
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2011

Structured Comparative Analysis of Systems Logs to Diagnose Structured Comparative Analysis of Systems Logs to Diagnose

Performance Problems Performance Problems

Karthik Nagaraj
Purdue University, Knagara@cs.purdue.edu

Jennifer Neville
Purdue University, neville@cs.purdue.edu

Charles Killian
Purdue University, ckillian@cs.purdue.edu

Report Number:
11-020

Nagaraj, Karthik; Neville, Jennifer; and Killian, Charles, "Structured Comparative Analysis of Systems Logs
to Diagnose Performance Problems" (2011). Department of Computer Science Technical Reports. Paper
1752.
https://docs.lib.purdue.edu/cstech/1752

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Structured Comparative Analysis of Systems Logs to Diagnose Performance
Problems

Karthik Nagaraj, Charles Killian, Jennifer Neville
Purdue University

{knagara, ckillian, neville}@cs.purdue.edu

Abstract

Diagnosis and correction of performance issues in mod-
ern, large-scale distributed systems can be a daunting
task, since a single developer is unlikely to be familiar
with the entire system and it is hard to characterize the
behavior of a software system without completely under-
standing its internal components. This paper describes
DISTALYZER, an automated tool to support developer
investigation of performance issues in distributed sys-
tems. We aim to leverage the vast log data available from
large scale systems, while reducing the level of knowl-
edge required for a developer to use our tool. Specifi-
cally, given two sets of logs, one with good and one with
bad performance, DISTALYZER usesmachine learning
techniques to compare system behaviors extracted from
the logs and automatically infer the strongest associa-
tions between system components and performance. The
tool outputs a set of inter-related event occurrences and
variable values that exhibit the largest divergence across
the logs sets and most directly affect the overall perfor-
mance of the system. These patterns are presented to the
developer for inspection, to help them understand which
system component(s) likely contain theroot causeof the
observed performance issue, thus alleviating the need for
many human hours of manual inspection. We demon-
strate the generality and effectiveness of DISTALYZER

on three real distributed systems by showing how it dis-
covers and highlights the root cause of six performance
issues across the systems. DISTALYZER has broad appli-
cability to other systems since it is dependent only on the
logs for input, and not on the source code.

1 Introduction

Modern, large-scale distributed systems are extremely
complex, not only because the software in each node
in the distributed system is complex, but because inter-
actions between nodes occur asynchronously, network
message delays and orderings are unpredictable, and

nodes are in heterogeneous environments, uncoupled
from each other and generally unreliable. Compounding
this is the fact that the software is typically developed by
teams of programmers, often relying on external com-
ponents and libraries developed independently, such that
generally no one developer is fully aware of the complex
interactions of the many components of the software.

Transmission [30] and HBase [18] exemplify the scale
of this type of software development. Transmission is an
open-source implementation of BitTorrent. In 2008, after
three years of development, it became the default BitTor-
rent client for Ubuntu and Fedora, the two most popular
Linux distributions. In the last two years alone, 15 devel-
opers committed changes to the codebase, not counting
patches/bugs submitted by external developers. HBase is
an open-source implementation of BigTable [4], depend-
ing on the Hadoop [17] implementation of the Google
File System [15]. HBase has grown very popular and is
in production use at Facebook, Yahoo!, StumbleUpon,
and Twitter. HBase’s subversion repository has over a
million revisions, with 21 developers from multiple com-
panies contributing over the last two years.

Given the activity in these projects, it not surpris-
ing that, in our experiments, we observed performance
problems, despite their mature status. In systems with
many independent developers, large user-bases with dif-
fering commercial interests, and a long history, diagnosis
and correction of performance issues can be a daunting
task—since no one developer is likely to be completely
familiar with the entire system. In the absence of clear
error conditions, manual inspection of undesirable be-
haviors remains a primary approach, but is limited by
the experience of the tester—a developer is more likely
to ignore occasional undesirable behavior if they do not
have intimate knowledge of the responsible subsystems.

Recent research on distributed systems has produced
several methods to aid debugging of these complex sys-
tems, such as execution tracing [11, 14, 26], replay de-
bugging [13], model checking [20,24], live property test-

ing [21], and execution steering [33]. However, these
methods either require either extensive manual effort, or
are automated search techniques focused on discovering
specificerror conditions.

To address the challenge of debugging undesirable be-
haviors (i.e.,performanceissues), we focus on compar-
ing a set of baseline logs with acceptable performance to
another set with unacceptable behavior. This approach
aims to leverage the vast log data available from com-
plex, large scale systems, while reducing the level of
knowledge required for a developer to use our tool. The
state-of-the-art in debugging the performance of request
flows [1, 3, 5, 28] also utilizes log data; however, in con-
trast with this previous work, we focus on analyzing a
wider range of system behaviors extracted from logs.
This has enabled us to develop an analysis tool applica-
ble to more than simply request processing applications.
Other work in identifying problems in distributed sys-
tems from logs [32] is restricted to identifying anomalous
local problems, while we believe that poor performance
commonly manifests from larger implementation issues.

We present DISTALYZER, a tool to analyze logs of
distributed systems automatically through comparison
and identify components causing degraded performance.
More specifically, given two sets of logs with differing
performance (that were expected to have equivalent per-
formance), DISTALYZER outputs a summary of event oc-
currences and variable values that (i) most diverge across
the sets of logs, and (ii) most affectoverall system per-
formance. DISTALYZER usesmachine learningtech-
niques to automatically infer the strongest associations
between system components and performance. Contri-
butions of this paper include:

• An assistive tool, DISTALYZER, for the developer
to investigate performance variations in distributed
systems, requiring minimal additional log state-
ments and post processing.

• A novel algorithm for automatically analyzing sys-
tem behavior, identifying statistical dependencies,
and highlighting a set of interrelated components
likely to explain poor performance. In addition to
the highlighted results, DISTALYZER also provides
interactive exploration of the extended analysis.

• A successful demonstration of the application
of DISTALYZER to three popular, large scale
distributed systems–TritonSort [25], HBase &
Transmission–identifying the root causes of six per-
formance problems. In TritonSort, we analyzed a
recently identified performance variation—the Tri-
tonSort developers surmised DISTALYZER could
have saved them 1.5 days of debugging time. In
follow-up experiments on Transmission and HBase,
once we fixed the identified problems, their perfor-
mance was boosted by 45% and 25% respectively.

The rest of this paper is organized as follows: Sec. 2
describes our model of logs. We describe design and im-
plementation in Sec. 3 and 4 respectively, case studies in
Sec. 5, related work in Sec. 6, and conclude in Sec. 7.

2 Instrumentation

DISTALYZER derives its analysis based on the data
extracted from logs of distributed systems executions.
Hence, we describe the process of obtaining and prepar-
ing the logs for analysis, before the actual design in§ 3.
Applying our modeling to the logs of systems requires
that some amount of its meaning is provided to DIST-
ALYZER. Inherently, this is because we are not seeking
to provide natural language processing, but instead to an-
alyze the structure the logs represent. Xuet al. [32] have
considered the automatic matching of log statements to
source code, which requires tight coupling with pro-
gramming languages to construct abstract syntax trees.
In contrast, DISTALYZER aims to stay agnostic to the
source code by abstracting the useful information in the
logs. We describe this in more detail below.

The contributions of logging to debugging are so
deeply ingrained that systems typically are not successful
without a significant amount of effort expended in log-
ging infrastructures. DISTALYZER assumes that the col-
lection of logs has not affected the performance behav-
iors of interest in the system. This is a standard problem
with logging, requiring developers to spend much effort
toward efficient logging infrastructures. Logging infras-
tructures range from free text loggers likelog4j [22], to
fully structured and meaningful logs such as Pip [26] and
XTrace [11]. Unfortunately, the common denominator
across logging infrastructures is not a precise structure
indicating the meaning of the logs.

Consider Pip [26], a logging infrastructure providing
rich meaning. Pip provides log annotations which in-
dicate the beginning and ending of a task, sending and
receiving of messages, and a separate log just as an FYI
(a kind of catch-all log). Every log also indicates a path
identifier that the log belongs to. With this amount of in-
strumentation, it is possible to construct path trees, which
show dependencies between tasks within paths. This
kind of instrumentation has been leveraged by Samba-
sivanet al. [28] to be able to compare the path trees in
systems logs. Unfortunately, this detail of logging is both
not sufficient (it does not capture the instances of value
logging, and does not adequately handle tasks which be-
long to multiple flows), and not widely available. A more
commonly used logging infrastructure,log4j, provides
a much more basic scheme - logs are associated with a
“type,” timestamp, priority, and free text string. It then
remains to the developer to make sense of the logs, com-
monly using a brittle set of log-processing scripts.

2

Predictive

modeling

Collect

Logs
Log

Store

State

Event

Descriptive

modeling

Distalyzer
Log files

Attention

Focussing

Feature

Creation

Figure 1: Four-step log comparison process in DISTALYZER leading up to a visual interface

As a compromise between fully meaningful logs and
free-text logs, we work to find a middle-ground, which
can be applied to existing logs without onerous modifi-
cations to the system being investigated. Our insight is
that logs generally serve one of two purposes:event log
messagesandstate log messages.

Event log message. An event log message indicates that
some event happened at thetime the log message
was generated. Most of the logging for Pip falls into
this category, in particular the start or end of tasks
or messages. Other examples of such logs include
logs that a particular method was called, branch of
code taken, etc. These logs are often most helpful
for tracing the flow of control with time between
different components of the system.

State log message. A state log message indicates that at
the time the log message was generated, thevalue
of some system variable is as recorded. Typically, a
state log message does not imply that the value just
became the particular value (that would instead be
an event log message), but merely that at the present
time it holds the given value. State log messages are
often printed out by periodically executed code, or
as debugging output called from several places in
the code. State log messages are often most helpful
for capturing snapshots of system state to develop a
picture of the evolution of a system.

Distinguishing state and event log messages is an im-
portant step, that allows us to tailor our modeling tech-
niques to treat each in kind. We will commonly refer to
these values as theEvent Variablesand theState Vari-
ables. A practical artifact of this approach is that we
can simply use the system’s existing infrastructure and
logging code to generate logs, and then write a simple
script to translate logs into state and event log messages
in a post-processing step (§ 4.1). Adopting this approach
makes it much easier to apply DISTALYZER to a wide
range of existing systems, and avoids extra logging over-
heads at runtime. Additionally, it is possible to inte-
grate our logging library into other logging infrastruc-
tures or code-generating toolkits that provide a distinc-

tion between state and event log messages, so that no
post-processing phase would be required. Furthermore,
this strategy allows the incorporation of external system
activity monitoring logs for a richer analysis.

3 Design

This section presents the design of DISTALYZER, an op-
erational tool capable of identifying salient differences
between sets of logs, with the aim of focusing the atten-
tion of the developer on aspects of the system that af-
fect overall performance and significantly contribute to
the observed differences in behavior. DISTALYZER in-
volves a multi-step analysis process as shown in Figure 1.
The input to the workflow is a set of logs with tagged
event and/or state log messages, separated by the devel-
oper into two classesC0 andC1 with different behav-
ior on some performance metricP (e.g., runtime). The
choice of performance metric can be easily determined
from Service Level Agreement (SLA) metrics. Some ex-
ample choices for classesC0 andC1 are as follows:

• Differentversionsof the same system
• Different requestsin the same system
• Different implementationsof the same protocol
• Differentnodesin the same run

Given the inputs, DISTALYZER use machine learn-
ing methods to automatically analyze the data andlearn
the salient differences between the two sets of logs, as
well as the relationships among the system components.
As a result of this analysis, DISTALYZER identifies and
presents to the developer (for investigation) the most no-
table aspects of the system likely to contain theroot
causeof the observed performance difference. Specifi-
cally the system involves the following four components:

1. Feature Creation: A small set of event/statefea-
turesare extracted from each log instance in both
classes to make the data more amenable for auto-
mated analysis.

2. Predictive Modeling: The event/state variables are
analyzed with statistical tests to identify which fea-

3

turesdistinguishthe two classes of logs. This step
directs attention to the system components that are
the most likely causes of performance difference.

3. Descriptive Modeling: Within a single set of logs
(e.g., C0), the relationships among event/state vari-
ables are learned with dependency networks [19].
The learned models enhance the developer’s under-
standing of how aspects of the system interact and
helps to discard less relevant characteristics (e.g.,
background operations, randomness).

4. Attention Focusing: The outputs of steps 2 and 3
are combined to automatically identify a set of in-
terrelated variables that most diverge across the logs
and most affect overall performance (i.e., P). The
results are graphically presented to the developer for
investigation, not only indicating where the devel-
oper should look for performance bugs, but also in-
sight into the system itself, obviating the developer
the need to be an expert at all system interactions.

We describe each of these components in more detail
below. We note that the user need not be aware of the in-
ternals of the statistical or machine learning techniques,
and is given an understandable graphical representation
of the variables likely to contain the root cause of per-
formance differences. With a clear understanding of the
root cause, the developer can spend more time on find-
ing a good fix for the performance bug. In Section 5 we
present results of using DISTALYZER to analyze Triton-
Sort (different versions), BigTable (difference requests),
and BitTorrent (different implementations).

3.1 Feature creation

The workflow starts with extracting a handful of feature
summaries from the logs. The input is two sets of logs
C0 andC1, classified by the developer according to a
performance characteristic of interestP . For example,
the developer may be interested in diagnosing the differ-
ence between slow (C0) and fast (C1) nodes based on
total runtimeP . DISTALYZER performs offline analy-
sis on the logs, after they have been extracted from the
system execution. We refer to each log instance as an
instance. We assume that a similar test environment was
maintained for both sets of logs, including workloads,
physical node setup, etc. However, it is not necessary that
both classes contain the same number of occurrences of
a variable. Also, the two classes are not required to have
disjoint (i.e., non-overlapping) values forP .

DISTALYZER begins by calculating features from vari-
ables extracted from the log instances. Each instancei
contains many event and state log messages, which first
need to be summarized into a smaller set of summary
statistics before analysis. The intuition behind summa-
rizing is that this reduces the complexity of the system

execution to a handful offeaturesXi, that are much less
prone to outliers, randomness and small localized dis-
crepancies in log statements. Since DISTALYZER aims
to find the source ofoverall performance problems (and
not localized problems as in [32]), a coarse-grained set
of features provides a better representative of each in-
stance than every single value within that instance. A
smaller set of features are less of a burden on the de-
veloper, and a richer set provides better coverage of dif-
ferent types of problems. DISTALYZER aims at striking
the right balance between these objectives through our
experiences and intuition debugging distributed systems.
DISTALYZER constructs a set of summary statisticsX

from the timestamps of event log messages and the val-
ues of numeric variables for state log messages. Both are
described below in more detail.

Event Features The timing of system events is often
closely related to overall performance, as it can identify
the progress of system components, the presence or ab-
sence of noteworthy events, or the occurrence of race
conditions between components. We consider a set of
event variablesY e that are recorded in the log instances
with timestamps. For example, an instance may refer to
a node downloading a file in BitTorrent, where the event
log may contain severalrecv bt piece events over time.

To summarize the timing information associated with
a particular type of eventY e in instancei, DISTALYZER

constructs features that record the time associated with
thefirst, medianand last occurrence inY e

i . (All times-
tamps within a log instancei are normalized based on
the start time ofi.) Specifically,Xe

i.1 = min(Ye

i
[t]),

Xe
i.2 = median(Ye

i
[t]), Xe

i.3 = max(Ye

i
[t]). In addi-

tion, a fourth feature is constructed that counts the total
number of occurrences ofY e, Xe

i.4 = |Ye

i
|. Our experi-

ence debugging systems suggests that these occurrences
capture some of the most useful, yet easily comprehensi-
ble, characteristics of system progress. They most com-
monly indicate issues including but not limited to startup
delays, overall slowdown and straggling finishes.

In addition to the above features which consider the
absolutetiming in instances, we consider the same set of
features forrelative times. Since the instances fromC0

andC1 may have different total times, normalizing the
times within each instance to the range[0, 1] before com-
puting the features will yield a different perspective on
event timings. Fore.g., in BitTorrent, it is useful to know
that the last outgoing connection was made at 300sec,
but for debugging it may be more important to know that
it occurred at 99% of the runtime when comparing to
another instance where the last connection was made at
305sec, but earlier at 70% of its total runtime. In this
case, the divergence in the relative times of the events is
more distinguishing. The top half of Table 1 outlines the
set of event feature types considered by DISTALYZER.

4

State Features It is common that some of the system
state variables may be directly or inversely proportional
to the performance, and their divergence could either
improve or substantiate the developer’s notion gathered
from events. We consider a set of state variablesY s that
maps to a list of values with their logged timestamps
in an instance. For example, in BitTorrent, one of the
state variables logged is the download speed of a node,
which is inversely proportional to the total runtime per-
formance. DISTALYZER does not attempt to understand
the meaning behind the variables or their names, but sys-
tematically searches for patterns in the values.

To summarize the information about a particular state
variableY s in log i, we construct features that record the
minimum, averageandmaximumvalue inY s

i . Specif-
ically, Xs

i.1 = min(Ys

i
), Xs

i.2 = mean(Ys

i
), Xs

i.3 =
max(Ye

i
). In addition, to understand the variable val-

ues as the system progresses and also give the values
context, DISTALYZER constructs features that record the
variable values at one-fourth, half and three-fourth of the
run. Similar to the events, the relative versions of these
snapshots are also considered as feature types. The com-
plete list of state feature types is listed in Table 1.

Event times
{First, Median, Last}

× {Absolute, Relative} occurrences
{Count}
State values
{Minimum, Mean, Maximum, Final}
{One-fourth, Half, Three-fourth}

× {Absolute, Relative} snapshots

Table 1: Feature types extracted from the system

Cost of Performance Differences Our analysis is fo-
cused on leveraging the characteristics of the average
performance difference between the two classes, thus
naı̈ve use of the instances in statistical techniques will
fail to find variables that distinguish performance in the
tails of the distribution. For example, in a class of bad
performance, there may be 2-3% of instances that suffer
from significantly worse performance. Although these
cases are relatively infrequent, thehigh costof incurring
such extreme bad performance makes analysis of these
instances more important. DISTALYZER automatically
detects a significant number of abnormally high/low val-
ues of the performance metric, and flags this to the de-
veloper for consideration before further analysis. Specif-
ically, DISTALYZER identifies a “heavy” tail forP when
the fraction ofPi outsideP̄ ± 3σP is larger than 1.1%
(i.e., 4× the expected fraction in a normal distribution).
To more explicitly consider these instances in the mod-
eling, we can re-weightthe instances according to acost
function that reflects the increased importance of the in-

stances with values in the tail, similar to other work on
cost-sensitive learning [10]. This issue is discussed fur-
ther in Section 5.2.1.

3.2 Predictive Modeling

In the next stage of the workflow, DISTALYZER uses
statistical tests to identify the features that most distin-
guish the two sets of logsC0 andC1. Specifically, for
each event and state featureX described above (e.g.,
first(recv bt piece)), we consider the distribution of fea-
ture values for the instances in each class:XC0

andXC1
.

DISTALYZER uses t-tests to compare the two distribu-
tions and determine whether the observed differences are
significantlydifferent than what would be expected if the
random variables were drawn from the same underlying
distribution (i.e., the means ofXC0

andXC1
are equal).

If the t-test rejects the null hypothesis that theX̄C0
=

X̄C1
, then we conclude that the variableX is predictive,

i.e., able to distinguish between the two classes of inter-
est. Specifically, we useWelch’s t-test[31], which is de-
fined for comparison of unpaired distributions of unequal
variances. We use a critical value ofp < 0.05 to reject
the null hypothesis and assess significance, adjusting for
multiple comparisons with a Bonferroni correction based
on the total number of features evaluated.

Our use of t-tests is motivated by the fact that we want
to identify variables that distinguish the two classes on
averageacross many instances from the system. Previ-
ous work [28] has used Kolmogorov-Smirnov (KS) tests
to distinguish between two distributions of request flows.
In that work, the bulk of the two distributions are the
same and the KS test is used to determine whether there
areanomalousvalues in one of the two distributions. In
contrast, our work assumes that the log instances have
been categorized into two distinct classes based on de-
veloper domain knowledge. Thus the overlap between
distributions will be minimal if we can identify a vari-
able that is related to performance degradation in one of
the classes. In this circumstance, KS tests are too sensi-
tive (i.e., they will always reject the null hypothesis), and
t-tests are more suitable form of statistical test.

Given the features that are determined to besignifi-
cant, the magnitude of the t-statistic indicates the differ-
ence between the two distributions—a larger t-statistic
can be due to a larger difference in the means and/or
smaller variance in the two distributions (which implies
greater separation between the two classes). The sign of
the t-statistic indicates which distribution had a bigger
mean–a positive value indicates that the first distribution
had a larger mean. Among the significant t-tests, we re-
turn a list of significant variables ranked in descending
order based on the absolute sum of t-statistic over all
features. This facilitates prioritized exploration on the
variables that best differentiate the two classes.

5

3.3 Descriptive Modeling

In the third component of the workflow, DISTALYZER

learns the relationships among feature values for each
class of logs separately. The goal of this component is to
identify salient dependencies among the variables within
a single class (i.e., C0)—to help the developer under-
stand the relationships among aspects of the system for
diagnosis and debugging, and to highlight the impact of
divergent variables on overall performanceP . Attempt-
ing to manually discover these relationships from the
code is often difficult, because of the large size of these
systems’ code bases. It is also possible that observed
variation across the classes for a feature is not necessar-
ily related to performance. For example, a timer period
may have changed between the classes without affecting
the performance, and such a change can be quickly ig-
nored if the dependencies are understood.

Since we are interested in the overall associations be-
tween the features in one class, we move beyond pair-
wise correlations and instead estimate thejoint distribu-
tion among the set of features variables. Specifically, we
use dependency networks (DNs) [19] to automatically
learn the joint distribution among the summary statistics
X and the performance variableP . This is useful to un-
derstand which sets of variables are inter-related based
on the feature values. We construct DNs for the event and
state features separately, and within each we construct
two DNs for each feature type (e.g., First.Absolute), one
for instances of classC0 and one for instances ofC1.

DNs [19] are a form of graphical model that repre-
sents a joint distribution over a set of variables. The
primary distinction between Bayesian networks, Markov
networks, and dependency networks is that dependency
networks are an approximate representation of the joint
distribution, which uses a set of conditional probabil-
ity distributions (CPDs) that are learned independently.
Consider the set of variablesX = (X1, ..., Xn) over
which we would like to model the joint distribution
p(X) = p(X1, ..., Xn). Dependencies among variables
are represented with a directed graphG = (V,E), where
conditional independence is interpreted using graph sep-
aration, as with Markov models. However, as with
Bayesian networks, dependencies are quantified with a
set of conditional probability distributionsP . Each node
vi ∈ V corresponds to anXi ∈ X and is associated with
a probability distribution conditioned on the other vari-
ables,p(xi|x − {xi}). The parents of nodei are the set
of variables that renderXi conditionally independent of
the other variables (p(xi|pai) = p(xi|x − {xi})), and
G contains a directed edge from each parent nodevj to
each child nodevi ((vj , vi) ∈ E iff Xj ∈ pai).

Both the structure and parameters of DNs are deter-
mined through learning the local CPDs. The DN learning

algorithm learns a separate distribution for each variable
Xi, conditioned on the other variables in the data (i.e.,
X− {Xi}). Any conditional learner can be used for this
task (e.g., logistic regression, decision trees). The CPD is
included in the model asP(vi) and the variables selected
by the conditional learner form the parents ofXi (e.g., if
p(xi|{x − xi}) = αxj + βxk thenPAi = {xj , xk}).
The parents are then reflected in the edges ofG appro-
priately. If the conditional learner is not selective (i.e.,
the algorithm does not select a subset of the features),
the DN will be fully connected. To build understand-
able DNs, it is desirable to use a selective learner. Since
event and state features have continuous values, we use
Regression Trees [9] as the conditional learner for the
DNs. Regression trees are a type of decision tree that
can handle continuous valued features. Their advantage
over standard regression models is that they are selective
models, so the features selected for inclusion in the tree
will determine the structure of the DN.

Improvements The graphical visualization of the
learned DN are enhanced to highlight to the developer
(1) the divergence across classes (sizes of the nodes),
(2) the strength of associations among features (thickness
of edges), and (3) temporal dependencies among features
(direction of edges). Specifically, each feature (node) in
the DN is matched with its corresponding statistical t-test
value. Since the t-statistics reflect amount of divergence
in the feature, across the two classes of logs, they are
used to size the nodes of the graph. Next, for the assess-
ment of relationship strength, we use an input parameter
m for the regression tree that controls the required (i.e.,
minimum) number of training samples to split a leaf node
in the tree and continue growing (i.e., a large value ofm
leads toshortertrees because tree growth is stopped pre-
maturely). The dependencies identified in a shorter tree
arestrongerbecause such variables are most correlated
with the target variable and affect a larger number of in-
stances. Thus, we weight each edge by the value ofm
for which the relationship is still included in the DN. Fi-
nally, we augment the DN graphical representation to in-
cludehappens-beforerelationships among the features.
If a feature valueXi occurs before feature valueXj in
all log instances, DISTALYZER draws any link between
Xi andXj in the DN as a directed edge.

3.4 Attention Focusing

The final component of the workflow automatically iden-
tifies the most notable results of the predictive and de-
scriptive modeling to present to the user. The goal of
this component is to focus the developers attention on
the most likely causes of the observed performance dif-
ferences. The predictive modeling component identifies
and presents a ranked list of features that show signifi-
cant divergences between the two classes of logs. The

6

divergence of a single feature is usually not enough to
understand both the root cause of performance problems
and their impact on performance—because performance
problems often manifest as a causal chain, much like the
domino effect. The root cause feature initiates the di-
vergence and forces associated features (down the causal
chain) to diverge as well, eventually leading to overall
performance degradation.

We noticed that divergences tend to increase along a
chain of interrelated features, thus the root cause may
not have the largest divergence (i.e., it may not appear at
the top of the ranking). The descriptive modeling compo-
nent, on the other hand, identifies the associations among
features within a single class of logs. These dependen-
cies can highlight the features that are associated with the
performance measureP . To identify likely causesfor
the performance difference, DISTALYZER searches for a
small set of features that areboth highly divergent and
have strong dependencies withP . The search procedure
for finding the DN that highlights this set is detailed be-
low.

The set of DNs vary across three dimensions: (1) event
vs. state features, (2) feature type,e.g., First.Absolute,
and (3) the parameter valuemmin used to learn the
DN. In our experiments, we setmmin to one-third of
the instances. The aim was to focus on the sufficiently
strong relationships among features, and this choice of
mmin consistently proved effective in all our case stud-
ies. However,mmin is included as a tunable parameter in
the system for the developer to vary and observe the im-
pact on the learned models. DISTALYZER identifies the
most notable DN graph for the state and event features
separately. Within a particular set, the attention-focusing
algorithm automatically selects the feature type with the
“best” DN subgraph. To score the DN graphs, they are
first pruned for the smallest connected component con-
taining the nodeP , and then the selected components
are scored using Algorithm 1.

The intuition behind the score function is that it should
increase proportionally with both the edge weights
(strength of association) and the vertex weights (diver-
gence across classes). The node and edge weights are
normalized before computing this score. If the devel-
oper is interested in biasing the search toward features
with larger divergences or toward stronger dependencies,
a parameterα can be used to moderate their relative con-
tributions in the score. The feature type with the highest
scoring connected component is selected and returned to
the developer for inspection.

Section 5 shows the outputs of DISTALYZER for real
systems with observed performance problems, together
with their interpretations. Apart from the final output
of the attention focusing algorithm, the developer can
also access a table of all the t-test values and dependency

Algorithm 1 Feature Scoring
Input: Log type:t (State / Event)
Input: Log class:c, Number of instances:N
Input: T-tests for all random variables in(t, c)
Input: DNs for all random variables in(t, c)
Input: Performance metric:P
feature graphs = {}
for Featuref : feature types(t) do
dn = DNf (mmin = N/3)
cc = Connected-component indn containingP
tree = maxSpanningTree(cc) rooted atP
score = 0
for Noden: tree do
score += Tf(n) ∗ dn .weight(parentEdge(n))

end for
Append(score, cc) to feature graphs

end for
return feature graphs sorted by score

graphs for both the state and event logs. This is shown as
the final stage in Fig. 1

4 Implementation

We describe some implementation details for transform-
ing text logs and developing DISTALYZER.

4.1 Processing Text Log messages

The BitTorrent implementations we considered were
implemented in C (Transmission) and Java (Azureus),
whereas HBase was implemented in Java. The Java im-
plementations used Log4j as their logger. Transmission
however used hand-coded log statements. HBase also
used Log4j, but did not have any logs in the request path.

For each implementation, we tailored a simple Perl
script to translate the text logs into a standard format
that DISTALYZER accepts. We maintained a simple in-
ternal format for DISTALYZER. This format captures the
timestamp, type of log, and the name of the log. For
state logs, the format additionally includes the value of
the log. We advocate adopting a similar procedure for
analyzing any new system implementation. A developer
with domain knowledge on the system should be able to
write simple text parsers to translate the most important
components of the log instances. To support the trans-
lation, we provide a simple library API for logging in a
format accepted by DISTALYZER (shown in Fig. 2). At
the beginning of each log instance, the translator calls
setInstance, which indicates the instance id and class
label for subsequent logs. It specifically requires mark-
ing logs as event or state logs at translation time by call-
ing one of the two log methods.

7

setInstance(class, instance_id)
logStateValue(timestamp, name, value)
logEventTime(timestamp, name)

Figure 2: DISTALYZER log API

4.2 DISTALYZER

We implemented DISTALYZER in Python using the sci-
entific computing libraries Numpy and Scipy. The two
sets of logs are parsed to extract the event and state fea-
tures for each log instance, and then the T-Tests and de-
pendency networks are generated. The design allows
adding or tweaking any of the event or state features
if required by the developer. The Orange data min-
ing library [9] provides regression tree construction, and
we implemented dependency networks and connected-
subgraph extraction over that functionality. The DOT
language is used to represent the graphs, and Graphviz
generates their visualizations. The implementation of
DISTALYZER comprises of many embarrassingly paral-
lel sub-tasks and can easily scale on multiple cores and
machines enabling quick processing.

An interactive JavaScript based HTML interface is
presented to the developer along with the final output.
This immensely helps in trudging through the individ-
ual distributions of variables, and also to view the depen-
dency graphs of all features. This has been useful in the
post-root cause debugging process of finding a possible
fix for the issue. To a good extent, this also helps in un-
derstanding some of the non-performance related behav-
ioral differences between the logs. For example, in one
case of comparing different implementations, we noticed
that either system was preferring the use of different pro-
tocol messages to achieve similar goals.

5 Case Studies

Our goal in these case studies is to demonstrate that
DISTALYZER can be applied simply and effectively to a
broad range of existing systems, and that it simplifies the
otherwise complex process of diagnosing the root cause
of significant performance problems. We therefore ap-
plied DISTALYZER across three real, mature and popular
distributed systems implementations. Table 2 captures
the overview of the systems we considered. These sys-
tems represent different types of distributed system ap-
plications: distributed sorting, databases, and file trans-
fers. We identified previously unknown performance
problems with two of these systems, and worked with
an external developer to evaluate usefulness of DIST-
ALYZER in rediscovering a known performance bug with
another. We describe the outputs of DISTALYZER and
henceforth straightforward debugging process.

5.1 TritonSort

TritonSort is a large scale distributed sorting system [25]
designed to sort upto 100TB of data, and holds four 2011
world records for 100TB sorting. We demonstrate the
effectiveness of DISTALYZER by applying it over logs
from a known bug. We obtained the logs of TritonSort
from the authors, taken from a run that suddenly exhib-
ited 74% slower performance on a day. After systemat-
ically and painstakingly exploring all stages of the sort
pipeline and running micro-benchmarks to verify exper-
imental scenarios, the authors finally fixed the problem.
They said that it took “the better part of two days to di-
agnose”. The debugging process for the same bug took
about 3-4hrs using DISTALYZER, which includes the im-
plementation time of a log parser in 100 lines of Python
code. A detailed analysis of the output of DISTALYZER

and the debugging process on these logs follows.

We had access to logs from a 34 node experiment from
the slow run that took 383 sec, and also a separate run
with the same workload that had a smaller runtime of 220
sec. These naturally fit into two classes of logs with one
instance per node, which could be compared to identify
the reason for the slowdown. These logs were collected
as a part of normal daily testing, meaning no additional
overhead for log collection. The logs contained both
event and state log messages that represented 8 different
stages of the system (Table 2). The performance metrics
were identified asFinish andruntime for the event and
state logs respectively, both indicating the time to com-
pletion. Fig. 3 shows the final dependency sub-graphs
output by DISTALYZER for both event and state logs.

To briefly explain the visualization generated by DIS-
TALYZER, nodes shown to be colored indicate the perfor-
mance metric and the font size is proportional to the mag-
nitude of the divergence. Edge thickness represents the
strength of the dependencies between variables. Directed
edges in event graphs indicate that ahappens-beforere-
lationship was identified between the two bounding vari-
ables, as described in Section 3.4.

The best dependency graph for events was picked from
the Last feature type, Fig. 3a. This demonstrates that
variablesWriter 1 run andWriter 5 run are both signif-
icant causes of the divergence ofFinish. The final stage
of TritonSort is the writer which basically handles writ-
ing the sorted data to the disk. Each stage in TritonSort
is executed by multiple thread workers, denoted by the
number in the variable. Therefore, this analysis attributes
the root cause of slow runs to highly divergent last occur-
rences of the writer workers. A quick look at the distribu-
tion comparison of the two sets of logs in both the writers
indicates that the slow run showed a difference of 90 sec.
The performance metric and the writer run distributions
showed an outlier with a larger time than the rest.

8

System Implementation Types of Logs Volume Variables Issues Performance gain New issues
TritonSort State, Event 2.4 GB 227 1 n/a ×
HBase (BigTable) Event 2.5 GB 10 3 22%

√

Transmission (BitTorrent) State, Event 5.6 GB 40 2 45%
√

Table 2: Summary of performance issues identified by DISTALYZER

Writer_1 run

Finish

Writer_5 run

(a) Event

Runtime

Writer_0 write_size

Writer_2 write_size Writer_5 write_size

Writer_1 write_size

Writer_4 write_size Writer_7 write_size

Writer_6 write_size

(b) State

Figure 3: TritonSort dependency graphs indicating the rootcause of the slow runtime

Similarly, the dependency graph picked for the states
is shown in Fig. 3b, where the performance metricRun-
time is connected to the subgraph consisting of the write
queue size of different writer workers. Although the fig-
ure was scaled down for space constraints, it is clear that
the divergences of all the nodes are similarly high like to-
tal performance divergence. To understand the reason of
this divergence, we looked at distributions for theAbso-
lute Half (best feature) to learn that writers in the slow
run were writing 83% more data. Thus, we concluded
the slowness was caused byslow writers.

The actual bug had been narrowed down to the disk
writing stage, which was indirectly slowing down earlier
stages of the pipeline. It was further noticed that a single
node was causing most of this delay, which finally led
to the authors discovering that the cache battery on that
node had disconnected. This resulted in the disks default-
ing to write-through and hence the poor performance.
Both the top ranked DNs output by DISTALYZER were
useful in identifying the bug. We shared these depen-
dency graph and interactive t-test tables with the author
of the paper, who had manually debugged this problem.
The output root cause was immediately clear to him, and
he surmised “had we had this tool when we encountered
this problem, it would have been a lot easier to isolate the
difference between the bad run and a prior good one”.

5.2 HBase

BigTable [4] is a large-scale storage system developed
by Google, holds structured data based on rows and
columns, and can scale efficiently to a very large num-
ber of rows and column content. HBase [18] is an open
source implementation of BigTable being developed by
the Apache foundation. It runs on top of Hadoop Dis-
tributed Filesystem (HDFS), and has been tested on large
scales and efficiency. HBase is implemented in Java and
is tuned for high performance.

For our experiments, we used the Yahoo Cloud Stor-
age Benchmark (YCSB) [8]. In our experiments, the
read request latencies under “Workload D” had a notable
heavy tail distribution. The minimum and median laten-
cies are 0 and 2 msec respectively. However the mean
latency is 5.25 msec and the highest latency is as high as
1 second, which is close to 3 orders of magnitude greater
than the median. Moreover, more than 1000 requests
have a latency greater than 100ms, which is not easily
understood. We would like to be able to compare these
slow requests to the huge bulk of fast ones, to identify
these performance bottlenecks in HBase. This task is in-
feasible manually because these issues manifest only in
large experiments (1 million requests), and a sufficiently
large number of requests exhibit this behavior. After de-
scribing the experimental setup, we discuss the use of
DISTALYZER in debugging three problems.

Experimental setup Our experimental testbed con-
sisted of 10 machines with 2.33GHz Intel Xeon, 8GB
RAM and 1Gbps Ethernet connections running Linux
2.6.35.11. Our HBase cluster consisted of a single mas-
ter running on a dedicated machine, and 9 region servers
(equivalent to BigTable tablet servers). The YCSB client
was run on the same machine as the master (which was
otherwise lightly loaded), with 10 threads issuing re-
quests in parallel. Each request is either a read of all
columns, or write all columns for a single row. 1 Million
rows were pre-loaded into the table with each row’s size
as 30kB. The workload consisted of 1 Million operations
out of which 5% were writes.

The HBase implementation had no log statements in
the request flow path, inspite of using thelog4j logging
library that supports log levels. Therefore, we manually
added 10 event logs to the read request path, using the
request row key as the identifier. The request logs from
the different machines were gathered at the end of the
run, to bucket log messages under different requests. The

9

HBaseClient.post_get

client.HTable.get

client.HTable.get_lookup

regionserver.HRegionServer.get

regionserver.HRegion
.get_results

regionserver.HRegion.get

regionserver.StoreScanner
_seek_end

regionserver.StoreScanner
_seek_start

Figure 4: DN for unmodified HBase events

HBaseClient.post_get

regionserver.HRegion.
get_results

regionserver.StoreScanner_
seek_end

Figure 5: DN for HBase after fixing lookups

performance metric is the event that signifies the last step
in request processing –HBaseClient.post get.

5.2.1 Fixing the slowest outliers

On applying DISTALYZER to the logs, it detected the
presence of a heavy tail in the performance metric (§ 3.1)
and suggested re-weighting the instances. The weight
function used to boost the instances with a large la-
tency was⌊wlatency⌋. This is an exponential weight
function and we chose a value ofw = 2(1/150), with
the idea that instances withP < 150ms will have a
weight of 1. Fig. 4 shows the dependency graph of
the root cause divergence. All dependency edges turn
out to be directed because all requests follow the same
flow path through the system, and hence log the events
in the same order. We identified two strong associ-
ations with large divergences leading upto the perfor-
mance metric. Each of the chains is considered for
root cause analysis, and we first chose to follow the
path leading fromclient.HTable.get lookup (the sec-
ond chain is discussed in§ 5.2.2). This chain starts at
client.HTable.get which indicates that the HBase client
library received the request from YCSB, followed by
client.HTable.get lookup representing the completion
of lookup for the region server handling the given key.

This particular edge leads from a tiny variable to a
variable with significant divergence, and domain knowl-
edge indicates that no other event occur between them.
The tiny variable is drawn as such because it does not
differ considerably between the two classes of logs. As
it is connected so strongly by a directed edge to the larger
variable, this indicates the two systems’ behavior is con-
sistentlydifferentbetween the tiny event variable and the
larger event variable. In this context, the edge repre-
sents the operation where the client needs to identify the
particular region server that manages the row, and this
is achieved by contacting the master who maintains the
mapping. The distributions of this particular event in the
t-test table shows that this event created gaps in the re-
quest flow of the order of 1000 ms.

When we looked at the logs of the regionserver at the
same time these requests were being delayed, we noticed
that the server was throwing aNotServingRegionEx-
ception. This is given by the server when it does not
serve a region that was specifically requested. This hap-
pens when a region was moved to another server during
load balancing. The client possesses a stale cache entry
for the region, and hence receives this exception. The
client was catching this exception as anIOException,
and treated it as a server failure. This triggers a backoff
procedure that starts at 1 sec. According to the Bigtable
description [4], the client immediately recognizes a stale
cache and retries leading to an overhead of just 2RTTs.
We came up with a fix for this issue, by adding code to
treat exceptions with care and extracting theNotServ-
ingRegionException, and retrying immediately. This
fixed the requests with latencies over 1 second.

5.2.2 Operating System effects

DISTALYZER was used again to analyze the new logs
to find the cause of the other delays. Since the distri-
bution skew was lesser than the threshold, the weight-
ing function was not used anymore. The dependency
graph is shown in Fig. 5, and closely resembles the
right chain of Fig. 4. In fact, this root cause was also
identified in the initial step as a second significant root
cause, but was not chosen for inspection. This graph
points to two variables chaining up as the root cause
– regionserver.StoreScanner seek end and region-
server.HRegion.get results.

The default Linux I/O scheduler since version 2.6.18
is Completely Fair Queuing (CFQ), that attempts to pro-
vide fairness between disk accesses from multiple pro-
cesses. It also batches requests to the disk controller
based on the priority, but it does not guarantee any com-
pletion times on disk requests. Since only the HBase
process was accessing the disk on these machines, we be-
lieved that this scheduling policy was not well suited to
random block reads requested by HBase. Another avail-
able I/O scheduler in Linux is the deadline scheduler,

10

HBaseClient.post_get

client.HTable.get_lookup

regionserver.HRegionServer.get

client.HTable.get_results

Server processing

regionserver.HRegion.get_results

Figure 6: HBase DN showing large network divergence

which tries to guarantee a start service time for requests.
Hence the deadline scheduler would be more suited to-
ward latency sensitive operations.

After we applied the I/O scheduler change, we ran
the same experiment again to understand if this caused
changes in the latencies of the slow requests. The num-
ber of slow requests (≥100ms) reduced from 1200 to just
under 500, which is a 60% reduction. Also, the mean
latency for the workload dropped from 5.3ms to 4ms,
which is a 25% overall improvement in the read latency,
confirming deadline is appropriate for these workloads.

5.2.3 Networking issues

After changing the disk scheduler, we again returned to
investigate the remainingslowrequests. We analyzed the
new logs to obtain the DN in Fig. 6. The complete fig-
ure included some variables still related to disk latencies,
which we ignore so as to find additional issues. For pre-
sentation, we replaced these disk-related variables with
a “Server processing” box in the figure. The event vari-
ables of interest areregionserver.HRegionServer.get
andclient.HTable.get results, in terms of the increase
in divergence compared to their predecessors. We imme-
diately realized that these events just follow a network
operation, one for each hop of the RPC. We were using
1Gbps connections and neither the client or the servers
were short of bandwidth at any time.

In the process of scanning through the networking
code, it became clear that connections were persistent
and only a single TCP connection was used per server.
However, we found that the TCP NoDelay flag was set
to false by default. HBase is most commonly used in
high speed networks such as large server farms and data
centers, which have very low latencies. Thus, we had ex-
pected HBase to disable Nagle’s Algorithm by default, to
spend some extra bandwidth at the cost of optimum net-
work latencies. This change improved the latencies of all
the slow network requests, and as a side-effect causedall

of the request latencies to go down.
While DISTALYZER did not point us to complete so-

lutions for the disk and network performance variances,
it was extremely helpful in identifying the root causes so
we could discover alternate configurations that improve
the performance of these bottlenecks. All of the 3 re-
ported root cause DNs were helpful in debugging HBase.

5.3 Transmission

Transmission implements the BitTorrent protocol, a dis-
tributed file sharing mechanism that downloads differ-
ent pieces of a file from multiple peers. The protocol
works by requesting a set of active peers for the file from
a tracker, then individually initiates connections to them
to download file pieces. By downloading from multiple
peers simultaneously, clients can more easily download
at large speeds limited only by its bandwidth. There are
many popular implementations of this protocol, out of
which we consider Azureus, another open source imple-
mentation for comparison. In some basic experiments,
Transmission had a much worse download time com-
pared to Azureus (552 sec vs. 288 sec).

Transmission [30] is a light-weight C implementation,
and among all the free clients, it is known for its mini-
mal resource footprint. Azureus [2] is one of the most
popular free implementations of the protocol, developed
in Java. It is an older and more mature implementation
of the protocol and well known for its excellent perfor-
mance. Unlike Transmission, it extends the basic BitTor-
rent messaging protocol for extra minor optimizations in
communicating with supporting peers. Both are serious
implementations of the protocol, and we expect a well
tuned C implementation should perform no worse than a
Java implementation. Using DISTALYZER, we were able
to identify two performance bugs in Transmission that
eliminated the download time difference completely.

Experimental setup Experiments consisted of 180
BitTorrent clients (30 clients per machine) attempting to
download a 50MB file, providing ample interaction com-
plexity in the global system. They used the same ma-
chines as described in Sec. 5.2. The swarm was boot-
strapped with a single seeder, and each client was lim-
ited to an upload bandwidth of 250KB/s which is similar
to common Internet bandwidths and makes ample room
for running 30 clients on a single machine. Experiments
were conducted with each implementation in isolation.

We built Azureus from its repository at rev. 25602
(v4504). Azureus had a detailed log of BitTorrent pro-
tocol messages during a download, and we added some
state logs. The experiments used the HotSpot Server
JVM build 1.6.020. We used version 2.03 of Trans-
mission in our experiments, which contained debugging
logs, and we simply activated the ones pertaining to the

11

Finish
Recv Bt_Piece

Sent Bt_Have

(a) Event DN

Runtime

Pieces Have

Progress

(b) State DN: 1st with score0.89

Runtime

Peers Connected

Upload Speed

Seed Ratio

(c) State DN: 2nd with score0.84

Figure 7: Dependency graphs for unmodified Transmission

BitTorrent protocol. We identified the event and state
performance metricsFinish andRuntime, respectively.

5.3.1 Faulty component affecting performance

In this particular case, the best features output by DIST-
ALYZER in event and state dependency graphs Fig. 7a, 7b
were dependencies between trivial divergences. These
are in a sense false positives to the automatic root cause
detection. More specifically, Fig. 7a was picked from
theLastevent-feature and shows the performance metric
coalesced with the last piece receipt. The strong depen-
dency toSent Bt Have is justified by the fact that im-
plementations send out piece advertisements to peers, as
soon as they receive one more piece. Similarly, the state
dependency graph in Fig. 7b shows strong dependencies
between download completion time and the number of
pieces download in half the run, and also the progress
(which is in fact a factor ofPieces Have).

This led to considering the second ranked state graph
in Fig. 7c, which in fact had a very close score to the
highest rank. This DN was constructed from snapshots
of the state variables at three-fourth of Transmission’s
download time. The interpretation is thatRuntime is af-
fected by the amount of data uploaded (seeded), which is
essential in a symbiotic environment such as BitTorrent.
This upload is trivially dependent on the upload speed,
and finally associated with a very highly differingPeers
Connected. This immediately takes the developer to the
distributions of the number of peers, all nodes reporting
6 peers. Following this, theMaximumfeature confirmed
that while Transmission had only 6, Azureus had 50.

Fixing the bug To find the problem that limited Trans-
mission’s peer connectivity, we considered a single
node’s logs and fetched the set of unique IP:port pairs,
and on looking at the values, we immediately realized
that each peer had a different IP address. In our exper-
imental setup with 6 physical machines, different nodes
on the same physical machine were setup to listen on dif-
ferent ports and coexist peacefully. The bug was traced to
the internal sorted set holding peers, whose comparison
function completely ignored the port number of the peer.

When a node hears about a new peer from the tracker,
and it is already connected to a peer with the same IP
address, the new peer is simply dropped.

On looking through forums and bug management soft-
wares, we found that this inconsistency had actually been
identified 13 months back, but the bug was incorrectly
closed. We verified the authenticity of this bug and re-
opened it. The developers deemed this bug to be hard
to fix, in terms of requiring changes to many modules.
We argue that this is an important bug that limits Trans-
mission from connecting to multiple peers behind a NAT
box. In cases where multiple peers are situated behind a
NAT box in an ISP, they would definitely want to down-
load from each other and avoid the slow ISP link. This
bug would prevent local connections, thus forcing them
to connect to peers on the Internet.

5.3.2 Tuning the performance

Since the fix for the first bug was too tedious, we decided
to circumvent the problem by assigning unique virtual IP
addresses to each of the nodes. This did indeed solve
the problem and made Transmission faster to an average
download time of 342 sec, which was still much higher
than 288 sec. DISTALYZER was used again with the new
set of logs which produced the dependency graph output
shown in Fig. 8. Considering the event DN in Fig. 8a,
showing the highly divergent performance metric for the
Last feature. Some of the features of this DN are similar
to Fig. 7a that were discussed earlier.

The dependency between finishing and sending re-
quests fits well with the protocol specifications, that a re-
quest for a piece must be sent in order to receive one. The
Announce event happensaftersending out requests, and
hence de-values its possibility for root cause. The inter-
ested messages were a more probable cause of the differ-
ences (compared to un-choke) because one must first ex-
press interest in another peer after connection establish-
ment. Only after this step does the remote peer unchoke
it, thus opening up the connection to piece requests. This
hypothesis was verified by viewing the distributions of
Sent Bt Interested across all features. After knowing
the root cause, the distribution for the offending variable

12

Finish
Recv Bt_Piece

Announce

Recv Bt_Unchoke

Sent Bt_RequestSent Bt_Have

Sent Bt_Interested

(a) Event

Runtime

Seeds Total

Peers Connected

Seeds ConnectedPeers Total

(b) State

Figure 8: Dependency graphs for BitTorrent after fixing the NAT problem

in theFirst feature showed gaps of the order of 10 sec on
Transmission, but was very small for Azureus.

We traced the code from the message generator to fix
these large gaps, and found a timer (calledrechoke-
Timer) that fired every 10 sec. For comparison, we found
that Azureus had a similar timer set at 1 sec, thus giving
it a quicker download start. The large divergence in send-
ing interested messages could be fixed by shortening the
timer value from 10sec to 1sec. Fig. 8b shows the state
DN for the same logs for completeness, but it does not
indicate a highly divergent root cause.

Performance gains We were able to apply a quick fix
for this problem and the download times of Transmission
were much better than earlier, dropping the mean com-
pletion time to 288 sec. The performance was upto 45%
better than the first experiment. It should be noted that
the more frequent timer did not affect the resource uti-
lizations of Transmission, still using far fewer CPU cy-
cles and memory than Azureus. Neither of these issues
affected correctness, nor threw any sort of exceptions,
and present themselves as subtle challenges to the devel-
opers. Overall, 5 DNs were reported for the two issues
in Transmission, out of which 3 indicated trivial relation-
ships between the components, but the other two were
immensely helpful in understanding the root causes.

6 Related Work

Model checking aims to provide guarantees on program
code against pre-specified properties. A number of tech-
niques [16, 20, 23] have described different methods to
assert program correctness. However, traditional model
checking attempts to discover violations of clear fail-
ure conditions. There is also research in applying ma-
chine learning to logs of faulty executions, to categorize
them [3,7] and also predict the root cause [5]. Conditions
of performance degradation cannot be accurately mod-
eled using these approaches, because it is rarely possible
to specify performance as definite runtime predicates.

The formulation of debugging as an anomaly detection
task has been applied in a variety of contexts. Magpie [3]
and Pinpoint [5] model request paths in the system to

cluster performance behaviors, and identify root causes
of failures and anomalous performance. Fuet al. [12]
propose the use of a Finite State Automaton to learn
the structure of a normal execution, and use it to detect
anomalies in performance of new input log files. Xuet
al. [32] propose a mechanism to encode logs into state ra-
tio vectors and message count vectors, and apply Princi-
pal Component Analysis to identify anomalous patterns
within an execution. However, they completely ignore
timestamps in logs and use the value logged, to identify
localized problems within a single log file. On the other
hand, DISTALYZER finds the root cause of the most sig-
nificant performance problem that affects theoverallper-
formance. In contrast to all these systems, DISTALYZER

aims to find the cause of performance problems in a ma-
jor portion of the log instances, and hence uses t-tests to
compare the average performance.

Request flows are a specific type of distributed pro-
cessing, with a pre-defined set of execution pathevents
in the system. Sambasivanet al. [28] aim to find struc-
tural and performance anomalies in request flows that are
induced by code changes. Their approach of compar-
ing different requests bears some similarity to our tech-
nique. However, as we illustrate through our case stud-
ies, DISTALYZER can be applied to request flow systems
(HBase), as well as other types of distributed systems,
by abstracting the logs into states and events. Although
these specific applications of machine learning (includ-
ing [1,3,5,6]) can leverage path structures, DISTALYZER

can show themost impactingroot cause among many
performance problems.

There has been work in identifying the most impor-
tant parts of systems logs through clustering of event fre-
quencies [27]. Cohenet al. [6] use instrumentation data
from servers to correlate bad performance and resource
usage using tree-augmented Bayesian networks. Simi-
larly, DISTALYZER can utilize system monitoring data as
outlined in Section 2 to identify performance slowdowns
due to resource contention using DNs.

Splunk [29] is an enterprise software for monitoring
and analyzing system logs, with an impressive feature
set. Although it provides a good visual interface for man-
ually scanning through logs and finding patterns, it does

13

not provide tools for rich statistical analysis on the data.
Furthermore, there is no support for comparing two sets
of logs automatically. We believe that Splunk is com-
plementary to our work, and the concepts embodied in
DISTALYZER could serve as a great addition to Splunk.

7 Conclusion

This paper proposes a technique for comparing dis-
tributed systems logs with the aim of diagnosing perfor-
mance problems. By abstracting simple structure from
the logs, our machine learning techniques can analyze
the behavior of poorly performing logs as divergence
from a given baseline. We design and implement DIS-
TALYZER, which can consume log files from multiple
nodes, implementations, runs and requests and visually
output the most significant root cause of the performance
variation. Our analysis of three mature and popular dis-
tributed systems demonstrates the generality, utility, and
significance of the tool, and the reality that even our ma-
ture systems have undiagnosed performance issues that
impact the overhead, cost, performance, or health of our
systems. DISTALYZER allows us to find and solve these
problems, where manual analysis has previously been
unsuccessful.

Acknowledgments. We would like to thank Alex Ras-
mussen for assisting us with using DISTALYZER on Tri-
tonSort logs.

References

[1] A GUILERA, M. K., MOGUL, J. C., WIENER, J. L.,
REYNOLDS, P.,AND MUTHITACHAROEN, A. Performance de-
bugging for distributed systems of black boxes. InSOSP(2003).

[2] Azureus bittorrent client. http://azureus.sourceforge.net/.

[3] BARHAM , P., DONNELLY, A., ISAACS, R., AND MORTIER, R.
Using Magpie for Request Extraction and Workload Modelling.
In OSDI (2004).

[4] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL -
LACH , D. A., BURROWS, M., CHANDRA , T., FIKES, A., AND

GRUBER, R. E. Bigtable: a distributed storage system for struc-
tured data. InOSDI (2006).

[5] CHEN, M. Y., ACCARDI, A., K ICIMAN , E., LLOYD , J., PAT-
TERSON, D., FOX, A., AND BREWER, E. Path-based faliure
and evolution management. InNSDI (2004).

[6] COHEN, I., GOLDSZMIDT, M., KELLY, T., SYMONS, J., AND

CHASE, J. S. Correlating Instrumentation Data to System States:
A Building Block for Automated Diagnosis and Control. InOSDI
(2004), USENIX Association, pp. 16–16.

[7] COHEN, I., ZHANG, S., GOLDSZMIDT, M., SYMONS, J.,
KELLY, T., AND FOX, A. Capturing, indexing, clustering, and
retrieving system history. InSOSP(2005), ACM, pp. 105–118.

[8] COOPER, B. F., SILBERSTEIN, A., TAM , E., RAMAKRISHNAN ,
R., AND SEARS, R. Benchmarking cloud serving systems with
ycsb. InSOCC(2010).

[9] DEMŠAR, J., ZUPAN, B., LEBAN, G., AND CURK, T. Orange:
From Experimental Machine Learning to Interactive Data Min-
ing. In PKDD. 2004.

[10] ELKAN , C. The Foundations of Cost-Sensitive Learning. InIJ-
CAI (2001), pp. 973–978.

[11] FONSECA, R., PORTER, G., KATZ , R. H., SHENKER, S.,AND

STOICA, I. X-trace: A pervasive network tracing framework. In
NSDI (2007).

[12] FU, Q., LOU, J.-G., WANG, Y., AND L I , J. Execution anomaly
detection in distributed systems through unstructured loganaly-
sis. InICDM (2009), pp. 149 –158.

[13] GEELS, D., ALTEKAR , G., MANIATIS , P., ROSCOE, T., AND

STOICA, I. Friday: Global comprehension for distributed replay.
In NSDI (2007).

[14] GEELS, D., ALTEKAR , G., SHENKER, S., AND STOICA, I.
Replay debugging for distributed applications. InUsenix ATC
(2006).

[15] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google
file system.SIGOPS Oper. Syst. Rev. 37, 5 (2003), 29–43.

[16] GODEFROID, P. Model checking for programming languages
using verisoft. InPOPL(97).

[17] Apache hadoop project. http://hadoop.apache.org/.

[18] Hbase. http://hbase.apache.org/.

[19] HECKERMAN, D., CHICKERING, D. M., MEEK, C., ROUN-
THWAITE , R., AND KADIE , C. Dependency Networks For In-
ference, Collaborative Filtering, and Data Visualization. JMLR
(2001), 49–75.

[20] K ILLIAN , C., ANDERSON, J. W., JHALA , R.,AND VAHDAT, A.
Life, death, and the critical transition: Detecting liveness bugs in
systems code. InNSDI (2007).

[21] L IU , X., GUO, Z., WANG, X., CHEN, F., LIAN , X., TANG, J.,
WU, M., KAASHOEK, M. F., AND ZHANG, Z. D3S: Debugging
Deployed Distributed Systems. InNSDI (2008).

[22] Apache log4j. http://logging.apache.org/log4j.

[23] MUSUVATHI , M., PARK , D. Y. W., CHOU, A., ENGLER, D. R.,
AND DILL , D. L. CMC: A Pragmatic Approach to Model Check-
ing Real Code. InSOSP(2002), ACM.

[24] MUSUVATHI , M., QADEER, S., BALL , T., BASLER, G.,
NAINAR , P. A., AND NEAMTIU , I. Finding and reproducing
heisenbugs in concurrent programs. InOSDI (2008).

[25] RASMUSSEN, A., PORTER, G., CONLEY, M., MADHYASTHA ,
H. V., MYSORE, R. N., PUCHER, A., AND VAHDAT, A. Triton-
Sort: A Balanced Large-Scale Sorting System. InNSDI (2011).

[26] REYNOLDS, P., KILLIAN , C., WIENER, J. L., MOGUL, J. C.,
SHAH , M. A., AND VAHDAT, A. Pip: Detecting the unexpected
in distributed systems. InNSDI (2006).

[27] SABATO , S., YOM-TOV, E., TSHERNIAK, A., AND ROSSET,
S. Analyzing system logs: a new view of what’s important. In
SYSML(2007), USENIX Association, pp. 1–7.

[28] SAMBASIVAN , R. R., ZHENG, A. X., ROSA, M. D., KREVAT,
E., WHITMAN , S., STROUCKEN, M., WANG, W., XU, L., AND

GANGER, G. R. Diagnosing performance changes by comparing
request flows. InNSDI (2011), USENIX Association.

[29] Splunk. http://www.splunk.com/.

[30] Transmission bittorrent client. http://www.transmissionbt.com/.

[31] WELCH, B. L. The generalization of student’s problem when
several different population variances are involved.Biometrika
34, 1-2 (1947), 28–35.

[32] XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JORDAN,
M. I. Detecting large-scale system problems by mining console
logs. InSOSP(2009), ACM, pp. 117–132.

[33] YABANDEH , M., KNEZEVIC, N., KOSTIC, D., AND KUNCAK ,
V. Crystalball: Predicting and preventing inconsistencies in de-
ployed distributed systems. InNSDI (2009).

14

	Structured Comparative Analysis of Systems Logs to Diagnose Performance Problems
	Report Number:
	

	tmp.1336500082.pdf.iYHpv

