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Abstract
It is difficult to directly apply conventional significant tests to compare the per-
formance of network classification models because network data instances are not
independent and identically distributed. Recent work [12] has shown that paired
t-tests applied to overlapping network samples will result in unacceptably high
levels (e.g., up to 50%) of Type I error (i.e., the tests lead to incorrect conclu-
sions that models are different, when they are not). Thus, we need new strategies
to accurately evaluate network classifiers. In this paper, we analyze the sources
of bias (e.g. dependencies among network data instances) theoretically and pro-
pose analytical corrections to standard significant tests to reduce the Type I error
rate to more acceptable levels, while maintaining reasonable levels of statistical
power to detect true performance differences. We validate the effectiveness of the
corrections empirically on both synthetic and real networks.

1 Introduction
A central methodological question in machine learning research is how to compare the empirical
performance of two learning algorithms and assess the significance of observed performance differ-
ences. However, evaluating algorithms becomes more challenging in relational learning where data
instances are not independent. In particular, two characteristics of relational learning and collective
classification [14] can complicate the application of conventional statistical tests for comparing clas-
sification performance: (1) dependence between related instances leads to correlated errors and (2)
dependence between training and test set samples leads to correlated test sets.

Most work on evaluating algorithms has mainly focused on data with independent and identically
distributed (i.i.d.) instances. Dietterich [4] showed that some statistical tests in widespread use
had a high probability of Type I error (i.e., concluding that there is a significant difference between
algorithms when there is none). Other work has shown that the choice of training/test sets can lead
to underestimation of variance in the cross-validation estimator of the generalization error [11, 2].

There have been some recent works on learning and generalization bounds from non-i.i.d. observa-
tions [9, 19, 5, 13, 7, 6, 18, 1, 3, 16, 15, 10, 12]. However, most of them do not address the problems
mentioned above of dependent instances and dependent training and test sets. Usunier et al. [17]
proposed a new framework to study the generalization properties of classifiers over data which can
exhibit a suitable dependency structure. However, their focus was solely on dependent training sets.
Neville et. al [12] investigated potential sources of bias empirically and showed that a commonly-
used form of evaluation (paired t-test on overlapping network samples) often results in unacceptably
high levels of Type I error (e.g., as much as 50%), and proposed a novel sampling method called
network cross-validation (NCV), which uses overlapping inference sets but disjoint test sets. This
approach results in more acceptable levels of Type I error, but at the expense of decreased statistical
power.

In this paper, we present a theoretical study that formalizes the empirical work of [12]. We con-
sider the problem of within-network relational learning, where there are dependencies among data
instances and the goal is transductive network learning—models are learned on a partially labeled
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network and then applied to collectively predict the class labels in the remainder of the network (i.e.,
the unlabeled portion). Within this setting, we demonstrate how the aforementioned network data
characteristics contribute to increased Type I error. Our analysis shows that both error correlation
and overlapping samples lead to misestimation of the variance that is used in statistical tests. Based
on our analysis, we propose an analytical correction to the observed variance which can be used
to adjust for the bias and reduce Type I error rates, while maintaining reasonable statistical power.
We demonstrate the effectiveness of the correction on both synthetic and real world data, with sim-
ulated and real classifiers. Although we evaluate the properties of the corrected significance tests
for within-network classification, the findings are also applicable to other learning tasks, which may
have overlap but no error correlation.

2 Network classifier evaluation
When comparing the empirical performance of machine learning algorithms, there are two primary
methodological choices: First, the sampling procedure dictates how the available data is partitioned
into training and test sets for estimation of algorithm performance. Second, the significance test
takes a set of performance measurements (e.g., accuracy) from the various sampling trials and makes
a determination as to whether observed differences reflect a true difference in classifier performance
or whether it is likely to have occurred by chance alone.

Sampling procedures: Given a fully labeled network S of size m, we consider two sampling pro-
cedures to generate training (labeled SL) and test (unlabeled SU ) sets to evaluate within-network
classification algorithms. The first method is random resampling (RS). It involves repeated random
draws without replacement from the sample population (i.e., S) to generate the training/test splits
(SL, SU ); and, therefore, produces overlapping test sets. This method has been used extensively in
past work on relational learning algorithms (see the survey in [12] for more detail).

The second method is NCV, a new sampling approach proposed by [12]. NCV samples for k disjoint
test sets that will be used for evaluation. When the target training set size is less than the size of
the k − 1 merged folds, this will leave a set of unlabeled nodes that are neither in the test set
nor the training set. Since these unlabeled instances will likely be connected to nodes in the test
set, collective inference is run over the full set of unlabeled nodes (the inference set), but model
performance is only evaluated on the nodes assigned to the test set. Since NCV only evaluates
model performance using disjoint test set instances, it eliminates much of the dependency due to
overlapping test sets and will not suffer the same level of bias. Indeed NCV has been shown to be
more robust to Type I error when compared to conventional resampling [12].

Significance tests: In within-network learning, after a sampling procedure has been chosen to create
training/test splits within a network, the models are learned from each training set and the learned
models are applied for collective inference over the appropriate test set (i.e., unlabeled portion of the
network). The predictions on the test set nodes are evaluated to estimate algorithm performance (e.g.,
accuracy). This results in a set of performance measurements, one for each training/test split, for
each algorithm and a significance test is then used to determine whether the observed performance
differences are significantly different than would be expected if the performance measures were
drawn from the same underlying distribution (i.e., the algorithms perform equivalently).

In this work, we considered both paired and unpaired t-tests for assessments of significance. We are
interested in two characteristics of these tests: (1) Type I error: the probability of rejecting a true
null hypothesis, and (2) Power: the probability of rejecting a false null hypothesis (i.e., 1-Type II
error). If a statistical test has elevated levels of Type I error (i.e., greater than the chosen significance
level α), that implies that many of the conclusions we draw from the test may be incorrect (e.g.,
algorithms that appear to be different may in fact have equivalent performance). In contrast, if a
statistical test has low statistical power, that implies that legitimate performance differences may not
be detected as significant.

3 Theoretical Analysis
Here we show theoretically how error correlation and random sampling (i.e., without replacement)
from a network affects the variance of average network classification error. To do this, we model the
node-level classification errors as Bernoulli random variables and analytically calculate the observed
mean and variance of the average error over repeated samples from the same network. Specifically:
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• The input population is a set of m random variables X (i.e., network size=m).
• The population consists of two types of random variables. There are pm random variables

of type 1 (i.e., likely errors), which are Bernoulli distributed: X1
i ∼Bernoulli(q). There are

(1 − p)m instances of type 0 (i.e., likely correct), which again are Bernoulli distributed:
X0
i ∼Bernoulli( p

(1−p) (1− q) ).

• In the population, there are |E| pairs of “linked” random variables that are correlated. Let ρ
be the average correlation between the linked pairs ((Xi, Xj) ∈ E), otherwise we assume
that the Xi are independent.

• We sample n random variables {Xi}ni=1 without replacement from the population. Since
the sampling is without replacement, the random variables Xis are not independent.

• Let Ek = 1
n

∑n
i=1Xi be the average value of the r.v.’s in sample k. We are then interested

in the mean and variance of the random variable Ek.

The parameters of the Bernoulli variables are designed to keep the overall expected value Ek to be p
(i.e., the average error), while allowing individual variation of the random variables across multiple
samples: E(Ek) = E

(
1
n

∑n
i=1Xi

)
= E

(
pX1

i + (1− p)X0
i

)
= pq + (1 − p) p

(1−p) (1 − q) = p.
Note that if q = 1, then the random variables have exactly the same values across all samples (if
selected) so this would correspond to sampling from a hypergeometric distribution with pm 1s.

Given this setup, we can now show the effect of correlation and sampling without replacement on
the variance of Ek.
Theorem 1. Correlated variables increase variance
Let X be an infinite population of Bernoulli(p) random variables. Assume that a sample of n vari-
ables are drawn randomly from the population. Let ρ be the average correlation between the Xi

that are “linked”, where the probability of linkage is |E|
n(n−1)

1, and assume that otherwise theXi are

independent. Then the variance of Ek is V arcorr(Ek) = 1
n
p(1− p)

h
1 + ρ |E|

n

i
.

Proof.

V arcorr(Ek) = V ar

 
1

n

nX
i=1

Xi

!
=

1

n2

0@ nX
i=1

V ar(Xi) +

nX
i=1

nX
j 6=i

Cov(Xi, Xj)

1A
=

1

n2
(n · p(1− p) + |E|ρ · p(1− p)) =

1

n
p(1− p)

»
1 + ρ

|E|
n

–

Thus, as ρ or |E| (i.e., number of correlated pairs) increase, the variance of the average Ek also
increases.
Theorem 2. Sampling without replacement decreases variance
Let X be a population of m Bernoulli random variables as described above, with pm X1 variables
(i.e., type 1) and (1 − p)m X0 variables (i.e., type 0), where all the Xi are independent. Assume
that a sample of n variables are drawn randomly from the population. Then the variance of Ek is

V arrs(Ek) = 1
n
p(1− p)

»
1− (n−1)

(m−1)

“
q−p
1−p

”2
–
.

Proof. First we consider the joint probability of two instances, based on sampling without replacement:

P (Xi=1∧Xj =1)=P (Xi ∈ X1 ∧Xi = 1)P (Xj ∈ X1 ∧Xj = 1|Xi ∈ X1)+

P (Xi ∈ X1 ∧Xi = 1)P (Xj ∈ X0 ∧Xj = 1|Xi ∈ X1)+

P (Xi ∈ X0 ∧Xi = 1)P (Xj ∈ X1 ∧Xj = 1|Xi ∈ X0)+

P (Xi ∈ X0 ∧Xi = 1)P (Xj ∈ X0 ∧Xj = 1|Xi ∈ X0)

=

»“pm
m
q
”„pm− 1

m− 1
q

«–
+

»“pm
m
q
”„ (1− p)m

m− 1

p

1− p (1− q)
«–

+»„
(1− p)m

m

p

1− p (1− q)
«„

pm

m− 1
q

«–
+

1Note that n(n− 1) is the number of possible directed edges in a network of n nodes.
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»„
(1− p)m

m

p

1− p (1− q)
«„

(1− p)m− 1

m− 1

p

1− p (1− q)
«–

=
p

(m− 1)

»
pm− q2 − p(1− q)2

(1− p)

–
Now consider the covariance of two instances, based on sampling without replacement:

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) = P (Xi = 1 ∧Xj = 1)− p · p

=
p

(m− 1)

»
pm− q2 − p(1− q)2

(1− p)

–
− p2 = −p(1− p)

(m− 1)

»
(q − p)2

(1− p)2

–
With the covariance, we can compute the overall variance based on sampling without replacement:

V arrs(Ek) = V ar

 
1

n

nX
i=1

Xi

!
=

1

n2

24 nX
i=1

V ar (Xi) +

nX
i=1

nX
j=1,j 6=i

Cov(Xi, Xj)

35
=

1

n

»
p(1− p)− (n− 1)

p(1− p)
(m− 1)

»
(q − p)2

(1− p)2

––
=

1

n
p(1− p)

"
1− (n− 1)

(m− 1)

„
q − p
1− p

«2
#

Note that when q = p, the variables correspond to independent Bernoullis across samples and the
overall variance reduces to the case when each sample is independent: V ar(Ek) = 1

np(1−p). When
q = 1, the random variables have exactly the same value across different samples and the variance
corresponds to sampling from a Hypergeometric distribution: V ar(Ek) = 1

np(1− p)
[
m−n
m−1

]
.

We can extend the results of Theorem 2, to show the joint effect of correlation and sampling without
replacement on the variance of Ek.

Theorem 3. Variance with correlation and sampling without replacement
Let X be a population of m Bernoulli random variables as described above, with pm X1 vari-
ables (i.e., type 1) and (1 − p)m X0 variables (i.e., type 0). Let ρ be the average corre-
lation between the Xi that are “linked”, where the probability of linkage is |E|

n(n−1) , and as-
sume otherwise the Xi are independent. Assume that a sample of n variables are drawn ran-
domly from the population. Let c =

√
1− 2p+ pq. Then the variance of Ek is V arobs(Ek) =

1
n
p(1− p)

»
1− (n−1)

(m−1)

“
q−p
1−p

”2

+ |E|ρ
n(m−1)

“
1−q
1−p

” h
pmq − q + 2mc

√
pq +mc2 − c2

(1−p)

i–
.

Proof. To combine the covariance based on error correlation with the covariance based on overlap, we need to
determine the effect of the correlation on the conditional probability of a linked instance, i.e., P (Xj = 1|Xi =
1, eij ∈ E). We can derive this from the relationship between correlation and covariance:

Cov(Xi, Xj |eij ∈ E) = Corr(Xi, Xj |eij)V ar(Xi)
1
2 V ar(Xj)

1
2

E(XiXj |eij ∈ E)− E(Xi)E(Xj) = ρ · V ar(Xi)
1
2 V ar(Xj)

1
2

P (Xj |Xi, eij ∈ E) = E(Xj) +
ρ · V ar(Xi)

1
2 V ar(Xj)

1
2

E(Xi)

We can then enumerate the conditional probabilities for each of the four possible worlds for (Xi, Xj):

P (X1
j |X1

i ) = E(X1
j ) +

ρV ar(X1
i )

1
2 V ar(X1

j )
1
2

E(X1
i )

= q + ρ(1− q)

P (X0
j |X1

i ) = E(X0
j ) +

ρV ar(X1
i )

1
2 V ar(X0

j )
1
2

E(X1
i )

=
p(1− q)

1− p + ρ
(1− q)
(1− p)

s
p(1− 2p+ pq)

q

P (X1
j |X0

i ) = E(X1
j ) +

ρV ar(X0
i )

1
2 V ar(X1

j )
1
2

E(X0
i )

= q + ρ

s
q(1− 2p+ pq)

p

P (X0
j |X0

i ) = E(X0
j ) +

ρV ar(X0
i )

1
2 V ar(X0

j )
1
2

E(X0
i )

=
p(1− q)

1− p + ρ

„
1− 2p+ pq

1− p

«
Now we can incorporate these conditional probabilities into the calculation of P (Xi, Xj) and Cov(Xi, Xj),
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incorporating both correlation and sampling without replacement. Let c =
√

1− 2p+ pq, then:

P (Xi=1∧Xj =1)=

»“pm
m
q
”„pm− 1

m− 1
[q +

|E|
n(n− 1)

ρ(1− q)]
«–

+»“pm
m
q
”„ (1− p)m

m− 1

»
p

1− p (1− q) +
|E|

n(n− 1)
ρ

(1− q)
(1− p)c

r
p

q

–«–
+»„

(1− p)m
m

p(1− q)
1− p

«„
pm

m− 1

»
q +

|E|
n(n− 1)

ρc

r
q

p

–«–
+»„

(1− p)m
m

p(1− q)
1− p

«„
(1− p)m− 1

m− 1

»
p(1− q)

1− p +
|E|

n(n− 1)
ρ

„
c2

1− p

«–«–
=

p

(m− 1)

»
pm− q2 − p(1− q)2

(1− p)

–
+

|E|
n(n− 1)

„
pq(1− q)ρ
m− 1

«»
pm− 1 + 2mc

r
p

q
+
mc2

q
− c2

q(1− p)

–

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) = P (Xi = 1 ∧Xj = 1)− p · p

=
p

(m− 1)

»
pm− q2 − p(1− q)2

(1− p)

–
− p2 +

|E|
n(n− 1)

„
pq(1− q)ρ
m− 1

«»
pm− 1 + 2mc

r
p

q
+
mc2

q
− c2

q(1− p)

–
=
p(1− p)
(m− 1)

"
−
„
q − p
1− p

«2

+
|E|ρ

n(n− 1)

„
1− q
1− p

«»
pmq − q + 2mc

√
pq +mc2 − c2

(1− p)

–#
Now we can compute the overall variance of Ek, with correlation as well as sampling without replacement:

V arobs(Ek)=V ar

 
1

n

nX
i=1

Xi

!
=

1

n2

24 nX
i=1

V ar (Xi) +

nX
i=1

nX
j=1,j 6=i

Cov(Xi, Xj)

35
=

1

n

"
p(1− p)− n(n− 1)

n

p(1− p)
(m− 1)

"„
q − p
1− p

«2

− |E|ρ
n(n− 1)

„
1− q
1− p

«»
pmq − q + 2mc

√
pq +mc2 − c2

(1− p)

–##

=
1

n
p(1− p)

"
1− (n− 1)

(m− 1)

„
q − p
1− p

«2

+
|E|ρ

n(m− 1)

„
1− q
1− p

«»
pmq − q + 2mc

√
pq +mc2 − c2

(1− p)

–#

Finally, we can use these results to show these two effects combine together to bias conventional
statistical tests for network domains.

Theorem 4. Sampling without replacement and error correlation increase Type I error
Let algorithm A and algorithm B have equal error rates of p on network datasets drawn from the
same domain D. Let Xi be the classification error for node i and assume that Xi.A and Xi.B (the
error made by algorithm A and B respectively) are Bernoulli distributed as described above, i.e.,
with probability p, Xi.A/B is of type 1 and with probability (1 − p), Xi is of type 0. Let ρ be the
average correlation between the Xi, Xj that are linked (i.e., eij ∈ E) and assume that otherwise
the Xi are independent. Assume that a test set of size n is drawn from the network of m nodes.

Let EA = {EA1 , EA2 , ...EAk } and EB = {EB1 , EB2 , ...EBk } be the set of average test
set errors (Ek = 1

n

∑
nXi) for j = [1, k] repeated samples drawn from a network

of size m from the domain D. Let c =
√

1− 2p+ pq. Then an unpaired t-test
over EA and EB will underestimate the variance of the null distribution by: 1

n
p(1 −

p)

»
(n−1)
(m−1)

“
q−p
1−p

”2

+ ρ |E|
n

h
1− 1

(m−1)

“
1−q
1−p

” h
pmq − q + 2mc

√
pq +mc2 − c2

(1−p)

ii–
.

Proof. The unpaired t-test uses the average (i.e., pooled) variance of EA and EB for the null
distribution. Since the error distribution of A and B are equal, the average is equal to the vari-
ance of a single algorithm. When the nodes are repeatedly sampled without replacement, we
know from Theorem 3 that the observed variance of Ek will be the following: V arobs(Ek) =
1
np(1 − p)

[
1− (n−1)

(m−1)

(
q−p
1−p

)2

+ |E|ρ
n(m−1)

(
1−q
1−p

) [
pmq − q + 2mc

√
pq +mc2 − c2

(1−p)

]]
, where

c =
√

1− 2p+ pq. However, when there is error correlation ρ among the instances in the data,
from Theorem 1 we know that the variance of Ek with independent samples is the following:
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V arcorr(Ek) = 1
np(1− p)

[
1 + ρ |E|n

]
. Since the t-test assumes independent samples, the variance

of the null distribution should correspond to the variance without repeated sampling V arcorr(Ek).
If the observed variance V arobs(Ek) is used in the t-test, it will result in an underestimate of ∆:

∆= V arcorr(Ek)− V arobs(Ek)

=
1

n
p(1− p)

»
1 + ρ

|E|
n

–
− 1

n
p(1− p)

"
1− (n− 1)

(m− 1)

„
q − p
1− p

«2

+
|E|ρ

n(m− 1)

„
1− q
1− p

«»
pmq − q + 2mc

√
pq +mc2 − c2

(1− p)

–#

=
1

n
p(1− p)

"
(n− 1)

(m− 1)

„
q − p
1− p

«2

+ ρ
|E|
n

»
1− 1

(m− 1)

„
1− q
1− p

«»
pmq − q + 2mc

√
pq +mc2 − c2

(1− p)

––#

As ρ (the amount of error correlation) or q (the correlation of node error across samples) increases,
the amount of underestimation (i.e., ∆) increases. This increases the probability of a Type I error in
the following way. For unpaired tests, the t-statistic is: t̂ = ĒA−ĒB√

V ar(EA/B)·
√

2
k

. where V ar(EA/B)

is the pooled variance. Since V arobs(Ek) < V arcorr(Ek), the result will be that t̂obs > t̂corr and
thus P (t̂obs|T ) < P (t̂corr|T ), where T is the appropriate t distribution with dof = k. Thus using
V arobs(Ek) instead of V arcorr(Ek), it is more likely that the null hypothesis will be rejected even
when it holds, and as such Type I error will increase.

This effect will impact paired t-tests in a similar way, as the decrease in observed variance of EA
and EB will also result in an underestimate of the difference variance V ar(EA − EB), which is
used instead of the pooled variance.

4 Analytical correction for bias
Based on the theoretical analysis in Section 3, we propose an analytical adjustment to correct for
the bias due to repeated sampling without replacement. We would like to remove the effects of
resampling, and adjust the observed variance V arobs(Ek) to make it equal to the variance we would
expect just due to correlation: V arcorr(Ek) = 1

np(1−p)[1+ρ |E|n ]. To achieve this, we simply add in
the correction factor ∆ from Theorem 4 above: V arnew(Ek) = V arobs(Ek) + ∆ = V arcorr(Ek).

Correction for unpaired t-test: The correction can be used in an unpaired t-test in the following
manner. We estimate model error (for each model) in the conventional manner, recording average
performance over multiple test sets. After computing the variance of the average performances for
a particular model (i.e., V arobs(Ek)), we compute the appropriate ∆ from above and use it to scale
the observed variance. Then the corrected variance V arnew(Ek) is used in place of the observed
variance in the standard formulation of the unpaired t-test.

Correction for paired t-test: For the paired t-test, we can use the correction to rescale each observed
value before computing the differences and variance. The idea is to compute the standardized value
with the original variance (V arobs) and then unstandardize using the corrected variance (V arnew).
Let xA be an observed error value for algorithm A. Let µA be the mean (observed) error for algo-
rithm A. Let σAobs = (V arAobs)

1
2 be the observed standard deviation of the average performance of

algorithm A. Let σAnew = (V arAnew)
1
2 be the corrected standard deviation of algorithm A. Then the

adjustment for each measured performance value xA is the following: xAc =
h“

xA−µA

σA
obs

”
· σAnew

i
+µA

=
“
σA

new

σA
obs

”
xA +

“
1− σA

new

σA
obs

”
µA The same adjustment is then applied to errors for algorithm B, with

appropriate mean and variances. Once all the observed errors are adjusted, we can then compute the
paired t-test in the standard way.

The correction ∆ requires values for the parameters: n,m, p, q, ρ, |E|. We can easily calculate
n,m, |E| from the properties of the training/test networks used in a particular evaluation. Also,
p, q, ρ can be estimated from the training/test network evaluations. For the experiments below, we
use the mean zero-one loss for p, the average misclassification across test sets for q, and for ρ we
use the φ coefficient to measure the correlation of errors for linked instances in the network. In the
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following sections we report results for paired tests only. Experiments with unpaired tests yielded
qualitatively similar results.

5 Experimental results
To investigate the effectiveness of our proposed correction, RS-C, for significance tests of network
classifiers, we conducted experiments with both simulated and real relational classifiers under vary-
ing data characteristics, using synthetic data and data from the Internet Movie Database (imdb.com).

We compare the Type I error rates and statistical power of RS, NCV, and RS-C using paired t-
tests. In all the experiments, both Type I error rates and statistical power rates were averaged over
500 (simulated) or 50 (synthetic/real) trials. For a given dataset, in each trial we sample from the
network, either using random sampling (RS) or using network cross-validation (NCV), to create
10 training/test splits (subnetworks). Then we learn classifiers (using two competing algorithms
A and B) on the training subnetwork and apply the learned classifiers on its corresponding test
subnetwork to measure its performance (e.g. average error rate). To compare performance, we
conducted significant tests to either accept or reject the null hypothesis that the performance of
algorithmA andB are equivalent. When the experiments are designed so that two learned classifiers
have equivalent error rates, any rejection of the null hypothesis corresponds to a Type I error (i.e.,
false positive identification of a difference when it does not exist). However, when the two classifiers
perform differently, a rejection of the null hypothesis represents the statistical power of the test (i.e.,
true positive identification of a difference when it exists). We calculate and report the proportion
of trials for which the null hypothesis was rejected (i.e. Type I error or power in its corresponding
experimental setup).

5.1 Experiments with simulated classifiers
Here we replicate the experiments of [12] to analyze test characteristics with simulated classifiers.
We simulate the correlated errors observed in real network classifiers by dividing data instances
into disjoint groups and assigning “classification errors” such that errors are correlated among the
instances within a group. We simulate two group-based classifiers A and B, ensuring that A and B
have the same error rate (p) while still making different kinds of errors (i.e.,Amisclassifies different
groups fromB). Each trial utilizes datasets with default parametersm = 300, p = 0.1, and q = 0.9.

Figure 1(a) shows the effects of varying the proportion of labeled data for training. In these ex-
periments, algorithms A and B have equal error rates of p = 0.1 so rejecting the null hypothesis
corresponds to a Type I error. For RS, the Type I error rate increases as propLabeled decreases. This
result is expected since the degree of overlap between test sets increases as the number of unlabeled
instances increases. Since NCV disallows overlapping test sets by design, it is not susceptible to this
problem, achieving uniformly low Type I error rates. The corrected test, RS-C, exhibits a further
reduction in type I error over NCV since it accounts for error correlation as well as test set overlap.

Figure 1(d) shows the statistical power of the tests when the difference in error rates between A
and B is varied (propLabeled = 0.3). In this case, since the algorithm error rates are different, a
rejection of the null hypothesis corresponds to a true positive. RS has the highest statistical power
overall, but when its high Type I error rates are taken into account, RS has little practical utility.
RS-C, on the other hand, is able to maintain low Type I error while achieving a reasonable amount
of statistical power. For example when there is a 4% difference in error rates, RS-C will be able
to detect it 80% of the time. NCV has substantially lower statistical power—it will only be able to
detect a 4% difference 20% of the time.

5.2 Experiments with real classifiers
To further investigate RS-C, we compare the collective classification models used in [12]: weighted-
vote relational neighbor (wvRN) [8] and network-only Bayes classifier (nBC) [8]. For both models,
we use relaxation labeling for collective inference. To estimate Type I error, we handicap the better
performing model (wvRN) until the performance difference between the models is equivalent (i.e.,
≤ 0.005). This is achieved by randomly selecting b% of the wvRN’s predictions and perturbing
those probabilities toward the opposite class. We searched for a value of b that resulted in a perfor-
mance difference of ≤ 0.005 between the two models on a separate set of calibration networks. To
estimate statistical power, we handicap the worse performing model (nBC) to increase the perfor-
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(a) Simulated data: Type I.
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(b) Synthetic data: Type I.
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(c) IMDB: Type I.
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(d) Simulated data: Power.
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(e) Synthetic data: Power.
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(f) IMDB: Power.

Figure 1: Type I error and power experiments on simulated and real classifiers on various data.

mance difference between the two models. We used b = [0.025, 0.075, 0.15, 0.3] and measured the
resulting performance difference, which is reported in Figure 1(e) and 1(f).

Results on synthetic data: In this set of experiments, we use synthetic datasets as described in [12].
The generated networks have size m = 300 with average autocorrelation= 0.40 and class prior
P (+) = 0.70. The data is designed so that wvRN and nBC will make different classification errors
on different nodes. To measure Type I error rates and power of the statistical tests, we used four
synthetic networks (in addition a set of 50 calibration networks).

Figure 1(b) plots the Type I error rates for three statistical tests. Notably, the level of Type I error
exhibited by RS-C is significantly lower than that of RS (> 50% reduction in error). RS-C Type I
error is also slightly lower than that of NCV. Figure 1(e) plots the power of each statistical test on
networks with 30% labeled nodes. Here we observe, that RS-C again achieves much higher power
than NCV. This is due to its use of larger test sets sizes—after correcting for overlap, the effective
sample size is still larger than the disjoint sets used in NCV.

Results on real data: In the second set of experiments, we use data from the Internet Movie
Database (IMDB). We collected a sample of 1,543 movies released in the United States between
2003 and 2007, with their associated producers and studios. To create six disjoint network samples,
using stratified sampling by studios. Within each partition, we created links among movies with a
common producer. The resulting networks have an average size of 257 nodes and the movies have
average degree of 16. The classification task is to predict whether the movie will make more than
$60mil in total box office receipts. The average autocorrelation in these networks is 0.35.

Figure 1(c) and 1(f) show the Type I error and statistical power for each test respectively. As ex-
pected, the statistical tests exhibit similar behavior on the real network data as on the synthetic data.
RS-C has Type I error rates comparable to NCV and significantly lower than RS. Again RS-C has
much higher power than NCV for detecting the algorithm differences in real network data.

6 Conclusion
We investigated two biases present in statistical tests for within-network classification algorithms:
(1) correlated errors among related instances and (2) overlap between samples. These biases in-
crease the Type I error to unacceptably high-levels. To account for these biases, we introduced
analytical corrections to the empirical estimates of variance. Experiments on real and synthetic data,
using real and simulated classifiers demonstrate that our corrections reduce the Type I error while
maintaining good statistical power. Compared to the network cross-validation, our corrections result
in a significant increase in statistical power.
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[18] Fabio Vitale, Nicolò Cesa-Bianchi, and Claudio Gentile. Online graph predictionwith random
trees. In NIPS’08 Workshop on New Challenges in Theoretical Machine Learning: Learning
with Data-dependent Concept Spaces, 2008.

[19] Xinhua Zhang, Le Song, Arthur Gretton, and Alex Smola. Kernel measures of independence
for non-iid. In NIPS, 2009.

9


	Correcting Bias in Statistical Tests for Network Classifier Evaluation
	Report Number:
	

	tmp.1336504186.pdf.LuLf0

