the firsttwo  sive at©) based or{867,870, EXCLUSIVE. Itis released at
local entries isiew_file, and the two accesseslog type ®, right after the access in 870. This avoids unnecessarily
are interleaved with remote reads. These accesses are thugmiting concurrency.
aggregated to the atomic pdB05, 830, READ), permitting Similarly, the atomic paiK311, 1922, READ entails the
read atomicity (i.e. remote reads are allowed but remote acquisition at® and the release & and @. The latter
writes are not) between lines 805 and 830. Similarly, since release is because 1922 is not reachable. Observe that our
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acquisition primitives take the line number as a parameter t
achieve intra-procedural path-sensitive locking, exmdiin
more detail in Sectionl 7.

Deadlock resolution.Observe that our technique augments

fail to execute these accesses in the specific order in which
they were intended to be executed. For example, a socket
may be intended to be first created and initialized in one

thread, and then used in another. We observe that in many

but does not remove existing synchronization actions. Cor- Cases, ensuring a specific order can be preserved by enforc-
rectness arguments dictate that instrumentation should noing atomicity. In the case of sockets, this would mean that

alter the original program semantics. However, addingdock
may interfere with existing ones or may interfere (e.g.,

the creation and initialization of the socket should be atom
Thespidermonkey bug and thebzip-2 bug in Tabléll be-

cause deadlock) with locks added for other variables. Our long to this category.

technique resolves deadlocks by injecting additional ac-

quisitions. Consider the synchronizations added to foncti
new_file() by our technique (ignorin@® for now). There

So far, we have assumed pairwise atomicity invariants are
defined with respect to the same variables. But in practice,
there are cases in which atomicity is required to hold across

is a potential deadlock due to the interference with program Mmultiple variables. For example, a flag that must be set if

lock LOCK_1log. In particular, the program lock may be ac-
quired (at 810) when the read lock fosg_type is held (at
@); and in a different thread, the exclusive lock may be ac-
quired (at®) when the program lock is held (at 810). Our
technique breaks the cycle by adding an exitguire ()

(at ©)*. This operation ensures that the exclusive lock for
log_type is always held when the program lock is acquired.
It is straightforward to see that the resulting instrumdnte
program effectively prevents the bug.

5. Scope

the corresponding pointer becomes null is an instance in
which atomic accesses to two variables is required. Brgakin
such atomicity can lead to failures. We leverage existing
techniques (e.g/ [19]) to identify correlated sharedalalgs
(essentially those that are accessed together in most)cases
representing them as a single abstract shared variable.

Other concurrency bugs that do not necessarily involve
atomicity violations, such as those that lead to deadlocks,
are not handled by our technique.

6. Profiling Atomic Pairs

Many common kinds of concurrency bugs, such as data races

and order violations, often involve violation of atomicity
invariants. As long as a bug manifests such a violation, it
is feasible to apply our technique to prevent it.

thread1() {
acquire(L)

A:p=...;
release(L)

thread2() {

B: p = null;

acquire(L)
C: *p; }
release(L)

Figure 3. A data race involving an atomicity violation.

We have observed that many bugs reported as data race

entail violation of pairwise atomicity. Fifl] 3 presents msi
plified, yet typical, example. Here, executing statements
B andc in that order results in a null pointer dereference. It

TRACE-LANGUAGE £
Sel == (vT)y; S |e
T eVarTrace == (t,rw,c,is); T | €
t € Thread == {t1,ta,...}
c € Context = 1
rw € AccessType = {Rd,Wr}
veVar == {z,y,2,..}
is € LockInstanceSet = P(Lock x Int)
Lock = {kl, lﬂg, }
l € Label := {entry,exit,ly,ls,...}
Figure 4. Trace Syntax

The first component of our technique is a profiler that

flentifies atomic access pairs. We say two local accesses

to a variable observed by a profile aegclusive-atomigf
no remote (i.e., non-thread-local) accesses occur between
them. Any execution which respects the behavior withessed

might be assumed that the bug arises because of a race beriy the profile ensures that an exclusive lock on that variable

tweenB andC. However, if correct executions exhibit pair-
wise atomicity between the accessgaat C and its pre-
ceding access at, enforcing atomicity between these two
statements would effectively suppress the btigql bugs

14747, 35714, and 20850 in Table 1 belong to this category.

Order violations are a type of concurrency bug that often
involve atomicity violations as well. An order violation-oc

is acquired prior to the first access, and released after the
second. Two local acceses aead-atomicif only remote
reads occur between the two accesses, without the presence
of an intervening remote write. To mimic the conditions

of the profiled run on subsequent executions, we require
that a read lock be held for this pair. If a remote write
was ever observed between the two accesses in the profile,

curs when accesses to a shared variable in different thread?hen no atomicity condition holds (denoted ras-atomig

10ur runtime allows a lock to be acquired multiple times.

We distinguishread-atomicfrom exclusive-atomit¢o allow
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more concurrency. It is an important design choice given the that could be no-atomicNONE), read-atomic READ),
non-trivial number of atomic invariants we need to enforce. exclusive-atomic EXCLUSIVE), or top (T); the ordering
Traditonally, atomicity is defined lexically by the pro- relationship among these types form a simple lattice as de-
grammer — thus, we typically reason about atomicity in fined in Fig.[5. In order to determine if the atomicity of a
terms of methods or code blocks. Transplanting such no- pair is already guaranteed by the program, we introduce two
tions into a profiling context is not straightforward, howev  relations: the pair lock sdi describing the locks that guard
Lexically-scoped atomic regions are difficult to identifiyca both accesses; and, the lock £é&t for a variable describing
profile because (a) multicore architectures permit reat con the set of common locks held by all accesses of the variable.
currency, allowing any code region to execute concurrently  The rules are divided into three sets, the first describing
with code regions in other threads, confounding easy iden- the evaluation of a variable trace, the second computing var
tification of lexical region interleavings; and (b) it is ldeto able lock sets, and the third computing the atomic pairs. The
aggregate region-based profiles; the same region may occutriple defining a trace evaluation configuratiof;, L, Z)
in the profile multiple times, exhibiting atomicity in some contains a tracd’, an access pair locksét, and an access
instances, but not others. We cannot simply mark the whole pair atomicity setZ. Rule (Exclusive)considers the case
region as not being atomic because sub-regions (before andvhen two consecutive local accesses are not interleavéed wit
after a given remote access) may still be atomic. Thus, iden-any remote access. To ensure that subsequent executions re-
tifying atomicity using lexically-scoped code regions lwbu  spect this observed atomicity, we must ensure that thesinstr
be sub-optimal if atomicity is only needed in a small portion mented version of the program is (a) adequately augmented
of such regions. with locks to enforce atomicity, and (b) the locking protbco
Profiling atomic pairs, instead of code regions, addressesis consistent with all other observed accesses of this aair.
these issues. The variable sensitive locking that can beaddress (a), we appeal to the definitiorfrohtier shown in
derived by discovering these pairs allows arbitrary (non- the figure. Suppose the first access (within the procedure la-
lexical) interleavings of atomic regions. In this sensengt beledl,) occurs in contexte; = [Iy : Iy : I3 : I4] and the
pairs provide atomicity at fine granularity, and facilitaig- second (within the procedure label&g occurs in context
gregation of larger atomic regions from smaller atomicair c¢2 = [l; : l2 : I5 : [g]. The frontier of these two contexts is
To realize our design, we need to overcome a number of defined to befrontier(cy,cs) = (I3,15). Thus, the frontier
technical challenges. Most importantly, atomic pairs at n identifiesis andl; as the call-sites found withify that en-
lexically well formed; for example, two accesses could oc- capsulate the access pair. We use this information to insert

cur in different calling contexts. For instance, functidf) an exclusive lock around the region that encldgemd!s in
might call B(), with the first access occurring iB(); after proceduréds, to provide atomicity guarantees without having
B() returns, A() might subsequently call’(), which per- lock acquisitions and releases span procedure boundHries.

forms the second access. Moreover, existing synchroniza-the locks necessary to provide atomicity of the pair were
tion present in the program may contribute to the atomic- not hoisted uptds, but instead acquired withity and re-
ity properties observed in the profile. Hence, we should ex- leased withirig, runtime disambiguation would be necessary
clude identifying atomic accesses that are already guaran-to consider the different possible call pathdtg¢andis), to
teed based on program structure. ensure that the lock is only acquired in the profiled contexts
We instrument programs to generate traces, which areln the rule, the set represents the locks that are held at both
then analyzed to identify atomic pairs. The trace syntax is I; andl,. By intersecting this lock set with(l;,15), the set
presented in Figl4. A tracg is a sequence of variable sub- of locks that protect all occurrences of access pairl,),
traces, which define the access history of a shared variablewe define the minimum set of locks that are used to protect
The reason for such a design is that there is a sequentiathis pair. Consider two occurrences of pdir, l2) in which
order for accesses to the same variable instance while suchhere is no intervening remote operation between the first
an order may not be available across variables. An entry pair, but there is one between the second. The atomicity re-
in the variable trace represents a shared variable accessquirement on this pair is naturally dictated by theakest
consisting of the thread it the calling context, the access  observed action; in this case, the observed remote operatio
type rw, and the lock instance sét. The lock instance  between the second pair of accesses precludes treating the
set describes the set of lock instances held at the accesaccess pair bracketed byandi, as atomic.
point. A lock may have multiple instances at runtime, with Rule (Read) defines the conditions under which an in-
an instance generated by an acquisition and destroyed bytervening remote read operation occurs between an access
the corresponding release. Hence, we use a {air) to pair, and ruleNone defines the conditions under which an
represent théth instance of lock:. intervening remote write operation takes place. In thefatt
The profiling rules are presented in Fid. 5. The profiler case, no additional synchronization is required to enfexce
takes a trace as input and generates a set of access pairs facutions faithful to the profile; in the case of remote reads,
each shared variable. Each pair is associated with a typeread locks can be used to permit executions to admit inter-

7 2011/4/25



DEFINITIONS

Z € Pairs
A € VarPairs

::= Label x Label — AtomicType

DESCRIPTION

Input:  AtracesS.

Output:

PROCESSINGPER-VARIABLE TRACE

o € AtomicType ::= {NONE, READ, EXCLUSIVE, T}, T > EXCLUSIVE > READ > NONE.

= Var — P(Label x Label x AtomicType)

<ll, lg) if ¢ = cg; - ks
. frontier(ci -1i,c2) if 1 C co: L =A{ki,..., knnewlock()"" € Prog}
frontier(ci -l1,c2-1l2) = . I ! Lo(li,l2) =L
frontier(ci,c2 - l2) if c2 C e 2oL =T
frontier(ci, c2) otherwise. ol l2) =

A mappingA that maps a variable to a set of atomic pairs.

L € PairLockSet
LS € P(Lock)

::= Label x Label — P(Lock)

’ (l,ls) = frontier(ci,ca) s = {k|(k,i) €is1 Nis2} L' = L[{l1,l2) ~ L(l1,l2) Ns]

‘\1)

7" = Z[(lh,l2) — min(Z(l1,l3), EXCLUSIVE]

P (Exclusive)
<T7 <t7rw17017i81>; <t,7"QU27CQ7’i82>, L7 Z> - <T7 <t,7”w17617’i81>7 Ll7 Z/>
To #nil  —3(t, 1wy, Cz,is,) € To =3It Wr, ' is’) € To t#t
Condition (1) from rulg( Ezclusive) 7' = Z[{l1,12) — min(Z(l1,l2), READ)] (Read)
(Ty; (t,rw1, e1yis1); To; (t,rwa, eayisa), Ly Z) 225 (T (8, rwn, e1yisi); To, Ly Z7)
To #nil  —3(t, 1wy, Cu,is,) € T (t' W, is’) € Tp
Condition (1) from rulg( Ezclusive) Z”’L; Z[{l1,12) — NONE (None)

<T17 <t,Tw1,C1,iS1>; T27 <t,T7U27CQ7i82>7 L7 Z> = <T17 <t,7"l,U1,Cl7’l:81>§ T27 Ll? Z/>

LOCKSET

ATOMIC PAIRS

inst inst

(T, L) = .. L5 (e, LS) (T, Lo, Z0) 2% .. 2% (¢ L, 2)

((t,rw, c,is); T, LS) == (T, LS N {k|(k,i) € is})

X = {(l1,l2, Z(l1,12)) | L(l1,12) N LS = ¢ AN Z(l1,l2) # T}

(LockSet)

{0, T); S, A) L2 (S, Alv — X])

(Pairs)

Figure 5. Profiling rules.

vening remote read operations. R(l@ckSetspecifies the
computation of the variable lock set. R[eairs) generates
the atomic pairs for a variable. Specifically, a profiled atom

Moreover, atomic pairs may overlap: two atomic pairs may
span the same code region.
Any synchronization injection protocol must be cog-

pair is admitted only if the pair and all other accesses of the nizant of these issues. In this section, we consider how-to in
same variable are not consistently protected by a programject appropriate synchronization for a single shared fateja

lock; these pairs represent regions that are potentiattsrg
for subsequent lock instrumentation.

7. Lock Placement

in Section8, we consider extensions that resolve conflicts
between inserted locks for multiple variables or between an
inserted lock and a program lock.

The profiling semantics identifies an atomic pair as a pair
of local accesses to the same variable with no intervening re
mote access. To ensure safety, we over-approximate profiled

We now discuss how appropriate synchronization can be in-information; specificallyye consider all paths between two
serted into a program to respect profiled pairwise atomicity accesses that comprise an atomic pair as exhibiting the same
constraints. Recall that atomic pairs need not be lexieally atomicity characteristics with respect to the variabletttia-
scoped. To avoid limiting concurrency, we need to release fines the pairOur treatment is an over-approximation be-

locks that protect atomic pairs at the earliest possiblatpoi
taking into consideration their non-lexical organization

cause the profile is necessarily incomplete, i.e., not @alippa
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between the two accesses are guaranteed to be exercised e variable must be encountered befgrehe atomicity of

the profiling input suite. On the other hand, the approxima- the variable under consideration must have been profiled by
tion is safe and adding additional synchronization only af- the pairl; andl; instead ofl; and/;. Hence, all constraints
fects the degree of concurrency realized. regardingl; and{; should be excluded fromc({). Finally,

We define an intraprocedural flow analysis to decide if [ has multiple predecessors, the entailment operation in
where additional synchronization must be inserted. Foneac the consequent effectively defines a union of their lock con-
control flow node, represented by a label, we compute the straint sets.
set of locks that ought to be held upon entry to that node and )
then decide the required synchronization instrumentasn (il Instrumentation
cordingly. If no profile is available for a pair of accesses,w _, |
assume there is no atomicity that must be enforced betwe iz R
that pair. 2

The rules defining our analysis, presented in Elg. 6, are
divided into two sets. The first set computes the locks that
must be held at a program point. The second set derives t

acquire(X,2)

?release(R,2) @

?degrade(X,2)

acquire(R,7)

instrumentation that must be injected according to derived v, Prelease(R,2)
lock information. The computation is based on the atomic R:, R],} ?release(X,2);
pairs for a variable. The relevant definitions are preseinted i : ?release(R,7);

| 8 [{N.X}.R)} acquire(X,9)

Profile:

2,12>: EXCLUSIVE
2 p7 oy 2,7>: READ
i2>Ruzs Xz} 7,12>: READ
9,12>: EXCLUSIVE

the beginning. Functiofc is a mapping from a label to a
set that may includBlONEand triples(l;, [;, o), referred to
as thelock constraint setThe triple signifies that an lock
should be held, during the execution frdpto /;, wherea
is either a read lock or an exclusive lock. HaviN@NEin
the constraint set means that it is possible no lock is held at
this point (along some path). The remaining definitions are
for auxiliary functions used in the rules.

The rules are given by judgements of the fodth—> C Figure 7. Example for lock placement. Nodes are anno-
whereP is a predicate and’ is either a lock constraint op-  tated with theirlc() set. SymbolX?, is a shorthand for
eration or an instrumentation effect performed wheris (2,12, EXCLUSIVE. Symbolsz and N' denoteREAD(z)
true. Rule(Init) specifies that the constraint set of a pro- @ndNONEz), respectively. Instrumentations on edges are
gram po|ntl be a sing|eton ho|d|ng thNONE|ock, mean- shown on the rlght The shaded ones are Optimized away.
ing no lock is needed, as long & not on any path of any The question mark before a release primitive is to test if the
atomic pair. Note that thBlONE constraint may be further  lock is held. Thedegrade()primitive degrades a lock (from
propagated to other nodes through flow edges. RGlen) exclusive to read).
specifies that if nodé is the head (the first access) of an
atomic pair with read or exclusive lock type, the lock con-
straint set forl must include the atomicity type of all pairs
that havel as the head, and must not incluN®NE Intu-
itively, the rule requires that we hold some lock startirair
! defined by the properties of the atomic pair. Rufein)
describes the propagation of constraints along flow edges.
Specifically,1c(1) is computed from the lock constraint sets
of its predecessors. Thetreachable(l,, 1) set is computed
as the set of constraints of a predecegssuch that the cor-
responding atomic pairs cannot witnésRecall that a triple
(l;,1, ) € 1c(l,) means that & lock should be held as dic-
tated by an atomic pair frorj to /;. Intuitively, if / is not on
any path froni; to/;, the constraint should be invalid and ex-
cluded from the constraint set bf The conflict(l,,1) set is
computed as the set of constraintd pthat conflict with the

X!

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, release(all)

Example. Consider the example in Figl 7. The CFG is pre-
sented on the left. Variable is accessed at nodes 2, 7, 9
and 12. Each node is annotated with its lock constraints.
According to rule(init), 1c(1) = 1c(3) = {N} (for
NONE). Node 2 has the constraint §eX7,, R#} according

to rule (Gen). Note that there are two atomic pairs start-
ing with 2 in the profile; the notatioX?, is an abbrevi-
ation for the lock constraint2, 12, EXCLUSIVE). 1c(4)

is the union oflc(2) and1c(3), dictated by rule(Join).

For node 5noreachable = {R2} as 5 is not on any path
from 2 to 7, hencelc(5) = 1c(4) — {R2}. For node 6,
conflict = { X%} because control-flow through node 6 im-
plies that an access toat node 7 will be encountered be-
fore execution reaches node 12. Hence the constrafjt
must not have been observed along the path following 6

program’s control-flow and hence should be excluded from and.should be egclgded. Computation of the remaining con-
I' lock constraint set. Given a constraifit, /;, ), I; andi; straints follows similarlyl]

must be two consecutive accesses along an execution path. The second set of rules derives appropriate instrumenta-

Hence, ifl entails paths along which a different accésto tion from the lock constraints. The instrumentation is rhain
lock acquisition and release. We allow a lock to be acquired
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DEFINITIONS

lc € LockConstraint ::= Label — P((Label x Label x AtomicType) |J {NONE}) edge(l,1') : | — I' is aflow edge
atomhead(l) = ', T > Z(I,1') > NONE onpath(l,l;,1;): L is on at least one path frofmto ;.

access(l): the variable under consideration is accesséd at mustonpath(l,l;,1;): | must be on all paths from to /;.
maxlock(S) = «aiff V({I,I';a') € S, a > a’ notreachable(ly,l) = {t | (t = (i, l;,a)) € Lc(lp) A

—onpath(l, l;,1;)}
conflict(lp,l) = {t | (t = (li,l;,a)) € Lc(lp) A3l # li,1; access(lx) Amustonpath(ly,l,l;)}

LocK CONSTRAINTS

VT > Z(l;,l;) > NONE —onpath(l,l;,l;) = 1lc(l) = {NONE} (Init)
atomhead(l) = 1c(l) D {(l,l;,Z(l,1;))| T > Z(l,l;) > NONE} A

1c(l) p {NONE} (Gen)

edge(lp,l) = 1c(l) D 1c(lp) — notreachable(ly,l) — conflict(l,,l) (Join)

INSTRUMENTATION

atomhead(l) A a =maxlock(lc(l)) = instrument beforéwith “acquire(a(z),1)” (IN Acquire)

edge(lp,l) AN A =1c(lp) —1lc(l) = foreach(l;,l;,a) € A: (INRelease)
if (3, ko) €1c(l), a>a')

instrument, — [ with “?degrade(a(x),l;

else instrument, — [ with “?release(a(x), ;)

Figure 6. Lock Placement. The analysis is parameterized on the Varidbeing considered.

multiple times but released only once. Both read or write the lock is already held; the instrumentation that injebts t
capabilities may be acquired for a lock. RUIEV Acquire) read lock here is required because the control-flow path that
specifies lock acquisition. Locks are only acquired at a node reaches node 6 could have bden> 3 — 4 — 6. Along the

[ that is the start of at least one atomic pair. If there areimult path from 2 to 12 passing 7, our instrumentation aggregates
ple constraints associated wittthe lock with the maximum  the two atomic pair$2, 7) and(7, 12) to a larger read atomic
strength is acquired. Intuitively, if one constraint demisia region, preventing any intervening remote write along the
read lock and another one demands a write lock, a write lock path.(]

is acquired in case the path inducing the stronger constrain  There are also rules that insert locks to protect single
is taken. The lock state is enhanced with labt indicate accesses that are not in any atomic pairs, in order to provide

the acquisition point of the current lock. RUI&V Release) consistent protection. The rules are elided here.

specifies the conditions under which an injected lock may be Removing redundant instrumentation. We can optimize
released. Along a control flow edge from predecegsao the instrumentation rules shown in F[d. 6. The basic idea
nodel, the difference between constraint sets,and! de- is that the release of a lock is redundant if we can be sure

fines the locks that need to be released Biepending Upon  he |ock cannot be held at the point where the release was

whether there is a weaker lock retainedlwy(!), the instru- injected. Assume the release is caused by a constraint
mentation mechanism degrades the lock or releases it. Note<li I;,a) in A along edgé, — 1.

that such operations are always guarded by a comparison to

test the origin of the lock being released/degraded. e If there is a constraint inc({) denoting a pair starting
Example (continued). Continuing with the example in at the same poirtt, and the lock type is stronger than
Fig.[7, observe that edge— 2 is instrumented with the ac- The stronger lock must have been acquired aut not
quisition of an exclusive lock according to rylEV Acquire). «. The release is redundant. This optimization allows us
Edge4 — 6 is instrumented with a degradation opera- to remove releas@® in Fig.[q.

tion that weakens the exclusive lock to a read lock, since e Suppose there is a constraintlia({) that starts at;, the

A = 1c(4) — 1c(6) = {X%]}. Intuitively, if the execution end ofc, the release is not necessary as a new lock must
comes from pat2 — 4 — 6, the exclusive lock is not have been acquired &t The optimization allows us to
needed under executian— 6 even though the read lock is remove releas@®); thus it has the effect of aggregating
still required. two atomic pairs to a larger atomic region.

If the path2 — 4 — 6 — 7 is taken, an exclusive lock
for = is acquired at node 2; the lock is degraded to a read  Similarly, acquisitions can be optimized. The idea is that
lock prior to execution of node 6. The (re)-acquistion of the an acquisition at is redundant if we are sure the same type
read lock prior to executing node 7 trivially succeeds since of lock must be held at We omit the details here.
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8. Deadlock Resolution sented as the same node. Intuitively, the mutually exatusiv
nature between aread and an exclusive lock of the same vari-

Before Hoisting After Hoisting able could lead to a deadlock. For example, assume ttiread
sequire acquire(R(y)2) holds a program lock; and acquires a read Iopk on variable
acquire(X(x), 2) ~ x, denoted aREAD(z), andt, holds an exclusive lock of,
{N}2..x] (N} (R L) denoted aEXCLUSIVEz) and acquires;. A deadlock is
T ‘ thus formed.
VHLE L acquireR(,6) IN.RG} On the other hand, if a lock dependence edge is exclu-
?release(R(y),2) acquire(R(p), 6) . . . .
(N} ) BRI ] sively due to &READIock on a variabler acquired while a
READIock on a different variablg is held, the edge can be
(R, NI x.. RN T o] safely removed.
Prelepse(X(x)) | Profile of x: ?release(X(x)) For example, assumie — READ(xz) — READy) — k
{RQ,N}@ P‘Yi’g{c'ffychUSWE (RS, N}[8 .. y..] is a cycle in the graph. It may correspond to the case that
PreleaseR0)) | 6.8: READ ?release(R(y) threadt, holdsk and acquireREAD(z), ¢, holdsREAD(xv)

and acquireREAD(y), andts holdsREAD(y) and acquires
k. The non-exclusive nature of the read locks allaywand
to to proceed and eventualty to proceed. Thus, the edge
can be safely removed.

Figure 8. Example for lock hoisting. The goal is to reverse
the lock order of variables andy. In (a), each node is anno-
tated with thel c set regarding variable In (b), modifiedlc
sets are presented, which entail the highlighted instraaien
tion. Lock Hoisting. Strongly connected components (SCC) in

The lock placement algorithm presented in Sedfion 7 doesthe lock order graph indicate potential deadlocks. We need
not consider undesirable interference among locks. Ingeart 10 resolve these SCCs statically in order to avoid runtime
ular, deadlocks may form between the locks inserted by our deadlocks. There are two possible solutions: (1) merge the
algorithm for different variables or between inserted kck l0cks in a SCC to a single lock, or (2) reverse lock order
and locks already present in the program. In this section, €dges. Because lock merging is likely to be too conserva-
we explain how we identify and resolve such deadlocks. tive, we propose to reverse lock order edges. Reversing lock
We have to guarantee deadlock-free for all possible inputs €dges is tantamount to hoisting lock acquistions. For exam-
even though the profile is acquired from only a small sub- Pl€, if reversing an edge froi to &, can break a cycle, this
set. Hence, we have to resolve all possible deadlocks atimplies we could hoist the acquisition & to before the ac-
compile time. We first construct a static lock-order graph uisition ofk;. Since we do not change the original program
that identifies lock dependences. Strongly connected com-Seémantics, only inserted locks are subject to hoisting.
ponents in the graph indicate potential deadlocks at rentim  The challenge to reversing lock edges lies in the fact that
We then break cycles by manipulating where lock insertion inserted locks are not lexically scoped. To reverse the lock

takes place. To minimize impact on program structure, we order from#k; to ko, hoisting the acquisition of; to right
do not relocate program locks. before the acquisition df;, often unnecessarily limits con-

currency, and is even problematic in many cases. In partic-
ular, the inserted lock, is supposed to protect atomicity
along a subset of path? between a pair of accesses as dic-
tated by the profile. Ideally, hoisting, to beforek; should

Constructing Lock Order Graph. In the lock order graph,
a node represents a lock, which could be an inserted lock or
a program lock. An edge is introduced from laekto ks if,
at some program poink; is acquired wherk, is held. The ) tgprotect a superset @?, (call it P’), such that orig-
locks held at a program point can be conservatively com- . . , . .
uted through a standard dataflow analysis. The analysis isInally along each path inP”, k, is acquired and thei is
gnalo ous tg areaching definition anal s)i/s With lock adyuis acquired, butthe lock order is reversed after hoistibgw-
tions 30nsidered aGENQ(])and the corresy ondin releasgs as ever, since the placementhf is not lexical, simply moving
. ) P 9 the acquisition of,, to right before that of; may result in
KILL(). The computation rule applies to both inserted locks : , :
N protecting a superset d?’ that, while safe, may unneces-
and program locks. The analysis is interprocedural and sum-__ .~ . = . S
mary based. The summary of a function is the set of locks sarily limit concurrency, or a subset éf, which minimizes
y ' >ummary unction | .~ the impact on concurrency, but may violate the observations
that may be acquired in the function. Suppose a function defined by the profiled execution
foo() is invoked at a program poirit Let the set of locks y :

that may be held dtbe S. Edges are added to the lock order Consider the example in Figl 8 (a). It shows the lock
graph from each lock ir§ to each lock in the summary of placement of the given profile following the rules in Hig. 6.

foo(). Cycles in the graph indicate potential runtime dead- 'he lock order iSEXCLUSIVEz) — READ(y). Assume
locks. we want to reverse this order to resolve potential deadlocks

Recall that our design distinguishes read and exclusive Moving the acquisition at node 6 to node 2 is both inefficient

locks for the same variable. In a lock order graph, the read @"d Problematic. If the execution follows the path 2, 4, 5,
and exclusive locks of the same variable, however, are repre / @1d 8, IocCkREAD(y) is unnecessarily held as the profile
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only demands locking the path 6, 7 and 8. If the execution have encountered. Thread 1 blocks at the condition wait
follows the path 3, 4, 6, 7 and 8, the lock is not held while it and thread 2 blocks at the added lock acquisition injected
is needed. by our analysis. In practice, such deadlocks may involve
Our solution is as follows. To ensure that we always Other program locks and added locks. Statically resolving
protect a superset aP, we do not relocate the acquisition the deadlock is hard because the condition signal in thread 2
of k.. Instead, we add an extra acquisition /ef before is not even in the region protected byr lock and hence
the acquisition oft;. We call it thehoistedacquisition to a lock dependence graph can not be easily constructed. As-
distinguish it from theoriginal acquisition. The intuition is ~ suming a lock dependence exists between a lock acquisition
that we only need to reverse the lock order along paths thatand any reachable condition signal would be too conserva-
ki is first held and thert, is acquired. If a lock is already tive in practice. Because of these complexities, we resort t
held as a result of a hoisted acquisition, reacquiring thklo a runtime solution. The basic idea is to disable our locks

on the origina| path isa benign action. when program execution blocks on a condition Variable, un-
Note that the hoisted, lock should be released if the til the condition is satisfied. In particular, we releasecait
control flow takes a path along which the origitalacqui- locks held by a thread when it blocks on a condition vari-

sition is not encountered. In order to systematically handl able. Due to transitive lock dependences, we also release ou
hoisted lock releases, we |everage our instrumentati@as rul locks in other threads that transitively block on the candit

in Fig.[8. In particular, we add locks to thelc set for all variable. In the presence of condition variables, we refine
nodes that are on a path from the acquisitiorkpfind the ~ our definition of pairwise atomicity appropriately: a pair-
original acquisition ofk,, meaning that we add a new con- Wise atomic region is a code region (not necessarily lekical
straint such that; must be held along all paths from the bracketed by two accesses to the same variable, without any
acquisition ofk; to the original acquisition of,. Instumen-  intervening access to that variable by another threaak,
tations can be derived from the sets following the instru- ~ Vided the region has no lock dependence with any thread
mentation rules in Fig]6. Note that we cannot simply add currently blocked on a condition variable

an atomic pair between the acquisitionigfand the acqui-  Heap variables:Heap-allocated shared data also poses chal-
sition of k; and let the rules to infer the lock constraint sets. lenges for our technique. An ideal solution is to provide per
The reason is that the lock constraint rules consider cesiflic  object locking so that maximal concurrency can be achieved.
between atomic pairs (i.e., thenflict setin rule (Join)) so However, ensuring deadlock-freedom using per-object-lock
thatk, may not be held along some paths betweeandk, ing is difficult since static deadlock resolution often regs
acquisitions (as dictated by a conflict) even though we intro  opject lock acquisitions to be hoisted; oftentimes, we can-
duce an atomic pair. As a result, the original acquisition of not guarantee that the object has even been allocated at this
k2 may not be a no-op and thus the lock oréler— k2> may hoist point. Furthermore, static deadlock resolution Has d
not be reversed. ficulty disambiguating different instances of the same heap

Consider the example in Figl 8 (b). Aread lock from 2to type that will be protected by different locks at runtime.
6, denoted a®g, is inserted to the lock constraint sets forthe ' A conservative solution results in solving bogus deadlocks
path between the two original acquisitions, including rode We therefore currently use a conservative type-based lock-
2,4 and 6. The hoisting and the new constraint set lead to thejng strategy, which is trivially compatible with our deadko

highlighted instrumentations along edge» 2 and4 — 5. analysis described earlier. Note, however, that even thoug
. ) we obtain locks on types, our profiler still tracks atomicity
9. Condition Variables and Shared Heap properties independently for each heap instance of a type. |
Access other words, the type based abstraction does not affect the
quality of the profiled atomicity invariants. Due to the larg
// thread 1 // thread 2 amount of shared heap types and some of them coming from
acquire(our_lock, ...) acquire (our_lock) libraries, we expect programmers to annotate the heap types

release (our_lock)
... //non-trivial
... //program path
cond_signal(C);

of interest. In this paper, we focus on those for which bugs

cond_wait(C); have been reported.

10. Safet
Figure 9. A deadlock involving a condition variable and a y

lock added by our technique. Thread 1 blocks at the condi- There are two fundamental safety properties guaranteed by
tion wait and thread 2 blocks atir_1ock. our technique. First, the approacheisecution safethe in-

jected instrumentation does not introduce additional 2eha
Condition variables: Our technique has so far not taken ior beyond what could be exhibited by the original pro-
condition variables into consideration. Statically resol gram. Second, the approachatmicity safeand respects
ing deadlocks involving condition variables is challerggin  the atomicity properties of the profiled execution: ourrinst
in general. Fig[® presents an abstraction of the cases wementation guarantees that the transformed program will not
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permit non-atomic behavior within atomic regions found in sulating accesses; the lemmas are therefore defined without

the profile. taking such accesses into account.
We formalize these notions below. Let the original pro-
gram beP and the instrumented program Bé. LEMMA 1. The lock placement algorithm in Figl 6 respects

THEOREM1 (Execution Safety)For any input, executing the atomicity constraints defined by the profile.

P’ onI produces the same result as executingn I. o
Proof Sketech.We prove the lemma through contradiction.

Proof Sketch. Let an execution® be a sequence of state Assume(ly, lo, EXCLUSIVE is an atomic pair in the profile,

transitionsS? = S! = ... = S™ where a state5 is a and that in one execution o', a path fromi; to I, is

tuple (so, s1, ..., sn), representing the local states for the  exercised in threat]. Variablex is accessed in both andl,

threads. Consider an executidf of P’ instantiated from and not accessed in other points along the path. Assume the

an inputl. A simple inductive argument on the number of path is interleaved with a write accessitat!’ in a different

instrumented actions suffices to show that given an exetutio threadt;.

E’ of P/, an equivalent executiof can be derived foP on According to the rules in Fid.]6, an exclusive lock is

1. acquired beforé, and an exclusive lock must be held before
The theorem holds trivially in the absence of any instru- !’ in ¢;. Sincel’ interleaved with the path frorh to [,, the

mentation. The inductive hypothesis assumes the propertylock acquired irt; must have been released along some edge

holds fork — 1 steps. There are two interesting cases. For I, — [, along the path. According to rulef — Release),

the first case, assume an inserted lock acquisition is eacoun this implies constraint = (ly, I, EXCLUSIVE is in 1c(l,)

tered at thekth step in thread; in £’ and the acquired lock ~ but not in1c(l,). According to rule {oin), ¢ must be in

is already held by;; in this case, the lock acquisition is a thenotreachable set or theconflict set for the computation

no-op, and execution can proceed. For the second case, a®f 1c(/,). Sincel, is along the path froni, to /2, ¢ must

sume the acquisition fails. This results in a context switch not be innotreachable. Hence, it must be ironflict. There

in E’. Assume the scheduler is able to pick up a different must be another access toalong all paths fromi, to lo,

threadt; to continue. Letr < k be the last step performed contradicting the assumption.

by t; in E’, implying a context switch at step+ 1. Sup- Similar reasoning applies for other access configurations,

pose the context switch was not caused by blocking. By the e.g., the access #tis a read and the pair i3;, l>, READ.

induction hypothesis,; was not blocked at/, and it is safe 0

to switch tot; at stepk in E. If the context switch at step

z + 1in E" was caused by blocking, the fact that we can | gmma 2. The deadlock resolution algorithm in Sectidn 8
now switch back td; implies the lock on whiclt; was pre-  respects the atomicity constraints in the profile.
viously blocked is now available due to some previous re-

lease at step (r < y < k). By the induction hypothesis,

‘ According to the deadlock resolution algorithm, dead-
this release was matched in

ot ] ) locks are resolved by hoisting locks. A lock is hoisted by
Now, assume the acquisition fails aft can not pick Up  44ding entries tac sets, leading to extra acquisitions of the

a different thread; to continue. This means that' denotes  |5c  After hoisting, the paths on which the lock is held are

a deadlocked schedule. In other words, there must be acyclea superset of the original paths. Hence, the atomicity con-

in the dynamic lock order graph on instrumented locks, ctraints must be respected.

which contradicts to the fact that we already have staticall The atomicity safety property can be derived from these

resolved all deadlocks. Note that a deadlocksincan not 6 |emmas. While our technique is safe, the rules in[Hig. 6
involve conditional variables since a thread that blocksion ensure optimality as an inserted lock is always released at

condition variable or a program lock with a lock dependence hq earliest possible (atomicity-safe) program point.
on such a condition variable releases all our locks held.by it

Inserted lock releases i’ can be considered as no-ops
in E. The proof is similar and elided] 11. Evaluation

Our system is implemented within LLVM. The profiler is

THEOREM 2 (Atomicity Safety).A pairwise atomic region . X X
implemented as an instrumentation pass that runs indepen-

identified inP will be executed atomically by any execution

of P’ dently of the rest of the system. The lock placement and
' deadlock resolution are implemented as two passes that take
The proof follows trivially from the validity of the fol-  the profile as input and insert deadlock free synchroniza-

lowing two lemmas. Recall that the refinement of the defi- tions. The overall implementation has 8K LOC in C. The
nition of atomic pairs given in Sec. 6 excludes pairs where experiments are conducted on a Intel Xeon CPU 2x4 core
there exists possible lock dependences with threads bdocke 1.84GHz machine with 4GB RAM. We create 8 threads in
on a condition variable along some path between the encap-all executions.
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program LOC func | profile input . .
aget04 550 30 | geta 100K e ap_queue_info_set_idle(pool_t *pool)
pbzip-2.094 2041 121 | compress 100k file with 1k block size {
mozilla nszip-1.8 | 2935 45 | extract 100 files node = apr_palloc(pool, sizeof (*node));
apache-2.2.8 42k 1.7k | 10k random regs node->pool = pool:
spidermonkey 51k | 1098 | compute MD5 hash p p ’
mysql-4.0.12 122k | 5.7k | regression test suite and sysbench-oltp for (55) {
benchmark node->next = recycled_pools;
. if (apr_atomic_casptr(&recycled_pools,
Table 2. Programs and profile inputs. L: node, node->next) == node->next)
break;

11.1 Effectiveness }

We evaluate the effectiveness of bug suppression by ap- -
plying our technique on real bugs found in production- ¥
quality software. We have already previously discussed
the applications we have studied (shown in Tdle 1); Ta-
ble[2 presents the program characteristics and inputs use
for collecting profiles for these programs. Colunfugic]
presents the functions under our analysis. Colupziofile
input] presents the workload used for collecting atom-
icity profile. These programs are well-studied standard removed from the location where atomicity is violated and a
benchmarks for studying concurrency bugs! [20]. In partic- failure may manifest at different places at different times
ular, spidermonkey is the JavaScript engine for Mozilla. In the code shown in Fi@._10, worker threads in the web
Mozilla-nszip is the decompression component of Mozilla. server, call the functiomp_queue_info_set_idle () to

The real patches for these bugs are also available fromdeposit a memory pool which is no longer in use in the
the bug reports or their CVS repositories. We compared thelist of recycled pools. Under normal conditions, the list
patches with the synchronizations inserted by our teclniqu recycled_pools is a linear list. However, if three different
manually and confirm that our technique prevents these threads interleave within this function simultaneouslya(a
bugs. We also ran the instrumented programs on the failurebut possible occurrence), the list can be modified to be cir-
inducing inputs with an implementation of the CHESS [23] cular with just one pool after four different preemptionse W
algorithm developed in our prior work [83], with the 1- refer the reader to the bug report for details. Consequently
preemption setting. Bugs that were previously exposed noall workers which should otherwise be using distinct mem-
longer occurred. ory pools for handling requests end up using the same mem-

Note that even though our instrumentation mechanism is ory pool, eventually leading to a server crash. Due to the
based on profiles that extract pairwise atomicity, our tech- higher number of threads and multiple preemptions required
nique can also prevent concurrency bugs that are classifiedin addition to the atomicity violation) and the fact thaeth
as data races or order violations. For example,pbeip crash manifests elsewhere in the server (necessitatitigges
bug was considered as an order violation. The bug occursthe full server to expose the failure), it is difficult to bt
because a read to a variabtein a thread7; must always  produce and understand this bug. However, by only looking
happen before a re-definition afin a different threads. at correct executions where the two readadde->next at
But, the program permits violation of such orderings, lead- line L are atomic, and thus enforcing this property, the bug
ing to a failure. Our technique observes atomicity between can be prevented easily. This is, in fact, the patch that was
the read and its preceding local read. As existing program eventually provided by the developers.
synchronizations preserve that the preceding read happens
before the remote write, by locking the two reads, the order 11.2 Performance Overhead

Figure 10. Apache bug#44402: A bug that manifests under
rare complicated interleaving with multiple preemptions
he two reads taode->next in the conditional test should
be executed atomically to prevent a race condition.

violation is suppressed. Next, we present experimental results that highlight guant
Case Study.Next, we present a fragment froapache, tative aspects on the cost of the analysis and implementatio
to further illustrate the benefit of our approach. Bug#44402 on these benchmarks. Columns 2-4 in Tdlle 3 present the
shown in Fig[ID was observed while running #pe cueb99 profiling results. Columnghared vars/ unprotected]

static content workload. The server would crash typically a  presents the shared variables identified, and those that are
ter 10 minutes of starting the test with 500 active thredds. not consistently protected by at least one lock. Columns 3

The bug took developers one week of investigation span-and 4 present the read and exclusive atomic pairs identified
ning more than 1000 lines of discussion before they were by the profiler and the average number of (static) statements
able to identify the faulty interleaving. The matter is het ~ that lie in between a pair (i.e. the numbers in parentheses).

complicated by the fact that the crash happens at places faAs these programs are mostly event-driven, executing the
programs with various events (or event combinations) are

2 https:/lissues.apache.org/bugzilla/shiowg.cgi?id=44402 equivalent to running the programs multiple times. Hence,
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we construct the profile inputs as follows: we combine and count of the number of program lock acquisitions. The next
duplicate test inputs in a regression suite into a largeutinp  two columns show the ratio of instrumented locks with re-
consisting of all events from individual tests. We randomly spect to this number. The last column shows overall run-
insertsleep() calls at synchronization points to increase time overhead. Observe that the overhead is low despite
our schedule coverage. Observe that the number of sharedhe large number of injected synchronizations, indicating
variables that are not consistently protected is nonakivi  our instrumentation rarely cause severe blocking. This is
Our claim is that the statements enclosed by atomic pairsbecause we are locking on observed atomic pairs, whose ex-
with respect to these variables are vulnerable to conceyren ecutions are mostly atomic, and consequently likely to not
bugs. Also observe that the average number of such statebe a source of contention. The overhead of our technique is

ments in an atomic pair is not large. sometimes related to the available concurrency in the work-
Columns under labeliphserted locks] in Table [3 load. If available concurrency is low, the overhead of our

present the results of static lock placement. Coluirutk] technique is masked further. For example, we use two work-

presents the number of inserted locks. Columtsagq], loads formysql. The first one is a standard workload called

[X acq], and [degrade] denote the numbers of read lock sysbench. The second is a reduced version of thgcc
acquisitions, exclusive lock acquisitions and lock degrad workload, another standard workload. The tpcc workload is
tions, respectively. For each of these columns, we presentmuch more 1/0O bound. Consequently, the overhead of our
the numbers before and after deadlock resolution. Columnstechnique is much lower. A similar workload configuration
under label program locks] present the statistics of ex- is used forspidermonkey. In contrast, note that bogbzip
isting program locks for reference. We make the following andmozilla-nszip get substantial speedup with very low
observations. overhead.

e The number of injected locks is comparable to that of
program locks. The number of injected synchronization 12. Related Work
primitives before deadlock resolution is also comparable Concurrent with our work,[T18] also attempts to automat-
to the number of existing synchronizations. There are two ically repair concurrency bugs by inserting locks around
reasons for this: one is that our technique induces fine- inferred atomic regions. However, unlike our approach,
grained guidance of executions based on profiled datawhich attempts to prevent bugs whose existence may not
— such guidance is controlled by lock acquires and re- even be known, their technique attempts to repair existing
leases; secondly, path-sensitive locking injects reate  ones. Their technique uses CTrigder][26] to identify atomic
many points, corresponding to different atomicity prop- pairs related to the observed failure; our technique ifiesti
erties manifest along different paths. But, note that lock atomic pairs by mining the pool of passing test cases. As
releases for the same variable are usually along differentg result, we face the challenge of enforcing a much larger
paths so that they are not typically encountered multiple number of atomic pairs, with the corresponding potential
times along one path during an execution. benefit of preventing unobserved bugs. To reduce overhead,
Deadlock resolution increases the number of injected our locking instrumentation uses both read locks as well as
synchronizations substantially. This is due to the conser- exclusive locks, whereas exclusive locks suffice in their im
vative nature of the analysis. plementation. Furthermore, the two techniques also differ
e Comparing the numbers of the unprotected variables andin the way they handle deadlock. We guarantee deadlock
profiled atomic pairs with the numbers before deadlock freedom through static analysis.
resolution, we observe that we do not need to insertlocks  In [35, [74], hardware-based techniques are proposed to
to protect all unprotected variables because some are noensure dependence integrity. Violations incur rollbackl an
marked as atomic. Some atomic pairs are aggregated tocause a different schedule to be explored[In [10], schedule
larger atomic regions. Some acquisitions are optimized are memoized with respect to inputs so that if the same input
away, which explains why the number of inserted syn- is encountered, the same schedule is reused. LOOM [32]
chronizations is smaller than the number of atomic pairs. allows user to put in explicit annotations to repair races.
Like [10Q], it provides no safety guarantees, and deadlocks
Table[4 presents runtime characteristics. We execute thecan be introduced.
instrumented programs on realistic workloads. The sec- CoreDet [[2] guarantees deterministic outputs by allow-
ond column describes the workloads. The third column ing threads to run concurrently when they are not commu-
presents the total number of executed instructions. Col- nicating. It tracks ownership and employs a deterministic
umn [speedup] presents the speedup of running thiég- commit protocol. In[[6] authors present a language and a
inal program on 8 cores over 1 core. This provides a type system that support nondeterministic computatioh wit
measure of the available concurrency in these workloads.a deterministic-by-default guarantee where nondetesmini
Note that these numbers are collected without any involve- must be explicitly requested via special parallel cons(s)c
ment of our system. ColumrP[acq] presents the dynamic  None of these techniques attempt to suppress bugs or guide
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shared var/ atomic pair program locks inserted locks
rogram unprotected R X Rac X ac degrade rel
pros P (stmy | (stmy || 1ok | aca | rel || lock | e | (o) | (bfa) (b/a)
aget 5/3 0() 7(2) 1 2 2 3 0/9 4/ 4 0/0 4712
pbzip 18/17 60 (12) | 16 (6) 3 24 26 15 28/ 35 13/28 2/0 76/ 104
mozilla nszip-1.8 272 3 7(9) 1 1 5 2 070 473 070 978
apache 15/13 11(5) | 28(10) 9 21 | 29 13 6/13 17/ 20 171 52/ 65
spidermonkey 16/9 13 (37) | 26 (11) 9 36 36 8 10/ 7 18/ 39 5/2 36/ 108
mysq|l 66/ 20 91 (61) | 181(7) 36 222 | 300 15 71/ 39 99/ 431 7/5 249/ 959

Table 3. Profiling and lock placement results.

program workload instr. (10%) speedup| Pacq | Racg/Pacq| Xacq/Pacq| overhead
aget get a 648M file 0.045 2.58 147.4k 0 1.0 0%

pbzip compress 1.8G file 798.9 5.33 14.9k 2.0 1.28 1.4%
mozilla nszip-1.8 | extract 400k files 179.7 3.76 399k 0 2 0.0%
apache 2 million random reqgs 158.5 4.2 14.2m 1.48 2.04 13.3%
) constraint solver 308.22 1.06 422m 0.0 0.0 2.1%
spidermonkey | —rrearit 241 76 8m 0.11 0.44 17.3%
mysq sysbench-oltp with 10k rows| 258.5 4.34 7.76m 1.29 0.57 13.9%
reduced tpcc 185.8 1.74 4.22m 1.48 0.61 2.0%

Table 4. Runtime overhead (8 threads). In theacq column, unitan andk mean million and thousand, resp.

schedulers to enforce correct executions. Isolatdr [28f-gu  niques systematically explore a bounded space of schedules
antees isolation in well-behaved threads of a program thatand are complementary to our work.
obey a locking discipline even in the presence of ill-beldave
threads that disobey the locking discipline. 13. Conclusion

In [21, [Q], locking is statically inferred from atomic
region annotations so that atomicity can be guaranteed.
Atomic regions are lexically scoped. Locksmith [27] stat-
ically associates locks with object abstractions and at run
time, abstract locks are safely instantiated to differemt-c
crete locks under various contexts. Atomic set seriallzabi
ity [30] introduces the notion of data centric synchroniza-
tion in which users annotate a set of data fields that should
have similar consisteny properties. Synchronizationgare
tomaFicaIIy ir_1ferred to ensure serializability of opecais on _ References
atomic sets in a method body. [n[11], the authors describe . .
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tions. It is path-sensitive and uses read/write, multigtar Deadlocks with Static Analysis and Runtime Monitoring. In

This paper proposes a novel technique to suppress Heisen-
bugs by inferring fine-grained atomicity properties fron-co
rect profiled executions. We describe a deadlock-free path-
sensitive locking scheme to force program execution to ad-
here to these properties. Experimental evaluation on real-
world workloads demonstrates that it can be used to suc-
cessfully suppress subtle atomicity and order violatiom-co
currency bugs with low overhead.
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