Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

2011

Structured Comparative Analysis of Systems Logs to Diagnose
Performance Problems

Karthik Nagaraj
Purdue University, Knagara@cs.purdue.edu

Jennifer Neville
Purdue University, neville@cs.purdue.edu

Charles Killian
Purdue University, ckillian@cs.purdue.edu

Report Number:
11-020

Nagaraj, Karthik; Neville, Jennifer; and Killian, Charles, "Structured Comparative Analysis of Systems Logs
to Diagnose Performance Problems" (2011). Department of Computer Science Technical Reports. Paper
1752.

https://docs.lib.purdue.edu/cstech/1752

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Structured Compar ative Analysis of Systems L ogsto Diagnose Perfor mance
Problems

Karthik Nagaraj, Charles Killian, Jennifer Neville
Purdue University
{knagara, ckillian, nevillé@cs.purdue.edu

Abstract nodes are in heterogeneous environments, uncoupled

Di . d . f verf . . dfrom each other and generally unreliable. Compounding
lagnosis and correction of periormance issues in MOUis is the fact that the software is typically developed by

ern, large-scale distributed systems can be a daunt'n%ams of programmers, often relying on external com-

task, since a single developer is unlikely to be familiar onents and libraries developed independently, such that

\g'tﬁ the er;ure S%Ztem an? Itis _rtlsrd tto chalratctlerlzedth enerally no one developer is fully aware of the complex
ehavior ot a software system without Compietely Unters .o 5 ctions of the many components of the software.

standing its internal components. This paper describes Transmission [30] and HBase [18] exemplify the scale

DISTALYZER, an automated tool to support developer . S
. o . R of this type of software development. Transmission is an
investigation of performance issues in distributed sys-

tems. We aim to leverage the vast log data available fromp P en-source implementation of BitTorrent. In 2008, after

i : three years of development, it became the default BitTor-
large scale systems, while reducing the level of knowl-

edge required for a developer to use our tool. Speciﬁ_rent client for Ubuntu and Fedora, the two most popular

) . . Linux distributions. In the last two years alone, 15 devel-
cally, given two sets of logs, one with good and one with . :
. . opers committed changes to the codebase, not counting
bad performance, BTALYZER usesmachine learning

techniques to compare system behaviors extracted frm%atches/bugs submitted by external developers. HBase is

the logs and automatically infer the strongest associal OPen-source implementation of BigTable [4], depend-

tions between system components and performance. Tl"llgg on the Hadoop [17] implementation of the Google

tool outputs a set of inter-related event occurrences andIIe System [15]. HBase has grown very popular and is

i |
variable values that exhibit the largest divergence acrosy production use at Facebook, Yahoo!, StumbleUpon,

the logs sets and most directly affect the overall perfor-and. TW|tte_r._ HBas_es subversion repository has overa
mance of the system. These patterns are presented to tWé"'.on revisions, with 21 developers from multiple com-
developer for inspection, to help them understand whiclPam_es °°”t”b”“_”9 oyer the last tW_O year_s. .
system component(s) likely contain theot causeof the ~ C1Ven the activity in these projects, it not surpris-
observed performance issue, thus alleviating the need fdP9 that, in our experiments, we observed performance
many human hours of manual inspection. We demonProblems, despite their mature status. In systems with
strate the generality and effectiveness asBaLyzer ~ Many independent developers, large user-bases with dif-
on three real distributed systems by showing how it dis-ferlng comrr_lermal Interests, a”O! along history, dlagnos_ls
covers and highlights the root cause of six performanc&@nd correction of performance issues can be a daunting
issues across the systemssPALYZER has broad appli- task—since no one developer is likely to be completely

cability to other systems since it is dependent only on thetamlhar with the entire system. In the absence of clear

logs for input, and not on the source code error conditions, manual inspection of undesirable be-
’ haviors remains a primary approach, but is limited by
1 Introduction the experience of the tester—a developer is more likely

to ignore occasional undesirable behavior if they do not
Modern, large-scale distributed systems are extremeljpave intimate knowledge of the responsible subsystems.
complex, not only because the software in each node Recent research on distributed systems has produced
in the distributed system is complex, but because interseveral methods to aid debugging of these complex sys-
actions between nodes occur asynchronously, networtems, such as execution tracing [11, 14, 26], replay de-
message delays and orderings are unpredictable, armligging[13], model checking[20,24], live property test-

ing [21], and execution steering [33]. However, these The rest of this paper is organized as follows: Sec. 2
methods either require either extensive manual effort, odescribes our model of logs. We describe design and im-
are automated search techniques focused on discoveripdementation in Sec. 3 and 4 respectively, case studies in
specificerror conditions. Sec. 5, related work in Sec. 6, and conclude in Sec. 7.
To address the challenge of debugging undesirable be-
haviors (i.e. performancdssues), we focus on compar- 2
ing a set of baseline logs with acceptable performance to

another set with unacceptable behavior. This approacBISTALYZER derives its analysis based on the data

aims to leverage the vast log data available from come,acteqd from logs of distributed systems executions.

plex, large scale systems, while reducing the level OfHence, we describe the process of obtaining and prepar-

knowledge reqqired fora Qeveloper to use our tool. Thqng the logs for analysis, before the actual desigh &
state-of-the-art in debugging the performance of requesApmying our modeling to the logs of systems requires

flows [1,3,5_, 28] algo utilizes log data; however, in_con—that some amount of its meaning is provided tesB
trast with this previous work, we focus on analyzing a ,, y,eg. Inherently, this is because we are not seeking

W|q|er range of system behaviors extractgd from Iogsto provide natural language processing, but instead to an-
This has enabled us to develop an analysis tool appllcaailyze the structure the logs represent.etal.[32] have

ble to more than simply request processing applications,,njgered the automatic matching of log statements to
Other work in identifying problems in distributed sys- source code, which requires tight coupling with pro-

tems from logs [32] is restricted to identifying anomalousgramming languages to construct abstract syntax trees.

local problems, while we believe that poor performance;, contrast, DSTALYZER aims to stay agnostic to the

commonly manifests from larger implementation issues.q, ;¢ code by abstracting the useful information in the
We present DSTALYZER, a tool to analyze logs of

- i ' logs. We describe this in more detail below.
distributed systems automatically through comparison rna contributions of logging to debugging are so

and identify components causing degraded performanceie ey ingrained that systems typically are not successful

More specifically, given two sets of logs with differing \yiiqt 5 significant amount of effort expended in log-
performance (that were expected to have equivalent peb’ing infrastructures. BTALYZER assumes that the col-

formance), DSTALYZER outputs a summary of event oc- lection of logs has not affected the performance behav-

currences and variable values that (i) most diverge acroggq of interest in the system. This is a standard problem
the sets of logs, and (i) most affesterall system per- i 1ogging, requiring developers to spend much effort
formance. DSTALYZER usesmachine learinglech- 2. efficient logging infrastructures. Logging infras-
nigues to automatically infer the strongest assoc'at'on?ructures range from free text loggers likey4j [22], to
betyveen sys_tem components and performance. Cor]tri"ully structured and meaningful logs such as Pip [26] and
butions of this paper include: XTrace [11]. Unfortunately, the common denominator
e An assistive tool, DSTALYZER, for the developer across logging infrastructures is not a precise structure
to investigate performance variations in distributedindicating the meaning of the logs.
systems, requiring minimal additional log state- Consider Pip [26], a logging infrastructure providing
ments and post processing. rich meaning. Pip provides log annotations which in-
e A novel algorithm for automatically analyzing sys- dicate the beginning and ending of a task, sending and
tem behavior, identifying statistical dependencies,receiving of messages, and a separate log just as an FYI
and highlighting a set of interrelated components(a kind of catch-all log). Every log also indicates a path
likely to explain poor performance. In addition to identifier that the log belongs to. With this amount of in-
the highlighted results, B3TALYZER also provides strumentation, it is possible to construct path trees, whic
interactive exploration of the extended analysis. show dependencies between tasks within paths. This
e A successful demonstration of the applicationkind of instrumentation has been leveraged by Samba-
of DISTALYZER to three popular, large scale sivanet al.[28] to be able to compare the path trees in
distributed systems-TritonSort [25], HBase & systemslogs. Unfortunately, this detail of logging is both
Transmission—identifying the root causes of six per-not sufficient (it does not capture the instances of value
formance problems. In TritonSort, we analyzed alogging, and does not adequately handle tasks which be-
recently identified performance variation—the Tri- long to multiple flows), and not widely available. A more
tonSort developers surmisedi¥ALYZER could commonly used logging infrastructurlmg4j, provides
have saved them 1.5 days of debugging time. Ina much more basic scheme - logs are associated with a
follow-up experiments on Transmission and HBase,“type,” timestamp, priority, and free text string. It then
once we fixed the identified problems, their perfor- remains to the developer to make sense of the logs, com-
mance was boosted by 45% and 25% respectively. monly using a brittle set of log-processing scripts.

| nstrumentation

Feature Y U i
Predictive Distalyzer

Creation
/\modeling

‘f Descriptive
modeling 1

Attention
Focussing

Figure 1: Four-step log comparison process isTALYZER leading up to a visual interface

As a compromise between fully meaningful logs andtion between state and event log messages, so that no
free-text logs, we work to find a middle-ground, which post-processing phase would be required. Furthermore,
can be applied to existing logs without onerous modifi-this strategy allows the incorporation of external system
cations to the system being investigated. Our insight isactivity monitoring logs for a richer analysis.
that logs generally serve one of two purposegent log

messageandstate log messages 3 Design

Event log message. An eventlog message indicates that
some event happened at ttime the log message This section presents the design aSDALYZER, an op-
was generated. Most of the logging for Pip falls into erational tool capable of identifying salient differences
this category, in particular the start or end of tasksbetween sets of logs, with the aim of focusing the atten-
or messages. Other examples of such logs includéon of the developer on aspects of the system that af-
logs that a particular method was called, branch offect overall performance and significantly contribute to
code taken, etc. These logs are often most helpfuthe observed differences in behavioriSDALYZER in-
for tracing the flow of control with time between Volves a multi-step analysis process as shown in Figure 1.
different components of the system. The input to the workflow is a set of logs with tagged
Statelog message. A state log message indicates that ateventl and/or state log messages,.sepgrated by the devel-
the time the log message was generatedytiee oper into two classe€; and C; with d|ffere_nt behav-
of some system variable is as recorded. Typically, aor on some performance mgtr}e (e.g, runtllme). The_
state log message does not imply that the value jus?home of _performance metric can be eas_|ly determined
became the particular value (that would instead be o Servu_:e Level Agreement (SLA) metrics. S(?me ex:
an event log message), but merely that at the preser%atmpIe choices for classé% andC are as follows:
time it holds the given value. State log messages are
often printed out by periodically executed code, or
as debugging output called from several places in
the code. State log messages are often most helpful
for capturing snapshots of system state to develop a
picture of the evolution of a system.

o Differentversionsof the same system
¢ Differentrequestsn the same system
¢ Differentimplementationsf the same protocol
e Differentnodesn the same run
Given the inputs, DSTALYZER use machine learn-
ing methods to automatically analyze the data keadn
Distinguishing state and event log messages is an iMine salient differences between the two sets of logs, as
portant step, that allows us to tailor our modeling tech-ye|| as the relationships among the system components.
niques to treat each in kind. We will commonly refer to ag a result of this analysis, IBTALYZER identifies and
these values as thevent Variablesand theState Vari- presents to the developer (for investigation) the most no-
ables A practical artifact of this approach is that we tapje aspects of the system likely to contain toet
can simply use the system’s existing infrastructure an¢ayseof the observed performance difference. Specifi-

logging code to generate logs, and then write a simplg:|ly the system involves the following four components:
script to translate logs into state and event log messages

in a post-processing step4.1). Adopting this approach 1. Feature Creation: A small set of event/statiea-

makes it much easier to applyl&XALYZER to a wide turesare extracted from each log instance in both
range of existing systems, and avoids extra logging over- classes to make the data more amenable for auto-
heads at runtime. Additionally, it is possible to inte- mated analysis.

grate our logging library into other logging infrastruc- 2. Predictive Modeling: The event/state variables are
tures or code-generating toolkits that provide a distinc- analyzed with statistical tests to identify which fea-

turesdistinguishthe two classes of logs. This step execution to a handful deaturesX;, that are much less
directs attention to the system components that ar@rone to outliers, randomness and small localized dis-
the most likely causes of performance difference. crepancies in log statements. SincesDhLYZER aims

3. Descriptive Modeling: Within a single set of logs to find the source obverall performance problems (and
(e.g, Cy), the relationships among event/state vari-not localized problems as in [32]), a coarse-grained set
ables are learned with dependency networks [19]of features provides a better representative of each in-
The learned models enhance the developer’s undestance than every single value within that instance. A
standing of how aspects of the system interact andmaller set of features are less of a burden on the de-
helps to discard less relevant characteristeg,(veloper, and a richer set provides better coverage of dif-
background operations, randomness). ferent types of problems. IBTALYZER aims at striking

4. Attention Focusing: The outputs of steps 2 and 3 the right balance between these objectives through our
are combined to automatically identify a set of in- experiences and intuition debugging distributed systems.
terrelated variables that most diverge across the log®ISTALYZER constructs a set of summary statistiXs
and most affect overall performandes(P). The from the timestamps of event log messages and the val-
results are graphically presented to the developer foues of numeric variables for state log messages. Both are
investigation, not only indicating where the devel- described below in more detalil.
oper should look for performance bugs, but also in-
sight into the system itself, obviating the developer
the need to be an expert at all system interactions.

Event Features The timing of system events is often
closely related to overall performance, as it can identify
the progress of system components, the presence or ab-

. . ence of noteworthy events, or the occurrence of race
We describe each of these components in more detaﬁ

below. We note that th dnotb fthe i onditions between components. We consider a set of
elow. We note that the user need not be aware ot e N, ot yariapled e that are recorded in the log instances
ternals of the statistical or machine learning technique

Swith timestamps. For example, an instance may refer to

and is given an understandable graphical representatiog node downloading a file in BitTorrent, where the event
of the variables likely to contain the root cause of per-Iog may contain severakcv_bt piece evénts over time
formance differences. With a clear understanding of the To summarize the timing information associated with

root cause, the developer can spend more time on fmdé particular type of everit® in instancei, DISTALYZER

ing a g?od fl)l(tforfthe_perg)Trmance ?uQ' Inl Sec_trlqtn > W€ constructs features that record the time associated with
bresent results ot uSINGISTALYZER 10 analyze Tnlon- e first medianandlast occurrence inv,c. (All times-

Sort ((_:iifferent ve_rsions),.BigTabIe (difference requksts tamps within a log instancé are normalized based on
and BitTorrent (different implementations). the start time ofi.) Specifically, X¢, = min(Y?[t]),
31 Featurecreation X¢y = median(Y£[t]), X3 = maz(YE[t]). In addi-
tion, a fourth feature is constructed that counts the total
The workflow starts with extracting a handful of feature number of occurrences 6f¢, X7, = |[Y¢|. Our experi-
summaries from the logs. The input is two sets of logsence debugging systems suggests that these occurrences
Cy and (1, classified by the developer according to acapture some of the most useful, yet easily comprehensi-
performance characteristic of interd3t For example, ble, characteristics of system progress. They most com-
the developer may be interested in diagnosing the differmonly indicate issues including but not limited to startup
ence between slow(y) and fast (1) nodes based on delays, overall slowdown and straggling finishes.
total runtime P. DISTALYZER performs offline analy- In addition to the above features which consider the
sis on the logs, after they have been extracted from thabsolutetiming in instances, we consider the same set of
system execution. We refer to each log instance as afeatures forelative times. Since the instances frafy
instance We assume that a similar test environment wasand C; may have different total times, normalizing the
maintained for both sets of logs, including workloads, times within each instance to the rarigel] before com-
physical node setup, etc. However, itis not necessary thaiuting the features will yield a different perspective on
both classes contain the same number of occurrences ef/ent timings. Foe.g, in BitTorrent, it is useful to know
a variable. Also, the two classes are not required to havéhat the last outgoing connection was made at 300sec,
disjoint (i.e., non-overlapping) values far. but for debugging it may be more important to know that
DISTALYZER begins by calculating features from vari- it occurred at 99% of the runtime when comparing to
ables extracted from the log instances. Each instanceanother instance where the last connection was made at
contains many event and state log messages, which fir805sec, but earlier at 70% of its total runtime. In this
need to be summarized into a smaller set of summargase, the divergence in the relative times of the events is
statistics before analysis. The intuition behind summamore distinguishing. The top half of Table 1 outlines the
rizing is that this reduces the complexity of the systemset of event feature types considered hgTALYZER.

State Features It is common that some of the system stances with values in the tail, similar to other work on
state variables may be directly or inversely proportionalcost-sensitive learning [10]. This issue is discussed fur-
to the performance, and their divergence could eithether in Section 5.2.1.

improve or substantiate the developer’s notion gathered L .

from events. We consider a set of state variableshat 3-2 Predictive Modeling

maps to a list of values with their logged timestamps, the next stage of the workflow, IBTALYZER uses

in an instance. For example, in BitTorrent, one of thegaistical tests to identify the features that most distin
state variables logged is the download speed of a HOd%uish the two sets of log§,, andC,. Specifically, for

which is inversely proportional to the total runtime per- .51 event and state featuié described abovee(g
formance. DSTALYZER does not attempt to understand ¢ recy_bt_piece)), we consider the distribution of fea-

the meaning behind the variables or their names, but sysi;re values for the instances in each class;, and X, .

tematically searches for patterns in the values. DISTALYZER uses t-tests to compare the two distribu-
To summarize the information about a particular stat&jons and determine whether the observed differences are
variabley™* in log i, we construct features that record the gjgnificantlydifferent than what would be expected if the
minimum averageand maximumvalue inY;®. Specif- rangom variables were drawn from the same underlying
ically, X7, = min(Y}), X, = mean(Y}), X3 = (distribution {.e, the means oi ¢, andX¢, are equal).
max(Y?). In addition, to understand the variable val- |t ihe t-test rejects the null hypothesis that thie,, =
ues as the system progresses and also give the valug(scly then we conclude that the variabteis predictive
context, DSTALYZER constructs features that record the i.e, able to distinguish between the two classes of inter-
variabl_e _/alues at one-fourth, half and three_-fourth of theggt. Specifically, we usé/elch’s t-tesf31], which is de-
run. Similar to the events, the relative versions of thesgjed for comparison of unpaired distributions of unequal
snapshots are also considered as feature types. The coyjances. We use a critical valuepf< 0.05 to reject
plete list of state feature types is listed in Table 1. the null hypothesis and assess significance, adjusting for
multiple comparisons with a Bonferroni correction based

Event times on the total number of features evaluated.
{First, Median, Last Our use of t-tests is motivated by the fact that we want
x {Absolute, Relativg occurrences to identify variables that distinguish the two classes on
{Count averageacross many instances from the system. Previ-
State values ous work [28] has used Kolmogorov-Smirnov (KS) tests
{Minimum, Mean, Maximum, Fingl to distinguish between two distributions of request flows.
{One-fourth, Half, Three-fourth In that work, the bulk of the two distributions are the
x {Absolute, Relativg snapshots same and the KS test is used to determine whether there

Table 1: Feature types extracted from the system areanomalousralues in one of the two distributions. In
contrast, our work assumes that the log instances have

Cost of Performance Differences Our analysis is fo- been categorized into two distinct classes based on de-
cused on leveraging the characteristics of the averageeloper domain knowledge. Thus the overlap between
performance difference between the two classes, thugdistributions will be minimal if we can identify a vari-
naive use of the instances in statistical techniques wilhble that is related to performance degradation in one of
fail to find variables that distinguish performance in thethe classes. In this circumstance, KS tests are too sensi-
tails of the distribution. For example, in a class of bad tive (i.e., they will always reject the null hypothesis), and
performance, there may be 2-3% of instances that suffet-tests are more suitable form of statistical test.

from significantly worse performance. Although these Given the features that are determined tosbmifi-
cases are relatively infrequent, thigh costof incurring cant the magnitude of the t-statistic indicates the differ-
such extreme bad performance makes analysis of thesce between the two distributions—a larger t-statistic
instances more important. IBTALYZER automatically can be due to a larger difference in the means and/or
detects a significant number of abnormally high/low val-smaller variance in the two distributions (which implies
ues of the performance metric, and flags this to the degreater separation between the two classes). The sign of
veloper for consideration before further analysis. Specif the t-statistic indicates which distribution had a bigger
ically, DISTALYZER identifies a “heavy” tail forP when mean—a positive value indicates that the first distribution
the fraction of P; outsideP + 3o p is larger than 1.1% had a larger mean. Among the significant t-tests, we re-
(i.e., 4x the expected fraction in a normal distribution). turn a list of significant variables ranked in descending
To more explicitly consider these instances in the mod-order based on the absolute sum of t-statistic over all
eling, we can rewveightthe instances according tacast ~ features. This facilitates prioritized exploration on the
function that reflects the increased importance of the invariables that best differentiate the two classes.

3.3 Descriptive Modeling algorithm learns a separate distribution for each variable
X, conditioned on the other variables in the date.,(
In the third component of the workflow, IBTALYZER X — {X;}). Any conditional learner can be used for this
learns the relationships among feature values for eactask g.g, logistic regression, decision trees). The CPD is
class of logs separately. The goal of this component is tancluded in the model &8 (v;) and the variables selected
identify salient dependencies among the variables withinpy the conditional learner form the parentsf (e.qg, if
a single classif., Cop)—to help the developer under- p(z;|{x — 2;}) = ax; + fz), thenPA; = {z;, 21.}).
stand the relationships among aspects of the system farhe parents are then reflected in the edge§ @ppro-
diagnosis and debugging, and to highlight the impact ofriately. If the conditional learner is not selectivies(
divergent variables on overall performange Attempt- the algorithm does not select a subset of the features),
ing to manually discover these relationships from thethe DN will be fully connected. To build understand-
code is often difficult, because of the large size of theseable DN, it is desirable to use a selective learner. Since
systems’ code bases. It is also possible that observeglent and state features have continuous values, we use
variation across the classes for a feature is not necessaRegression Trees [9] as the conditional learner for the
ily related to performance. For example, a timer periodDNs. Regression trees are a type of decision tree that
may have changed between the classes without affectingan handle continuous valued features. Their advantage
the performance, and such a change can be quickly igover standard regression models is that they are selective
nored if the dependencies are understood. models, so the features selected for inclusion in the tree
Since we are interested in the overall associations bewill determine the structure of the DN.

tween the features in one class, we move beyond paittmprovements The graphical visualization of the
wise correlations and instead estimatejtiet distribu- |earned DN are enhanced to highlight to the developer
tion among the set of features variables. Specifically, wg1) the divergence across classes (sizes of the nodes),
use dependency networks (DNs) [19] to automatically(2) the strength of associations among features (thickness
learn the joint distribution among the summary statisticsof edges), and (3) temporal dependencies among features
X and the performance variable This is useful to un- (direction of edges). Specifically, each feature (node) in
derstand which sets of variables are inter-related baseghe DN is matched with its corresponding statistical t-test
on the feature values. We construct DNs for the eventangalue. Since the t-statistics reflect amount of divergence
state features separately, and within each we construg the feature, across the two classes of logs, they are
two DNs for each feature type @, First.Absolutg, one ysed to size the nodes of the graph. Next, for the assess-
for instances of clasS,, and one for instances ¢t;. ment of relationship strength, we use an input parameter
DNs [19] are a form of graphical model that repre- m for the regression tree that controls the requiiesl, (
sents a joint distribution over a set of variables. Theminimum) number of training samples to split a leaf node
primary distinction between Bayesian networks, Markovin the tree and continue growingd., a large value ofn
networks, and dependency networks is that dependendgads teshortertrees because tree growth is stopped pre-
networks are an approximate representation of the joinmaturely). The dependencies identified in a shorter tree
distribution, which uses a set of conditional probabil- arestrongerbecause such variables are most correlated
ity distributions (CPDs) that are learned independentlywith the target variable and affect a larger number of in-
Consider the set of variableX = (X3,...,X,,) over stances. Thus, we weight each edge by the value of
which we would like to model the joint distribution for which the relationship is still included in the DN. Fi-
p(X) = p(X1, ..., X,). Dependencies among variables nally, we augment the DN graphical representation to in-
are represented with a directed gr&ph- (V, E), where clude happens-beforeelationships among the features.
conditional independence is interpreted using graph segf a feature valueX; occurs before feature valug; in
aration, as with Markov models. However, as with all log instances, B5TALYZER draws any link between
Bayesian networks, dependencies are quantified with & and X in the DN as a directed edge.
set of conditional probability distributior®8. Each node . .
v; € V corresponds to ai; € X and is associated with 3.4 Attention Focusing

a probability distribution conditioned on the other vari- The final component of the workflow automatically iden-
ables,p(z;|x — {;}). The parents of nodeare the set tifies the most notable results of the predictive and de-
of variables that rendeXi Conditionally independent of Scriptive mode"ng to present to the user. The goa| of
the other variablesp(z;[pa;) = p(zi[x — {z:})), and this component is to focus the developers attention on
G contains a directed edge from each parent ngd® the most likely causes of the observed performance dif-
each child node; ((v;,v;) € Eiff X; € pa;). ferences. The predictive modeling component identifies
Both the structure and parameters of DNs are deterand presents a ranked list of features that show signifi-
mined through learning the local CPDs. The DN learningcant divergences between the two classes of logs. The

divergence of a single feature is usually not enough toAlgorithm 1 Feature Scoring
understand both the root cause of performance problemsput: Log type:¢ (State / Event)
and their impact on performance—because performanceput: Log class:c, Number of instancesy
problems often manifest as a causal chain, much like thénput: T-tests for all random variables i, c)
domino effect. The root cause feature initiates the di-nput: DNs for all random variables if¥, c)
vergence and forces associated features (down the causabput: Performance metricP
chain) to diverge as well, eventually leading to overall feature_graphs = {}
performance degradation. for Featuref: feature_types(t) do

We noticed that divergences tend to increase alonga dn = DNy (myim = N/3)
chain of interrelated features, thus the root cause may c¢c = Connected-componentiin containingP

not have the largest divergendée(it may not appear at tree = maxSpanning Tree(cc) rooted atP

the top of the ranking). The descriptive modeling compo- score =0

nent, on the other hand, identifies the associationsamong for Noden: tree do

features within a single class of logs. These dependen- score +=T ;(n) * dn.weight(parentEdge(n))
cies can highlight the features that are associated withthe end for

performance measurB. To identify likely causesfor Append(score, cc) to feature_graphs

the performance difference,|®TALYZER searches for a end for

small set of features that abmth highly divergent and return feature_graphs sorted by score

have strong dependencies with The search procedure

for finding the DN that highlights this set is detailed be- o
low. graphs for both the state and eventlogs. This is shown as

The set of DNs vary across three dimensions: (1) eventﬂ1e final stage in Fig. 1

vs. state features, (2) feature typeg, First.Absolute
and (3) the parameter value,,;, used to learn the 4
DN. In our experiments, we set.,;, to one-third of
the Instances. The aim was to focus on the_sufﬁm_enth\ﬁ‘/e describe some implementation details for transform-
strong reIa’Flonsh|ps among fea’Fure.s, and this choice o g text logs and developingIBTALYZER.
mumin CONsistently proved effective in all our case stud-
ies. Howeverm,,,;,, isincluded as a tunable parameter @n 41 Procng Text L og messages
the system for the developer to vary and observe the im-
pact on the learned models.ISYALYZER identifies the The BitTorrent implementations we considered were
most notable DN graph for the state and event featurenplemented in C (Transmission) and Java (Azureus),
separately. Within a particular set, the attention-foegsi whereas HBase was implemented in Java. The Java im-
algorithm automatically selects the feature type with theplementations used Log4j as their logger. Transmission
“best” DN subgraph. To score the DN graphs, they arehowever used hand-coded log statements. HBase also
first pruned for the smallest connected component conused Log4j, but did not have any logs in the request path.
taining the node”, and then the selected components For each implementation, we tailored a simple Perl
are scored using Algorithm 1. script to translate the text logs into a standard format
The intuition behind the score function is that it should that DISTALYZER accepts. We maintained a simple in-
increase proportionally with both the edge weightsternal format for DSTALYZER. This format captures the
(strength of association) and the vertex weights (divertimestamp, type of log, and the name of the log. For
gence across classes). The node and edge weights atte logs, the format additionally includes the value of
normalized before computing this score. If the devel-the log. We advocate adopting a similar procedure for
oper is interested in biasing the search toward featuresnalyzing any new system implementation. A developer
with larger divergences or toward stronger dependenciesyith domain knowledge on the system should be able to
a parameterr can be used to moderate their relative con-write simple text parsers to translate the most important
tributions in the score. The feature type with the highesicomponents of the log instances. To support the trans-
scoring connected component is selected and returned tation, we provide a simple library API for logging in a
the developer for inspection. format accepted by BTALYZER (shown in Fig. 2). At
Section 5 shows the outputs ofi$XALYZER for real the beginning of each log instance, the translator calls
systems with observed performance problems, togethesetinstance, which indicates the instance id and class
with their interpretations. Apart from the final output label for subsequent logs. It specifically requires mark-
of the attention focusing algorithm, the developer caning logs as event or state logs at translation time by call-
also access a table of all the t-test values and dependeninyg one of the two log methods.

I mplementation

5.1 TritonSort

set | nstance(cl ass, instance_id)
| ogSt at eVal ue(ti nestanp, nanme, val ue)

| ogEvent Ti me(ti mest anp, nane) TritonSort is a large scale distributed sorting system [25]

designed to sort upto 100TB of data, and holds four 2011
Figure 2: DSTALYZER log API world records for 100TB sorting. We demonstrate the
effectiveness of IBTALYZER by applying it over logs
42 DISTALYZER from a known bug. We obtained the logs of TritonSort
We implemented DSTALYZER in Python using the sci- from the authors, taken from a run that suddenly exhib-
entific computing libraries Numpy and Scipy. The two ited 74% slower performance on a day. After systemat-
sets of logs are parsed to extract the event and state felsally and painstakingly exploring all stages of the sort
tures for each log instance, and then the T-Tests and dd¥Peline and running micro-benchmarks to verify exper-
pendency networks are generated. The design allowdnental scenarios, the authors finally fixed the problem.
adding or tweaking any of the event or state featuresl hey said that it took “the better part of two days to di-
if required by the developer. The Orange data min-2gnose”. The debugging process for the same bug took
ing library [9] provides regression tree construction, and@bout 3-4hrs using BTALYZER, which includes the im-
we implemented dependency networks and connecteddlementation time of a log parser in 100 lines of Python
subgraph extraction over that functionality. The DOT code. A detailed analysis of the output ofSJALYZER
language is used to represent the graphs, and Graphvd the debugging process on these logs follows.
generates their visualizations. The implementation of We had access to logs from a 34 node experiment from
DISTALYZER comprises of many embarrassingly paral- the slow run that took 383 sec, and also a separate run
lel sub-tasks and can easily scale on multiple cores anaith the same workload that had a smaller runtime of 220
machines enabling quick processing. sec. These naturally fit into two classes of logs with one
An interactive JavaScript based HTML interface is instance per node, which could be compared to identify
presented to the developer along with the final outputthe reason for the slowdown. These logs were collected
This immensely helps in trudging through the individ- as & part of normal daily testing, meaning no additional
ual distributions of variables, and also to view the depenoverhead for log collection. The logs contained both
dency graphs of all features. This has been useful in th@vent and state log messages that represented 8 different
post-root cause debugging process of finding a possiblgtages of the system (Table 2). The performance metrics
fix for the issue. To a good extent, this also helps in un-were identified aginish andruntime for the event and
derstanding some of the non-performance related behagtate logs respectively, both indicating the time to com-
ioral differences between the logs. For example, in onédletion. Fig. 3 shows the final dependency sub-graphs
case of comparing different implementations, we noticecPutput by DSTALYZER for both event and state logs.
that either system was preferring the use of different pro- To briefly explain the visualization generated bysb
tocol messages to achieve similar goals. TALYZER, nodes shown to be colored indicate the perfor-
mance metric and the font size is proportional to the mag-
nitude of the divergence. Edge thickness represents the
5 Case Studies strength of the dependencies between variables. Directed
edges in event graphs indicate thatappens-beforee-

Our goal in these case studies is to demonstrate tha@tionship was identified between the two bounding vari-
DISTALYZER can be applied simply and effectively to a ables, as described in Section 3.4.

broad range of existing systems, and that it simplifies the The best dependency graph for events was picked from
otherwise complex process of diagnosing the root causthe Last feature type, Fig. 3a. This demonstrates that
of significant performance problems. We therefore ap-variablesNriter_1 run andWriter_5 run are both signif-
plied DISTALYZER across three real, mature and popularicant causes of the divergencekihish. The final stage
distributed systems implementations. Table 2 capturesf TritonSort is the writer which basically handles writ-
the overview of the systems we considered. These sysng the sorted data to the disk. Each stage in TritonSort
tems represent different types of distributed system apis executed by multiple thread workers, denoted by the
plications: distributed sorting, databases, and file transnumber in the variable. Therefore, this analysis attribute
fers. We identified previously unknown performancethe root cause of slow runs to highly divergentlast occur-
problems with two of these systems, and worked withrences of the writer workers. A quick look at the distribu-
an external developer to evaluate usefulness fTD tion comparison of the two sets of logs in both the writers
ALYZER in rediscovering a known performance bug with indicates that the slow run showed a difference of 90 sec.
another. We describe the outputs ofsDALYZER and The performance metric and the writer run distributions
henceforth straightforward debugging process. showed an outlier with a larger time than the rest.

System Implementation | Typesof Logs Volume Variables Issues Performancegain New issues
TritonSort State, Event 2.4GB 227 1 n/a X
HBase (BigTable) Event 2.5GB 10 3 22% vV
Transmission (BitTorrent) State, Event 5.6 GB 40 2 45% vV

Table 2: Summary of performance issues identified byTALYZER

@ @ Writer_1 write_size Writer_0 write_size

Writer_2 write_size Writer_5 write_size
Writer_7 write_size

Writer_4 write_size
Writer_6 write_size

(a) Event (b) State

Figure 3: TritonSort dependency graphs indicating the caase of the slow runtime

Similarly, the dependency graph picked for the states For our experiments, we used the Yahoo Cloud Stor-
is shown in Fig. 3b, where the performance mel®im- age Benchmark (YCSB) [8]. In our experiments, the
time is connected to the subgraph consisting of the writeread request latencies under “Workload D" had a notable
gueue size of different writer workers. Although the fig- heavy tail distribution. The minimum and median laten-
ure was scaled down for space constraints, it is clear thaties are 0 and 2 msec respectively. However the mean
the divergences of all the nodes are similarly high like to-latency is 5.25 msec and the highest latency is as high as
tal performance divergence. To understand the reason df second, which is close to 3 orders of magnitude greater
this divergence, we looked at distributions for thieso- than the median. Moreover, more than 1000 requests
lute Half (best feature) to learn that writers in the slow have a latency greater than 100ms, which is not easily
run were writing 83% more data. Thus, we concludedunderstood. We would like to be able to compare these
the slowness was caused $lpw writers slow requests to the huge bulk of fast ones, to identify

The actual bug had been narrowed down to the diskhese performance bottlenecks in HBase. This task is in-
writing stage, which was indirectly slowing down earlier feasible manually because these issues manifest only in
stages of the pipeline. It was further noticed that a singldarge experiments (1 million requests), and a sufficiently
node was causing most of this delay, which finally ledlarge number of requests exhibit this behavior. After de-
to the authors discovering that the cache battery on thegcribing the experimental setup, we discuss the use of
node had disconnected. This resulted in the disks defaullISTALYZER in debugging three problems.
ing to write-through and hence the poor performance.

Both the top ranked DNs output byi®raLyzer were ~ Experimental setup Our experimental testbed con-
useful in |dent|fy|ng the bug We shared these depensisted of 10 machines with 2.33GHz Intel Xeon, 8GB
dency graph and interactive t-test tables with the authoRAM and 1Gbps Ethernet connections running Linux
of the paper, who had manua”y debugged this pr0b|em263511 Our HBase cluster consisted of a Single mas-
The output root cause was immediately clear to him, ander running on a dedicated machine, and 9 region servers
he surmised “had we had this tool when we encounteregequivalentto BigTable tablet servers). The YCSB client
this problem, it would have been a lot easier to isolate thévas run on the same machine as the master (which was

difference between the bad run and a prior good one”. Otherwise lightly loaded), with 10 threads issuing re-
quests in parallel. Each request is either a read of all

5.2 HBase columns, or write all columns for a single row. 1 Million
rows were pre-loaded into the table with each row’s size
BigTable [4] is a large-scale storage system developeds 30kB. The workload consisted of 1 Million operations
by Google, holds structured data based on rows an@ut of which 5% were writes.
columns, and can scale efficiently to a very large num- The HBase implementation had no log statements in
ber of rows and column content. HBase [18] is an operthe request flow path, inspite of using tleg4j logging
source implementation of BigTable being developed bylibrary that supports log levels. Therefore, we manually
the Apache foundation. It runs on top of Hadoop Dis-added 10 event logs to the read request path, using the
tributed Filesystem (HDFS), and has been tested on largeequest row key as the identifier. The request logs from
scales and efficiency. HBase is implemented in Java anthe different machines were gathered at the end of the
is tuned for high performance. run, to bucket log messages under different requests. The

regionserver.StoreScanner
_seek_start

regionserver.HRegion.get

regionserver.StoreScanner
_seek_end

regionserver.StoreScanner_
seek_end

regionserver.HRegion.
get_results

client.HTable.get_lookup
regionserver.HRegionServer.get

regionserver.HRegion
.get_results

Figure 4: DN for unmodified HBase events

Figure 5: DN for HBase after fixing lookups

performance metric is the event that signifies the last step When we looked at the logs of the regionserver at the

in request processingHBaseClient.post_get. same time these requests were being delayed, we noticed
o . that the server was throwing MotServingRegionEx-
5.2.1 Fixingthe slowest outliers ception. This is given by the server when it does not

serve a region that was specifically requested. This hap-
pens when a region was moved to another server during

and suggested re-weighting the instances. The weig pad balanc_:ing. The client possesses a stale cgche entry
function used to boost the instances with a large lator the region, and hence receives this exception. The

tency was|w!e'*"v | This is an exponential weight client was catching this exception as BEDException,
function and we chose a value of — 2(1/150) ith and treated it as a server failure. This triggers a backoff

the idea that instances witR < 150ms will have a procedure that starts at 1 sec. According to the Bigtable
weight of 1. Fig. 4 shows the dependency graph ofdescription [4], the clientimmediately recognizes a stale

the root cause divergence. All dependency edges turﬁaChe and retri_es Iea_lding to_ar_1 overhead Of.jUSt 2RTTS.
out to be directed because all requests follow the samg\/e came up with a fix for this issue, by adding code to

flow path through the system, and hence log the eventEreat egceptions ‘.Nith care and-extracting_tﬂletServ-_
in the same order. We identified two strong associ_mgReg|onExcept|on, and retrying immediately. This

ations with large divergences leading upto the perfor-ﬁxed the requests with latencies over 1 second.

mance metric. Egch of the c.hains is considered forg 5 5 Operating System effects
root cause analysis, and we first chose to follow the
path leading fronclient.HTable.get_lookup (the sec- DISTALYZER was used again to analyze the new logs
ond chain is discussed 5.2.2). This chain starts at to find the cause of the other delays. Since the distri-
client.HTable.get which indicates that the HBase client bution skew was lesser than the threshold, the weight-
library received the request from YCSB, followed by ing function was not used anymore. The dependency
client.HTable.get_lookup representing the completion graph is shown in Fig. 5, and closely resembles the
of lookup for the region server handling the given key. right chain of Fig. 4. In fact, this root cause was also
This particular edge leads from a tiny variable to aidentified in the initial step as a second significant root
variable with significant divergence, and domain knowl-cause, but was not chosen for inspection. This graph
edge indicates that no other event occur between thenpoints to two variables chaining up as the root cause
The tiny variable is drawn as such because it does not regionserver.StoreScanner_seek_end and region-
differ considerably between the two classes of logs. Asserver.HRegion.get_results.
itis connected so strongly by a directed edge to the larger The default Linux I/O scheduler since version 2.6.18
variable, this indicates the two systems’ behavior is conis Completely Fair Queuing (CFQ), that attempts to pro-
sistentlydifferentbetween the tiny event variable and the vide fairness between disk accesses from multiple pro-
larger event variable. In this context, the edge reprecesses. It also batches requests to the disk controller
sents the operation where the client needs to identify th&ased on the priority, but it does not guarantee any com-
particular region server that manages the row, and thipletion times on disk requests. Since only the HBase
is achieved by contacting the master who maintains therocess was accessing the disk on these machines, we be-
mapping. The distributions of this particular event in thelieved that this scheduling policy was not well suited to
t-test table shows that this event created gaps in the reandom block reads requested by HBase. Another avail-
quest flow of the order of 1000 ms. able I/O scheduler in Linux is the deadline scheduler,

On applying DSTALYZER to the logs, it detected the
presence of a heavy tail in the performance mefrig.1)

10

of the request latencies to go down.

While DISTALYZER did not point us to complete so-
lutions for the disk and network performance variances,
it was extremely helpful in identifying the root causes so
we could discover alternate configurations that improve
the performance of these bottlenecks. All of the 3 re-
ported root cause DNs were helpful in debugging HBase.

client HTable.get_lookup

regionserver.HRegionServer.get
Server processi

regionserver.HRegion.get_results

C“ent-HTabIe-get_reSU|tS Transmission implements the BitTorrent protocol, a dis-
tributed file sharing mechanism that downloads differ-
ent pieces of a file from multiple peers. The protocol
works by requesting a set of active peers for the file from

Fi 6 HB DN showing | work di atracker, then individually initiates connections to them
gure . Hbase Showing farge NEwork diVergence,, yownload file pieces. By downloading from multiple

which tries to guarantee a start service time for requestg?€€rs simultaneously, clients can more easily download

Hence the deadline scheduler would be more suited to@t large speeds limited only by its bandwidth. There are
ward latency sensitive operations. many popular implementations of this protocol, out of

After we applied the /0O scheduler change, we ranWhich we consider Azureus, another open source imple-

the same experiment again to understand if this causeff€ntation for comparison. In some basic experiments,
changes in the latencies of the slow requests. The numlransmission had a much worse download time com-
ber of slow requests{100ms) reduced from 1200 to just Pared to Azureus (552 sec vs. 288 sec).

under 500, which is a 60% reduction. Also, the mean 1ransmission [30]is a light-weight C implementation,
latency for the workload dropped from 5.3ms to 4ms,and among all the ffee clients, it is k_nown for its mini-
which is a 25% overall improvement in the read latency,mal resource footprint. Azureus [2] is one of the most

confirming deadline is appropriate for these workloads. Popular free implementations of the protocol, developed
in Java. It is an older and more mature implementation

5.2.3 Networking issues of the protocol and well known for its excellent perfor-

))) mance. Unlike Transmission, it extends the basic BitTor-
After changing the disk scheduler, we again returned tqent messaging protocol for extra minor optimizations in
investigate the remainirgdowrequests. We analyzed the communicating with supporting peers. Both are serious
new logs to obtain the DN in Fig. 6. The complete fig- jyplementations of the protocol, and we expect a well
ure included some variables still related to disk latenciesy;ned ¢ implementation should perform no worse than a
which we ignore so as to find additional issues. For pre-j5y4 implementation. UsingIBTALYZER, we were able
sentation, we replaced these disk-related variables witly, identify two performance bugs in Transmission that

a “Server processing” box in the figure. The event vari-g|iminated the download time difference completely.
ables of interest areegionserver.HRegionServer.get

andclient.HTable.get_results, in terms of the increase Experimental setup Experiments consisted of 180
in divergence compared to their predecessors. We immeBitTorrent clients (30 clients per machine) attempting to
diately realized that these events just follow a networkdownload a 50MB file, providing ample interaction com-
operation, one for each hop of the RPC. We were usinglexity in the global system. They used the same ma-
1Gbps connections and neither the client or the servershines as described in Sec. 5.2. The swarm was boot-
were short of bandwidth at any time. strapped with a single seeder, and each client was lim-
In the process of scanning through the networkingited to an upload bandwidth of 250KB/s which is similar
code, it became clear that connections were persisterio common Internet bandwidths and makes ample room
and only a single TCP connection was used per servefor running 30 clients on a single machine. Experiments
However, we found that the TCP NoDelay flag was setwere conducted with each implementation in isolation.
to false by default. HBase is most commonly used in We built Azureus from its repository at rev. 25602
high speed networks such as large server farms and dafe4504). Azureus had a detailed log of BitTorrent pro-
centers, which have very low latencies. Thus, we had extocol messages during a download, and we added some
pected HBase to disable Nagle's Algorithm by default, tostate logs. The experiments used the HotSpot Server
spend some extra bandwidth at the cost of optimum netdVM build 1.6.020. We used version 2.03 of Trans-
work latencies. This change improved the latencies of alimission in our experiments, which contained debugging
the slow network requests, and as a side-effect caalfed logs, and we simply activated the ones pertaining to the

5.3 Transmission

11

Peers Connected

(a) Event DN (b) State DN: ¥ with score0.89 (c) State DN: 2 with score(.84
Figure 7: Dependency graphs for unmodified Transmission

Pieces Have

BitTorrent protocol. We identified the event and stateWhen a node hears about a new peer from the tracker,

performance metricBinish andRuntime, respectively. and it is already connected to a peer with the same IP
address, the new peer is simply dropped.

5.3.1 Faulty component affecting performance On looking through forums and bug management soft-

wares, we found that this inconsistency had actually been

In this particular case, the best features output by™® . o .
. . dentified 13 months back, but the bug was incorrectly
ALYZER in eventand state dependency graphs Fig. 7a, 7%osed. We verified the authenticity of this bug and re-

were dependencies between trivial divergences. Thes

are in a sense false positives to the automatic root caus?(s)0 :‘ai:(]e?n IE['er-r;hseo?er\éZISiF:iirgs gﬁ:nrgzg :glfnzl;g tncio?jilgzrd

detection. More specifically, Fig. 7a was picked from . . o
b Y, 719 P . We argue that this is an important bug that limits Trans-

theLastevent-feature and shows the performance metric_." .) . .
ission from connecting to multiple peers behind a NAT

coalesced with the last piece receipt. The strong depen- . . .
dency toSent_Bt_Have is justified by the fact that im- rg]ox. In cases where multiple peers are situated behind a

. ; . T box in an ISP, they would definitely want to down-
plementations send out piece advertisements to peers, oégd from each other and avoid the slow ISP link. This

soon as they Feceive one more piece. Similarly, the Sta.tBug would prevent local connections, thus forcing them
dependency graph in Fig. 7b shows strong dependenm?s

between download completion time and the number o 0 connect to peers on the Interet.
pieces download in half the run, and also the progresg 32 Tuning the performance
(which is in fact a factor oPieces Have).

This led to Considering the second ranked state grapﬁince the fix for the first bug was too tediOUS, we decided
in Fig. 7c, which in fact had a very close score to theto circumventthe problem by assigning unique virtual IP
h|ghest rank. This DN was constructed from snapshot@ddresses to each of the nodes. This did indeed solve
of the state variables at three-fourth of Transmission’she problem and made Transmission faster to an average
download time. The interpretation is tHatintime is af- ~ download time of 342 sec, which was still much higher
fected by the amount of data uploaded (seeded), which if1an 288 sec. IBTALYZER was used again with the new
essential in a symbiotic environment such as BitTorrentSet of logs which produced the dependency graph output
This upload is trivially dependent on the upload speedshown in Fig. 8. Considering the event DN in Fig. 8a,
and finally associated with a very highly differiRgers ~ showing the highly divergent performance metric for the
Connected. Thisimmediately takes the developer to the Lastfeature. Some of the features of this DN are similar
distributions of the number of peers, all nodes reporting© Fig. 7a that were discussed earlier.

6 peers. Following this, thelaximumfeature confirmed ~ The dependency between finishing and sending re-

that while Transmission had only 6, Azureus had 50. quests fits well with the protocol specifications, that a re-
quest for a piece must be sentin order to receive one. The

Fixingthebug To find the problem that limited Trans- Announce event happenafter sending out requests, and
mission’s peer connectivity, we considered a singlehence de-values its possibility for root cause. The inter-
node’s logs and fetched the set of unique IP:port pairsested messages were a more probable cause of the differ-
and on looking at the values, we immediately realizedences (compared to un-choke) because one must first ex-
that each peer had a different IP address. In our expepress interest in another peer after connection establish-
imental setup with 6 physical machines, different nodesment. Only after this step does the remote peer unchoke
on the same physical machine were setup to listen on difit, thus opening up the connection to piece requests. This
ferent ports and coexist peacefully. The bug was traced thypothesis was verified by viewing the distributions of
the internal sorted set holding peers, whose compariso8ent_Bt_Interested across all features. After knowing
function completely ignored the port number of the peer.the root cause, the distribution for the offending variable

12

Sent Bt_Request

Sent Bt_Have

Seeds Connected

Seeds Total

(a) Event (b) State
Figure 8: Dependency graphs for BitTorrent after fixing therbroblem

in theFirst feature showed gaps of the order of 10 sec orcluster performance behaviors, and identify root causes
Transmission, but was very small for Azureus. of failures and anomalous performance. étual. [12]

We traced the code from the message generator to fipropose the use of a Finite State Automaton to learn
these large gaps, and found a timer (calfedhoke- the structure of a normal execution, and use it to detect
Timer) that fired every 10 sec. For comparison, we foundanomalies in performance of new input log files. u
that Azureus had a similar timer set at 1 sec, thus givingl. [32] propose a mechanism to encode logs into state ra-
it a quicker download start. The large divergence in sendtio vectors and message count vectors, and apply Princi-
ing interested messages could be fixed by shortening theal Component Analysis to identify anomalous patterns
timer value from 10sec to 1sec. Fig. 8b shows the statavithin an execution. However, they completely ignore
DN for the same logs for completeness, but it does notimestamps in logs and use the value logged, to identify
indicate a highly divergent root cause. localized problems within a single log file. On the other

Per f - Wi bl | ick f hand, DSTALYZER finds the root cause of the most sig-
o anbe Jains e were able to apply a quick fix nificant performance problem that affects twerallper-

for this problem and the download times of TransmiSSionformance In contrast to all these systemssLYZER

were ml.JCh better than earlier, dropping the mean COM3ims to find the cause of performance problems in a ma-
pletion time to 288 sec. The performance was upto 450/1

; . or portion of the log instances, and hence uses t-tests to
better than the first experiment. It should be noted tha ompare the average performance
t_he more frequent t_im_er did_not gffect the resource uti- Request flows are a specific type of distributed pro-
lizations of Transmission, still using _far fewer CPU_ cy- cessing, with a pre-defined set of execution patbnts
cles and memory than Azureus. Neither of these issueg o system. Sambasivan al. [28] aim to find struc-
affected correctness, nor threw any sort of exceptionsy, o ang performance anomalies in request flows that are
and present themselves as subtle challenges to the dev

. duced by code changes. Their approach of compar-
opers. Overall, 5 DNs were reported for the two |ssuesmg different requests bears some similarity to our tech-

in Transmission, out of which 3 indicated trivial relation- nique. However, as we illustrate through our case stud-
.Sh'ps between the_ Components,_ but the other two Weltes, DISTALYZER can be applied to request flow systems
immensely helpful in understanding the root causes. (HBase), as well as other types of distributed systems,
by abstracting the logs into states and events. Although
6 Reated Work these specific applications of machine learning (includ-
ing [1,3,5,6]) can leverage path structuressTALYZER
Model checking aims to provide guarantees on prograntan show themost impactingoot cause among many
code against pre-specified properties. A number of techperformance problems.
niques [16, 20, 23] have described different methods to There has been work in identifying the most impor-
assert program correctness. However, traditional modetant parts of systems logs through clustering of event fre-
checking attempts to discover violations of clear fail- quencies [27]. Coheat al.[6] use instrumentation data
ure conditions. There is also research in applying mafrom servers to correlate bad performance and resource
chine learning to logs of faulty executions, to categorizeusage using tree-augmented Bayesian networks. Simi-
them [3,7] and also predict the root cause [5]. Conditiondarly, DISTALYZER can utilize system monitoring data as
of performance degradation cannot be accurately modeutlined in Section 2 to identify performance slowdowns
eled using these approaches, because it is rarely possibdele to resource contention using DNSs.
to specify performance as definite runtime predicates. Splunk [29] is an enterprise software for monitoring
The formulation of debugging as an anomaly detectiorand analyzing system logs, with an impressive feature
task has been applied in a variety of contexts. Magpie [3ket. Although it provides a good visual interface for man-
and Pinpoint [5] model request paths in the system taually scanning through logs and finding patterns, it does

13

not provide tools for rich statistical analysis on the data.[10]
Furthermore, there is no support for comparing two sets
of logs automatically. We believe that Splunk is com- [11]
plementary to our work, and the concepts embodied in

DISTALYZER could serve as a great addition to Splunk. [12]

7 Conclusion
(13]

This paper proposes a technique for comparing dis-
tributed systems logs with the aim of diagnosing perfor—[14
mance problems. By abstracting simple structure from
the logs, our machine learning techniques can analyze
the behavior of poorly performing logs as divergencel[15]
from a given baseline. We design and implememns-D
TALYZER, which can consume log files from multiple [16]
nodes, implementations, runs and requests and visuall
output the most significant root cause of the performancg
variation. Our analysis of three mature and popular dis!
tributed systems demonstrates the generality, utilitg, an 19
significance of the tool, and the reality that even our ma-
ture systems have undiagnosed performance issues that
impact the overhead, cost, performance, or health of ouo]
systems. DsTALYZER allows us to find and solve these
problems, where manual analysis has previously been
unsuccessful. [

Acknowledgments. We would like to thank Alex Ras-
mussen for assisting us with usingd¥ALYZER on Tri-
tonSort logs.

(22]
(23]

References

[1] AGUILERA, M. K., MocuL, J. C., WENER, J. L., [24]
REYNOLDS, P.,AND MUTHITACHAROEN, A. Performance de-
bugging for distributed systems of black boxesSIBSR(2003).

[2] Azureus bittorrent client. http://azureus.sourcgtanet/. [25]

(31

BARHAM, P., DONNELLY, A., ISAACS, R.,AND MORTIER, R.
Using Magpie for Request Extraction and Workload Modelling

In OSDI (2004). [26]
[4] CHANG, F., DEAN, J., GHEMAWAT, S., HsIEH, W. C., WAL -
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND [27]

GRUBER, R. E. Bigtable: a distributed storage system for struc-
tured data. IrOSDI (2006).

CHEN, M. Y., ACCARDI, A., KICIMAN, E., LLOYD, J., RAT-
TERSON D., FOx, A., AND BREWER, E. Path-based faliure
and evolution management. NSDI (2004).

COHEN, I., GoLbszmIDT, M., KELLY, T., SYMONS, J.,AND
CHASE, J. S. Correlating Instrumentation Data to System States:[29]
A Building Block for Automated Diagnosis and Control. @SDI
(2004), USENIX Association, pp. 16-16.

COHEN, |., ZHANG, S., GOLDSZMIDT, M., SYMONS, J.,
KELLY, T., AND FOX, A. Capturing, indexing, clustering, and
retrieving system history. IBOSP(2005), ACM, pp. 105-118.

(5] 28]

(6]

(30]

7 34

[8] CooPER B. F., SLBERSTEIN, A., TAM, E., RAMAKRISHNAN, (32]
R., AND SEARS, R. Benchmarking cloud serving systems with
ycsh. INSOCC(2010).

[33]

DEMSAR, J., ZUPAN, B., LEBAN, G.,AND CURK, T. Orange:
From Experimental Machine Learning to Interactive Data Min
ing. In PKDD. 2004.

El

14

ELKAN, C. The Foundations of Cost-Sensitive LearninglJn
CAI (2001), pp. 973-978.

FONSECA R., PORTER, G., KATZ, R. H., SHENKER, S.,AND
STOICA, |. X-trace: A pervasive network tracing framework. In
NSDI (2007).

Fu, Q., Lou, J.-G., WANG, Y., AND LI, J. Execution anomaly
detection in distributed systems through unstructuredaiogly-
sis. InICDM (2009), pp. 149 —158.

GEELS, D., ALTEKAR, G., MANIATIS, P., ROSCOE T., AND
STOICA, I. Friday: Global comprehension for distributed replay.
In NSDI (2007).

] GEELS, D., ALTEKAR, G., SHENKER, S., AND STOICA, .

Replay debugging for distributed applications. Usenix ATC
(2006).

GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google
file system.SIGOPS Oper. Syst. Rev.,%7(2003), 29-43.

GODEFROID, P. Model checking for programming languages
using verisoft. INPOPL(97).

17] Apache hadoop project. http://hadoop.apache.org/.
18] Hbase. http://hbase.apache.org/.
] HECKERMAN, D., CHICKERING, D. M., MEEK, C., ROUN-

THWAITE, R., AND KADIE, C. Dependency Networks For In-
ference, Collaborative Filtering, and Data VisualizatiodMLR
(2001), 49-75.

KILLIAN , C., ANDERSON J. W., HALA, R.,AND VAHDAT, A.
Life, death, and the critical transition: Detecting livesébugs in
systems code. INSDI (2007).

21] Liu, X., Guo, Z., WANG, X., CHEN, F., LIAN, X., TANG, J.,

WU, M., KAASHOEK, M. F.,AND ZHANG, Z. D3S: Debugging
Deployed Distributed Systems. MSDI (2008).

Apache log4j. http://logging.apache.org/log4j.
MUSUVATHI, M., PARK, D. Y. W., CHOU, A., ENGLER, D. R.,

AND DiLL, D. L. CMC: A Pragmatic Approach to Model Check-
ing Real Code. I'8OSR2002), ACM.

MUSUVATHI, M., QADEER, S., BaLL, T., BASLER, G.,
NAINAR, P. A., AND NEAMTIU, |. Finding and reproducing
heisenbugs in concurrent programs.A8DI (2008).

RASMUSSEN A., PORTER, G., CONLEY, M., MADHYASTHA,
H. V., MYSORE, R. N., RUCHER, A., AND VAHDAT, A. Triton-
Sort: A Balanced Large-Scale Sorting SystemNBDI (2011).

REYNOLDS, P., KILLIAN, C., WIENER, J. L., MoGuL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: Detecting the unexpected
in distributed systems. INSDI (2006).

SABATO, S., YOM-Tov, E., TSHERNIAK, A., AND ROSSET
S. Analyzing system logs: a new view of what's important. In
SYSML(2007), USENIX Association, pp. 1-7.

SAMBASIVAN, R. R., ZHENG, A. X., ROSA, M. D., KREVAT,

E., WHITMAN, S., STROUCKEN, M., WANG, W., XU, L., AND
GANGER, G. R. Diagnosing performance changes by comparing
request flows. INSDI (2011), USENIX Association.

Splunk. http://www.splunk.com/.
Transmission bittorrent client. http://www.trangsionbt.com/.
WELCH, B. L. The generalization of student’s problem when

several different population variances are involvegiometrika
34, 1-2 (1947), 28-35.
XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JORDAN,

M. |. Detecting large-scale system problems by mining ctnso
logs. INSOSP2009), ACM, pp. 117-132.

YABANDEH, M., KNEZEVIC, N., KOSTIC, D., AND KUNCAK,
V. Crystalball: Predicting and preventing inconsisteadie de-
ployed distributed systems. MSDI (2009).

	Structured Comparative Analysis of Systems Logs to Diagnose Performance Problems
	Report Number:
	

	tmp.1336500082.pdf.iYHpv

