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FineComb: Measuring Microscopic Latencies and Losses
in the Presence of Reordering

Myungjin Lee Sharon Goldberg Ramana Rao Kompella George Varghese
Purdue University Boston University Purdue University UC San Diego
ABSTRACT work components, there is no way to ensure that congestion

in switches does not increase latencies beyond acceptable

Modern trading and cluster applications require microsec- , i
thresholds. First, there are no traffic models for data cente

ond latencies and almost no losses in data centers. This pa >HET - ) g
per introduces an algorithm callé@neCombthat can esti-  applications that allow a manager to predict which applica-

mate fine-grain loss and latency at monitoring devices be- ions can cause problems. Second, new applications must
tween edges of a data center. Such a mechanism can aIIovxPe deployed and their behavior is o_ften unforeseen. Thqu, a
managers to distinguish between latencies and loss singu'umber of data centers such as Microsoft and Google wish

larities caused by servers and those caused by the network!® US€ commodity switches with small buffers. Fourth, ap-
Compared to prior work such as LDA that need to be de- pl|cat|pns are typlcall_y handled by th_e IT group which often
ployed in hardware at every router and link, FineComb can coordma‘Fe_s poorly with the network infrastructure group.

be deployed today using commodity boards. The challenge ' NUS it is extremely common for data centers to expe-

for FineComb is to deal with persistent reordering that can "l€Nce transient or periodic performance violatioeg(in-
occur in a data center network using equal cost path sgjittin  créased latency, dropped packets) which can exceed applica

Without care, a loss estimation algorithm can confound loss 10N SLAS. For example, many data centers experience what

and reordering; further, any attempt to aggregate delay est is termed a_microburst [5]; intgitively, this ref_ers to a _s!ho
mates in the presence of reordering results in severe errorsPUrst of traffic that causes a switch to exceed its bufferss Th
FineComb deals with these problems using order-agnostic'S Often caused by a single uncontrolled application timat si
packet digests and a simple new idea we call stash recoveryP!Y N€eds to be controlled or relocated. A second example
Our evaluation demonstrates that FineComb can easily be!S th€ in-cast problem, where a single request causes multi-
implemented in software or hardware, and provides signifi- ple responses from several servers that are synchronized to

cantly more accurate loss and delay estimates in the presencC2Use a similar burst at a switch. While solutions have been
of reordering than LDA. proposed to the in-cast problem [30], it is still importamt t

have measurement methodology to rapidly diagnose these
1. INTRODUCTION problems.

) The setting. We focus on tools to measure fine-grain la-
Recent trends in data centers have led to requirements fotency and detect dropped packets in the following setting.
microsecondatencies. While multimedia applicationsg, We assume a data center network (managed by a separate

gaming, IPTV, VoIP) are content with latencies under 200 group) that provides network infrastructure service toan |
msec, modern financial trading and various cluster applica- group in charge of applications. We wish to deploy tools for
tions can benefit from latencies under 1@€ecs. Funda-  the network group that can be used at taps (or routers) at the
mentally, this is becaug@ogramsrespond to network mes-  edges of the network to monitor traffic between edge points.
sages, nohumans For example, an automated trading pro- For example, in Figure 1, we assume we have a monitor (tap
gram can buy millions of shares cheaply with faster accessand software) that taps all traffic entering E1, and a similar
to a low stock price; similarly, a cluster application can ex one for traffic leaving E2. Internally, there could be selera
ecute 1000’s more instructions if latencies are trimmed by core routersé.g, C1 and C2) along the path between these
100 psecs. Further, all these applications are deployed in edge routers.
data centers that span a small geographical area and where Fundamental to our problem definition is the assumption
links and switches are carefully chosen to have minimal la- of significant multipathing (and hencpersistent reorder-
tencies. Itis possible to deploy switchesq, [31]) with 10 ing) within the network. For example, in Figure 1, we show
usecs latency. Wall Street traders also vie with each other totwo such paths between the edge routers E1 and E2. Mul-
get the best links from the Dow Jones stock feed to their datatipathing using ECMP is very common in data center net-
centers in Manhattan [22]. works [8] because of the need to provide more bisection
Despite the most careful attention paid to choosing net-
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Figure 1: Typical data center architecture with edge and coe routers. Two paths possible between edge routers E1 and
E2 are typically load-balanced by hashing the source and désation IP address combinations.

bandwidth, and because of the use of redundant levels inperformance). If, however, the managers find large delays or
common multi-rooted tree topologies. large standard deviations (for example, if one path is §igni
For example, traffic from servef1 to S5 can be routed  cantly worse) then the manager can use more labor-intensive
through the link to C1, while traffic fron$2 to S6 can be means to narrow down the problem to a path, and ultimately
routed through the link to C2 because ECMP hashes basedo an offending component.
on IP source-destination pairs. Now, ECMP does notreorder By contrast today, managers can attempt to ascertain the
packets within TCP flows, so, the tap could keep latency health of their data centers only by sending active probes be
measurement state on a per TCP flow basis. However, keeptween edges. However, it can be shown that active probes
ing track of the latency for potentially 100,000 simultane- require inordinate amounts of probe bandwidth to achieve
ous connections could require too much state in the monitor, microsecond accuracy. A recent paper [18] proposes a sim-
especially in a hardware implementation. Thus it is more ple algorithm called LDA that is more effective than active
efficient for each edge router such as E1 (or a correspond-probing. However, LDA requires FIFO delivery of mes-
ing tap) to keep aggregate latency state for each egress edgsages which is clearly inapplicable in our edge-to-edge set
router such as E2. However, such aggregation inherently in-ting where reordering is a fact of life. Further, [18] propss
troduces the possibility of reordering as it mixes in traffic deploying LDA at every router, which is hard.
flowing over potentially two different paths. Further, this Our paper describes an efficient algorithm that can be im-
reordering can be persistent. plemented at the edges of a data center network to spot mi-
To get an idea of how much reordering there can be, sup-croscopic delay violations (in the order of microseconds)
pose the delay fron$'1 to S5 via Cl is 10usecs and the  and losses (10s per million) with small amounts of state and
delay from S2 to S6 is as bad as 10@secs. If the link processing costs.
speeds are 10 Gbhit and the average packet size is 1,000 bits
(125 bytes), the amount of reordering can be as high as (1002, PRELIMINARIES
- 10) x 10 = 900 packets. In other words, for reasonable
parameter settings, a single packet sent from E1 to E2 can
be overtaken by (or overtake) 900 other packets. Note that
while the paths chosen by ECMP are equal in cost, the cost
measure used in ECMP does not reflect transient conges2 1 Reordering
tion which can make two equal-cost paths differ widely in
latency.
In this setting, imagine that application traffic frofi
to S5 has poor end-to-end latency. The IT department im-
mediately blames the network for poor performance. It can
greatly help the network managers to have a simple tool tha
determines that all network delays from E1 to E2 have a very
low average delay and small standard deviation, and almost
no dropped packets. This suggests that the likely cause of
poor performance is at the hosesd, because of bad VM

We describe why reordering must be considered, the basic
requirements of a measurement scheme, and a set of existing
solutions that do not work well.

Figure 1 shows a canonical data center architecture. While
different designs have been proposed in the academic lit-
erature €.g, [15, 8]), most commercial data centers use a
similar model. Such multi-rooted tree topologies typigall

tprovide multiple paths between every pair of servers. Traf-
fic engineering policies in data centers often rely on simple
load balancing techniques such as equal-cost multipathing
(ECMP) that are natively provided by commodity routers.
Even though ECMP does not load balance traffic within
a single TCP flow, the need to keep aggregate statistics at



the edge-to-edge level will result in reordering of the edge  Active probesActive probes are insufficient for three rea-
to-edge flow. Recent load balancing proposals can furthersons: First, to measure microsecond latencies, a large num-
exacerbate reordering. For example, [9] proposes dynami-ber of active probes need to be injected. Second, active
cally moving large TCP flows between equal-cost paths in probes do not measure the true delay experienced by regular
response to congestion. Flowlet switching [27] even pro- data packets. Third, active probes may take one among many
poses mechanisms to allow load balancing within a single different ECMP paths that may potentially exist between the
TCP flow. Thus, any edge-to-edge measurement schemepairs of edge routers. We provide a more quantitative argu-
must be resilient to persistent misordering within the net- ment in the evaluation.

work. Embedding packet timestamps within pack&tsasuring
delay would be easy if we could embed a timestamp within
2.2 Measurement requirements each packet. However, IP packets do not have a timestamp

Assume a manager wishes to measure the performancéield and TCP timestamp options are _restripted to carrying
between two edge routers, s&yl and E2 in Figure 1. We end-to-end deI_ays._Addmg a new field is unlikely to happen.
divide time into intervals (1 msec to 1 second) for which we S€cond, even if switch and router vendors can be persuaded
are interested in obtaining performance measures. Besided® PUt timestamps within packets, packet timestamps cause
average latency, the mechanism should measure the variancgdnificant overhead, especially for minimum size packets.
of latency and the loss rate between these edge routers. For Storing timestamps locallyan alternative is to allow the
most of this paper, we assume hardware implementations toS€nder and receiver edge monitors to store packet digests
keep up with high line rates; however, we briefly discuss @nd timestamps locally, and only to exchange these times-
software implementations. Thus we seek implementations {2Mps at the end of a measurement interval. However, the

that are scalable in terms of control bandwidth, processing Storage and communication overhead for this scheme is ex-
time, and storage. This is especially important as these met frémely high. 10 Gigabit bottleneck capacity between two

rics for each source edge router must be multiplied by the €dg€ routers translates to roughly 10 million packets on a
number of destination edge routers. Of the three measuresP€r s€cond basis, assuming an average packet of size 125

storage may possibly be increased in a software implemen-bytes' Even assuming 10% utilization, exchanging a million
tation. timestamps per second is expensive. One could maintain

timestamps only for a smadlampleof packets; this reduces
bandwidth but at the cost of accuracy of latency estimates
as we show briefly in the evaluation. Intuitively, the stan-
dard error of the delay estimator decreases with the square
root of the number of samples; reducing the standard error
to microseconds requires a large number of samples. While
we are not certain, it appears that vendors such as Corvil [2]
and NetScout [4] use variants of this approach. The lack of
scalability may be indicated by the fact that the 10G Corvil
solution [2] costs 90,000 U.K pounds.

We assume some simple way to determine which packets
are destined to or from a particular edge router, for example
by prefix matching. We assume that the two edge routers
E1 and E2 can be time-synchronized withjmseconds, for
example, using GPS clocks that many ISPs have already be
gun to deploy. This is a general requirement for any one-way
delay measurement scheme, and in fact is employed by ex
isting edge monitoring solution such as Corvil [2].

There could potentially exist many different paths between

edge router€’1 and E2 as we discussed before. A natural )
LDA: A recent proposal called LDA [18] for measuring

guestion to ask is whether it is not possible to provide perfo ! ! -
mance measures for each path. We suggest this is problemfine grain delays suggests a way of greatly increasing the
atic for the following reasons. In a multilevel topologyath ~ "umber of latency samples using aggregation. LDA requires

balancing can occur at many points, in particular at routers the sender to send a synchronization message at the start

downstream from the measurement point. Overloading the of every measurement interval that is injected in the same

edge router to keep track of these multiple downstream pathsSiréam as the regular data packets.crécial assumption

and the precise way the load balancing is achieeegl, the that makes LDA WOI.’k is thgt the synchronization messages
hash function) is overly complex for both the mechanism and and packets are Fiel|vered in order at th_e receiver so that the
managers. Further, we posit that network operators are ofte S€nder and receive compute delay estimates over the same
concerned with one main latency measure across differentS€t Of packets. The FIFO assumption is reasonable if LDA
edge routers; the subtleties about which paths are experien 1S Used to measure average latencies across interface pairs
ing how much latency is often a second-order concern thatW'th'n routers. While routers routinely use Ioad-balgnqng
arises once a problem is detected. Thus, in this paper, We|nternaIIy, packets are resequenced before transmission a
focus on measuring the average latency acatispaths, if (e outputinterface. , _

multiple paths exist between a pair of edge routers. We re- Unfortunately, in our setting, the FIFO assumption does

iterate that a high standard deviation is a signal that some"Ot hold because load balancing is darwossrouters. A
path(s) has a higher than average latency. few reordered packets can cause LDA to incur a large error

as we show in the evaluation. Intuitively, this is because a
2.3 |Issues with earlier solutions packet from the end of interval — 1 may mix in to interval



u (via reordering) and the same interval may lose a packet latency = 10 microseconds

sent at the end of interval. The simple loss counters used - L -\
in LDA cannot distinguish these two cases. The net effect is .

. . . ] Sender,” \ Receiver
a serious discrepancy in the order of a measurement interval = =
(e.g, 1 second). Further, loss rate estimations using LDA do N p
not work because LDA cannot distinguish reordered packets w Reordering due
from lost packets. If the real loss is zero, LDA will false N _ Itotd'ﬁ?'ence'”
report alarms when there is only reordering. Recall that los - - L alenaies
can cause TCP timeouts and latency violations; reordering latency = 100 microseconds

across TCP flows cannot.

In order to address these shortcomings, we propose a hew
data structure called FineComb for fine-grain latency and Sender o E ) E .
loss measurements in the presence of reordering that we now Side

. Pre start Pre end .
explain. > Time
#Y&s’tstan #yo\st end
Receiver

3. FINECOMB Side u-1 55 v u+l

FineComb assumes a stream of packets going from a sender

Interval start Interval end

to areceiver. Time is divided into measurement intervads th
are marked by interval start and e_nd messages tha_t are trans- Figure 2: Four types of reordering that can occur.
mitted from the sender to the receiver. FineComb, like LDA,
starts with the following simple idea. Suppose the sender since the timestamp accumulators at the sender and receiver
and the receiver agree on a set of packets in the stream ovemay be computed based on two different sets of packets, and
which they want to measure delay. Then, they could com- this difference can affect the delay estimates signifigantl
pute the average delay by each locally maintaining a sum of  Specifically, there are four types of reordering (as shown
packet timestamps (@mestamp accumulatpand a count  at the bottom of Figure 2) that can be problematic in the basic
of the number of packets in the interval ¢aunte). The  design of FineComb. First, packets sent at the end of interva
average delay is then the difference between the timestamp, — 1 can be routed on a high latency path and hence arrive at
accumulator at the sender and the timestamp accumulator athe receivenfter the interval-start message. This can pollute
the receiver, divided by the number of packets in the counter intervalu with extra packets; we call such packpte-start

But how should the sender and receiver agree on the sefpackets. Second, packets from the start of intenvedn be
of packets, in the presence of packet loss and reorderingrouted on a low latency path and hence arrive at the receiver
without marking or modifying packets? This is exactly the before the interval-start message for intenvado thes@ost-
challenge addressed by FineComb. startpackets from interval are effectively missing. Similar
. problematic reordering could also occur around the end of
3.1 The challenge of reordering the interval (analogously referred to@®-endandpost-end

In FineComb, the sender and receiver agree upon an in-packets). We say = R/T is thereordering ratefor the
terval of T' packets that they would like to measure delays intervalu, whereR is the total number of reordered packets
over. To do this, the sender marks off intervals by sending a (sum of all the four types).
special ‘sync’ control message each time it sehdsackets Itis crucial to note thaR is almost always much smaller
to the receiver. (Note that the sender could choose to markthanT', the number of packets sent in an interval, even if
the intervals based on time as well, but we define interval asthere is persistent misordering. This is because problemat
T packets for ease of exposition.) All packets ‘bookended’ reordering is confined to the reordering that occurs redativ
by a pair of sync messages belong in a single interval. Forto the interval-start and interval-end messages. As shown a
convenience, we shall sometimes refer to the first sync mes-the top of Figure 2, this can occur if the sync messages are
sage in an interval as an interval-start message, and the endouted on one path (high or low latency) and the data mes-
sync message as an interval-end message. sages following or preceding the sync message are sent on

The challenge is that when packets traverse the network,the other path. Thug < 25L, whereS is the transmission
they can arrive out of order as shown in Figure 2. The order- speed and. is the maximum difference in latencies of paths.
ing of packets that are both transmitted and received within For example, ifS is 10 Gbps and. = 100usecs and an av-
the interval itself does not affect FineComb (or LDA), since erage packet size of 1,000 bitg,is around 2,000 packets.
the timestamp accumulators and counters are order-agnosti By contrast;I’ may be as large as 5 million.
(addition is commutative). However, we must deal with the  In addition to reordering, packets can also get dropped in
following type of problematic reorderingnamely packets the network, which can cause the sender and receiver state to
that start out in one interval at the sender, drift into an an- become inconsistent. We assume at nftiStpackets from
other interval at the receiver. This situation is probldmat intervalu will be dropped as they traverse the network from



sender to receiver, wherzis theloss ratefor the intervalu. Finally, we can easily add or subtract packets from the incre
Now, if we compare the two streams of packets that be- mental stream digest by computing the XOR of their digest
long to an interval at the sender and receiver sides, the dif- with the incremental stream digest. This third propertiés t
ference between themis at mg§t+ R packets. Ifwe could  basis ofstash recoveryhich we describe next.
somehow correct for thes#l” + R bad packetshat prevent 2) Stash recovery: By a stash, we simply mean that we
the sender and receiver from agreeing, we could make Us€een a copy of the timestamp, the bucket index, and incre-
of the simple timestamp accumulator and counter idea de-mental stream digest of a small number of packets that arrive
scribed above. before and after the sync messages that delimit an interval.
3.2 Keyideas As we have seen, this numbg&ris small (say 1,000). Since
these are the most likely messages to have been reordered,
As in LDA, FineComb keeps an array @f timestamp  stash recovery simply attempts to add or subtract the incre-
accumulators and counters at the sender and receiver; a hasghental stream digest of each stashed message from the cor-
function computed over packet contents is used to map eactyesponding bucket into which that stashed message hashes.
incoming packet to ducketcontaining a (timestamp accu-  Note that if the stash were as bigBEswe would be back to
mulator, counter) pair. If the sender and receiver use a con-the naive algorithm of storing all local time-stamps. Thes t
sistent hash function, then they will map packets to buckets fact thatR is much smaller thaff is crucial to the efficiency
in an identical fashion. We say thatoaicket is usefullif it of stash recovery.
contains the same set of packets at both the sender and re- To show a concrete examp|e of stash recovery, suppose a
ceiver, and thus can be used to compute the delay estimatepre-start packeP from intervalu — 1 is hashed into the 20th

Notice that a bucket is useful as long as none ofie+ R bucket in interval, making it useless. Assumidgis stored
bad packets hash to that bucket. FineComb corrects for thein the stash at the receiver because it arrived shortly tfeer
BT + R bad packets using the following three ideas. interval-start message, stash recovery will look up théketic

1) Incremental stream digests: Comparing counters at 20, and try to subtract the incremental stream digestfor
sender and receiver cannot be used to conclude that a buckefom the incremental stream digest at the receiver. If the
is useful in the presence of reordering because a droppedeésulting incremental stream digest matches the increahent
packet that hashes into a bucket can be replaced by a (dif-stream digest of bucket 20 at the sender, bucket 20 can be
ferent) misordered packet from another interval. Even one made useful again by subtracting the timestamg’dfom

such event can throw off the delay estimate considerably.the receiver timestamp sum. While we have lost 1 sample
The misordered packet may have been sent just before thdrom the bucket, we have saved perhaps 10,000 remaining
start of intervak: but may hash into the same bucket as a lost Samples that aggregate into bucket 20 that would have been
packet sent towards the end of interualThus the induced  lost otherwise.

error can be as large as the size of a measurement interval Given a fixed memory budgét/, however, it is not clear

(say 1 second). whether to allocate more stash (and hence, to recover from
To detect such cases, we augment the counter in eachnore reordered packets) or to use more buckets (and hence,

bucket with what we call aincremental stream digesfAn to be more resilient to loss). We will investigate this trafle

incremental stream digest on a stream of pacidets, pkt., analytically and experimentally.

..., pkt, is computed as follows: 3) Packet sampling: In many practical situations, the num-

ber of bad packet8T + R is going to be far greater than the
H(pkt,) © H(pkt;) © ... © H(pht,) @) number of%ucketM. Givengpagkets are rgndomly hashed

where® is an invertible commutative operation, afidis a to buckets, that means, that all thé buckets could become

hash function. We refer tél (pkt,) as a digest. Our incre- ~ useless. Even if somehow, we manage to recover all the re-

mental packet digests are similar to the incremental doflis ordered packets in a given interval, the number of lost pack-

free hash functions proposed in cryptography [11]. How- ets alone3T could be bigger than/.

ever, since we are not operating in an adversarial setting, w  In FineComb, we sample packets at rateso that the

can let® will be a simple XOR operation, and we do notre- expected number of bad packets that can cause buckets to

quire the full power of a cryptographic hash function such as become useless drops 037" + R). On the one hand, se-

SHA-1; we can use simpler hash functions such as BOB [16] lecting a high value ofp will mean that the number of bad

or H3 [25] instead. packets, and in turn useless buckets, will increase. On the
The incremental stream digest has three useful proper-other hand, selecting a low value@ivill make each bucket

ties. First, two streams containing different packets akh aggregate fewer samples. Determining the optimal value of

to different values with high probability. Second, because p that maximizes the number of useful samples over which

XOR is commutative, two streams containing the same set of measurements are computed is a key question that our later

packets in different order still hash to the same value. Thus analysis will address.

we can determine if a bucket is useful by verifying that the

incremental stream digests match at the sender and receiver‘?"3 Basic FineComb without a stash



Sender side Receiver side
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Timestamp Pkt Incremental Start Pre-Stash  Start Post-Stash

Sum counter  Stream digest end pre-Stash End Post-Stash

Figure 3: Example of FineComb. The four stashes cater
to the four types of reordered packets.

We start by describing FineComb without a stash. Ba-
sic FineComb (as shown in Figure 3) usdsbuckets, each
containing a timestamp accumulator, counter, and incremen
tal stream digest. Each packet is sampled with probalility
and then distributed to one of the buckets by a random
hash function. The pseudocode outlined illustrates thesste

2) Estimating standard deviation. We compute standard
deviation in a similar fashion using a technique introduced
[10]. Conceptually, we could maintain an additional counte

to which each sampled packet’s timestamp is added or sub-
tracted with equal probability/2. Note that we need both
the sender and receiver to agree on the same decision (of
adding or subtracting) consistently, that can easily béezekl

if the decision is based on the packet hash itsei§,(1 or

0 in first bit position could indicate addition or subtractjo
Subtracting the sender and receiver counter and then squar-
ing leads to an unbiased estimator for delay variance [10].
Rather than waste memory with an extra counter per bucket
to measure variance, we use a trick used in LDA where ex-
isting delay buckets are paired and subtracted to simuiate t
adding or subtracting with equal probability.

3) Loss measurementloss measurement becomes difficult
in the presence of reordering. Whereas the LDA operated

involved in updating FineComb state at both the sender andin @ setting where there was so reordering, so that a single

receiver for everysampledpacket. Letl'S|[i] represent the
timestamp accumulatot;[i] the packet counter, anB|[i]
the incremental stream digest fith bucket and\/ repre-
sent the total number of buckets.

1: procedure UPDATE STATHpkt, T)

2: D + compute_hash(pkt) — Digest

3 i< D mod M — Index into buckets
4 TS[i]| + TS[i]|+ 7

5  Cl]«+ Cli]+1

6 D[i] + D[i]]® D — © could be XOR
7: end procedure

After sendindl” packets (or, alternately after a fixed amount

of time), the sender sends its set of buckets to the receiver i

the sync message. When the receiver receives the sync me

sage, it uses the sender’s buckets along with its local hsicke
to compute the average latency and loss as follows:

1) Estimating average latency. The receiver first deter-

mines the set of useful buckets by checking which buckets 4-
have matching incremental stream digests at sender and re- 5.

ceiver. For all these ‘valid’ buckets, the receiver compute
the difference between the receiver’s and sender’s timgsta

counter at the sender and receiver suffices, FineComb must
try to disentangle reordering from real loss. To see why this
is hard, consider what happens at the end of an interval for
a particular bucket if the sender-side counter is smallen th
the receiver-side counter. When there is no reorderingn(as i
the scenarios the LDA was designed for), this is impossible.
However, it can easily happen if a few packets drift from
one interval to the previous intervald. post-start packets
that overtake the interval-start message). These paciets a
not lost: they are simply accounted for in the bucket of the
previous interval.

We use stash recovery (detailed description next) to “clean
up” the effects of reordering wherever possible. If all effe
of reordering are removed, it is easy to see that the follgwin

S-.

simple algorithm does the job.
L N+<O0,L+<0
2: for i=1, M do
3 if Cs[7] > C,[i] then
L« L+ (C4i] —
N < N + Cli]
6: end if
7: end for

C:[i])

accumulator, sums them together and divides it by the sum g: jpss rate = L/N
of all packet counters in these valid buckets. The steps are  note that the algorithm still checks whether a sender caunte

outlined below.

L N+<0,D+0
2: for i=1, M do

3: if Cs[i] = C,[i] and Dy[i] = D,[i] then
4: D+ D+ (TS, [i] — TSs[i])

5: N+ N+ C,[i]

6: end if

7: end for

8: Average delay = D/N
The main difference compared to LDA's delay estimation
algorithm is the requirement of an extra check for a match

is greater than the corresponding receiver counter. This is
because stash recovery can be imperfect. Further, if a lost
packet and reordered packet that is stored in the stash are
bothhashed to the same bin, stash recovery will fail, because
the lost packet has made the bucket ‘useless’.

In more detail, assume that before stash recovery]
for some bucket was less tharC,.[i] because of two pre-
start message®1 and P2 that were hashed into buckét
that were not counted in this interval. Suppose furtherahat
third packetP3 that hashes into buckeis lost. Then even if
P1andP2 are in the stash at the receiver, there is no way for

of the sender and receiver packet digests; just matching thethe receiver to correct buckébecause, by definition, it does

packet counters alone is not sufficient.

not have the digest faP3 which is lost. Thus bucketis not



just useless from the point of view of calculating delay, the recover that bucket by adding (if the entry is from the pre-
algorithm cannottell apart a loss of 1 packet and areorderin start stash or post-end stash), or subtracting (if the paske
of 2 packets in bucket(as in the example) from a loss of 2 from the post-start stash or pre-end stash) the timestamps o
and reordering of 3 packets (say). Thus, the loss estimationthose stash entries to the bucket'’s timestamp accumulator.
algorithm above will ignore bucket and thus lose a data Stash recovery appears to take exponential time because it
point for loss estimation. may seem that one has to consider all possible combinations
Since we are trying to measure small losses, this is poten-(2') in the worst case whelv stash packets hash to a single
tially serious. However, with careful sizing of the samglin  bucket. Fortunately, stash recovery is much faster because
probability (as we show later in the evaluation section) the with high probability, onlyO(W/M) stash packets can hash
probability of both a lost, and a reordered packet hashing to together into the same bucket. Thus, the running time of the

the same bucket is even smaller. decoding algorithm i€ (M2"/M) and since the typically
i stash sizéV < M number of buckets, it follows that stash
3.4 Managing the stash recovery time is approximately linear iy

We now describe the details of adding and recovering a  Thus the algorithms to calculate loss and latency are ex-
stash. Recall that the stash stores individual timestamgs a actly as before for basic FineComb except that we preface
digests for the packets that are most likely to be problem- them by doing stash recovery to potentially increase the-num
atically reordered. We assume that only the receiver keepsber of useful buckets. A stash should help improve latency
a stash, that consists 8f entries One nice feature of not  estimates slightly (by increasing the number of useful buck
keeping a stash at the sender is that if we grow the stashets), but will be much more critical in obtaining reasonable
size (especially in a DRAM implementation of the stash), the loss estimates (allowing loss to be distinguished from re-
control bandwidth does not grow with stash size: the senderordering).
can send its buckets to the receiver to compute estimates3 g Handling unknown loss and reordering rates
The stash is broken up into fosubstashegpre-start, post-
start, pre-end, post-end stash) of sizewheredw = W,
corresponding to the four types of problematic reordering.

If we know the exact reordering rateand loss rates a
priori, our theoretical results (shown in the next section) al-
) ) low us to configure the sampling rate appropriately to ensure
Populating the substashes.Even though the receiver does  hat optimal number of delay samples are obtained. In prac-
not know when interval-start message will arrive, the re- ice e may not always know these values before hand, and
ceiver can still populate the pre-start substash as follow; they may change over time. One way to solve this problem,
The receiver stores the digest and timestamps in a cyclicig o estimate the reordering and loss rate in online fashion
queue of lengthy, such that a new sampled packet causes the g yse these estimates to compute the right sampling rates
oldest packet in the queue to be evicted if the queue is full. 1o fyture intervals. Unfortunately, there is no guararitest
The receiver stops populating the stash when the interval-yeqrgering and loss exhibit any amount of consistency acros
start message arrives. Similarly, to populate the post-sta niervals.
stash, the receiver keeps a queue of lemgthat starts being LDA also faces a similar problem—the loss rates are not
populated once the interval-start message is received, andtjearly known a priori. To handle this case, LDA partitions
stops populating when it is full. The other two stashes are rggqyrces into multiple banks, each bank statically tuoed t
managed similarly, except they wait for interval-end iaste  ifferent loss rates. We can use a similar trick in FineComb

of interval-start. as well, except, we need to consider the operating ranges of
Stash recovery. Notice that the pre-start stash and post-end two different parameter§ andp. Thus, in FineComb, we
stash contain sampled packets that potentiiifed outof use multiple banks optimized for the four different extreme

the interval, and are thus missing from the receiver’s buck- operating regions;&nin, Pmin)s Bmins Pmaz)y Bmazs Pmin)s
ets. Thus, these substashes can be usadddhese pack- and @Giaz, Prmaz)- LOW values off,,:, and ppq.,, Mmeans
ets back to the appropriate receiver’s buckets. On the otherthat the sampling rate chosen could be high, which in turn
hand, the post-start stash and pre-end stash contain shmplemeans the estimates are good. On the other hand, once the
packets that potentiallgrifted intothe interval. Thus, these loss rate or reordering rate becomes high, this bank turred fo
substashes can be usedstbtractthese packets from the low loss rates may produce no valid delay or loss estimates,
receiver’s buckets. as the number of bad packets may far exceed the number of
Thus, stash recovery proceeds as follows. For each use-elements provisioned individually.
less bucket, the receiver considers all the entries of the fo For the evaluation, we use the following simple (non-opt)ma
substashes that map to that bucket. The receiver then constrategy to configure resources for each bank. We currently
sidersall subsetof the stash entries that correspond to this use four banks, each using one quarter of the total storage.
bucket. For each subset of stash entries, the receiver XOR3Ne compute the optimal sampling probabilities and amount
the digests of the entries with the bucket’s incrementabstr of stash required for each of the four extreme operating re-
digest. If the sender and receiver’s incremental streamstig  gions and partition resources statically. We leave dynamic
match for this subset of stash entries, then the receiver carreorganization of banks for future work.



For delay estimation (both mean and standard deviation), ber of useful samples is
we compute the average delay output by all the individual
banks. For loss, averages will not produce good output, E[X|L] = E[Good pkts per buckiF[No. of useful buckeis
especially at low loss rates. Instead, we use the following =pG(1 — ﬁ)L (2
heuristic. We pick the loss rate of a bank whose estimate
is closest to what it was tuned for. Intuitively, this heuris Sampled uncorrected bad packetsL.. We have3T dropped
tic uses the observation that rate estimates are typicalstm Packets, andz reordered packets; together, this gives us

accurate when they are closest to what the bank is tuned for. 57" + R bad packets, that we sample with rateWe shall
assume thatverypacket that is stored in the stash is an out-

4. SETTING PARAMETERS of-order packet, so the stashes will allow us to correctfer e

At the highest level, recall that main advantage of FineCombctly W sampled out-of-order packetsThus, the expected
and LDA over the trivial algorithm that keeps a small sam- number of bad packets that are sampled and not corrected is
ple of the timestamps of sent and received packetsrigple
efficiency If we can afford just 1,000 pieces of memory, the E[L] = BpT + max{0,pR — W} (3)
naive algorithm provides just 1,000 samples of delay. On \yqorking with the conditional expectation. Because the
the other hand, using aggregation allows the extractiah of distribution of L is quite complicated, in this section, we
samples (the number of packets sent in the interval, in theworkwith the conditional expectatioi [ X |L = E[L]], which
millions) if there is no loss. Since the standard error reduc is obtained by plugging (3) into (2). By numerically plotin
by the square root of the number of samples, this can res“"equations, we observed the results obtained ugiig| L —
in much finer delay estimates in the common case when theE[L]] are quite close to results obtained from the uncondi-

loss is small. , , _tional distributionE[X].
In the following analysis, our goal is to choose a sampling

rate p, and stash siz&) that will maximize the expected 4.2 Optimizing stashw for fixed sampling p
number of delay samples that we extract from FineComb.
That is, we would like to maximize the expected number
of packets that are hashed to useful buckets, so that we ca
estimate delay as accurately as possible. The followinly ana
ysis assumes that FineComb uses a single samplingrate W~ { pR whenS > p(R + pT) @)
and that the number of entries in the stash and the number - 0 else.

of buckets in FineComB/ is fixed, so that total storage is
S = M + W.! Note that while we have formally proved the
results in this section, for brevity, we only state the mhit
orems and results. (Proofs will be posted in the full version
of this paper.)

First, let's suppose we work with a fixed sampling rate
In Appendix??, We can prove that the optimal size allocated
o the stash is approximately:

Notice that (4) suggests that when the total storéges

very small,i.e. less than the number of bad sampled pack-
ets, all the storage should be dedicated to the buckets of
FineComb {.e., W=0). On the other hand, when we have a
decent amount of storage, the analysis shows that we should
4.1 Expected number of useful samples keep stashes large enough to correct for the expected num-
ber of out-of-order sampled packetd?. This makes sense,
since a single bad packet can cause an entire bucket to be-
come useless, so that abgyt> ‘good’ packets become use-
less. Hence, it follows that correcting a single discreganc

Since our goal is to maximiz&, the expected number of
useful samples we can extract from FineComb, our first step
will be to determineF’[X].

Good and bad packets. Let us focus on intervak, and in FineComb due to a bad packet is highly effective, and
say a packet sent by the sender in intervas ‘good’ if it further that we should dedicate a large amount of storage to
was received by the receiver in intervglotherwise ‘bad’.  the stash. Note that this analysis only applies to the opti-

Recalling thats is the packet loss rate on the pathis the  mal choice of stash size and sampling probability in order to
number of packets the sender sends in an interval, the num-alculatdatency

ber of good packets i§ < (1 — 3)T with equality when o .

R = 0, so that there are no packets that are problematically4.3  Optimizing sampling rate p.

reordered. Packets can become bad due to loss, or proby

lematic reordering. The number of dropped and reordered No stash. Per (4) we now consider the case where we have
e T >ng. T u pped no stashi(e., W = 0). In Appendix??, We can show that
packets in an interval i8T and R = pT respectively.

the optimal sampling rate is
Conditional expectation of useful samples. Let L be the

number of bad packets that are sampled but not corrected P = Inin{
during stash recovery. We can prove that the expected num-

S
— 1 5
R+ AT } ®)
"We could instead fix the total storage of the system, so$hat 2In practice, this may not be case; the stash may store sorketpac

2M + W, since the sender has no stashes and thus requires storagéhat arrived correctly in an interval (these good packetstevapace
M, while the receive requirel/ + W storage. in the stash), as well as some out-of-order packets.




Stash. Now, (4) tells us that when we have a stash, its  Given our goal is to compare the performance of our ar-
optimal size i9V = pR. In Appendix??, We can show that  chitecture in many different settings, we provide severatc
when we use this value for the stash, the optimal sampling figuration parameters such as loss rateeordering rate,
rate is approximately measurement interval. Our simulation environment is delib
g erately kept similar to the one used by the authors in [18] so
p* = min {—2 (2p +8—V4pB+ ﬁQ) , 1} (6) that fair comparison of FineComb with LDA is possible.
2p°T Delay model. Ideally, we would to use traces at two mon-
wherep = R/T. itoring points within a real data center with GPS synchro-
nized clocks; unfortunately, there exists no such publicly
available data center latency traces. Prior work [18] used
the Weibull delay distribution model empirically verifiedl t
mimic the distribution of delays within a backbone router by
Papagiannalet al. in [23]. We use mainly Weibull distri-
a'bution (and Pareto for diversity) within our simulation$er

. o delay for each packetis drawn is from a Weibull distribution
A note on our approach. This analysis first fixed the sam-  \ynich has cumulative distribution function

pling ratep and then optimized stash si¥g; then optimal

value for/¥ was used to solve for the optimal sampling rate P(X<z)=1- o(—z/a)?

p. It would have been better to jointly optimiZeg{ X| for W

andp; however, the complexity off[X] (see £?) made a  with o and 3 representing the shape and scale of the graph

To stash, or not to stash. The last issue we need to settle
is whether it's better to use a stash or not. Plugging our two
operating pointsg**, W = 0) and @p*, W = p*R) into
the equation fol£[X ], we find (see Appendi®?) that the
expected number of samples is maximized when we use
stash.

joint optimization quite complicated, so we avoided it. respectively. We use [23]'s recommended shape parameter
0.6 < a < 0.8 in all our simulations (mostly, we used=
5. EVALUATION 0.6). Note that while FineComb (and LDA) are agnostic to

the distribution of timestamps, delay distribution doestera
when we determine the relative error provided by these data
structures.

Loss model FineComb and LDA are agnostic to the the
loss rate distribution—even if two lost packets are back-to
back, they are randomly hashed into different buckets any-
way. Thus, it suffices to simulatandompacket loss.
Measurement interval. Unless otherwise specified, we sim-
ulate an interval of 1 second with a mean delay of about

e How does an optimal configuration of FineComb com- 10us. (Path latencies in data centers may range from 10-100
pare with optimal configurations of other previous so- /5, SO our setting simulates close to the finest granularity.)
lutions such as LDA, in terms of relative error, under Since the exactaverage latency is not as significant, we show
the assumption each solution is allowed to use the sameOUr results in the form of relative error. On the other hand,
total effective memory? (Here, we will assume that the loss rate distribution is significant; we use Weibulltwit
loss and reordering rates are known.) shape parameter 0.6 and scale adjusted to obtain mean delay

of 10us. We simulate 5,000,000 packets, with an average

e Since in practice, we cannot predict the loss and re- packet size of 250 bytes, over a 10 Gbps bottleneck capac-
ordering rates, we consider FineComb provisioned with ity with an inter-arrival time of 0.2s—transmission time for
using multiple banks tuned to different loss and re- 250 bytes at 10Gbps is Qu2. (The average packet size or
ordering rates. How does this perform compared to the inter-arrival time do not impact our results; the nursber
LDA? are chosen similar to the experimental setting in [18], pkce

for the higher path latencies in our setting.) Unless other-
After describing the evaluation methodology we have used,wise specified, our results are the average over 10 different
we will discuss each of these three questions. simulation runs, taken in order to obtain smoother trends.
. Reordering model An important parameter in our simula-
5.1 Evaluation methodology tion is thegreordering rath.) We C(E)U|d simulate reordering
We built a custom simulator in C++ for evaluating a proto- in the same way we simulate loss; by randomly choosing
type of our measurement solution. Our custom simulator is which packets to reorder. However, in practice, it is at all
more efficient than, say, ns-2 and allows us to simulate send-not clear that reordering follows a process similar to tHat o
ing several million packets. Further, ns-2 does not provide packet loss; in fact, there exists no generative model tieat w
any built in routines that we can leverage as all we need is are aware of that we can use in our simulation. We note once
to simulate packets sent on a link with specified delay, loss, again that reordering within the interval does not affetttesi
and reordering characteristics. LDA or FineComb; what matters is problematic reordering

In this section, we evaluate the efficacy of FineComb.
Specifically, we seek to answer the following questions:

e How does FineComb perform in estimating mean de-
lay, standard deviation and loss rates under different
levels of reordering and loss rates? Does the number
of effective samples obtained empirically agree with
analytical bounds?
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Figure 4: Relative error of mean delay and loss estimates irhie presence of forward reordering under different distri-
butions. We show both FineComb and FineComb- for comparison

at the fringe of an interval (see Figure 2). gest). Furthermore, while FineComb is asymmetric (only
To stress LDA and FineComb in terms of problematic the receiver maintains stashes), the LDA is symmetric. Thus
reordering, we simulate the following simple determimistt memory is allocated as follows: LDA getss(M + W/2)
model of reordering. In our reordering model, we essegtiall buckets at sender and receiver, wh&fés number of FineComb
specify a 4-tuple< Ry, Ry osts Bprer Rpose™>, the number  buckets andV is stash size.
of pre-start, post-start, pre-end and post-end packetseagkfi : :
in Section 3.1. Then, for each interval we wish to simulate, 5.2 Assessing FineComb
we choose a contiguous set of packets from the end of oneExpected number of samples. In our first experiment, we
interval that will drift into the next and vice-versa. wish to understand how tight the theoretical bound on the
Note that the theory in Section 4 is based on the total num- number of useful samples is, at the optimal sampling proba-
ber of reordered packe® = pT" and considers a slightly  bility. In Figure 4(a), we plot the expected number of sam-
more simplistic model than we use in our experimentation. ples according to the analytical bound given in Equation 2
While clearly,R = R}, + R;,s + Rppe + Rposts the op- (curve titled ‘Expected’) and the empirical number of sam-
timal probabilityp* obtained in Equation 6 is computed as- ples over which delays are computed. The three different
suming all these different individual reordering compadsen  curves in the figure correspond to three different loss tte s
are the same. To make our provisioning strategy consistenttings (0.0001, 0.001, 0.01). Clearly, as we increase the los
with theory, we obtain the total reordered number of packets rate from 0.00001 to 0.001, the number of effective sam-
R as follows: ples over which the delay estimates are computed reduces
all the way from almost 3 million packets at loss rate 0.0001
(0.01%), to about 40,000 packets at 0.01 (1%) loss rate. As
We simulate two main types of reordering, calfedvard we increase the reordering rate, the number of effective sam

andbackward that correspond te 0, , 0, 0> and<0, 0, z, 0> ples also depreases (although not by much for the 0.01 loss
configurations for the 4-tuple. In most experiments, we con- rate curve, since the loss rate overwhelms the reorderiag ra
figure = equal to roughlyl0—5T to 10-3T (T being to- significantly). This is expected since more loss causes more
tal number of packets); equivalently, the reordering rate FineComb buckets to become useless, causing the expected

varies fromd - 10~ to 4 - 10~3, translating to roughly 50to ~ Number of samples to decrease.

5,000 packets before the interval-end message. We also sim- N @ll cases, we observe that analytically expected number
ulated many other configuratiors§, <z, z, z, z>, <z, of samples matches quite well with what we found empiri-

0,0>) but latency estimation results were mostly similar in Cally (the curves are virtually indistinguishable); théfet-
all cases; this follows because sampling probabilities and €Nc€ between expected and empirical is of the order of a

stash sizes are all dependentomhich is same for all these few hundreds, with the predicted number of samples slightly
configurations. smaller than what we found empirically.

Resource configuration.We allocate a total of 1,000 buck- Latency estimates. Next, we show the average relative
ets for FineComb. To simulate cases with and without stash, error of mean delay and loss estimates, as we vary the re-
we assume stash elements are of the same size as bank elerdering ratep in Figure 4. We show the results comparing
ments (for simplicity). We use 64 bits from a 160-bit SHA-1 FineComb and FineComb- (FineComb without the stash) for
hash function for packet digests (other hash functions@oul two different distributions, Weibull and Pareto with shape
work equally well). To make things fair, we equalize the and scale parameters adjusted to ensure similar meanyatenc
storage at the LDA and the FineComb. The buckets in the of 10us. While we have simulated many different levels of
LDA are 2/3 the size of those in FineComb (LDA has times- loss and types of reordering, for brevity, we mainly show the
tamp accumulator and counter but no incremental stream di-latency results for the high loss situation and loss estonat

R =maz{R,,., Ry,s, R,

posty ~prer
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fore we show these results, however, we go over why other
simple alternatives do not work as well as compared to FingCo
1. Active probing. Intuitively, active probing methods do
much worse than methods like FineComb in terms of stan-
dard error for a fixed control bandwidth, because each active

probe provides a single delay sample, while each FineComb
bucket provides thousands of samples. Using a sampling
probability ofp = 0.1 (optimal for low loss and small amount
of reordering), FineComb will provide 500,000 delay sam-
ples in each interval. Now the control bandwidth required
to send 1,000 buckets from the sender to the receiver, is
R roughly 16,000 bytes (assuming 16 bytes per bucket) while

FineComb- e AT
LDAY_

o | T ] an active probe takes at least 64 bytes (packet headers plus
timestamp). To keep the control bandwidth the same, even
wt ] if we allowed16,000/64 = 250 active probes per second,
they would only provide 250 delay samples while FineComb
provides 500,000. This 2,000x increase in sample size-trans

lates roughly to,/2000 = 44x decrease in standard error.

2. Sampled local timestampsSimilarly, consider the other
trivial solution of sampling a small number of packets in
each interval and storing their timestamps. Assume tha®amb
uses 1,000 buckets and a stash of the same size. Then the
trivial algorithm can afford to store 2,000 samples. Once
again, for the same parameters as the example above, the
trivial algorithm will provide 2,000 samples per secondjleh
FineComb will provide 500,000. This factor of 250x in-
for the low loss situation. (These are the least favoralble si Crease in sample size translates to roughly a factor of 15x
uations for FineComb.) From Figure 4(b), we see that the decrease in standard error.
relative error for FineComb is less than 0.3% for either of 3. LDA for latency estimates.In Figure 5, we plot the rela-
the two distributions, under different levels of reorderin tive error of mean delay estimates for four solutions, ngmel
As predicted by our theoretical work (in the full version), LDA, LDA+ (a small refinement of LDA we discuss later),
FineComb provides about 15-30% more useful samples thanFineComb and FineComb- for different reordering rates and
FineComb- (that has no stash). While more samples shouldreordering models. For this set of experiments, we choose
lead to better delay estimates, the improvement in the delayoptimal stash size configurations and sampling probadsliti
estimate depends heavily on the specific delay distribution (for LDA, as recommended in [18]) for all solutions.
that is, some distributions require fewer samples to obtain  The main observation from the graphs is that, beyond small
accurate estimateg.g, to take things to an extreme, a uni- levels of reordering, LDA consistently performs the worst,
form distribution requires only a small number of samples with relative error as high as 100% (at= 0.0005) to around
for excellent accuracy in delay estimates). 400% (p = 0.004). This follows from the fact that LDA can-
Loss rate estimates\We clearly see the benefit of the stash Ot deal with reordered packets. If a reordered packet and a
when we consider loss estimation error in Figure 4(c). We [0St packet hash to the same LDA bin, the LDA will assume
can observe that the estimates of FineComb- are significantl that bin is useful and include it in the loss rate estimation.
worse than FineComb, especially at higher reordering rates However, that bucket will contain timestamps relating to tw
This is explained by the fact that loss rate estimates fa@Gamb-differentsets of packets, and error induced can be as large as
include reordered packets; because FineComb- has no stastih® measurement interva.g. 1 second). Further, this er-
we have no way to prevent these reordered packets from pol-/OF IS amortized over the total number of sampled packets
luting our loss rate estimator. Having the stash helps recov  (Which gets progressively smaller as sampling rates are re-
most of those reordered packets in FineComb, thus addingduc€d to accommodate higher reordering). _
significantly fewer number of false positives in calculgtin . LPA* is a simple refinement of LDA which effectively
the loss rate. Note that the delay distribution itself does 19nOres the set of buckets where the sender’s timestamp sum

not effect loss rate estimation (the little difference bisiis is higher than the receiver timestamp sum (which could be
caused by different random number seeds).

caused by a situation like the one we described above) and
5.3 Comparison with other solutions

results ina negative delagontributed by that bucket. This
We compare FineComb with LDA using simulations. Be- ordering case (where extra packets drift into the interval)
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Figure 5: Average relative error of mean delay estimates
comparing FineComb with LDA with forward and back-
ward reordering.

clearly helps solve most of the problems in the forward re-
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as reflected in the better relative error for LDA+ in Fig- ‘

ure 5(a). In fact, in cases where LDA+ was optimized for e

higher loss rated.g, at3 = 0.001), we observed better ac- o
curacy than FineComb, that can be explained by the fact that o
the total number of buckets allocated to LDA is about 1.5
times higher than those allocated to FineComb, resulting in
slightly better sampling rate, and consequently, in mone-sa
ples. However, LDA+ is merely a patch, and does not work
in the backward reordering cases, since in these cases, we 10
cannot easily detect (using a simple elimination scheme as

before) and eliminate buckets that are anomalous because of
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reordering. Thus for the lower set of graphs, we can see that 08 s

LDA+ has the same accuracy level as the LDA. ol e %goﬁgikh
In all cases, we can observe that both FineComb and FineComb-

perform consistently better than LDA even under high loss 04

and reordering rates. We can observe that the relativeisrror
mostly around 0.1% and never more than 1% in all the cases

03

Relative error

considered. For standard deviation estimates, we observed 0z f

a similar phenomenonmg., the accuracy of FineComb is or- o1l

ders of magnitude higher than LDA's. The same set of of e
reasons why LDA's mean delay estimates are quite bad ex- S pyr

plains why standard deviation estimates are also bad. €Sinc §

the curves look exactly the same as those for mean latency,
we omit them.)

(b) Microscopic loss, 5-100 lost packets

o _ Figure 6: Relative error of FineComb at detecting low to
4. LDA for loss estimation. In Figure 6(a), we plot the  mjicroscopic loss rates.

relative error in estimating loss rate (f6r= 0.0001). As
we can see from the figure, FineComb’s estimates are usu-5.4 Handling unknown loss and reordering rates
ally within 10-30% error irrespective of the reorderingast

The estimates of the rest are quite poor, with more than 100-

500% error for LDA. This is expected, since neither LDA (01 gy, jt is important to have a solution that works across a

LDA) nor FineComb- have the capability to correct for ré- 5146 range of loss rates and reordering rates using multi-
ordered packets; only FineComb enjoys that capability due 5k FineComb.

to the presence of the stash. We compare the efficacy of a 4-bank FineComb with a
Microscopic lossesWhile 10-30% error in estimating loss  two-bank LDA. For FineComb, we optimize the individ-
rates as low as 0.0001 is good, our goal was to also be ableual banks for the four pair-wise combinations &f,;, =

to detect losses as low as 1 in 1 millioro(®). Intuitively, Pmin = 0.0001 andBae = pPmaz = 0.01. In Figure 7(a),
detecting such low loss rates in the presence of reasonableve show the relative error of the mean delay estimates of
levels of reorderingd.g, say 500 packetse., p = 10~4) is FineComb compared to that of LDA. FineComb-OPT, shown
possible only with extremely high rates of sampling (close for reference, is FineComb configured with the theoretycall
to 1) and with a stash large enough to recover most of the best sampling rate and stash size given the knowledge of loss
reordered packets. (Our formulae predict these configura-and reordering rates. We mainly show the relative error for
tions as well.) To explore this case further, we simulate mean delay for the worst case loss rate, wiges= 0.01;

low loss conditions (with 5, 10, 50, and 100 packets lost in the results for other loss rates, and for the backward reorde
the interval) and configure stash and sampling optimallly jus ing case, are quite similar to this curve (and hence, onjitted
as before. The 5 packet situation is equivalent to 1 packetFrom the figure, we can observe that LDA performs worse
loss in 1 million (our definition of microscopic losses). In than FineComb (as we have observed before) even in the
Figure 6(b), we see that, even though the relative error of case of multiple banks. At extremely low reordering rates,
FineComb'’s loss estimates becomes progressively worse ashe estimates of LDA are quite accurate, but they become
reordering increase, the estimates are well within 10% for quickly unusable with small increases in reordering raags (
reordering rates up tb0—* (500 reordered packets)e., 5 around 0.0002). Further, we can clearly see that, while 4-
packets lost is reported as either 4 or 6 packets lost—we be-bank FineComb appears to have worse relative error than
lieve most managers would find such accuracy for micro- the FineComb-OPT, on the whole, FineComb results are rea-
scopic losses to be perfectly adequate. By contrast, LDA's sonably accurate with a relative error of less than 1% under
accuracy for the same range is around 2,000% (not shown inalmost all conditions.

the figure), which can cause false alarms. In Figure 7(b), we show the relative error of the loss rate

We have already demonstrated that it is easy to tune FineComb
if the manager knows the loss and reordering rate. How-
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T Frecombont” that stash recovery times afg A/2"/M), whereW is the

M size of the stash andi/ is the number of buckets. We did
'y measurements to verify that the apparent exponential is not
an issue, and that there are no large constants hiding behind
the order notation. The table below shows stash recovery
w0t | ] times for different stash sizes, assuming a fixed total stor-
ageS of 2,000 (across sender and receiver). For example,
when the stash (maintained at receiviéf)is 838, the num-
ber of bucketd\/ is 581 (equal across sender and receiver),
10-30 00005 0.001 0.0015 0002 00025 0003 00035 0.004 resulting in2W/M being less than 4. The implementation
’ was done using a 2.33Ghz Intel processor running Linux.

Relative error

(a) Mean delay estimatio, = 0.01, Forward

1 : : : Stash size| 20 | 120 | 200 | 462 | 703 | 838

fE:EEEESmE'”‘ Time(ms)| 1 | 4 | 6 | 10 | 10 | 14

10

o B AR @ d As we eXpeCt, StaSh recovery tlme increases as StaSh Size
- increases. However, even for a ratio of stash to buckets of
g 3 around 1.44, recovery takes no more than 14 msec. Note
i that it is not required that the processor be on-board, dr tha
102 [ ] the board be directly connected to the the edge routers them-
selves; using span ports on routers/switches or using Open-
Flow [7], one can mirror traffic to a PC with a monitoring

Relative error
P
(=}
™
L[]
.

3

10°

0 00005 0D0L 00015 002 00025 0003 00035 0.4 board. Packet processing will be done in hardware on the
(b) Loss rate estimatiory = 0.0001, Forward board, but functions such as stash recovery can be imple-
mented in software on the PC.
Figure 7: Average relative error of mean delay and loss Implementing FineComb on boards (based on either FP-
estimates of the 4-bank FineComb, with the banks opti- ~ GAs or network processors) is significantly cheaper com-
mized for low and high reordering and loss rates. pared to existing diagnosis boxes proposed for data centers

L - o such as those supplied by Corvil. The high-end Corvil boxes
estimation for the lowest injected loss rate situation (0001).  .,cts UK£90 000 for a % 10 Gbps box [2]. High cost is a

We can observe a similar trend as we observed in the CaS§arrier for most data centers which explains why Corvil has

of regular comparisons earlier, with FineComb’s accuracy gty marketed to a niche market (financial traders) where
around 30% in all cases. The multibank variant’'s accuracy is money is no object. To be fair, the Corvil boxes allow vis-

comparatively worse at around 60%, but LDA is completely iy on a per-flow and application level but the differenc
unusable. in costs may make FineComb attractive for more widespread
6. IMPLEMENTATION deployment. While implementing complete flow monitoring

With 1000 buckets and 1000 stash entries, FineComb shoulf Unlikely to be feasible in a cheap monitoring board, there
take a small percentage of a low end 10mB®mm network- is often suff|c_:|ent processing and memory in the.boards; we
ing ASIC using a 400-MHz 65nm process. Key to a small Propose to trigger finer-grain flow monitoring (“drill-doi)n

footprint is a cheap version of an incremental stream digest WNen latency or loss violations are detected.
using say an unrolled Rabin hash instead of the more ex-
pensive collision-resilient SHA-1 we used in simulation. A 7. RELATED WORK
quicker path to deploymenbday, however, is using high- While network latency measurements is a rich area of re-
end FPGAs. Forinstance, we propose implementing FineCoradarch in the Internet with several tools proposed in the pas
on boards with Xilinx Virtex-4 FPGAs and 10-Gigabit Eth- to obtain latency measurements, the fundamental focus on
ernet MACs that are currently available [1] for less than a fine-grain microscopic latency and loss measurements, snake
thousand dollars per board (future NetFPGA boards [3] will most of these tools not suitable for the task at hand. Saalabl
also target 10 Gbps; the current version supports 4 Gbps angperformance measurements for data center environments is
costs around $500). Alternately, boards containing nekwor a relatively less studied field.
processors like the Intel IXP 2800, such as those used in the The standard approach for conducting latency measure-
Open Network Laboratory [6] testbed, could be used to im- ments in the wide area is to inject active probeg( using
plement FineComb in software. For time synchronization, ping and other tools such as [29, 21, 28, 26]) and calculate
the boards need to have GPS chipsets (fairly cheap today)the round-trip time of the packet. We have discussed the
the solution used by monitors such as Corvil [2]. problems with active probes in Section 2.3. Router-based
Stash recovery operations are easier to do in software us-passive measurements is yet another active area of reg2arch
ing say an on-board processor. In the analysis, we arguedl4, 32, 24, 17]. They focus mainly on flow measurements
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such as number of packets and bytes, and not on latency an®.
loss estimation. In [20], the authors propose a measurement !
friendly network architecture; the goal is to infer routhac-
acteristics with the help of end-to-end measurements. Our [
goal is to measure end-to-end characteristics with sugport
the end points, however. There are a few prior effaetg( [i]
[12, 33]) where researchers proposed simple router exten- [s)
sions for latency measurements that are somewhat similar
to the local timestamps idea discussed in Section 2.3, and [g]
hence share similar problems as indicated before. [7]
Perhaps the most relevant research effort to ours is a re-
cent data structure called LDA proposed by Kompetial.
in [18], and an incremental deployment architecture in [19]
Given the close similarity, we discussed it at length in the p

per, and compared the performance of FineComb with LDA.
[11]

=

]

[10]

8. CONCLUSIONS
[12]

Measurement tools are badly needed to determine fine-
grain latencies and losses that can affect application SLAs!3!
in data center environments. Many high-end data centersji4
already employ boxes from vendors such as Corvil [2] and
NetScout [4] at the edges. However, these solutions appearis)
to be expensive and unscalable. There is a need for cheaper
solutions that can be easily commoditized. While LDA does [16]
provide a commodity solution, it requires deployment on 1171
FIFO segments within each router and link, and does not [1g]
extend directly to an edge-to-edge setting with persistent
ordering.

This paper describes FineComb, an algorithm that can de-
tect microsecond latency violations and loss as small as 1
in a million packets with a few thousand words of memory
and simple logic. FineComb can be implemented in com-
modity boards that cost less than a few thousand dollars.??
FineComb introduces two new ideas, the addition of a in-
cremental stream digest to to detect mismatches in packet?’!
sets, and a simple stash to correct reordering. Stashes are
especially powerful in order to measure loss precisely to a 24
few parts in a million.

To be fair, competing solutions have other benefits. For 2]
example, Corvil and NetScout provide visibility on a per-
application basis. In contrast, LDA can provide fine-grain
isolation of the router component causing latency violatio
if widely deployed. A combination could be effective in the
marketplace. For example, boxes like Corvil could perhaps
be made cheaper at 10 Gbps by implementing FineComb an
only triggering fine-grain flow monitoring if performance
violations are observed at the aggregate level. Meanwhile,2%
fault-isolation would be greatly aided if LDA is gradually
deployed. In data centers where seemingly imperceptiblem]
increases in latency have important business consequences
such monitoring tools can be a valuable investment.

[19]

[20]

21]

[26]

[27]
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APPENDIX
A. SETTING PARAMETERS.

A.1 Review of notations.

e LetT be the number of packets sent per interval.
e Let R = pT be the number of problematically reordered packets in ttezval.
e Let 3 be the fraction of dropped packets in the interval.

e Let G < (1 — B)T be the number ojood packetshat are received by the Receiver between the correct p&gyoic’
messages.

e Letp be the FineComb sampling rate.

e Let M be the number of buckets in the FineComb.

e Let W be the number of entries in the stash.

e Let S be the total storage allocated to the FineComb with stashes.

e Let X be arandom variable describing the number of useful saneglescted from FineComb.

e Let A be a random variable describing the numbesaripledout-of-order packets in the interval that aret corrected
during stash recovery.

e Let B be a random variable describing is the numbesahpleddropped packets in the interval.
e Let L = A + B be arandom variable describing the numbebadl packetshat aresampledandnot correctedduring
stash recovery.

A.2 E[X|L]: Conditional expected number of useful samples.

CLAIM A.1. The conditional expected number of useful samplégi§|L] = pG(1 — ;)"

PROOF If we assume that all packets in the stream are distinct the L ‘bad’ sampled packets map to buckets of the
LDA independentlpf the G ‘good’ packets. Then, it follows that the expected numbegadd samples from the LDA i€]

E[X|L] = E[Good pkts / buckéE[Number of useful buckelts
= #7G(M - E[K]) ()
where, following [?], we let K be a random variable that denotes the number of ‘uselesketaim the LDA, that results from
the L. sampledbad packets hashing to buckets of the LDA. Ph fhey show that< is distributed as
M  S(L,k)
8
(M —k)! ML ®
whereS(L, k) is a Stirling number of the Second Kind. This claim followsdmbstitutingZ[ K| L] from the following Claim??
into equation??). O
CLAIM A2. E[K|L] = M(1—(1— 4)%).
PrROOF Our proof uses the following identities of the Stirling nloen of the second kind:

Pr[K = k|L] =

S(L,k)-k=S(L+1,k)—S(Lk—1) (9)
L
> e S(L k) = M* (10)
k=0
S(L,L)=1 (11)
S(L,0)=0 (12)
And now we begin:
EIK|L] = Zk(M 'k)' S%?Lk)
= ot > s (S(L+1,k) = S(L,k - 1)) (13)
k=1
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where we used??). Now, using ?-??), we can find the first term of the sum as
L L+1

ML M!
Zk(M ! S(L+1,k) Zk =T S(L+1,k)
k=1
_<M+L1>;S(L+1,L+1)
L+1 !
=M - ot
and the second term of the sum as
L
S(1k 1) = M 3 S0
k=1
M-1)!
:M((M—l) _M

and plugging these back int87%) we get
E[K|L] = 5 (M" ! — M(M —1)")
= M(1-(1- )5
as required. O
A.3 Distribution of L

We havesT dropped packets, anld reordered packets; together, this givessis+ R bad packets, that we sample with
ratep. Itis exactly these bad packets that can cause certain tsugktihe FineComb to become useless. If we assume that the
stashes can correct for at mdstbad out-of-ordered sampled packets, the expected numbeadgiackets that asampleds
arandom variablé = A + B whereA is number osampledout-of-order packets in the interval that avet corrected during
stash recoveryand B is the number osampleddropped packets in the interval. Notice also tHaand B are independent
random variables, wher® is a binomial random variablB ~ B(ST, p), andA is distributed as

— Zzwo() ‘(1 —p)=%  whena =0

raa-a= | R S

(14)

SinceL = A + B, we can find the expectation éfas in (3).

A.4 E[X]: Unconditional expected number of useful samples.

We now derive combine the results of ClaiP?, and the distribution of. from Section?? to obtain the unconditional
distribution of E[X]. Recalling that, = A 4+ B and using the Poisson approximation f(sinceB is just a simple binomial
distributionB(p, 8T") with p <« 5T, we

E[X|A] = i E[X|A,b] Pr[B = b

b=0
T
_ ZPG A+b e~ PBT (pﬁb' )
=pGe PPTIM (1 — gp)* (15)
We can also use the Poisson approximationfdo obtain
=> E[X|a]Pr[A = q]
a=0
= pGe™ "PTM (B(W:pR)
e—PR/IM )
M
whereF(W; \) is the cumulative Poisson distribution, that is
. _ -2
F(W;\) = ; e (17)
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<100,8T=20

0.5

E[Fraction of useful samples]

i R=100, BT=60

E[X]/(pGY

20 40 60 80 100 120 140 160
Stash size W

Figure 8: Expected fraction of useful samplesE[X]/pG vs stash sizdl when the total storage isS = 160. All the
solid (blue) lines assume that the expected number of sampleut-of-order packets ispR = 100, and each line has a
different value for the expected number of dropped packet®ST as{20, 40, ..., 120}. The dotted (red) lines assume that
the expected number of sampled dropped packets i8pT = 100, and vary pR as {20,40....,120}. The (green) lines
assume that the total number of dropped and out-of-order sarpled packetsp(R + 8T") = S = 160.

Since Equation®?) is so ugly, we will do most of our analytic work on
E[X|L = B[L] = pG(1 — )T +mex{0rR-W) (18)
and use numerical methods to work wihX | in (?7?).

A.5 Optimizing W for fixed sampling rate p.

We'd like to optimize the ratio between the LDA size and treeshtsize, using the fact thdt= M + W whereS is fixed
and sampling ratg is fixed.

Working with F [X|L = E[L]]. Substitutingh = S — W into (?7?), we obtain
E[X|L = E[L]] = pG(1 — )T mext0ni=w) (19)
We optimize £7?) in two different regimes. First, we assume
S > p(R+ BT) (20)

so that the total storage requirement for the FineComb arsthStis greater than the expected number of bad sampled packets.
By plotting (??) in the regime of ?), we found thatF[ X |L = E[L]] is maximized wheiv’ = pR. Second, we consider the
regime where®?) doesnothold, we find thatZ[ X |L = E[L]] is actually maximized whel = 0 so thatS = M.

Working with E[X]. Now, we show qualitatively that the stash sizing in equairobtained by working with the conditional
expectationF[ X |L = E[L]] also applies when we work with the unconditional expectafipX | in (ugly) equation ??). To
do this, we substitutd/ = .S — W into (??) and plot the resultind’[ X ] as a function of¥ in Figure??.

From Figure?? we make a number of qualitative observations. First, we miesthat when there are fewer bad sampled
packets, namely(R + 8T) < S = 160, the expected fraction of useful samples is maximized apprately when the stash
has sizélV slightly larger tharpR. That is, we want the stash to be slightly larger than the egoenumber of of out order
packets. On the other hand, when there are many bad sampketgize. p(R + 8T) > S = 160, the expected fraction
of useful samples is a monotonically decreasing functibfaliows that maximizing the expected number of useful sksp
requires us to allocate all the storage to the LDA, and setttieh size td) = 0. These qualitative results support our analysis
using E[X|L = E[L]], and so we present the results in (4).

A.6  Optimizing sampling rate p with no Stash.

CLAIM A.3. When there is no stash, the optimal sampling raeis= %ﬂT
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PROOF We prove this directly fron[X]. When there is no stash, th&i = 0 so thatA in (??) is simply a binomial
random variabled ~ B(p, R). Then, if putM = S and approximatel as a Poisson random variable, the usin® (ve find
that the expected number of samples is

E[X[W =0] = E[X|a] Pr[A = d]
a=0

_ ZpGe—p,BT/S(l . %)a .¢PR (PR)

— al
— pGe—p(R+BT)/S (21)

The claim follows by taking the derivative @[ X |1V = 0] and setting it equal to zero[O
A.7 Optimizing p with Stashw = pR.

Using E[X|L = E[L]]. Now, in (4) found that when we have a stash, it's optimal s&B't = E[A] = pR. We find the
optimal value of at this optimal value of stash siZ& = W by settingM = .S — W* in (??) to obtain

1 BpT
E[X|L=FE[L,W =pR]|=pG(1- 22
X1 = BILLW = o =36 (1= =) 22
Now, by taking the derivative and setting equal to zero, wd fhmat the maxima ofq?) occurs when the sampling rate is
approximately

. 1
TPTRE

~VBIL=S)S(T) + (@0 +HTS — (p+ BITP)

~ o (2048 ViB T )

2p°T
where the second approximation assumes$hat 1.

Working with E[X]. Now, we show qualitatively that the stash sizing in equat®robtained by working with the conditional
expectation®[X |L = F[L]] also applies when we work with the unconditional expectefipX | in (ugly) equation ?). To

do this, we consider the two cases. For the first case, we asthahthere is no stash (which we showed is optimal when
S < p(R + BT)) and plot equation®?) as the dotted (red) lines in Figuk®. For the second case, we assume that the stash
is of sizeW* = pR, and substitutéy = W* andM = S — W* into (??) and plot the resulting as the solid (blue) lines in
Figure??. We can make a nhumber of observation from Figee

e Stash is better than no stash. From Figure?? we can right away observe that for a fixed value far3T and S, the
expected number of useful samples is higher when we use la ataize W * than when we have no stash (since the
maxima of the solid (blue) curves are higher then the maxiftheodotted (red) curves).

(2p+B)TS = (p+ 5T

e Our approximation for p* is good. Furthermore, Figur@? shows the our approximation for the optimal sampling
ratep* in (6) is quite good (since the vertical lines indeed coiraidth the maxima of the solid (blue) curves). These
qualitative results support our analysis usigX |L = E[L]].

Recommendations. Thus we arrive at our recommendations; we would like to dpetfae data structure at the maxima
of the solid (blue) curves from Figur&?. Thus, we suggest using a sampling ratedper equation (6), and stash of size
W* = 2yp*T.
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E[X]/G

00, S=160
Stash
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Figure 9: Expected fraction of useful packetsE[X]/G vs sampling rate p when the total storage isS = 160 and
the number of dropped packets isp7" = 100. The solid (blue) lines plot equation (??) when the stash isfasize
W* = FE[A] = 2vpT, and for M = S — W* and the dotted (red) lines plot (??). Each pair of lines has a
different value for the expected number of out-of-order padets 247 from the logarithmicaly-spaced set2yT €

{100,178, 316, 560, 1000, 1780, 3160, 5600, 10000}. The vertical lines are plotted according to equation (6) ad represent
the approximate maxima of the solid (blue) curves.
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