
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2011

Network Similarity Decomposition (NSD): A Fast and Scalable Network Similarity Decomposition (NSD): A Fast and Scalable

Approach to Network Alignment Approach to Network Alignment

Giorgos Kollias
Purdue University, gkollias@purdue.edu

Ananth Y. Grama
Purdue University, ayg@cs.purdue.edu

Shahin Mohammadi
Purdue University

Report Number:
11-001

Kollias, Giorgos; Grama, Ananth Y.; and Mohammadi, Shahin, "Network Similarity Decomposition (NSD): A
Fast and Scalable Approach to Network Alignment" (2011). Department of Computer Science Technical
Reports. Paper 1753.
https://docs.lib.purdue.edu/cstech/1753

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

1

Network Similarity Decomposition (NSD):
A Fast and Scalable Approach to Network

Alignment
Giorgos Kollias, Shahin Mohammadi, and Ananth Grama

Abstract—As graph-structured datasets become commonplace, there is increasing need for efficient ways of analyzing such datasets.

These analyses include conservation, alignment, differentiation, and discrimination, among others. When defined on general graphs,

these problems are considerably harder than their well-studied counterparts on sets and sequences. This is a direct consequence

of the underlying isomorphism associated with many of these problems. In this paper, we study the problem of global alignment of

large sparse graphs. Specifically, we investigate efficient methods for computing pairwise topological similarity between nodes in two

networks (or within the same network). Pairs of nodes with high similarity can be used to seed global alignments.

We present a novel approach to this computationally expensive problem based on un-coupling and decomposing ranking calculations

associated with computation of similarity scores. Un-coupling refers independent pre-processing of each input graph. Decomposition

implies that pairwise similarity scores can be explicitly broken down into contributions from different link patterns traced back to the initial

conditions for the computation. These two concepts result in significant improvements, in terms of computational cost, interpretability

of similarity scores, and nature of queries. We show over two orders of magnitude improvement in performance over state-of-the-art

IsoRank/ Random Walk formulations, and over an order of magnitude over constrained matrix-triple-product formulations, in the context

of real datasets.

Index Terms—H.2.8.d: Data mining; G.1.3.i: Sparse, structured, and very large systems; G.1.3.h: Singular value decomposition

F

1 INTRODUCTION AND MOTIVATION

Graph structured datasets are commonly encountered in
diverse domains, ranging from biochemical interaction
networks, to networks of social and economic trans-
actions. Effective analyses of these datasets hold the
potential for significant applications’ insight. Compared
to data abstracted as sets, sequences, or even graphs with
well-defined structure, analyses techniques and software
for general large sparse graphs are in relative infancy.
Traditional problems relating to conserved components,
discriminating components, modularity, clustering, and
alignment are more expensive for graph structured data.
Many of these problems can be related to (sub)graph
isomorphism, which is known to be NP Hard. Conse-
quently, effective techniques must leverage properties of
specific datasets to deliver acceptable performance.
Given two graphs, an interesting question one may

ask is: “how similar is each node in the first graph
to each node in the second?” or “what is the best
match for each node in the first graph to nodes in
the second graph?”. A solution to this problem can be
used to align two given networks to identify invariant
subgraphs. Note that this is not a solution to the sub-
graph isomorphism problem (or a homeomorphism) in
the general case, since suitable measures of similarity
and constraints on mappings must be specified. The

The authors are with the Department of Computer Sciences, Purdue Univer-
sity, West Lafayette, IN 47907, USA
e-mail addresses: gkollias@purdue.edu, mohammas@purdue.edu,
ayg@cs.purdue.edu

construction of a similarity matrix S, where element si,j

denotes the similarity of node i in the first graph to node
j in the second graph, depends on the specific measure
of node similarity. Similarity measures differ along many
dimensions – perhaps, the most relevant here is the
topological scope of the measure. Local measures define
similarity on the basis of the neighborhood of nodes.
Global measures define similarity based on network
connectivity patterns over the entire graph. This paper
investigates efficient algorithms for computing global
similarity measures across two graphs (or a graph with
itself). Similarity scores represent the inherent, but latent
correspondences between nodes. These scores can serve
as seeds for ‘growing’ conserved subgraphs. In appli-
cations such as biochemical pathway analyses, these
conserved subgraphs provide important insights into the
functional and structural composition of networks.
We initiate our discussion with a formal description of

topological similarity of nodes in a network. We draw on
an analogy from the problem of identifying “reputed”
nodes in a single network – also sometimes called the
page-ranking, or node-ranking problem. Perhaps, the
most commonly used measure for the rank of a node can
be recursively defined as follows: “a node is important if
it is linked by other important nodes” [1]. Extending this
definition to the node similarity problem, we arrive at
the following definition: “two nodes are (topologically)
similar if they are linked by other (topologically) similar
node pairs” [2], [3]. This analogy can be further extended
in application areas like automated image captioning

2

[4] or synonym extraction [5], where node similarity is
modeled as node ranking, inspired by its two dominant
models – Page-Rank and HITS [6].
The general notion of node similarities can be ex-

tended to account for prior knowledge relating to the
networks. To highlight this concept, we introduce no-
tions of elemental similarity and topological similar-
ity. Elemental similarity corresponds to the similarity
between two labeled nodes, independent of their link
structure. For example, in the context of protein interac-
tion networks, elemental similarity between two nodes
may simply correspond to the sequence match between
the two proteins. Topological similarity on the other
hand combines elemental similarity (where available)
with link structure to compute an aggregate measure.
We use the term topological similarity and general node
similarity interchangeably in this paper.
Elemental similarity can be incorporated into topo-

logical similarity scores in different ways. Singh et al.
[3] use independent sequence data for protein similar-
ity to augment protein interactions in Protein-Protein-
Interaction (PPI) networks. These elemental similarities
do not rule out any topological similarity matchings;
however, node pairs with higher elemental similarity
are favored while computing their topological similarity
scores. Alternately, metadata tags on nodes (e.g., the
textual content of articles in a corpus), can be used to rule
out “irrelevant” node pairs [7]. This in turn can be used
to reduce memory and computational overheads signifi-
cantly. In yet other approaches [5], one cannot enforce
exclusion, however, one may specify pair preferences
in the initial conditions. In most of these applications,
one is not interested in the entire topological similarity
matrix, but rather in the best-matching node pairs. This
optimization is often formulated as the maximization
of some function of the cumulative pairwise topological
similarity scores.
To the best of our knowledge, existing approaches to

computing node similarity process input graphs simul-
taneously. A commonly used approach is to compute a
sparse (or sparsified) product graph of the input graphs,
and to compute node ranks within this product graph.
Such approaches, however, have significant computa-
tional cost for large graphs, since products of graphs
with 106 nodes and beyond often become computa-
tionally intractable. In this paper, we present a novel
approach that allows us to un-couple the processing of
input graphs through elemental algebraic manipulations.
These manipulations facilitate finer-grained processing
to identify similar components across graphs (decom-
position) rapidly. In doing so, our approach acceler-
ates node similarity computations by over two orders
of magnitude compared to state-of-the-art IsoRank and
Random-Walk based approaches. These performance
gains are demonstrated on moderate sized graphs de-
rived from real datasets. For larger graphs, these gains
can be expected to be significantly higher, as we show
using a simple performance model for our algorithm.

The rest of this paper is organized as follows: we
introduce basic terminology and background in Section
2.2. We use this background to motivate and describe
our proposed algorithm, Network Similarity Decompo-
sition (NSD) in Section 3. We show how our proposed
algorithm un-couples and decomposes the similarity com-
putation kernel of Singh and Berger [3]. Experimental
results from our approach on real datasets (biological,
social and Web networks) are presented in Section 4.
Concluding remarks and avenues for future work are
summarized in Section 5.

2 BACKGROUND AND NOTATIONS

2.1 Related Results

There are two sets of results on graph analyses that are
of particular relevance to our proposed work. The first
set targets the ranking of a node in a single network.
These results are primarily motivated by applications in
information retrieval and web-search. For this reason,
nodes are often referred to as “pages” (for web pages),
and node ranks often correspond to the “reputation”
or “importance” of a page. The second, more recent
set of results, targets the correspondence, or similarity,
between nodes across multiple networks. These results
are motivated by diverse applications, ranging from
analyses of biochemical pathways to studies of structure
and organization of social networks. Getoor and Diehl
[8] provide an excellent survey of early results in this
area.
Among the efforts targeting node ranking in a (single)

network, the two relevant results are the Page-Rank [1],
[9] method of Page et al. and Silverstein et al., and the
HITS algorithm of Kleinberg et al. [6]. Page-Rank models
a web surfer using random walks with occasional new
traversals initiated from newly selected pages (nodes).
The rank of a page is determined by computing the
steady-state distribution of the consequent random pro-
cess. The HITS model, on the other hand, distinguishes
between “hubs” and “authorities”, and computes their
ranks in a mutually reinforcing manner [10]. The moti-
vation behind HITS is that a good authority should be
pointed to by many good hubs, and that a good hub
should point to many good authorities. Each page has
both a hub score and an authority score. These scores
are updated iteratively by the HITS algorithm. The HITS
method is closely related to the Page-Rank algorithm
– it finds similarity scores using two separate random
walks on the corresponding bipartite graph of hubs and
authorities, based on two different transition matrices.
It follows naturally that the final scores are also the
equilibrium distributions of the respective random walks
[11]. Building on there methods, Ding et al. [10] propose
a framework that unifies the HITS and the Page-Rank
methods, and motivates other techniques, OnormRank,
InormRank, and SnormRank. A number of modifications
have also been proposed to the original Page-Rank and
HITS algorithms. Bharat et al. [12] and Chakrabarti et

3

al. [13] extend the HITS method to weighted graphs. Ng
et al. [11], [14] analyze the stability of Page-Rank and
HITS methods with respect to small perturbations to the
network structure. They also present a new variant of
HITS method to improve its stability.
Motivated by the Page-Rank and HITS methods, sev-

eral efforts target computation of similarity of nodes
across networks. This problem is sometimes also referred
to as network alignment. Blondel et al. [5] generalize
the HITS method and introduce a measure of similarity
between any pair of vertices in a pair of directed graphs.
Their method, however, does not converge to unique
odd and even limits in general. Zager et al. [15] propose
a modified version of Blondel iterations by adding addi-
tional diagonal elements in order to amplify the scores
of nodes that are highly connected (have high degree).
Their proposed iteration is shown to always converge
independent of the initial condition.
Methods based on Page-Rank have also been proposed

for finding node similarities in different application do-
mains. Of these, the IsoRank algorithm [3] of Singh et
al. is of particular relevance. IsoRank computes vertex
similarity scores in protein-protein interaction networks,
integrating both vertex attributes (similarity of protein
sequences, or elemental similarity) and topological sim-
ilarities (links to similar nodes). It then uses bipartite
matching to align the pair of input networks based on
topological similarity scores. Another method, similar
in nature to Page-Rank, is the graph kernel proposed
by Rupp et al. [16], which uses special characteristics
of chemical networks (bounded degree) to specialize
Page-Rank to their target structures. Specifically, in each
iteration they find the optimal mapping between neigh-
borhoods of each pair of vertices to compute topological
similarity. Finding these optimal mappings is feasible,
since there are constant numbers of total mappings
between neighborhoods of each pair of nodes.
Network Similarity Decomposition (NSD) is a highly effi-

cient algorithm for Page-Rank-based topological similar-
ity computations. It works by un-coupling and decompos-
ing similarity computations. In addition to significant im-
provements in computational cost (orders of magnitude),
NSD supports a rich-query set efficiently, generates ex-
ecution traces that can be used to identify patterns that
contribute significantly to topological similarity scores,
and is highly amenable to parallel implementation [17].
It also supports parameters that can be tuned for desired
model, as well as performance requirements.

2.2 Terminology and Preliminaries

We represent a graph GA(VA, EA) by its adjacency matrix
A, where aij = 1 iff node i points to node j, indicated
by i → j, and zero otherwise. VA and EA denote the
vertices and edges of GA respectively, and nA denotes
the total number of nodes in GA. Further, d(i) represents
the number of links associated with node i (sum of in-
links and out-links for directed graphs), also known as

the vertex degree of node i. Matrix Ã is the normalized
version of the matrix AT ; formally, (Ã)ij = aji/

∑nA

i=1 aji

for nonzero rows of A and zero otherwise. We denote
by 1, the column vector of size nA consisting of 1’s
Using this notation, matrix-vector products have in-

teresting interpretations. If vectors denote score values
distributed across the nodes of a directed graph, y = Ãx
or yT = xT ÃT can be viewed as score transport oper-
ations: the ith node “pulls” one portion of the current
score of each of its neighbors; each portion “pushed”
by its jth neighbor is

xj

d(j) in value. This notion of score
transport helps us interpret more complex expressions.
For example, element i, j of matrix Ãn is the fraction of
the unit score initially at node j, accruing at node i after
n steps.

2.3 Network similarity as ranking

Most current algorithms for ranking nodes in a single
graph A use either products of A and AT (the HITS
algorithm [6]), or powers of Ã (the PageRank algorithm
[1]). In doing so they capture both in-link and out-link
information, since matrix A corresponds to sending on
out-links, AT corresponds to receiving from in-links, and
Ã corresponds to receiving from in-links “contracted” (or
normalized) by the number of out-links of the sources.
An interesting extension of this concept relates to

the use of link information simultaneously from two
graphs in order to derive similarity scores for pairs of
nodes, one from each graph. The common basis for node
ranking algorithms within a given graph is that “a node
has high ranking if its immediate neighbors have high
rankings”. This recursive definition is used by iterative
matrix products to incorporate contributions from dis-
tant neighbors. Analogously, a basis for topological 1

similarity is that “a pair of nodes has high similarity
if its immediate neighbors have high similarities”. This
neighbor-relation is defined over a new graph, the tensor
product GC = GA × GB , having as its nodes, pairs of
nodes from GA, GB . Node ci in this product graph takes
the form (ai, bi), where ai ∈ VA and bi ∈ VB . Edges in this
graph, EC are of the form (ci, cj) ∈ EC iff (ai, aj) ∈ EA

and (bi, bj) ∈ EB . Conventional node ranking algorithms
can be executed on this product graph GC . Nodes with
high ranking scores in this graph correspond to high-
similarity node-pairs from GA and GB .
We now consider two examples of ranking nodes in

GC to compute similarity scores between nodes in GA

and GB .

2.3.1 HITS Inspired Algorithm

Blondel et al. [5] construct a matrix X of dimensions
nB × nA, which is initialized to all 1’s. The following

1. Unweighted directed graphs are networks with weight one on all
edges. Their generalization to graphs with arbitrary edge weights is
straightforward for much of our discussion here. We use the terms
directed graphs and networks interchangeably

4

iterative procedure is then applied:

X ← BXAT + BT XA. (1)

After each step, the matrix X is normalized. Even iterates
of this procedure are proved to converge to a matrix X ′

where x′

ij is a measure of the similarity of node i ∈ VB

and j ∈ VA.
One may introduce an operator vec(·) for stacking

matrix columns into a vector (as well as its associated
“inverse” unvec(·) operator for re-assembling the ma-
trix). If x = vec(X), an interesting property of Kronecker
products:

vec(AXB) = (BT ⊗A)x, (2)

can be written as:

AXB = unvec((BT ⊗A)x) (3)

In view of this, we can write the basic step of iterative
procedure (1) as:

x← (A⊗B + AT ⊗BT)x,

or, since C = A⊗B, as

x← (C + CT)x (4)

Consequently, except for the normalization step that
can be carried to the end, these iterations generate products
of an arbitrary number of C and CT factors applied to some
initial vector x.

2.3.2 PageRank Inspired Algorithm

Singh et al. [3] propose an iterative procedure of the
form:

x← αÃ⊗ B̃x + (1− α)h. (5)

Here x = vec(X), with xij as above, and h = vec(H),
with element hi,j of matrix H corresponding to the
elemental similarity score between node i ∈ VB and
j ∈ VA. The vector h is normalized to unity. Successive
iterates scale topological similarity and elemental simi-
larity of nodes by factors α ≤ 1 and 1 − α, respectively.
In the specific application context of Singh et al., h
encodes protein sequence similarity scores, and protein
interaction networks GA and GB are undirected. Note
also that C̃ = ˜A⊗B = Ã⊗ B̃ (�̃ distributes over �⊗�),
and thus iteration step (6) can also be written as:

x← αC̃x + (1− α)h (6)

Equation (6) is effectively a Page-Rank calculation, x←
αGx + (1 − α)v, where the Google matrix G [1] for one
graph is replaced by the C̃ matrix (the column stochastic
form of the Kronecker product of the adjacency matrices
of two graphs) and the personalization vector v (user
preferences in browsing) is replaced by h (precomputed
matching preferences, or elemental similarities). By “un-
vec”ing (6), we obtain:

X ← αB̃XÃT + (1− α)H (7)

The topological similarity component in this equation
αB̃XÃT has an interesting interpretation along the lines
of the score transport metaphor (see Figure 1 example).

Fig. 1: An example 3 × 4 similarity matrix X (bottom
center) between B̃ and ÃT -under their respective graphs
GB and GA (at top left and top right respectively)-
exactly as in B̃XÃT . Node 2 “pulls” the total score of its
two neighbors; however there are 4 ways of doing this
(2nd row of B̃ multiplied with each of the 4 columns in
X gives a row vector y() with 4 elements). This corre-
sponds to the fact that node 2’s neighbors are implicitly
linked with each of the 4 nodes in the other graph
(i.e., for possible matchings). However, the X21 entry
will finally be updated only by y(2) and y(3) weighted
contributions, because only nodes 2 and 3 happen to be
neighbors of node 1 ∈ VA (“pushing” their contributions
to it). The weights will are 1

2 and 1
3 , because in turn

nodes 2 and 3 have 2 and 3 neighbors, respectively.

3 NETWORK SIMILARITY DECOMPOSITION

(NSD)

We present our method for decomposing the computa-
tion of the similarity scores for a given pair of networks.
The starting point for our discussion is the approach
of Singh et al. [3]. Our method dramatically reduces
the cost of these computations. Furthermore, it provides
execution traces that can be used to interpret topological
similarity scores by identifying link patterns that signif-
icantly contribute to topological similarity.

We start by expanding the iteration (6), and without
loss of generality use h for the initial condition (x(0) = h),
successively yielding:

x(1) = αC̃h + (1− α)h,

x(2) = α2C̃2h + (1− α)αC̃h + (1− α)h,

. . .

resulting, after n steps, in the following expression for
iterate x(n):

x(n) = (1− α)
n−1∑

k=0

αkC̃kh + αnC̃nh, (8)

5

which in the limit n→∞ for α < 1 simplifies to

x(∞) = (1− α)
∞∑

k=0

αkC̃kh (9)

Such expansions have been studied in [18], albeit in the
context of PageRank calculations. Expansion (8) states
that similarity scores (“vec”ed into iterate x(n)) can be
expressed as power series in C̃ (capturing the network
structure of the graphs under comparison) applied to
vector h (capturing prescribed information or user pref-
erences), also weighted by parameter α (determining
the relative contribution of these two factors in the
computed similarity scores).
We now focus on expanding and “unvec”ing power

terms in Expression (8). In view of the property (Ã ⊗
B̃)(Ã⊗B̃) = Ã2⊗B̃2 for multiplying Kronecker products,
for the second power term we have:

C̃2h = (Ã⊗ B̃)(Ã⊗ B̃)h = (Ã2 ⊗ B̃2)h

Utilizing Property (3) for “unvec”ing, this yields:

B̃2H(ÃT)2

Similarly, the “unvec”ed kth power term correspond-
ing to C̃kh for any k, expands to B̃kH(ÃT)k, and so
the “unvec”ed version of Expression(8) for X(n) can be
written as:

X(n) = (1− α)

n−1∑

k=0

αkB̃kH(ÃT)k + αnB̃nH(ÃT)n (10)

This expansion could alternatively be generated by iter-
ating for n steps the “unvec”ed version of expression (6)
and setting X(0) = H .
We proceed by decomposing H (with the dual pur-

pose of encoding preferences and serving as the initial
condition for our iterations), into a sum of outer products
of vectors. Singular Value Decomposition (SVD), a well
established method for this purpose, enables us to write:

H =

r∑

i=1

σiuivi
T , (11)

where r ≤ min(nA, nB) is the rank of H , and σi > 0, ui, vi

for i = 1, . . . , r are, respectively, the singular values, the
left singular vectors and the right singular vectors of H .
Note that σi are implied sorted (σ1 is its largest singular
value); additionally vectors ui constitute an orthonormal
basis (uiu

T
j = δij); similarly for vectors vj vectors (viv

T
j =

δij).
Inserting (11) into (10), we get

X
(n) =

r
X

i=1

σi

"

(1 − α)

n−1
X

k=0

α
k
B̃

k
uiv

T

i (ÃT)k + α
n
B̃

n
uiv

T

i (ÃT)n

#

(12)

Setting u
(k)
i = B̃kui and v

(k)
i = Ãkvi, we obtain

X
(n) =

r
X

i=1

σi

"

(1 − α)

n−1
X

k=0

α
k
u
(k)
i

v
(k)
i

T

+ α
n
u
(n)
i

v
(n)
i

T

#

(13)

Or, more compactly, as a sum of component score con-

tributions X
(n)
i with:

X
(n)
i

= σi

"

(1 − α)

n−1
X

k=0

α
k
u
(k)
i

v
(k)
i

T

+ α
n
u
(n)
i

v
(n)
i

T

#

(14)

Separately, from each SVD triplet (σi, ui, vi):

X(n) =

r∑

i=1

X
(n)
i (15)

We stress the fact that SVD is only one of the alterna-
tives for decomposing H into a sum of outer products for
a given number, s, of vector pairs. Such a decomposition
can generally be expressed as:

H =

s∑

i=1

wiz
T
i , (16)

and, Expressions (14) and (15) can be modified, respec-
tively, to:

X
(n)
i = (1− α)

n−1∑

k=0

αkw
(k)
i z

(k)
i

T
+ αnw

(n)
i z

(n)
i

T
, (17)

and:

X(n) =

s∑

i=1

X
(n)
i (18)

Note that the decomposition happens along sets of paths
of successively larger length k. However, their contribu-
tions are damped because of the (1 − α)ak factor with

a ∈ [0, 1]). In this context, w
(k)
i = B̃kwi, and z

(k)
i = Ãkzi.

Here, s is simply the number of components used, and
does not necessarily coincide with r, the rank of H
(s ≥ r for exact decompositions). Consequently, SVD
corresponds to the special case: wi ← σiui, zi ← vi

(with additional orthonormality conditions, not neces-
sarily required, s = r). The aforementioned procedure is
summarized in Alg. 1.

Algorithm 1 NSD: Calculate X(n) given A, B, {wi, zi|i =
1, . . . , s}, α and n

1: compute Ã, B̃
2: for i = 0 to s do
3: w

(0)
i ← wi

4: z
(0)
i ← zi

5: for k = 0 to n do
6: w

(k)
i ← B̃w

(k−1)
i

7: z
(k)
i ← Ãz

(k−1)
i

8: end for
9: zero X

(n)
i

10: for k = 0 to n− 1 do

11: X
(n)
i ← X

(n)
i + αkw

(k)
i z

(k)
i

T

12: end for

13: X
(n)
i ← (1− α)X

(n)
i + αnw

(n)
i z

(n)
i

T

14: end for
15: X(n) ←

∑s

i=1 X
(n)
i

6

3.1 Complexity considerations

A straightforward, although naive, implementation of
the similarity calculation for dense X would proceed
along the lines of Equation (6). We denote the number of
non-zero elements in adjacency matrix A (the number of
edges in graph GA), by nnzA. The adjacency matrix C of
the product graph of A and B has nnzC = nnzA×nnzB

nonzero entries. Consequently, each iteration takes an
order of nnzA × nnzB floating point operations.
If we use the iteration kernel of (7) (triple-matrix

products) as in [7], the computational complexity per
step is of the order of nB × nnzA + nA × nnzB . Since in
our applications,

nnzA,B

nA,B
> 1, this is an improvement by

an identical factor.
By using our proposed method, NSD (Algorithm (1)),

each iteration step (for a number of s components) costs:

s× (nnzA + nnzB + nA × nB).

Therefore, for s <
nnzA,B

nA,B
(practically when the number

of components is less than the average degree in our
graphs, which is the case in our applications) significant
improvements are possible. This is confirmed by our
numerical experiments.
What we highlight above is only one aspect of the

improvement. Our decomposition approach is flexible
enough to address specialized queries without construct-
ing the full similarity matrix X , since it effectively op-
erates in a node pair-by-pair fashion. These specialized
queries include:

• What is the similarity score of nodes i ∈ VB and j ∈
VA? NSD can compute this query in O(s×n) floating
point operations. This value is also the respective
relative similarity score of the two nodes.

• Find an upper or lower bound of final X entries.
NSD computes this in O(s × n × max{nA, nB})
floating point operations.

In these cases, we assume that the vectors from the
power iterations (steps 6, 7 in Algorithm 1) are avail-
able. The cost of computing these vectors is O(s × n ×
max{nnzA, nnzB}). However, this cost can be amortized
since they can be reused.

3.2 Extension to Sparse Networks

Our algorithm outputs a dense similarity matrix X ,
i.e., it produces similarity scores for each pair of nodes
(i ∈ VB , j ∈ VA). This corresponds to a dense bipartite
graph between VA and VB . Such a dense similarity
matrix becomes prohibitively large for pairs of graphs
of the order of only a few tens of thousands of nodes
each. This drastically constrains similarity explorations
of a variety of other networks under the “dense X”
assumption. Several applications, though, permit the
pre-supposition of vanishing similarity scores for a large
fraction of potential matches. For instance, in [7], where
topic/ subject networks are compared, the similarity
matrix X is “sparsified” down to a density of 10−4

(sparse bipartite graph) by eliminating, from the start,
node matches with poor affinity in their textual labels
(i.e., using metadata tags).
Given a bipartite graph L with nodes in VB ∪ VA

and edge set (as a set of candidate node pairs) EL =
{(p, q)|p ∈ VB , q ∈ VA} that is sparse (|VB |×|VA| ≫ |EL|),
we can “sparsify” our NSD algorithm as follows:

Algorithm 2 NSD Sparse

1: Enforce sparse X
(n)
i matrices with non-zero entries

at positions indexed by EL.

2: Replace occurrences of outer vector products P
(k)
i =

w
(k)
i z

(k)
i

T
, k = 0, . . . , n, in steps 11, 13 in Algorithm

1 with their “sparsified” versions:
3: for (p, q) ∈ EL do

4: (P
(k)
i)

pq
= (w

(k)
i)

p
(z

(k)
i

T
)
q

5: end for

Algorithm 2 iterates over only the candidate pairs

(even though power iterations w
(k)
i ← B̃w

(k−1)
i , z

(k)
i ←

Ãz
(k−1)
i include all nodes, albeit separately for each

graph). This strategy may be further optimized if there
are unpaired nodes in either graph (smaller node set for
L).

3.3 Remarks on the use of Singular Value Decompo-
sition

We note some important aspects of SVD, used in the
previous section:

• Similarity matrix H is a non-negative matrix. In
the general case, some entries in vectors ui, and
vi will be negative, due to orthonormality. Perron-
Frobenius theorem ensures non-negativity only of
elements of vectors u1, v1. This implies that some

component score matrices X
(n)
i will have negative

entries. This might seem unnatural at first glance,
because we are used to non-negative similarity
scores. However, note that these scores are added
together, the corresponding summation in the final
X(n) is non-negative by construction (see Eq (10)). A

negative entry at the p, q position in matrix X
(n)
i im-

plies that the ith SVD triplet penalizes the matching
of nodes p ∈ VB and q ∈ VA.

• Another inconvenience from nonnegative entries is
the difficulty in bounding the error in X(n), if using
less than r terms in the SVD expansion. However,
if we decompose H as in (16) using vectors with
non-negative entries wi ≥ 0, zi ≥ 0, i = 1, . . . , s
then the matrix sequence of partial sums fj =∑j

i=1 X
(n)
i , j = 1, . . . , s would be element-wise in-

creasing, and since fs = X(n) is normalized to unity,
this would give us an indication of the proportion of
the target score matrix reached by utilizing less than
s components. In this respect, Non-negative Matrix
Factorization (NMF) [19] could be advantageous
compared to SVD.

7

Species Dataset name #Nodes #Edges

nematode worm(C. elegans) celeg 2805 4572

fruitfly(D. melanogaster) dmela 7518 25830

bacterium(E. coli) ecoli 1821 6849

bacterium(H. pylori) hpylo 706 1414

human(H. sapiens) hsapi 9633 36386

mouse(M. musculus) mmusc 290 254

yeast(S. cerevisiae) scere 5499 31898

TABLE 1: Species for which PPI network data (undi-
rected) is used in our experiments.

• Regarding the mixing of negative and non-negative

entries in the same X
(n)
i component, one may utilize

the method of Boutsidis [20] for writing each SVD
term as a difference of two separate, non-negative
sub-terms:

H =
r∑

i=1

σi(ui+vT
i+ + ui−vT

i−)− σi(ui+vT
i− + ui−vT

i+),

(19)
where an extra + subindex denotes the respective
vector with its negative entries zeroed, while an
extra − subindex denotes the vector with its non-
negative entries zeroed and its negative ones substi-
tuted with their absolute values. On the downside,
the run time is expected to increase by a factor of
four, in the worst case.

4 NUMERICAL EXPERIMENTS

We now present detailed experimental evaluation of our
proposed algorithm and compare it to a number of
existing approaches in the context of diverse network-
structured datasets.

4.1 Timing results (PPI Networks)

We first examine the computation time for our proposed
technique. For this purpose, we use protein interaction
data (PPI) and the IsoRank approach of Singh et al. for
comparison (native binary for IsoRank available at [21]).
Details of data for seven species (networks) used in the
experiment are provided in (Table 4.1).
We also use Matlab codes from netalign [22], specif-

ically their IsoRank and maximum weight bipartite
matching implementations; these were originally written
to support [7]. Note that this IsoRank implementation
does not explicitly construct the Kronecker product Ã⊗B̃
to apply to vec(X) at each step (referred as SpaIsoRank

in [7]). This is prohibitive for our test data. However,
this implementation uses the equivalent triple matrix
product kernel of B̃XÃT instead (MAT3 code).
We compute the similarity matrices X for all possible

pairs (first column in Table 2) of species using only PPI
data (network data). We set α = 1.0, use uniform initial
conditions (outer product of suitably normalized 1’s for
each pair) and execute 20 iterations in all runs. Note that
α = 1.0 is not treated as a special case in our Matlab code.

This would yield additional speedups. Instead, all terms
are generated.

Unfortunately the native code from Singh et al. [21]
does not provide an option for generating either the
similarity matrix X , or the timings for its computation.
It internally uses the result of this (first) phase, to extract
the best matching node pairs (second phase). The total
timing results - for both phases - are reported together
with the extracted matching pairs. Specifically, results
from two matching algorithms are reported [3], where
X is interpreted as encoding a weighted bipartite graph:

• A generic maximum-weight bipartite matching al-
gorithm is applied to X .

• A heuristic iterative approach is applied to X , where
the highest “score” xij is located, the pairing (i, j)
is recorded and all “scores” involving either i or
j are deleted until one of the graphs gets all its
nodes paired (also referred as GM-Greedy Match
hereafter).

The focus of our approach is the computation of X in a
fast, decomposable manner. It follows that if similarity
matrices agree and the same matching process is applied
to them, then the same best pair matches will be gen-
erated. Experiments show that the similarity matrices
we compute are identical to within machine precision to
those computed by netalign. Block diagrams of the codes
used in our experiments are summarized in Figure 3.

networks matches

elemental similarit ies

as component vectors

PDM

GM

NSD

networks matches

elemental similarit ies

as matr ix

PDM

GM

MAT3

networks matches

elemental similarit ies

as matr ix

IsoRank

Fig. 2: NSD and MAT3 are codes for computing the
similarity matrix, PDM, GM are codes for extracting
matchings; IsoRank binary includes codes for computing
the similarity matrix and extracting two matchings.

8

Each native IsoRank run computes the similarity ma-
trix and calculates two alternate bast pair matchings
(4th column in Table 2). The corresponding timings for
computing the similarity matrix alone with our IsoRank
NSD Matlab codes are presented in the 2nd column of
Table 2. For a fair timing comparison we independently
run the Primal-Dual Matching (PDM) implementation
from netalign on our computed similarity matrix X to
get best pairs matchings. These timings are reported in
the 3rd column of Table 2); Here, we assume that the
generic matching algorithm in Singh et al. [3] will have
comparable execution time and, in any case, it will not
dominate the main computation of the similarity matrix.
We also implement the GM heuristic (Java and C codes)
and achieve timings much smaller than those reported
in the 3rd column. We conclude from these results that
in all cases, NSD significantly outperforms the original
IsoRank implementation for computing topological sim-
ilarity matrix X (after taking into account the overhead
of matching in tabulated IsoRank timings).

NSD also outperforms the netalign Matlab codes
(MAT3) for computing similarity scores alone. Here,
the comparisons are direct and Figure 3 illustrates the
respective NSD speedups for all species combinations.
Speedup factors of roughly five to nine are observed.
We subsequently implement NSD in Java (for addi-
tional gains) and run a series of timing experiments
for various α < 1.0, the same number of iterations
(20) as before, s = 1, and uniform initial conditions,
also serving as elemental similarities (column 2) against
MAT3 (column3) and IsoRank (column 6); see Table 3
(a = 0.80). We also include timings for both match
extraction algorithms: PMD (column 4 in Matlab) and
GM (column 5 in Java). This data clearly shows that
NSD outperforms the similarity matrix implementations
in MAT3 by a of factor roughly 25! Gains are even more
dramatic with respect to the IsoRank implementation:
NSD is observed to be up to three orders of magnitude
faster for the larger PPI networks (after subtracting the
“overhead” of two matching algorithm - PDM and GM

- execution times).

These reported timings are for the case s = 1. For
larger values of s, one may expect a drop in the perfor-
mance improvement (a factor linear in s). In other words,
it would take a few tens or a few hundreds of compo-

nent similarity matrices X
(n)
i for our method to have

performance characteristics respectively similar to those
of existing MAT3 or IsoRank implementations. Even in
such cases, NSD provides significant additional infor-
mation (not available in the alternative computational
approaches) of exactly how initial condition components
contribute to the final similarity scores.

4.2 Self-similarity in Networks

We also use the Facebook networks referenced in [23],
each describing the corresponding USA university Face-

Species pair NSD (secs) PDM (secs) IsoRank (secs)
celeg-dmela 7.92 166.79 833.97
celeg-ecoli 1.84 44.40 137.08
celeg-hpylo 0.74 19.48 35.61
celeg-hsapi 12.68 232.15 1094.36
celeg-mmusc 0.35 12.71 20.66
celeg-scere 6.40 150.34 798.06
dmela-ecoli 5.08 91.89 785.21
dmela-hpylo 1.88 25.62 216.66
dmela-hsapi 32.53 479.88 N/A
dmela-mmusc 1.09 15.86 55.06
dmela-scere 15.01 191.18 5306.00
ecoli-hpylo 0.61 12.78 55.10
ecoli-hsapi 7.70 83.14 2022.19
ecoli-mmusc 0.20 11.58 10.38
ecoli-scere 4.08 79.85 1297.77
hpylo-hsapi 2.70 15.66 286.01
hpylo-mmusc 0.06 .47 6.40
hpylo-scere 1.79 6.77 227.80
hsapi-mmusc 1.27 1.59 87.82
hsapi-scere 20.35 26.68 7691.00
mmusc-scere 0.81 3.22 43.23

TABLE 2: Timing results from running NSD (column
2) - implemented in Matlab- against reference IsoRank
implementation from [21] (column 4), for various pairs
of species (column 1). Reference IsoRank implementation
also computes matchings with two different algorithms
and column 3 contains timings for Primal-Dual Matching
(PDM in Matlab) to find out its overhead (the second -
heuristic- matching algorithm (Greedy Matching - GM)
is also implemented (in C and Java) only to find times
smaller than those in the 2nd column in sample cases
(not depicted). a = 1.0, 20 iterations.

Species pair NSD MAT3 PDM GM IsoRank
celeg-dmela 3.15 64.20 152.12 7.29 783.48
celeg-ecoli 0.79 16.26 43.40 1.37 158.93
celeg-hpylo 0.43 5.73 14.01 0.56 37.34
celeg-hsapi 3.28 69.74 163.05 9.54 1209.28
celeg-mmusc 0.26 2.12 8.02 0.24 17.68
celeg-scere 1.97 44.61 127.70 4.16 949.58
dmela-ecoli 1.86 37.79 86.80 4.78 807.93
dmela-hpylo 0.85 16.91 23.04 1.90 204.02
dmela-hsapi 8.61 211.19 590.16 28.10 7840.00
dmela-mmusc 0.51 6.02 11.98 0.73 51.12
dmela-scere 4.79 131.22 182.91 12.97 4905.00
ecoli-hpylo 0.33 3.33 8.63 0.36 41.68
ecoli-hsapi 2.41 47.48 79.23 4.76 2029.56
ecoli-mmusc 0.26 1.77 8.24 0.20 10.03
ecoli-scere 1.49 35.86 69.88 2.60 1264.24
hpylo-hsapi 1.18 18.92 13.29 1.83 316.90
hpylo-mmusc 0.17 0.52 3.02 0.09 6.13
hpylo-scere 0.68 14.01 11.76 1.05 220.82
hsapi-mmusc 0.74 8.74 18.85 0.93 70.24
hsapi-scere 6.09 152.02 181.17 15.56 6714.00
mmusc-scere 0.46 4.35 2.71 0.47 40.86

TABLE 3: Timing results (in seconds) from running NSD
(column 2) - implemented in Java- against reference
IsoRank implementation from [21] (column 6) and the
Equation (7) approach (MAT3, column 3), for various
pairs of species (column 1). There are also timings for
two matching algorithms: PDM (in Matlab) and GM (in
Java). a = 0.8, 20 iterations, s = 1 (uniform initial
conditions).

9

Fig. 3: Speedups in computing similarity matrices for
various species-pairs with NSD against MAT3 (from
[22]). Here a = 1.0 and NSD is implemented in Matlab.
Note that by porting it to Java, 25 fold speedups are
observed (for a = 0.80, see columns 2 and 3 in Table 3).

book community (Table 4 2). A Facebook network is
undirected since both endpoint profiles (nodes) should
agree to a “friend” relation (edge).
Since a pairwise comparison is hard to justify in this

context, we compute similarity scores between nodes
belonging to the same network as a first step. This
approach is also applied for PPI networks of comparable
sizes (number of nodes). We use α = 0.80 and perform
20 iterations in each case for s = 1 (one pair of random
initial conditions - breaking possible ties - with the same
seed for all experiments).
As expected, our algorithm correctly matches each

node with itself. However we exclude these matches
by zeroing such similarity scores and then extract the
matches from the modified similarity matrix using GM.
The reason is that we want to identify common con-
nected subgraphs based on the matches. Generally, for
two graphs GA, GB , these are identified after the con-
struction of their alignment graph as follows: If m1 =
(i1, j1) and m2 = (i2, j2) in VB×VA are two matches then
m1 and m2 are connected by an edge iff i1 is connected
with i2 and j1 with j2 in the original graphs. Common
connected subgraphs are identified as the connected
subgraphs in the alignment graph, (i.e. “clusters” of
pairs of matching nodes from the original graphs also
conserving their link patterns). Therefore, in our case,
with GA ≡ GB this would mean that, failing to exclude
the aforementioned generic matches, the common con-
nected subgraphs would simply replicate the original

2. Although not large, these test datasets are practical since they
contain links to internal nodes only; trying to enforce this property
to other larger Facebook datasets by pruning, unfortunately removed
a substantial percentage of the initial links. Note that in general
the availability of Facebook networks is quite limited due to access
restrictions during their collection.

Facebook Network #Nodes #Edges
Caltech36 769 33312
Princeton12 6596 586640
Georgetown15 9414 851276

TABLE 4: Facebook networks used in the experiments.
Number of nodes and edges are given in each case.

single graph structure, which surely would not add to
our knowledge.

Allowing for the symmetries in the matching pairs in
the single graph case ((i1, i2) ≡ (i2, i1) and m1 = (i1, i2),
m2 = (i3, i4) are connected in the common connected
subgraphs iff i1, i3 and i2, i4 (or i1, i4 and i2, i3) are
connected)), we identify the maximum such Common
Connected Subgraph (MCCS) (using routines from the
networkx package [24]) for each case. Our results are
shown in Table 5. It is clear that the MCCS for Facebook
networks are an order of magnitude larger than PPI net-
works of comparable sizes; in Facebook networks, a large
fraction of the identified pairs (column 5) participate in
the MCCS. This could be attributed partly to the fact that
in Facebook networks a user often connects with friends
of his/her “friends” since these are readily accessible,
thus inheriting part of their neighborhood structure and
strengthening the corresponding similarity scores. On
the other hand, there seems to be strong correlation with
the average degree in the original network: a large de-
gree will generally increase the probability of connecting
two matches (i.e., node pairs), since this relates to the
connectivity “options” of their contained nodes.

We also use two large Web networks (directed graphs);
details are provided in Table 6. Note that these datasets
are available in an efficient compressed format utilizing

10

Network #Nodes #Edges % of
Nodes

Average
degree

hpylo 7 6 1.98 2.00
dmela 84 92 2.23 3.44
scere 239 288 8.69 5.80
hsapi 189 245 3.92 3.78
Caltech36 268 1297 69.79 43.32
Princeton12 1986 7334 60.22 88.94
Georgetown15 2654 7651 56.38 90.43

TABLE 5: Maximum Common Connected
Subgraphs(MCCS) characteristics (columns 2,3,4)
discovered after post-processing NSD results from each
network (column 1) paired with itself. Average degree
of each node in the original graph is also given (column
5).

the special techniques described in [25] and their manip-
ulation was made possible by adapting our NSD method
also to interface their provided software framework,
WebGraph [26].

We compute topological-only self-similarity scores
(α = 1, 20 iterations) allowing us to get a rank-one
representation of self-similarity scores if choosing, with-
out loss of generality, rank-one initial conditions; then
essentially the sum in Equation (14) vanishes and the
two vectors in the outer product remaining are identical
(i.e. the ranking vector).

This space-efficient representation of self-similarity
scores produced by NSD is critical: The scores matrix
X is dense in general and for these Webgraph instances
this would raise the need for storing a dense matrix with
dimensions within a few hundreds of thousands range
(a few TBs) if methods like IsoRank were to be used,
which is well beyond current memory capacities.

This representation also facilitates the matching ex-
traction process: We sort the ranking vector values, then
partition them into pairs starting from large entries and
finally match the nodes corresponding to these pairs
(indexed as in the original ranking vector). This proce-
dure is really the GM method idea applied to a matrix
that is the outer product of identical vectors under the
constraint not to match a node with itself; this is exactly
our case for self-similarity.

These matchings are then used to identify common
connected subgraphs. 1, 912 common connected sub-
graphs containing 4 or more nodes are revealed for cnr-

2000 - there are 5, 178 such subgraphs for eu-2005 -
see Figure 4 for the distribution of sizes of the largest
of them. These cover a large percentage of the total
number of nodes in the two graphs (28.29% and 37.31%
respectively for cnr-2000 and eu-2005). So NSD applied
to a directed graph (where accordingly the scores capture
similarities in the structure of incoming links only) can
produce matchings revealing extensive repeated sub-
structures in it (self-similarity).

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

S
iz

e
 o

f
c
o

n
n

e
c
te

d
 c

o
m

p
o

n
e

n
t

s
u

b
g

ra
p

h

Connected component subgraph index

cnr−2000

eu−2005

Fig. 4: The sizes of the 30 of the largest common con-
nected subgraphs from self-similarity runs of NSD on
Webgraphs: There were detected subgraphs of sizes up
to 17, 520 nodes (for cnr-2000) and 38, 818 nodes (for eu-

2005).

Graph Crawl date Domain crawled #Nodes #Edges
cnr-2000 2000 cnr 325,557 3,216,152
eu-2005 2005 eu 862,664 19,235,140

TABLE 6: Characteristics of Web graphs used in exper-
iments. Particularly eu-2005 dataset was gathered by
UbiCrawler [27].

4.3 The effect of multiple components (s > 1)

We comment on the effect of using multiple components
(s > 1) on the structure of common connected subgraphs
extracted. Using BLAST (sequence) similarity scores as
the matrix H of elemental similarities for the fly/yeast
PPI networks we computed all common connected sub-
graphs of ≥ 4 nodes (α = 0.80, 20 iterations) for various
cases:

• Assuming H as provider of similarity scores (i.e.

11

no similarity matrix computation) and also running
MAT3 code with H as one of the input arguments.
Both were followed by a matching extraction phase
using GM. (Figure 5).

• Decomposing elemental similarity into the domi-
nant s = 5 and s = 10 components by both NMF

and SVD and then successively running NSD code
for computing the similarity scores and GM for
extracting the matches. (Figure 6).

• Decomposing elemental similarity into the domi-
nant s = 500 and s = 1000 components by SVD and
then successively running NSD code for computing
the similarity scores and GM for extracting the
matches. (Figure 7).

(a) Elemental similarities H (b) MAT3

Fig. 5: Common connected subgraphs in the alignment
graph produced by generating matches from elemental
similarities only (5a) and similarities computed by MAT3

(5b).

(a) NMF for s = 5 and NSD (b) NMF for s = 10 and NSD

(c) SVD for s = 5 and NSD (d) SVD for s = 10 and NSD

Fig. 6: Common connected subgraphs in the alignment
graph produced by running NSD on the dominant s =
5 and s = 10 components of H as computed by NMF

(upper row) and SVD (lower row).

When analyzing the alignment graph of two networks,
two measures for the topological only evaluation of the
computed matching could be used:

• Count the number of edges in the alignment graph
(conserved edges). Each conserved edge implies

(a) SVD for s = 500 and NSD (b) SVD for s = 1000 and NSD

Fig. 7: Common connected subgraphs in the alignment
graph produced by running NSD on the dominant s =
500 and s = 1000 components of H as computed by SVD.

matching the corresponding edges connecting the
elements of the matching pairs at its endpoints in
the input networks. So node matching naturally
leads to edge matching.

• Compute the size of the connected components
in the alignment graph (common connected sub-
graphs). These subgraphs are essentially matchings
of substructures in the input networks.

Definitely the existence of many conserved edges in-
creases the probability of them being part of extensive
connected subgraphs. However it could also be the case
that they are parts of more connected subgraphs all of
moderate sizes.
In our experiments SVD decompositions for s = 5,

10, 500, 1000 components coupled with NSD respectively
give rise to 514, 537, 1143, 1236 conserved edges com-
pared to 1455 edges from MAT3. However they identify
a large connected subgraph of 239 nodes for s = 5 when
the largest such subgraph from MAT3 consists of only 22
nodes.
As the number of components is increased (s = 10,

500, 1000) the largest subgraph size drops (respectively
204, 55 and 25 nodes) for SVD. This follows from the
fact that the use of more components should yield better
approximations of elemental similarities in H and thus
results closer to the ones from MAT3 code are expected.
Note also that the use of the GM for matching ex-

traction (which is resilient to possibly negative values in
the elemental similarity scores used for small s) gives
a “smooth” succession of results in the SVD case. Also
using NMF that - by definition - generates nonnegative
elemental scores, leads to results qualitatively similar
to those from SVD (e.g. 521 conserved edges and a
largest common connected subgraph of 266 for s = 10
components).

5 CONCLUDING REMARKS AND FUTURE

WORK

We have presented NSD, a novel approach for un-
coupling and decomposing ranking-inspired methods
for computing similarity scores between graph nodes.
Decomposition happens with respect to the the rank-one
terms building up the initial condition (the preferences).

12

The uncoupled (per-graph) computations involve sparse
matrix-vector products, “merged” only at the end. Tim-
ing data for NSD, show that our approach is up to three
orders of magnitude faster than state-of-the-art methods,
like IsoRank. This is especially true when preferences
(that also serve as the initial conditions in the proposed
iteration) can be written as sums of small number of of
outer products. It follows that NSD is a fast method for
computing similarities (or self-similarities) for nodes of
general types of (undirected) networks (PPI and Face-
book networks are only two examples); we also apply
it to large (directed) Web graphs. This node similarity
information provides input for subsequently identifying
common link structures in the graphs, thus suggesting a
form of latent structure and function. In some cases, the
quality of the results (matching pairs) may depend on
the choice of suitable pre-processing/input parameters
(α, preferences) and the appropriate post-processing of
score values (e.g., filtering based on thresholds). This im-
plied “calibration” procedure in turn, demands domain
knowledge. Consequently, while NSD is a general tool,
its parameters and output processing can be specialized.
The “un-coupling” and “decomposing” properties of

NSD offer natural avenues for parallelization. Further-
more, the concept of decomposition for directed graphs
offers novel insights into network comparison. Both of
these research directions are currently under investiga-
tion, and will be addressed in separate reports.

ACKNOWLEDGMENT

Acknowledgments to be added to camera ready version
upon acceptance.

REFERENCES

[1] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Ci-
tation Ranking: Bringing Order to the Web,” Stanford University,
Tech. Rep., 1998.

[2] G. Jeh and J. Widom, “SimRank: a measure of structural-context
similarity,” in Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining. Edmonton,
Alberta, Canada: ACM, 2002, pp. 538–543. [Online]. Available:
http://portal.acm.org/citation.cfm?id=775126

[3] R. Singh, J. Xu, and B. Berger, “Global alignment of multiple pro-
tein interaction networks with application to functional orthology
detection,” Proceedings of the National Academy of Sciences, vol. 105,
no. 35, p. 12763, 2008.

[4] J. Y. Pan, H. J. Yang, C. Faloutsos, and P. Duygulu, “Automatic
Multimedia Cross-modal Correlation discovery,” in Proceedings
of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM New York, NY, USA, 2004, pp.
653–658.

[5] V. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van
Dooren, “A Measure of Similarity between Graph Vertices: Appli-
cations to Synonym Extraction and Web Searching,” SIAM Rev.,
vol. 46, no. 4, pp. 647–666, 2004.

[6] J. Kleinberg, “Authoritative Sources in a Hyperlinked Environ-
ment,” J. ACM, vol. 46, pp. 604–632, 1999.

[7] M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, and Y. Wang,
“Algorithms for Large, Sparse Network Alignment Problems,”
Data Mining, IEEE International Conference on, vol. 0, pp. 705–710,
2009.

[8] L. Getoor and C. Diehl, “Link Mining: A Survey,” SigKDD Explo-
rations Special Issue on Link Mining, vol. 7, no. 2, december 2005.

[9] C. Silverstein, S. Brin, and R. Motwani, “Beyond Market Baskets:
Generalizing Association Rules to Dependence Rules,” Data Min.
Knowl. Discov., vol. 2, no. 1, pp. 39–68, 1998.

[10] C. H. Q. Ding, X. He, P. Husbands, H. Zha, and H. D. Simon,
“PageRank, HITS and a unified framework for link analysis,” in
SIGIR, 2002, pp. 353–354.

[11] A. Y. Ng, A. X. Zheng, and M. I. Jordan, “Link Analysis, Eigen-
vectors and Stability,” in IJCAI, 2001, pp. 903–910.

[12] K. Bharat and M. R. Henzinger, “Improved Algorithms for Topic
Distillation in a Hyperlinked Environment,” in SIGIR, 1998, pp.
104–111.

[13] S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan, D. Gib-
son, and J. M. Kleinberg, “Automatic Resource Compilation by
Analyzing Hyperlink Structure and Associated Text,” Computer
Networks, vol. 30, no. 1-7, pp. 65–74, 1998.

[14] A. X. Zheng, A. Y. Ng, and M. I. Jordan, “Stable Algorithms for
Link Analysis,” in SIGIR, 2001, pp. 258–266.

[15] L. A. Zager and G. C. Verghese, “Graph similarity scoring and
matching,” Appl. Math. Lett., vol. 21, no. 1, pp. 86–94, 2008.

[16] M. Rupp, E. Proschak, and G. Schneider, “Kernel approach to
molecular similarity based on iterative graph similarity,” Journal
of chemical information and modeling, vol. 47, 2007.

[17] G. Kollias and A. Grama, “Parallel Network Similarity Decom-
position,” in Parallel Matrix Algorithms and Applications, Basel,
Switzerland, 2010.

[18] C. Brezinski and M. Redivo-Zaglia, “The PageRank Vector: Prop-
erties, Computation, Approximation, and Acceleration,” SIAM J.
Matrix Anal. Appl, vol. 28, pp. 551–575, 2006.

[19] D. D. Lee and S. H. Seung, “Learning the parts of objects
by non-negative matrix factorization,” Nature, vol. 401, no.
6755, pp. 788–791, October 1999. [Online]. Available: http:
//dx.doi.org/10.1038/44565

[20] C. Boutsidis and E. Gallopoulos, “SVD based initialization: A
head start for nonnegative matrix factorization,” Pattern Recog-
nition, vol. 41, no. 4, pp. 1350–1362, 2008.

[21] Rohit Singh and Bonnie Berger, “IsoRank and IsoRankN,” http:
//groups.csail.mit.edu/cb/mna/.

[22] David F. Gleich, “netalign: Network Alignment codes,” http://
www.stanford.edu/∼dgleich/publications/2009/netalign/.

[23] A. L. Traud, E. D. Kelsic, P. J. Mucha, and M. A. Porter, “Com-
munity Structure in Online Collegiate Social Networks,” 2008,
arXiv:0809.0960.

[24] “NetworkX project website,” https://networkx.lanl.gov/.
[25] P. Boldi and S. Vigna, “The WebGraph framework I: Compression

techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). Manhattan, USA: ACM Press, 2004, pp.
595–601.

[26] “WebGraph project website,” http://webgraph.dsi.unimi.it/.
[27] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “UbiCrawler:

A Scalable Fully Distributed Web Crawler,” Software: Practice &
Experience, vol. 34, no. 8, pp. 711–726, 2004.

	Network Similarity Decomposition (NSD): A Fast and Scalable Approach to Network Alignment
	Report Number:
	

	Untitled

