
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2010

FineComb: Measuring Microscopic Latencies and Losses in the FineComb: Measuring Microscopic Latencies and Losses in the

Presence of Reordering Presence of Reordering

Myungjin Lee
Purdue University, mjlee@purdue.edu

Sharon Goldberg
Boston University

Ramana Rao Kompella
Purdue University, kompella@cs.purdue.edu

George Varghese
UC San Diego

Report Number:
10-009

Lee, Myungjin; Goldberg, Sharon; Kompella, Ramana Rao; and Varghese, George, "FineComb: Measuring
Microscopic Latencies and Losses in the Presence of Reordering" (2010). Department of Computer
Science Technical Reports. Paper 1729.
https://docs.lib.purdue.edu/cstech/1729

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

FineComb: Measuring Microscopic Latencies and Losses
in the Presence of Reordering

Myungjin Lee
Purdue University

Sharon Goldberg
Boston University

Ramana Rao Kompella
Purdue University

George Varghese
UC San Diego

ABSTRACT
Modern trading and cluster applications require microsec-
ond latencies and almost no losses in data centers. This pa-
per introduces an algorithm calledFineCombthat can esti-
mate fine-grain loss and latency at monitoring devices be-
tween edges of a data center. Such a mechanism can allow
managers to distinguish between latencies and loss singu-
larities caused by servers and those caused by the network.
Compared to prior work such as LDA that need to be de-
ployed in hardware at every router and link, FineComb can
be deployed today using commodity boards. The challenge
for FineComb is to deal with persistent reordering that can
occur in a data center network using equal cost path splitting.
Without care, a loss estimation algorithm can confound loss
and reordering; further, any attempt to aggregate delay esti-
mates in the presence of reordering results in severe errors.
FineComb deals with these problems using order-agnostic
packet digests and a simple new idea we call stash recovery.
Our evaluation demonstrates that FineComb can easily be
implemented in software or hardware, and provides signifi-
cantly more accurate loss and delay estimates in the presence
of reordering than LDA.

1. INTRODUCTION
Recent trends in data centers have led to requirements for

microsecondlatencies. While multimedia applications (e.g.,
gaming, IPTV, VoIP) are content with latencies under 200
msec, modern financial trading and various cluster applica-
tions can benefit from latencies under 100µsecs. Funda-
mentally, this is becauseprogramsrespond to network mes-
sages, nothumans. For example, an automated trading pro-
gram can buy millions of shares cheaply with faster access
to a low stock price; similarly, a cluster application can ex-
ecute 1000’s more instructions if latencies are trimmed by
100 µsecs. Further, all these applications are deployed in
data centers that span a small geographical area and where
links and switches are carefully chosen to have minimal la-
tencies. It is possible to deploy switches (e.g., [31]) with 10
µsecs latency. Wall Street traders also vie with each other to
get the best links from the Dow Jones stock feed to their data
centers in Manhattan [22].

Despite the most careful attention paid to choosing net-

work components, there is no way to ensure that congestion
in switches does not increase latencies beyond acceptable
thresholds. First, there are no traffic models for data center
applications that allow a manager to predict which applica-
tions can cause problems. Second, new applications must
be deployed and their behavior is often unforeseen. Third, a
number of data centers such as Microsoft and Google wish
to use commodity switches with small buffers. Fourth, ap-
plications are typically handled by the IT group which often
coordinates poorly with the network infrastructure group.

Thus, it is extremely common for data centers to expe-
rience transient or periodic performance violations (e.g., in-
creased latency, dropped packets) which can exceed applica-
tion SLAs. For example, many data centers experience what
is termed a microburst [5]; intuitively, this refers to a short
burst of traffic that causes a switch to exceed its buffers. This
is often caused by a single uncontrolled application that sim-
ply needs to be controlled or relocated. A second example
is the in-cast problem, where a single request causes multi-
ple responses from several servers that are synchronized to
cause a similar burst at a switch. While solutions have been
proposed to the in-cast problem [30], it is still important to
have measurement methodology to rapidly diagnose these
problems.

The setting. We focus on tools to measure fine-grain la-
tency and detect dropped packets in the following setting.
We assume a data center network (managed by a separate
group) that provides network infrastructure service to an IT
group in charge of applications. We wish to deploy tools for
the network group that can be used at taps (or routers) at the
edges of the network to monitor traffic between edge points.
For example, in Figure 1, we assume we have a monitor (tap
and software) that taps all traffic entering E1, and a similar
one for traffic leaving E2. Internally, there could be several
core routers (e.g., C1 and C2) along the path between these
edge routers.

Fundamental to our problem definition is the assumption
of significant multipathing (and hence,persistent reorder-
ing) within the network. For example, in Figure 1, we show
two such paths between the edge routers E1 and E2. Mul-
tipathing using ECMP is very common in data center net-
works [8] because of the need to provide more bisection

1

TOR SWITCHES

EDGE ROUTERS

CORE ROUTERS

Receiver

E2E1

C1 C2

E3 E4

S12 S13 S14 S15 S16S5S1

Equal Cost MultiPath

Sender

S9 S10 S11S6 S7 S8S4S3S2

Figure 1: Typical data center architecture with edge and core routers. Two paths possible between edge routers E1 and
E2 are typically load-balanced by hashing the source and destination IP address combinations.

bandwidth, and because of the use of redundant levels in
common multi-rooted tree topologies.

For example, traffic from serverS1 to S5 can be routed
through the link to C1, while traffic fromS2 to S6 can be
routed through the link to C2 because ECMP hashes based
on IP source-destination pairs. Now, ECMP does not reorder
packets within TCP flows, so, the tap could keep latency
measurement state on a per TCP flow basis. However, keep-
ing track of the latency for potentially 100,000 simultane-
ous connections could require too much state in the monitor,
especially in a hardware implementation. Thus it is more
efficient for each edge router such as E1 (or a correspond-
ing tap) to keep aggregate latency state for each egress edge
router such as E2. However, such aggregation inherently in-
troduces the possibility of reordering as it mixes in traffic
flowing over potentially two different paths. Further, this
reordering can be persistent.

To get an idea of how much reordering there can be, sup-
pose the delay fromS1 to S5 via C1 is 10µsecs and the
delay fromS2 to S6 is as bad as 100µsecs. If the link
speeds are 10 Gbit and the average packet size is 1,000 bits
(125 bytes), the amount of reordering can be as high as (100
- 10)× 10 = 900 packets. In other words, for reasonable
parameter settings, a single packet sent from E1 to E2 can
be overtaken by (or overtake) 900 other packets. Note that
while the paths chosen by ECMP are equal in cost, the cost
measure used in ECMP does not reflect transient conges-
tion which can make two equal-cost paths differ widely in
latency.

In this setting, imagine that application traffic fromS1
to S5 has poor end-to-end latency. The IT department im-
mediately blames the network for poor performance. It can
greatly help the network managers to have a simple tool that
determines that all network delays from E1 to E2 have a very
low average delay and small standard deviation, and almost
no dropped packets. This suggests that the likely cause of
poor performance is at the hosts (e.g., because of bad VM

performance). If, however, the managers find large delays or
large standard deviations (for example, if one path is signifi-
cantly worse) then the manager can use more labor-intensive
means to narrow down the problem to a path, and ultimately
to an offending component.

By contrast today, managers can attempt to ascertain the
health of their data centers only by sending active probes be-
tween edges. However, it can be shown that active probes
require inordinate amounts of probe bandwidth to achieve
microsecond accuracy. A recent paper [18] proposes a sim-
ple algorithm called LDA that is more effective than active
probing. However, LDA requires FIFO delivery of mes-
sages which is clearly inapplicable in our edge-to-edge set-
ting where reordering is a fact of life. Further, [18] proposes
deploying LDA at every router, which is hard.

Our paper describes an efficient algorithm that can be im-
plemented at the edges of a data center network to spot mi-
croscopic delay violations (in the order of microseconds)
and losses (10s per million) with small amounts of state and
processing costs.

2. PRELIMINARIES
We describe why reordering must be considered, the basic

requirements of a measurement scheme, and a set of existing
solutions that do not work well.

2.1 Reordering
Figure 1 shows a canonical data center architecture. While

different designs have been proposed in the academic lit-
erature (e.g., [15, 8]), most commercial data centers use a
similar model. Such multi-rooted tree topologies typically
provide multiple paths between every pair of servers. Traf-
fic engineering policies in data centers often rely on simple
load balancing techniques such as equal-cost multipathing
(ECMP) that are natively provided by commodity routers.

Even though ECMP does not load balance traffic within
a single TCP flow, the need to keep aggregate statistics at

2

the edge-to-edge level will result in reordering of the edge-
to-edge flow. Recent load balancing proposals can further
exacerbate reordering. For example, [9] proposes dynami-
cally moving large TCP flows between equal-cost paths in
response to congestion. Flowlet switching [27] even pro-
poses mechanisms to allow load balancing within a single
TCP flow. Thus, any edge-to-edge measurement scheme
must be resilient to persistent misordering within the net-
work.

2.2 Measurement requirements
Assume a manager wishes to measure the performance

between two edge routers, sayE1 andE2 in Figure 1. We
divide time into intervals (1 msec to 1 second) for which we
are interested in obtaining performance measures. Besides
average latency, the mechanism should measure the variance
of latency and the loss rate between these edge routers. For
most of this paper, we assume hardware implementations to
keep up with high line rates; however, we briefly discuss
software implementations. Thus we seek implementations
that are scalable in terms of control bandwidth, processing
time, and storage. This is especially important as these met-
rics for each source edge router must be multiplied by the
number of destination edge routers. Of the three measures,
storage may possibly be increased in a software implemen-
tation.

We assume some simple way to determine which packets
are destined to or from a particular edge router, for example
by prefix matching. We assume that the two edge routers
E1 andE2 can be time-synchronized withinµseconds, for
example, using GPS clocks that many ISPs have already be-
gun to deploy. This is a general requirement for any one-way
delay measurement scheme, and in fact is employed by ex-
isting edge monitoring solution such as Corvil [2].

There could potentially exist many different paths between
edge routersE1 andE2 as we discussed before. A natural
question to ask is whether it is not possible to provide perfor-
mance measures for each path. We suggest this is problem-
atic for the following reasons. In a multilevel topology, load
balancing can occur at many points, in particular at routers
downstream from the measurement point. Overloading the
edge router to keep track of these multiple downstream paths
and the precise way the load balancing is achieved (e.g., the
hash function) is overly complex for both the mechanism and
managers. Further, we posit that network operators are often
concerned with one main latency measure across different
edge routers; the subtleties about which paths are experienc-
ing how much latency is often a second-order concern that
arises once a problem is detected. Thus, in this paper, we
focus on measuring the average latency acrossall paths, if
multiple paths exist between a pair of edge routers. We re-
iterate that a high standard deviation is a signal that some
path(s) has a higher than average latency.

2.3 Issues with earlier solutions

Active probes:Active probes are insufficient for three rea-
sons: First, to measure microsecond latencies, a large num-
ber of active probes need to be injected. Second, active
probes do not measure the true delay experienced by regular
data packets. Third, active probes may take one among many
different ECMP paths that may potentially exist between the
pairs of edge routers. We provide a more quantitative argu-
ment in the evaluation.

Embedding packet timestamps within packets:Measuring
delay would be easy if we could embed a timestamp within
each packet. However, IP packets do not have a timestamp
field and TCP timestamp options are restricted to carrying
end-to-end delays. Adding a new field is unlikely to happen.
Second, even if switch and router vendors can be persuaded
to put timestamps within packets, packet timestamps cause
significant overhead, especially for minimum size packets.

Storing timestamps locally:An alternative is to allow the
sender and receiver edge monitors to store packet digests
and timestamps locally, and only to exchange these times-
tamps at the end of a measurement interval. However, the
storage and communication overhead for this scheme is ex-
tremely high. 10 Gigabit bottleneck capacity between two
edge routers translates to roughly 10 million packets on a
per second basis, assuming an average packet of size 125
bytes. Even assuming 10% utilization, exchanging a million
timestamps per second is expensive. One could maintain
timestamps only for a smallsampleof packets; this reduces
bandwidth but at the cost of accuracy of latency estimates
as we show briefly in the evaluation. Intuitively, the stan-
dard error of the delay estimator decreases with the square
root of the number of samples; reducing the standard error
to microseconds requires a large number of samples. While
we are not certain, it appears that vendors such as Corvil [2]
and NetScout [4] use variants of this approach. The lack of
scalability may be indicated by the fact that the 10G Corvil
solution [2] costs 90,000 U.K pounds.

LDA: A recent proposal called LDA [18] for measuring
fine grain delays suggests a way of greatly increasing the
number of latency samples using aggregation. LDA requires
the sender to send a synchronization message at the start
of every measurement interval that is injected in the same
stream as the regular data packets. Acrucial assumption
that makes LDA work is that the synchronization messages
and packets are delivered in order at the receiver so that the
sender and receive compute delay estimates over the same
set of packets. The FIFO assumption is reasonable if LDA
is used to measure average latencies across interface pairs
within routers. While routers routinely use load-balancing
internally, packets are resequenced before transmission at
the output interface.

Unfortunately, in our setting, the FIFO assumption does
not hold because load balancing is doneacrossrouters. A
few reordered packets can cause LDA to incur a large error
as we show in the evaluation. Intuitively, this is because a
packet from the end of intervalu− 1 may mix in to interval

3

u (via reordering) and the same interval may lose a packet
sent at the end of intervalu. The simple loss counters used
in LDA cannot distinguish these two cases. The net effect is
a serious discrepancy in the order of a measurement interval
(e.g., 1 second). Further, loss rate estimations using LDA do
not work because LDA cannot distinguish reordered packets
from lost packets. If the real loss is zero, LDA will false
report alarms when there is only reordering. Recall that loss
can cause TCP timeouts and latency violations; reordering
across TCP flows cannot.

In order to address these shortcomings, we propose a new
data structure called FineComb for fine-grain latency and
loss measurements in the presence of reordering that we now
explain.

3. FINECOMB
FineComb assumes a stream of packets going from a sender

to a receiver. Time is divided into measurement intervals that
are marked by interval start and end messages that are trans-
mitted from the sender to the receiver. FineComb, like LDA,
starts with the following simple idea. Suppose the sender
and the receiver agree on a set of packets in the stream over
which they want to measure delay. Then, they could com-
pute the average delay by each locally maintaining a sum of
packet timestamps (atimestamp accumulator) and a count
of the number of packets in the interval (acounter). The
average delay is then the difference between the timestamp
accumulator at the sender and the timestamp accumulator at
the receiver, divided by the number of packets in the counter.

But how should the sender and receiver agree on the set
of packets, in the presence of packet loss and reordering,
without marking or modifying packets? This is exactly the
challenge addressed by FineComb.

3.1 The challenge of reordering
In FineComb, the sender and receiver agree upon an in-

terval ofT packets that they would like to measure delays
over. To do this, the sender marks off intervals by sending a
special ‘sync’ control message each time it sendsT packets
to the receiver. (Note that the sender could choose to mark
the intervals based on time as well, but we define interval as
T packets for ease of exposition.) All packets ‘bookended’
by a pair of sync messages belong in a single interval. For
convenience, we shall sometimes refer to the first sync mes-
sage in an interval as an interval-start message, and the end
sync message as an interval-end message.

The challenge is that when packets traverse the network,
they can arrive out of order as shown in Figure 2. The order-
ing of packets that are both transmitted and received within
the interval itself does not affect FineComb (or LDA), since
the timestamp accumulators and counters are order-agnostic
(addition is commutative). However, we must deal with the
following type of problematic reordering, namely packets
that start out in one interval at the sender, drift into an an-
other interval at the receiver. This situation is problematic

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

�����
�����
�����

�����
�����
�����

���
���
���
���
���

���
���
���
���
���

������
������
������

������
������
������

����
����
����
����
����
����

����
����
����
����
����
����

u−1

u−1 u+1

u+1u

u

Time

Interval start Interval end

Receiver
Side

Sender
Side

latency = 10 microseconds

Sender Receiver

Reordering due
to difference in
latencies

Pre start

Post start

Pre end

Post end

latency = 100 microseconds

Figure 2: Four types of reordering that can occur.

since the timestamp accumulators at the sender and receiver
may be computed based on two different sets of packets, and
this difference can affect the delay estimates significantly.

Specifically, there are four types of reordering (as shown
at the bottom of Figure 2) that can be problematic in the basic
design of FineComb. First, packets sent at the end of interval
u−1 can be routed on a high latency path and hence arrive at
the receiverafter the interval-start message. This can pollute
intervalu with extra packets; we call such packetspre-start
packets. Second, packets from the start of intervalu can be
routed on a low latency path and hence arrive at the receiver
before the interval-start message for intervalu, so thesepost-
startpackets from intervalu are effectively missing. Similar
problematic reordering could also occur around the end of
the interval (analogously referred to aspre-endandpost-end
packets). We sayρ = R/T is the reordering ratefor the
intervalu, whereR is the total number of reordered packets
(sum of all the four types).

It is crucial to note thatR is almost always much smaller
thanT , the number of packets sent in an interval, even if
there is persistent misordering. This is because problematic
reordering is confined to the reordering that occurs relative
to the interval-start and interval-end messages. As shown at
the top of Figure 2, this can occur if the sync messages are
routed on one path (high or low latency) and the data mes-
sages following or preceding the sync message are sent on
the other path. ThusR ≤ 2SL, whereS is the transmission
speed andL is the maximum difference in latencies of paths.
For example, ifS is 10 Gbps andL = 100µsecs and an av-
erage packet size of 1,000 bits,R is around 2,000 packets.
By contrast,T may be as large as 5 million.

In addition to reordering, packets can also get dropped in
the network, which can cause the sender and receiver state to
become inconsistent. We assume at mostβT packets from
intervalu will be dropped as they traverse the network from

4

sender to receiver, whereβ is theloss ratefor the intervalu.
Now, if we compare the two streams of packets that be-

long to an intervalu at the sender and receiver sides, the dif-
ference between them is at mostβT+R packets. If we could
somehow correct for theseβT +R bad packetsthat prevent
the sender and receiver from agreeing, we could make use
of the simple timestamp accumulator and counter idea de-
scribed above.

3.2 Key ideas
As in LDA, FineComb keeps an array ofM timestamp

accumulators and counters at the sender and receiver; a hash
function computed over packet contents is used to map each
incoming packet to abucketcontaining a (timestamp accu-
mulator, counter) pair. If the sender and receiver use a con-
sistent hash function, then they will map packets to buckets
in an identical fashion. We say that abucket is useful, if it
contains the same set of packets at both the sender and re-
ceiver, and thus can be used to compute the delay estimate.
Notice that a bucket is useful as long as none of theβT +R
bad packets hash to that bucket. FineComb corrects for the
βT +R bad packets using the following three ideas.

1) Incremental stream digests: Comparing counters at
sender and receiver cannot be used to conclude that a bucket
is useful in the presence of reordering because a dropped
packet that hashes into a bucket can be replaced by a (dif-
ferent) misordered packet from another interval. Even one
such event can throw off the delay estimate considerably.
The misordered packet may have been sent just before the
start of intervalu but may hash into the same bucket as a lost
packet sent towards the end of intervalu. Thus the induced
error can be as large as the size of a measurement interval
(say 1 second).

To detect such cases, we augment the counter in each
bucket with what we call anincremental stream digest. An
incremental stream digest on a stream of packetspkt1, pkt2,
...,pktt is computed as follows:

H(pkt1)⊙H(pkt2)⊙ ...⊙H(pktt) (1)

where⊙ is an invertible commutative operation, andH is a
hash function. We refer toH(pktt) as a digest. Our incre-
mental packet digests are similar to the incremental collision-
free hash functions proposed in cryptography [11]. How-
ever, since we are not operating in an adversarial setting, we
can let⊙ will be a simple XOR operation, and we do not re-
quire the full power of a cryptographic hash function such as
SHA-1; we can use simpler hash functions such as BOB [16]
or H3 [25] instead.

The incremental stream digest has three useful proper-
ties. First, two streams containing different packets willhash
to different values with high probability. Second, because
XOR is commutative, two streams containing the same set of
packets in different order still hash to the same value. Thus
we can determine if a bucket is useful by verifying that the
incremental stream digests match at the sender and receiver.

Finally, we can easily add or subtract packets from the incre-
mental stream digest by computing the XOR of their digest
with the incremental stream digest. This third property is the
basis ofstash recoverywhich we describe next.

2) Stash recovery: By a stash, we simply mean that we
keep a copy of the timestamp, the bucket index, and incre-
mental stream digest of a small number of packets that arrive
before and after the sync messages that delimit an interval.
As we have seen, this numberR is small (say 1,000). Since
these are the most likely messages to have been reordered,
stash recovery simply attempts to add or subtract the incre-
mental stream digest of each stashed message from the cor-
responding bucket into which that stashed message hashes.
Note that if the stash were as big asT , we would be back to
the naive algorithm of storing all local time-stamps. Thus the
fact thatR is much smaller thanT is crucial to the efficiency
of stash recovery.

To show a concrete example of stash recovery, suppose a
pre-start packetP from intervalu−1 is hashed into the 20th
bucket in intervalu, making it useless. AssumingP is stored
in the stash at the receiver because it arrived shortly afterthe
interval-start message, stash recovery will look up the bucket
20, and try to subtract the incremental stream digest forP
from the incremental stream digest at the receiver. If the
resulting incremental stream digest matches the incremental
stream digest of bucket 20 at the sender, bucket 20 can be
made useful again by subtracting the timestamp ofP from
the receiver timestamp sum. While we have lost 1 sample
from the bucket, we have saved perhaps 10,000 remaining
samples that aggregate into bucket 20 that would have been
lost otherwise.

Given a fixed memory budgetM , however, it is not clear
whether to allocate more stash (and hence, to recover from
more reordered packets) or to use more buckets (and hence,
to be more resilient to loss). We will investigate this tradeoff
analytically and experimentally.

3) Packet sampling: In many practical situations, the num-
ber of bad packetsβT +R is going to be far greater than the
number of bucketsM . Given packets are randomly hashed
to buckets, that means, that all theM buckets could become
useless. Even if somehow, we manage to recover all the re-
ordered packets in a given interval, the number of lost pack-
ets aloneβT could be bigger thanM .

In FineComb, we sample packets at ratep, so that the
expected number of bad packets that can cause buckets to
become useless drops top(βT + R). On the one hand, se-
lecting a high value ofp will mean that the number of bad
packets, and in turn useless buckets, will increase. On the
other hand, selecting a low value ofp will make each bucket
aggregate fewer samples. Determining the optimal value of
p that maximizes the number of useful samples over which
measurements are computed is a key question that our later
analysis will address.

3.3 Basic FineComb without a stash

5

Unusable because
digests don’t match
even though packet
counts do

124

112
121

142
5

10

8
12

1412
4451

dac3
1242
54421

2
3
4
5

Row 544212
8

10 dac3
1242

253
232
341
125

11 11
5 a212

4451
105

272
Start Pre−Stash Start Post−Stash

End Pre−Stash End Post−Stash

Timestamp

Sum
Pkt

counter Stream digest
Incremental

Sender side Receiver side

Figure 3: Example of FineComb. The four stashes cater
to the four types of reordered packets.

We start by describing FineComb without a stash. Ba-
sic FineComb (as shown in Figure 3) usesM buckets, each
containing a timestamp accumulator, counter, and incremen-
tal stream digest. Each packet is sampled with probabilityp,
and then distributed to one of theM buckets by a random
hash function. The pseudocode outlined illustrates the steps
involved in updating FineComb state at both the sender and
receiver for everysampledpacket. LetTS[i] represent the
timestamp accumulator,C[i] the packet counter, andD[i]
the incremental stream digest forith bucket andM repre-
sent the total number of buckets.

1: procedure UPDATE STATE(pkt, τ)
2: D ← compute hash(pkt) → Digest
3: i← D mod M → Index into buckets
4: TS[i]← TS[i] + τ
5: C[i]← C[i] + 1
6: D[i]← D[i]⊙D →⊙ could be XOR
7: end procedure
After sendingT packets (or, alternately after a fixed amount

of time), the sender sends its set of buckets to the receiver in
the sync message. When the receiver receives the sync mes-
sage, it uses the sender’s buckets along with its local buckets
to compute the average latency and loss as follows:

1) Estimating average latency. The receiver first deter-
mines the set of useful buckets by checking which buckets
have matching incremental stream digests at sender and re-
ceiver. For all these ‘valid’ buckets, the receiver computes
the difference between the receiver’s and sender’s timestamp
accumulator, sums them together and divides it by the sum
of all packet counters in these valid buckets. The steps are
outlined below.

1: N ← 0, D ← 0
2: for i=1, M do
3: if Cs[i] = Cr[i] and Ds[i] = Dr[i] then
4: D ← D + (TSr[i]− TSs[i])
5: N ← N + Cr[i]
6: end if
7: end for
8: Average delay = D/N

The main difference compared to LDA’s delay estimation
algorithm is the requirement of an extra check for a match
of the sender and receiver packet digests; just matching the
packet counters alone is not sufficient.

2) Estimating standard deviation. We compute standard
deviation in a similar fashion using a technique introducedin
[10]. Conceptually, we could maintain an additional counter
to which each sampled packet’s timestamp is added or sub-
tracted with equal probability1/2. Note that we need both
the sender and receiver to agree on the same decision (of
adding or subtracting) consistently, that can easily be achieved
if the decision is based on the packet hash itself (e.g., 1 or
0 in first bit position could indicate addition or subtraction).
Subtracting the sender and receiver counter and then squar-
ing leads to an unbiased estimator for delay variance [10].
Rather than waste memory with an extra counter per bucket
to measure variance, we use a trick used in LDA where ex-
isting delay buckets are paired and subtracted to simulate the
adding or subtracting with equal probability.

3) Loss measurement:Loss measurement becomes difficult
in the presence of reordering. Whereas the LDA operated
in a setting where there was so reordering, so that a single
counter at the sender and receiver suffices, FineComb must
try to disentangle reordering from real loss. To see why this
is hard, consider what happens at the end of an interval for
a particular bucket if the sender-side counter is smaller than
the receiver-side counter. When there is no reordering (as in
the scenarios the LDA was designed for), this is impossible.
However, it can easily happen if a few packets drift from
one interval to the previous interval (i.e. post-start packets
that overtake the interval-start message). These packets are
not lost: they are simply accounted for in the bucket of the
previous interval.

We use stash recovery (detailed description next) to “clean
up” the effects of reordering wherever possible. If all effects
of reordering are removed, it is easy to see that the following
simple algorithm does the job.

1: N ← 0, L← 0
2: for i=1, M do
3: if Cs[i] ≥ Cr [i] then
4: L← L+ (Cs[i]− Cr[i])
5: N ← N + Cs[i]
6: end if
7: end for
8: loss rate = L/N

Note that the algorithm still checks whether a sender counter
is greater than the corresponding receiver counter. This is
because stash recovery can be imperfect. Further, if a lost
packet and reordered packet that is stored in the stash are
bothhashed to the same bin, stash recovery will fail, because
the lost packet has made the bucket ‘useless’.

In more detail, assume that before stash recoveryCs[i]
for some bucketi was less thanCr[i] because of two pre-
start messagesP1 andP2 that were hashed into bucketi
that were not counted in this interval. Suppose further thata
third packetP3 that hashes into bucketi is lost. Then even if
P1 andP2 are in the stash at the receiver, there is no way for
the receiver to correct bucketi because, by definition, it does
not have the digest forP3 which is lost. Thus bucketi is not

6

just useless from the point of view of calculating delay, the
algorithm cannot tell apart a loss of 1 packet and a reordering
of 2 packets in bucketi (as in the example) from a loss of 2
and reordering of 3 packets (say). Thus, the loss estimation
algorithm above will ignore bucketi, and thus lose a data
point for loss estimation.

Since we are trying to measure small losses, this is poten-
tially serious. However, with careful sizing of the sampling
probability (as we show later in the evaluation section) the
probability of both a lost, and a reordered packet hashing to
the same bucket is even smaller.

3.4 Managing the stash
We now describe the details of adding and recovering a

stash. Recall that the stash stores individual timestamps and
digests for the packets that are most likely to be problem-
atically reordered. We assume that only the receiver keeps
a stash, that consists ofW entries. One nice feature of not
keeping a stash at the sender is that if we grow the stash
size (especially in a DRAM implementation of the stash), the
control bandwidth does not grow with stash size: the sender
can send its buckets to the receiver to compute estimates.
The stash is broken up into foursubstashes(pre-start, post-
start, pre-end, post-end stash) of sizew, where4w = W ,
corresponding to the four types of problematic reordering.

Populating the substashes.Even though the receiver does
not know when interval-start message will arrive, the re-
ceiver can still populate the pre-start substash as follows.
The receiver stores the digest and timestamps in a cyclic
queue of lengthw, such that a new sampled packet causes the
oldest packet in the queue to be evicted if the queue is full.
The receiver stops populating the stash when the interval-
start message arrives. Similarly, to populate the post-start
stash, the receiver keeps a queue of lengthw that starts being
populated once the interval-start message is received, and
stops populating when it is full. The other two stashes are
managed similarly, except they wait for interval-end instead
of interval-start.

Stash recovery. Notice that the pre-start stash and post-end
stash contain sampled packets that potentiallydrifted outof
the interval, and are thus missing from the receiver’s buck-
ets. Thus, these substashes can be used toadd these pack-
ets back to the appropriate receiver’s buckets. On the other
hand, the post-start stash and pre-end stash contain sampled
packets that potentiallydrifted into the interval. Thus, these
substashes can be used tosubtract these packets from the
receiver’s buckets.

Thus, stash recovery proceeds as follows. For each use-
less bucket, the receiver considers all the entries of the four
substashes that map to that bucket. The receiver then con-
sidersall subsetsof the stash entries that correspond to this
bucket. For each subset of stash entries, the receiver XORs
the digests of the entries with the bucket’s incremental stream
digest. If the sender and receiver’s incremental stream digest
match for this subset of stash entries, then the receiver can

recover that bucket by adding (if the entry is from the pre-
start stash or post-end stash), or subtracting (if the packet is
from the post-start stash or pre-end stash) the timestamps of
those stash entries to the bucket’s timestamp accumulator.

Stash recovery appears to take exponential time because it
may seem that one has to consider all possible combinations
(2W) in the worst case whenW stash packets hash to a single
bucket. Fortunately, stash recovery is much faster because,
with high probability, onlyO(W/M) stash packets can hash
together into the same bucket. Thus, the running time of the
decoding algorithm isO(M2W/M), and since the typically
stash sizeW < M number of buckets, it follows that stash
recovery time is approximately linear inM .

Thus the algorithms to calculate loss and latency are ex-
actly as before for basic FineComb except that we preface
them by doing stash recovery to potentially increase the num-
ber of useful buckets. A stash should help improve latency
estimates slightly (by increasing the number of useful buck-
ets), but will be much more critical in obtaining reasonable
loss estimates (allowing loss to be distinguished from re-
ordering).

3.5 Handling unknown loss and reordering rates
If we know the exact reordering rateρ and loss rateβ a

priori , our theoretical results (shown in the next section) al-
low us to configure the sampling rate appropriately to ensure
that optimal number of delay samples are obtained. In prac-
tice, we may not always know these values before hand, and
they may change over time. One way to solve this problem,
is to estimate the reordering and loss rate in online fashion,
and use these estimates to compute the right sampling rates
for future intervals. Unfortunately, there is no guaranteethat
reordering and loss exhibit any amount of consistency across
intervals.

LDA also faces a similar problem—the loss rates are not
clearly known a priori. To handle this case, LDA partitions
resources into multiple banks, each bank statically tuned to
different loss rates. We can use a similar trick in FineComb
as well, except, we need to consider the operating ranges of
two different parametersβ andρ. Thus, in FineComb, we
use multiple banks optimized for the four different extreme
operating regions: (βmin, ρmin), (βmin, ρmax), (βmax, ρmin),
and (βmax, ρmax). Low values ofβmin andρmin, means
that the sampling rate chosen could be high, which in turn
means the estimates are good. On the other hand, once the
loss rate or reordering rate becomes high, this bank tuned for
low loss rates may produce no valid delay or loss estimates,
as the number of bad packets may far exceed the number of
elements provisioned individually.

For the evaluation, we use the following simple (non-optimal)
strategy to configure resources for each bank. We currently
use four banks, each using one quarter of the total storage.
We compute the optimal sampling probabilities and amount
of stash required for each of the four extreme operating re-
gions and partition resources statically. We leave dynamic
reorganization of banks for future work.

7

For delay estimation (both mean and standard deviation),
we compute the average delay output by all the individual
banks. For loss, averages will not produce good output,
especially at low loss rates. Instead, we use the following
heuristic. We pick the loss rate of a bank whose estimate
is closest to what it was tuned for. Intuitively, this heuris-
tic uses the observation that rate estimates are typically most
accurate when they are closest to what the bank is tuned for.

4. SETTING PARAMETERS
At the highest level, recall that main advantage of FineComb

and LDA over the trivial algorithm that keeps a small sam-
ple of the timestamps of sent and received packets, issample
efficiency. If we can afford just 1,000 pieces of memory, the
naive algorithm provides just 1,000 samples of delay. On
the other hand, using aggregation allows the extraction ofT
samples (the number of packets sent in the interval, in the
millions) if there is no loss. Since the standard error reduces
by the square root of the number of samples, this can result
in much finer delay estimates in the common case when the
loss is small.

In the following analysis, our goal is to choose a sampling
rate p, and stash sizeW that will maximize the expected
number of delay samples that we extract from FineComb.
That is, we would like to maximize the expected number
of packets that are hashed to useful buckets, so that we can
estimate delay as accurately as possible. The following anal-
ysis assumes that FineComb uses a single sampling ratep,
and that the number of entries in the stash and the number
of buckets in FineCombM is fixed, so that total storage is
S = M +W .1 Note that while we have formally proved the
results in this section, for brevity, we only state the main the-
orems and results. (Proofs will be posted in the full version
of this paper.)

4.1 Expected number of useful samples
Since our goal is to maximizeX , the expected number of

useful samples we can extract from FineComb, our first step
will be to determineE[X].

Good and bad packets. Let us focus on intervalu, and
say a packet sent by the sender in intervalu is ‘good’ if it
was received by the receiver in intervalu, otherwise ‘bad’.
Recalling thatβ is the packet loss rate on the path,T is the
number of packets the sender sends in an interval, the num-
ber of good packets isG ≤ (1 − β)T with equality when
R = 0, so that there are no packets that are problematically
reordered. Packets can become bad due to loss, or prob-
lematic reordering. The number of dropped and reordered
packets in an interval isβT andR = ρT respectively.

Conditional expectation of useful samples. Let L be the
number of bad packets that are sampled but not corrected
during stash recovery. We can prove that the expected num-

1We could instead fix the total storage of the system, so thatS =

2M +W , since the sender has no stashes and thus requires storage
M , while the receive requiresM +W storage.

ber of useful samples is

E[X |L] = E[Good pkts per bucket]E[No. of useful buckets]

= pG(1− 1
M)L (2)

Sampled uncorrected bad packets,L. We haveβT dropped
packets, andR reordered packets; together, this gives us
βT + R bad packets, that we sample with ratep. We shall
assume thateverypacket that is stored in the stash is an out-
of-order packet, so the stashes will allow us to correct for ex-
actlyW sampled out-of-order packets.2 Thus, the expected
number of bad packets that are sampled and not corrected is

E[L] = βpT +max{0, pR−W} (3)

Working with the conditional expectation. Because the
distribution ofL is quite complicated, in this section, we
work with the conditional expectationE [X |L = E[L]], which
is obtained by plugging (3) into (2). By numerically plotting
equations, we observed the results obtained usingE[X |L =
E[L]] are quite close to results obtained from the uncondi-
tional distributionE[X].

4.2 Optimizing stashW for fixed sampling p

First, let’s suppose we work with a fixed sampling ratep.
In Appendix??, We can prove that the optimal size allocated
to the stash is approximately:

W ≈
{

pR whenS ≥ p(R+ βT)
0 else.

(4)

Notice that (4) suggests that when the total storageS is
very small,i.e. less than the number of bad sampled pack-
ets, all the storage should be dedicated to the buckets of
FineComb (i.e., W=0). On the other hand, when we have a
decent amount of storage, the analysis shows that we should
keep stashes large enough to correct for the expected num-
ber of out-of-order sampled packets,pR. This makes sense,
since a single bad packet can cause an entire bucket to be-
come useless, so that aboutp

MG ‘good’ packets become use-
less. Hence, it follows that correcting a single discrepancy
in FineComb due to a bad packet is highly effective, and
further that we should dedicate a large amount of storage to
the stash. Note that this analysis only applies to the opti-
mal choice of stash size and sampling probability in order to
calculatelatency.

4.3 Optimizing sampling ratep.

No stash. Per (4) we now consider the case where we have
no stash (i.e., W = 0). In Appendix??, We can show that
the optimal sampling rate is

p∗∗ = min

{

S

R+ βT
, 1

}

(5)

2In practice, this may not be case; the stash may store some packets
that arrived correctly in an interval (these good packets waste space
in the stash), as well as some out-of-order packets.

8

Stash. Now, (4) tells us that when we have a stash, its
optimal size isW = pR. In Appendix??, We can show that
when we use this value for the stash, the optimal sampling
rate is approximately

p∗ = min

{

S

2ρ2T

(

2ρ+ β −
√

4ρβ + β2
)

, 1

}

(6)

whereρ = R/T .

To stash, or not to stash. The last issue we need to settle
is whether it’s better to use a stash or not. Plugging our two
operating points (p∗∗, W = 0) and (p∗, W = p∗R) into
the equation forE[X], we find (see Appendix??) that the
expected number of samples is maximized when we use a
stash.

A note on our approach. This analysis first fixed the sam-
pling ratep and then optimized stash sizeW ; then optimal
value forW was used to solve for the optimal sampling rate
p. It would have been better to jointly optimizeE[X] for W
andp; however, the complexity ofE[X] (see (??)) made a
joint optimization quite complicated, so we avoided it.

5. EVALUATION
In this section, we evaluate the efficacy of FineComb.

Specifically, we seek to answer the following questions:

• How does FineComb perform in estimating mean de-
lay, standard deviation and loss rates under different
levels of reordering and loss rates? Does the number
of effective samples obtained empirically agree with
analytical bounds?

• How does an optimal configuration of FineComb com-
pare with optimal configurations of other previous so-
lutions such as LDA, in terms of relative error, under
the assumption each solution is allowed to use the same
total effective memory? (Here, we will assume that
loss and reordering rates are known.)

• Since in practice, we cannot predict the loss and re-
ordering rates, we consider FineComb provisioned with
using multiple banks tuned to different loss and re-
ordering rates. How does this perform compared to
LDA ?

After describing the evaluation methodology we have used,
we will discuss each of these three questions.

5.1 Evaluation methodology
We built a custom simulator in C++ for evaluating a proto-

type of our measurement solution. Our custom simulator is
more efficient than, say, ns-2 and allows us to simulate send-
ing several million packets. Further, ns-2 does not provide
any built in routines that we can leverage as all we need is
to simulate packets sent on a link with specified delay, loss,
and reordering characteristics.

Given our goal is to compare the performance of our ar-
chitecture in many different settings, we provide several con-
figuration parameters such as loss rateβ, reordering rateρ,
measurement interval. Our simulation environment is delib-
erately kept similar to the one used by the authors in [18] so
that fair comparison of FineComb with LDA is possible.
Delay model. Ideally, we would to use traces at two mon-
itoring points within a real data center with GPS synchro-
nized clocks; unfortunately, there exists no such publicly
available data center latency traces. Prior work [18] used
the Weibull delay distribution model empirically verified to
mimic the distribution of delays within a backbone router by
Papagiannakiet al. in [23]. We use mainly Weibull distri-
bution (and Pareto for diversity) within our simulations. The
delay for each packet is drawn is from a Weibull distribution,
which has cumulative distribution function

P (X ≤ x) = 1− e(−x/α)β

with α andβ representing the shape and scale of the graph
respectively. We use [23]’s recommended shape parameter
0.6 ≤ α ≤ 0.8 in all our simulations (mostly, we usedα =
0.6). Note that while FineComb (and LDA) are agnostic to
the distribution of timestamps, delay distribution does matter
when we determine the relative error provided by these data
structures.
Loss model. FineComb and LDA are agnostic to the the
loss rate distribution—even if two lost packets are back-to-
back, they are randomly hashed into different buckets any-
way. Thus, it suffices to simulaterandompacket loss.
Measurement interval.Unless otherwise specified, we sim-
ulate an interval of 1 second with a mean delay of about
10µs. (Path latencies in data centers may range from 10–100
µs, so our setting simulates close to the finest granularity.)
Since the exact average latency is not as significant, we show
our results in the form of relative error. On the other hand,
the loss rate distribution is significant; we use Weibull with
shape parameter 0.6 and scale adjusted to obtain mean delay
of 10µs. We simulate 5,000,000 packets, with an average
packet size of 250 bytes, over a 10 Gbps bottleneck capac-
ity with an inter-arrival time of 0.2µs—transmission time for
250 bytes at 10Gbps is 0.2µs. (The average packet size or
the inter-arrival time do not impact our results; the numbers
are chosen similar to the experimental setting in [18], except
for the higher path latencies in our setting.) Unless other-
wise specified, our results are the average over 10 different
simulation runs, taken in order to obtain smoother trends.
Reordering model. An important parameter in our simula-
tion is the reordering rateρ. We could simulate reordering
in the same way we simulate loss; by randomly choosing
which packets to reorder. However, in practice, it is at all
not clear that reordering follows a process similar to that of
packet loss; in fact, there exists no generative model that we
are aware of that we can use in our simulation. We note once
again that reordering within the interval does not affect either
LDA or FineComb; what matters is problematic reordering

9

104

105

106

107

10-6 10-5 10-4 10-3 10-2

S
am

pl
e

si
ze

ρ

(FineComb, 0.0001)
(Expected, 0.0001)
(FineComb, 0.001)
(Expected, 0.001)
(FineComb, 0.01)
(Expected, 0.01)

(a) Expected number of samples

10-5

10-4

10-3

10-2

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

R
el

at
iv

e
er

ro
r

ρ

FineComb (Weibull, 6.647, 0.6)
FineComb- (Weibull, 6.647, 0.6)
FineComb (Pareto, 7.0, 3.0)
FineComb- (Pareto, 7.0, 3.0)

(b) Mean delay estimation,β = 0.01, Forward

10-3

10-2

10-1

100

101

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

R
el

at
iv

e
er

ro
r

ρ

FineComb (Weibull, 6.647, 0.6)
FineComb- (Weibull, 6.647, 0.6)
FineComb (Pareto, 7.0, 3.0)
FineComb- (Pareto, 7.0, 3.0)

(c) Loss rate estimation,β = 0.0001, Forward

Figure 4: Relative error of mean delay and loss estimates in the presence of forward reordering under different distri-
butions. We show both FineComb and FineComb- for comparison.

at the fringe of an interval (see Figure 2).
To stress LDA and FineComb in terms of problematic

reordering, we simulate the following simple deterministic
model of reordering. In our reordering model, we essentially
specify a 4-tuple,<Rs

pre, R
s
post, R

e
pre, R

e
post>, the number

of pre-start, post-start, pre-end and post-end packets defined
in Section 3.1. Then, for each interval we wish to simulate,
we choose a contiguous set of packets from the end of one
interval that will drift into the next and vice-versa.

Note that the theory in Section 4 is based on the total num-
ber of reordered packetsR = ρT and considers a slightly
more simplistic model than we use in our experimentation.
While clearly,R = Rs

pre + Rs
post + Re

pre + Re
post, the op-

timal probabilityp∗ obtained in Equation 6 is computed as-
suming all these different individual reordering components
are the same. To make our provisioning strategy consistent
with theory, we obtain the total reordered number of packets
R as follows:

R = max{Rs
pre, R

s
post, R

e
pre, R

e
post} × 4

We simulate two main types of reordering, calledforward
andbackward, that correspond to<0, x, 0, 0>and<0, 0, x, 0>
configurations for the 4-tuple. In most experiments, we con-
figure x equal to roughly10−6T to 10−3T (T being to-
tal number of packets); equivalently, the reordering rateρ
varies from4 · 10−6 to 4 · 10−3, translating to roughly 50 to
5,000 packets before the interval-end message. We also sim-
ulated many other configurations (e.g., <x, x, x, x>, <x, x,
0, 0>) but latency estimation results were mostly similar in
all cases; this follows because sampling probabilities and
stash sizes are all dependent onρ, which is same for all these
configurations.
Resource configuration.We allocate a total of 1,000 buck-
ets for FineComb. To simulate cases with and without stash,
we assume stash elements are of the same size as bank ele-
ments (for simplicity). We use 64 bits from a 160-bit SHA-1
hash function for packet digests (other hash functions would
work equally well). To make things fair, we equalize the
storage at the LDA and the FineComb. The buckets in the
LDA are 2/3 the size of those in FineComb (LDA has times-
tamp accumulator and counter but no incremental stream di-

gest). Furthermore, while FineComb is asymmetric (only
the receiver maintains stashes), the LDA is symmetric. Thus,
memory is allocated as follows: LDA gets1.5(M + W/2)
buckets at sender and receiver, whereM is number of FineComb
buckets andW is stash size.

5.2 Assessing FineComb

Expected number of samples. In our first experiment, we
wish to understand how tight the theoretical bound on the
number of useful samples is, at the optimal sampling proba-
bility. In Figure 4(a), we plot the expected number of sam-
ples according to the analytical bound given in Equation 2
(curve titled ‘Expected’) and the empirical number of sam-
ples over which delays are computed. The three different
curves in the figure correspond to three different loss rate set-
tings (0.0001, 0.001, 0.01). Clearly, as we increase the loss
rate from 0.00001 to 0.001, the number of effective sam-
ples over which the delay estimates are computed reduces
all the way from almost 3 million packets at loss rate 0.0001
(0.01%), to about 40,000 packets at 0.01 (1%) loss rate. As
we increase the reordering rate, the number of effective sam-
ples also decreases (although not by much for the 0.01 loss
rate curve, since the loss rate overwhelms the reordering rate
significantly). This is expected since more loss causes more
FineComb buckets to become useless, causing the expected
number of samples to decrease.

In all cases, we observe that analytically expected number
of samples matches quite well with what we found empiri-
cally (the curves are virtually indistinguishable); the differ-
ence between expected and empirical is of the order of a
few hundreds, with the predicted number of samples slightly
smaller than what we found empirically.

Latency estimates. Next, we show the average relative
error of mean delay and loss estimates, as we vary the re-
ordering rateρ in Figure 4. We show the results comparing
FineComb and FineComb- (FineComb without the stash) for
two different distributions, Weibull and Pareto with shape
and scale parameters adjusted to ensure similar mean latency
of 10µs. While we have simulated many different levels of
loss and types of reordering, for brevity, we mainly show the
latency results for the high loss situation and loss estimation

10

10-4

10-3

10-2

10-1

100

101

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

R
el

at
iv

e
er

ro
r

ρ

FineComb
FineComb-
LDA+
LDA

(a) Mean delay,β = 0.0001, Forward

10-4

10-3

10-2

10-1

100

101

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

R
el

at
iv

e
er

ro
r

ρ

FineComb
FineComb-
LDA+
LDA

(b) Mean delay,β = 0.0001, Backward

Figure 5: Average relative error of mean delay estimates
comparing FineComb with LDA with forward and back-
ward reordering.

for the low loss situation. (These are the least favorable sit-
uations for FineComb.) From Figure 4(b), we see that the
relative error for FineComb is less than 0.3% for either of
the two distributions, under different levels of reordering.

As predicted by our theoretical work (in the full version),
FineComb provides about 15-30% more useful samples than
FineComb- (that has no stash). While more samples should
lead to better delay estimates, the improvement in the delay
estimate depends heavily on the specific delay distribution;
that is, some distributions require fewer samples to obtain
accurate estimates (e.g., to take things to an extreme, a uni-
form distribution requires only a small number of samples
for excellent accuracy in delay estimates).

Loss rate estimates.We clearly see the benefit of the stash
when we consider loss estimation error in Figure 4(c). We
can observe that the estimates of FineComb- are significantly
worse than FineComb, especially at higher reordering rates.
This is explained by the fact that loss rate estimates for FineComb-
include reordered packets; because FineComb- has no stash,
we have no way to prevent these reordered packets from pol-
luting our loss rate estimator. Having the stash helps recover
most of those reordered packets in FineComb, thus adding
significantly fewer number of false positives in calculating
the loss rate. Note that the delay distribution itself does
not effect loss rate estimation (the little difference visible is
caused by different random number seeds).

5.3 Comparison with other solutions
We compare FineComb with LDA using simulations. Be-

fore we show these results, however, we go over why other
simple alternatives do not work as well as compared to FineComb.

1. Active probing. Intuitively, active probing methods do
much worse than methods like FineComb in terms of stan-
dard error for a fixed control bandwidth, because each active
probe provides a single delay sample, while each FineComb
bucket provides thousands of samples. Using a sampling
probability ofp = 0.1 (optimal for low loss and small amount
of reordering), FineComb will provide 500,000 delay sam-
ples in each interval. Now the control bandwidth required
to send 1,000 buckets from the sender to the receiver, is
roughly 16,000 bytes (assuming 16 bytes per bucket) while
an active probe takes at least 64 bytes (packet headers plus
timestamp). To keep the control bandwidth the same, even
if we allowed16, 000/64 = 250 active probes per second,
they would only provide 250 delay samples while FineComb
provides 500,000. This 2,000x increase in sample size trans-
lates roughly to

√
2000 = 44x decrease in standard error.

2. Sampled local timestamps.Similarly, consider the other
trivial solution of sampling a small number of packets in
each interval and storing their timestamps. Assume that FineComb
uses 1,000 buckets and a stash of the same size. Then the
trivial algorithm can afford to store 2,000 samples. Once
again, for the same parameters as the example above, the
trivial algorithm will provide 2,000 samples per second, while
FineComb will provide 500,000. This factor of 250x in-
crease in sample size translates to roughly a factor of 15x
decrease in standard error.

3. LDA for latency estimates.In Figure 5, we plot the rela-
tive error of mean delay estimates for four solutions, namely
LDA, LDA+ (a small refinement of LDA we discuss later),
FineComb and FineComb- for different reordering rates and
reordering models. For this set of experiments, we choose
optimal stash size configurations and sampling probabilities
(for LDA, as recommended in [18]) for all solutions.

The main observation from the graphs is that, beyond small
levels of reordering, LDA consistently performs the worst,
with relative error as high as 100% (atρ = 0.0005) to around
400% (ρ = 0.004). This follows from the fact that LDA can-
not deal with reordered packets. If a reordered packet and a
lost packet hash to the same LDA bin, the LDA will assume
that bin is useful and include it in the loss rate estimation.
However, that bucket will contain timestamps relating to two
differentsets of packets, and error induced can be as large as
the measurement interval (e.g. 1 second). Further, this er-
ror is amortized over the total number of sampled packets
(which gets progressively smaller as sampling rates are re-
duced to accommodate higher reordering).

LDA+ is a simple refinement of LDA which effectively
ignores the set of buckets where the sender’s timestamp sum
is higher than the receiver timestamp sum (which could be
caused by a situation like the one we described above) and
results ina negative delaycontributed by that bucket. This
clearly helps solve most of the problems in the forward re-
ordering case (where extra packets drift into the interval),

11

as reflected in the better relative error for LDA+ in Fig-
ure 5(a). In fact, in cases where LDA+ was optimized for
higher loss rate (e.g., atβ = 0.001), we observed better ac-
curacy than FineComb, that can be explained by the fact that
the total number of buckets allocated to LDA is about 1.5
times higher than those allocated to FineComb, resulting in
slightly better sampling rate, and consequently, in more sam-
ples. However, LDA+ is merely a patch, and does not work
in the backward reordering cases, since in these cases, we
cannot easily detect (using a simple elimination scheme as
before) and eliminate buckets that are anomalous because of
reordering. Thus for the lower set of graphs, we can see that
LDA+ has the same accuracy level as the LDA.

In all cases, we can observe that both FineComb and FineComb-
perform consistently better than LDA even under high loss
and reordering rates. We can observe that the relative erroris
mostly around 0.1% and never more than 1% in all the cases
considered. For standard deviation estimates, we observed
a similar phenomenon,i.e., the accuracy of FineComb is or-
ders of magnitude higher than LDA’s. The same set of of
reasons why LDA’s mean delay estimates are quite bad ex-
plains why standard deviation estimates are also bad. (Since
the curves look exactly the same as those for mean latency,
we omit them.)

4. LDA for loss estimation. In Figure 6(a), we plot the
relative error in estimating loss rate (forβ = 0.0001). As
we can see from the figure, FineComb’s estimates are usu-
ally within 10-30% error irrespective of the reordering rates.
The estimates of the rest are quite poor, with more than 100-
500% error for LDA. This is expected, since neither LDA (or
LDA+) nor FineComb- have the capability to correct for re-
ordered packets; only FineComb enjoys that capability due
to the presence of the stash.

Microscopic losses.While 10-30% error in estimating loss
rates as low as 0.0001 is good, our goal was to also be able
to detect losses as low as 1 in 1 million (10−6). Intuitively,
detecting such low loss rates in the presence of reasonable
levels of reordering (e.g., say 500 packets,i.e., ρ = 10−4) is
possible only with extremely high rates of sampling (close
to 1) and with a stash large enough to recover most of the
reordered packets. (Our formulae predict these configura-
tions as well.) To explore this case further, we simulate
low loss conditions (with 5, 10, 50, and 100 packets lost in
the interval) and configure stash and sampling optimally just
as before. The 5 packet situation is equivalent to 1 packet
loss in 1 million (our definition of microscopic losses). In
Figure 6(b), we see that, even though the relative error of
FineComb’s loss estimates becomes progressively worse as
reordering increase, the estimates are well within 10% for
reordering rates up to10−4 (500 reordered packets),i.e., 5
packets lost is reported as either 4 or 6 packets lost—we be-
lieve most managers would find such accuracy for micro-
scopic losses to be perfectly adequate. By contrast, LDA’s
accuracy for the same range is around 2,000% (not shown in
the figure), which can cause false alarms.

10-3

10-2

10-1

100

101

102

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

R
el

at
iv

e
er

ro
r

ρ

FineComb
FineComb-
LDA+
LDA

(a) Low loss,β = 0.0001

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

10-5 10-4

R
el

at
iv

e
er

ro
r

ρ

5 pkt loss
10 pkt loss
50 pkt loss
100 pkt loss

(b) Microscopic loss, 5-100 lost packets

Figure 6: Relative error of FineComb at detecting low to
microscopic loss rates.

5.4 Handling unknown loss and reordering rates
We have already demonstrated that it is easy to tune FineComb

if the manager knows the loss and reordering rate. How-
ever, it is important to have a solution that works across a
large range of loss rates and reordering rates using multi-
bank FineComb.

We compare the efficacy of a 4-bank FineComb with a
two-bank LDA. For FineComb, we optimize the individ-
ual banks for the four pair-wise combinations ofβmin =
ρmin = 0.0001 andβmax = ρmax = 0.01. In Figure 7(a),
we show the relative error of the mean delay estimates of
FineComb compared to that of LDA. FineComb-OPT, shown
for reference, is FineComb configured with the theoretically
best sampling rate and stash size given the knowledge of loss
and reordering rates. We mainly show the relative error for
mean delay for the worst case loss rate, whenβ = 0.01;
the results for other loss rates, and for the backward reorder-
ing case, are quite similar to this curve (and hence, omitted).
From the figure, we can observe that LDA performs worse
than FineComb (as we have observed before) even in the
case of multiple banks. At extremely low reordering rates,
the estimates of LDA are quite accurate, but they become
quickly unusable with small increases in reordering rates (at
around 0.0002). Further, we can clearly see that, while 4-
bank FineComb appears to have worse relative error than
the FineComb-OPT, on the whole, FineComb results are rea-
sonably accurate with a relative error of less than 1% under
almost all conditions.

In Figure 7(b), we show the relative error of the loss rate

12

10-3

10-2

10-1

100

101

102

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

R
el

at
iv

e
er

ro
r

ρ

FineComb-opt
FineComb
LDA

(a) Mean delay estimation,β = 0.01, Forward

10-3

10-2

10-1

100

101

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

R
el

at
iv

e
er

ro
r

ρ

FineComb-opt
FineComb
LDA

(b) Loss rate estimation,β = 0.0001, Forward

Figure 7: Average relative error of mean delay and loss
estimates of the 4-bank FineComb, with the banks opti-
mized for low and high reordering and loss rates.

estimation for the lowest injected loss rate situation (of 0.0001).
We can observe a similar trend as we observed in the case
of regular comparisons earlier, with FineComb’s accuracy
around 30% in all cases. The multibank variant’s accuracy is
comparatively worse at around 60%, but LDA is completely
unusable.

6. IMPLEMENTATION
With 1000 buckets and 1000 stash entries, FineComb should

take a small percentage of a low end 10mm×10mm network-
ing ASIC using a 400-MHz 65nm process. Key to a small
footprint is a cheap version of an incremental stream digest
using say an unrolled Rabin hash instead of the more ex-
pensive collision-resilient SHA-1 we used in simulation. A
quicker path to deploymenttoday, however, is using high-
end FPGAs. For instance, we propose implementing FineComb
on boards with Xilinx Virtex-4 FPGAs and 10-Gigabit Eth-
ernet MACs that are currently available [1] for less than a
thousand dollars per board (future NetFPGA boards [3] will
also target 10 Gbps; the current version supports 4 Gbps and
costs around $500). Alternately, boards containing network
processors like the Intel IXP 2800, such as those used in the
Open Network Laboratory [6] testbed, could be used to im-
plement FineComb in software. For time synchronization,
the boards need to have GPS chipsets (fairly cheap today),
the solution used by monitors such as Corvil [2].

Stash recovery operations are easier to do in software us-
ing say an on-board processor. In the analysis, we argued

that stash recovery times areO(M2W/M), whereW is the
size of the stash andM is the number of buckets. We did
measurements to verify that the apparent exponential is not
an issue, and that there are no large constants hiding behind
the order notation. The table below shows stash recovery
times for different stash sizes, assuming a fixed total stor-
ageS of 2,000 (across sender and receiver). For example,
when the stash (maintained at receiver)W is 838, the num-
ber of bucketsM is 581 (equal across sender and receiver),
resulting in2W/M being less than 4. The implementation
was done using a 2.33Ghz Intel processor running Linux.

Stash size 20 120 200 462 703 838
Time (ms) 1 4 6 10 10 14

As we expect, stash recovery time increases as stash size
increases. However, even for a ratio of stash to buckets of
around 1.44, recovery takes no more than 14 msec. Note
that it is not required that the processor be on-board, or that
the board be directly connected to the the edge routers them-
selves; using span ports on routers/switches or using Open-
Flow [7], one can mirror traffic to a PC with a monitoring
board. Packet processing will be done in hardware on the
board, but functions such as stash recovery can be imple-
mented in software on the PC.

Implementing FineComb on boards (based on either FP-
GAs or network processors) is significantly cheaper com-
pared to existing diagnosis boxes proposed for data centers
such as those supplied by Corvil. The high-end Corvil boxes
costs UK£90,000 for a 2×10 Gbps box [2]. High cost is a
barrier for most data centers which explains why Corvil has
mostly marketed to a niche market (financial traders) where
money is no object. To be fair, the Corvil boxes allow vis-
ibility on a per-flow and application level but the difference
in costs may make FineComb attractive for more widespread
deployment. While implementing complete flow monitoring
is unlikely to be feasible in a cheap monitoring board, there
is often sufficient processing and memory in the boards; we
propose to trigger finer-grain flow monitoring (“drill-down”)
when latency or loss violations are detected.

7. RELATED WORK
While network latency measurements is a rich area of re-

search in the Internet with several tools proposed in the past
to obtain latency measurements, the fundamental focus on
fine-grain microscopic latency and loss measurements, makes
most of these tools not suitable for the task at hand. Scalable
performance measurements for data center environments is
a relatively less studied field.

The standard approach for conducting latency measure-
ments in the wide area is to inject active probes (e.g., using
ping and other tools such as [29, 21, 28, 26]) and calculate
the round-trip time of the packet. We have discussed the
problems with active probes in Section 2.3. Router-based
passive measurements is yet another active area of research[13,
14, 32, 24, 17]. They focus mainly on flow measurements

13

such as number of packets and bytes, and not on latency and
loss estimation. In [20], the authors propose a measurement-
friendly network architecture; the goal is to infer router char-
acteristics with the help of end-to-end measurements. Our
goal is to measure end-to-end characteristics with supportat
the end points, however. There are a few prior efforts (e.g.,
[12, 33]) where researchers proposed simple router exten-
sions for latency measurements that are somewhat similar
to the local timestamps idea discussed in Section 2.3, and
hence share similar problems as indicated before.

Perhaps the most relevant research effort to ours is a re-
cent data structure called LDA proposed by Kompellaet al.
in [18], and an incremental deployment architecture in [19].
Given the close similarity, we discussed it at length in the pa-
per, and compared the performance of FineComb with LDA.

8. CONCLUSIONS
Measurement tools are badly needed to determine fine-

grain latencies and losses that can affect application SLAs
in data center environments. Many high-end data centers
already employ boxes from vendors such as Corvil [2] and
NetScout [4] at the edges. However, these solutions appear
to be expensive and unscalable. There is a need for cheaper
solutions that can be easily commoditized. While LDA does
provide a commodity solution, it requires deployment on
FIFO segments within each router and link, and does not
extend directly to an edge-to-edge setting with persistentre-
ordering.

This paper describes FineComb, an algorithm that can de-
tect microsecond latency violations and loss as small as 1
in a million packets with a few thousand words of memory
and simple logic. FineComb can be implemented in com-
modity boards that cost less than a few thousand dollars.
FineComb introduces two new ideas, the addition of a in-
cremental stream digest to to detect mismatches in packet
sets, and a simple stash to correct reordering. Stashes are
especially powerful in order to measure loss precisely to a
few parts in a million.

To be fair, competing solutions have other benefits. For
example, Corvil and NetScout provide visibility on a per-
application basis. In contrast, LDA can provide fine-grain
isolation of the router component causing latency violations
if widely deployed. A combination could be effective in the
marketplace. For example, boxes like Corvil could perhaps
be made cheaper at 10 Gbps by implementing FineComb and
only triggering fine-grain flow monitoring if performance
violations are observed at the aggregate level. Meanwhile,
fault-isolation would be greatly aided if LDA is gradually
deployed. In data centers where seemingly imperceptible
increases in latency have important business consequences,
such monitoring tools can be a valuable investment.

Acknowledgements
The authors thank Kirill Levchenko, Michael Mitzenmacher
and Zvika Brakerski for useful discussions.

9. REFERENCES
[1] 10-gigabit ethernet hardware demonstration platform.

http://www.xilinx.com/support/documentation/
application_notes/xapp955.pdf.

[2] Corvil tool minimises latency.
http://www.computerworlduk.com/technology/networking/
networking/news/index.cfm?newsid=5797.

[3] Netfpga. http://www.netfpga.org.
[4] Netscout. http://www.netscout.com.
[5] Next-generation routers: A comprehensive product analysis.

http://www.heavyreading.com/details.asp?skuid=662&skuitemitemid=673
&promo code=&aff code=&nexturl=%2Fdefault.asp%3F.

[6] Open network laboratory. http://onl.arl.wustl.edu/.
[7] Openflow. http://www.openflow.org.
[8] A L-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable, commodity

data center network architecture. InSIGCOMM(2008), pp. 63–74.
[9] A L-FARES, M., RADHAKRISHNAN , S., RAGHAVAN , B., HUANG, N., AND

VAHDAT, A. Hedera: Dynamic flow scheduling for data center networks. In
USENIX/ACM NSDI(Apr. 2010).

[10] ALON, N., MATIAS, Y., AND SZEGEDY, M. The space complexity of
approximating the frequency moments.J. Computer and System Sciences 58, 1
(Feb. 1999), 137–147.

[11] BELLARE, M., AND M ICCIANCIO, D. A new paradigm for collision-free
hashing: incrementality at reduced cost. InIn Eurocrypt97(1997),
Springer-Verlag, pp. 163–192.

[12] DUFFIELD, N. G., AND GROSSGLAUSER, M. Trajectory sampling for direct
traffic observation. InIEEE/ACM Transactions on Networking(2000).

[13] ESTAN, C., KEYS, K., MOORE, D., AND VARGHESE, G. Building a Better
NetFlow. InACM SIGCOMM(2004), pp. 245–256.

[14] ESTAN, C., AND VARGHESE, G. New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice.ACM Transactions
on Computer Systems 21(2003), 270–313.

[15] GREENBERG, A. G., HAMILTON , J. R., JAIN , N., KANDULA , S., KIM , C.,
LAHIRI , P., MALTZ , D. A., PATEL, P., AND SENGUPTA, S. Vl2: a scalable
and flexible data center network. InSIGCOMM(2009), pp. 51–62.

[16] JENKINS, B. Algorithm alley. Dr. Dobb’s Journal, September 1997.
[17] KOMPELLA, R. R.,AND ESTAN, C. The power of slicing in internet flow

measurement. InACM/USENIX IMC(May 2005).
[18] KOMPELLA, R. R., LEVCHENKO, K., SNOEREN, A. C., AND VARGHESE, G.

Every MicroSecond Counts: Tracking Fine-grain Latencies Using Lossy
Difference Aggregator. InACM SIGCOMM(2009).

[19] KOMPELLA, R. R., SNOEREN, A. C., AND VARGHESE, G. mPlane: An
architecture for scalable fault localization. InACM ReARCH(2009).

[20] MACHIRAJU, S.,AND VEITCH, D. A measurement-friendly network (MFN)
architecture. InProceedings of ACM SIGCOMM Workshop on Internet Network
Management(Sept. 2006).

[21] MAHDAVI , J., PAXSON, V., ADAMS, A., AND MATHIS, M. Creating a
scalable architecture for internet measurement. InProc. of INET’98(1998).

[22] MARTIN , R. Wall street’s quest to process data at the speed of light.
http://www.informationweek.com/news/infrastructure/
showArticle.jhtml?articleID=199200297.

[23] PAPAGIANNAKI , K., MOON, S., FRALEIGH, C., THIRAN , P., TOBAGI, F.,
AND DIOT, C. Analaysis of measured single-hop delay from an operational
backbone network.IEEE JSAC 21, 6 (2003).

[24] RAMACHANDRAN , A., SEETHARAMAN , S., FEAMSTER, N., AND

VAZIRANI , V. V. Fast monitoring of traffic subpopulations. InACM/USENIX
IMC (2008), pp. 257–270.

[25] RAMAKRISHNA , M., FU, E., AND BAHCEKAPILI , E. Efficient hardware
hashing functions for high performance computers.IEEE Transactions on
Computers 46, 12 (Dec. 1997).

[26] SAVAGE, S. Sting: a TCP-based network measurement tool. InProceedings of
USENIX Symposium on Internet Technologies and Systems(Oct. 1999).

[27] SINHA , S., KANDULA , S., AND KATABI , D. Harnessing TCPs Burstiness
using Flowlet Switching. InHotNets(San Diego, CA, November 2004).

[28] SOMMERS, J., BARFORD, P., DUFFIELD, N., AND RON, A. Improving
accuracy in end-to-end packet loss measurement. InSIGCOMM ’05(2005),
pp. 157–168.

[29] SOMMERS, J., BARFORD, P., DUFFIELD, N., AND RON, A. Accurate and
efficient SLA compliance monitoring. InACM SIGCOMM(2007).

[30] VASUDEVAN, V., PHANISHAYEE, A., SHAH , H., KREVAT, E., ANDERSEN,
D. G., GANGER, G. R., GIBSON, G. A., AND MUELLER, B. Safe and
effective fine-grained TCP retransmissions for datacentercommunication. In
Proc. ACM SIGCOMM(Barcelona, Spain, Aug. 2009).

[31] WOVEN SYSTEMS, INC. EFX switch series overview.http://www.
wovensystems.com/pdfs/products/Woven EFX Series.pdf,
2008.

[32] YUAN , L., CHUAH , C.-N., AND MOHAPATRA, P. ProgME: towards
programmable network measurement. InACM SIGCOMM(2007).

[33] ZSEBY, T., ZANDER, S.,AND CARLE, G. Evaluation of building blocks for
passive one-way-delay measurements. InPAM (2001).

14

APPENDIX

A. SETTING PARAMETERS.

A.1 Review of notations.

• Let T be the number of packets sent per interval.

• LetR = ρT be the number of problematically reordered packets in the interval.

• Let β be the fraction of dropped packets in the interval.

• Let G ≤ (1 − β)T be the number ofgood packetsthat are received by the Receiver between the correct pair of’Sync’
messages.

• Let p be the FineComb sampling rate.

• LetM be the number of buckets in the FineComb.

• LetW be the number of entries in the stash.

• LetS be the total storage allocated to the FineComb with stashes.

• LetX be a random variable describing the number of useful samplesextracted from FineComb.

• Let A be a random variable describing the number ofsampledout-of-order packets in the interval that arenot corrected
during stash recovery.

• LetB be a random variable describing is the number ofsampleddropped packets in the interval.

• Let L = A + B be a random variable describing the number ofbad packetsthat aresampledandnot correctedduring
stash recovery.

A.2 E[X |L]: Conditional expected number of useful samples.

CLAIM A.1. The conditional expected number of useful samples isE[X |L] = pG(1− 1
M)L.

PROOF. If we assume that all packets in the stream are distinct, then theL ‘bad’ sampled packets map to buckets of the
LDA independentlyof theG ‘good’ packets. Then, it follows that the expected number ofgood samples from the LDA is [?]

E[X |L] = E[Good pkts / bucket]E[Number of useful buckets]

= p
MG(M − E[K]) (7)

where, following [?], we letK be a random variable that denotes the number of ‘useless’ buckets in the LDA, that results from
theL sampledbad packets hashing to buckets of the LDA. In [?], they show thatK is distributed as

Pr[K = k|L] = M !

(M − k)!

S(L, k)

ML
(8)

whereS(L, k) is a Stirling number of the Second Kind. This claim follows bysubstitutingE[K|L] from the following Claim??
into equation (??).

CLAIM A.2. E[K|L] = M(1− (1− 1
M)L).

PROOF. Our proof uses the following identities of the Stirling number of the second kind:

S(L, k) · k = S(L+ 1, k)− S(L, k − 1) (9)
L
∑

k=0

M !
(M−k)!S(L, k) = ML (10)

S(L,L) = 1 (11)

S(L, 0) = 0 (12)

And now we begin:

E[K|L] =
L
∑

k=1

k M !
(M−k)!

S(L,k)
ML

= 1
ML

L
∑

k=1

M !
(M−k)! (S(L+ 1, k)− S(L, k − 1)) (13)

15

where we used (??). Now, using (??-??), we can find the first term of the sum as

L
∑

k=1

k M !
(M−k)!S(L+ 1, k) =

L+1
∑

k=1

k M !
(M−k)!S(L+ 1, k)

− M !
(M−L−1)!S(L+ 1, L+ 1)

= ML+1 − M !
(M−L−1)!

and the second term of the sum as
L
∑

k=1

M !
(M−k)!S(L, k − 1) = M

L−1
∑

j=0

(M−1)!
(M−1−j)!S(L, j)

= M((M − 1)L − (M−1)!
(M−L−1)!

and plugging these back into (??) we get

E[K|L] = 1
ML (M

L+1 −M(M − 1)L)

= M(1− (1− 1
M)L)

as required.

A.3 Distribution of L

We haveβT dropped packets, andR reordered packets; together, this gives usβT + R bad packets, that we sample with
ratep. It is exactly these bad packets that can cause certain buckets of the FineComb to become useless. If we assume that the
stashes can correct for at mostW bad out-of-ordered sampled packets, the expected number ofbad packets that aresampledis
a random variableL = A+B whereA is number ofsampledout-of-order packets in the interval that arenot corrected during
stash recovery, andB is the number ofsampleddropped packets in the interval. Notice also thatA andB are independent
random variables, whereB is a binomial random variableB ∼ B(βT, p), andA is distributed as

Pr[A = a] =

{

∑W
i=0

(

R
i

)

pi(1 − p)R−i whena = 0
(

R
a+W

)

pa+W (1 − p)R−a−W whena ≥ 1
(14)

SinceL = A+B, we can find the expectation ofL as in (3).

A.4 E[X]: Unconditional expected number of useful samples.
We now derive combine the results of Claim??, and the distribution ofL from Section?? to obtain the unconditional

distribution ofE[X]. Recalling thatL = A+B and using the Poisson approximation forB (sinceB is just a simple binomial
distributionB(p, βT) with p≪ βT), we

E[X |A] =
∞
∑

b=0

E[X |A, b] Pr[B = b]

=

∞
∑

b=0

pG(1− 1
M)A+b · e−pβT (pβT)b

b!

= pGe−βpT/M (1− 1
M)A (15)

We can also use the Poisson approximation forA to obtain

E[X] =
∞
∑

a=0

E[X |a] Pr[A = a]

= pGe−βpT/M (F(W ; pR)

+
e−pR/M

(

1− 1
M

)W

(

1− F(W ; (1− 1
M)pR)

)

)

(16)

whereF(W ;λ) is the cumulative Poisson distribution, that is

F(W ;λ) =

W
∑

i=0

e−λλ
i

i!
(17)

16

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R=100, T=20

R=100, T=40
R=20, T=100

R=40, T=100

R=60, T=100

R=80, T=100
R=100, T=100
R=120, T=100

Stash size W

E
[X

]/
(p

G
)=

 E
[F

ra
ct

io
n

 o
f

u
se

fu
l

sa
m

p
le

s]

R=100, T=60

Figure 8: Expected fraction of useful samplesE[X]/pG vs stash sizeW when the total storage isS = 160. All the
solid (blue) lines assume that the expected number of sampled out-of-order packets ispR = 100, and each line has a
different value for the expected number of dropped packetspβT as{20, 40, ..., 120}. The dotted (red) lines assume that
the expected number of sampled dropped packets isβpT = 100, and vary pR as {20, 40...., 120}. The (green) lines
assume that the total number of dropped and out-of-order sampled packetsp(R+ βT) = S = 160.

Since Equation (??) is so ugly, we will do most of our analytic work on

E[X |L = E[L]] = pG(1 − 1
M)βpT+max{0,pR−W} (18)

and use numerical methods to work withE[X] in (??).

A.5 Optimizing W for fixed sampling rate p.
We’d like to optimize the ratio between the LDA size and the stash size, using the fact thatS = M +W whereS is fixed

and sampling ratep is fixed.

Working with E [X |L = E[L]]. SubstitutingM = S −W into (??), we obtain

E[X |L = E[L]] = pG(1− 1
S−W)βpT+max{0,pR−W} (19)

We optimize (??) in two different regimes. First, we assume

S ≥ p(R+ βT) (20)

so that the total storage requirement for the FineComb and stashS is greater than the expected number of bad sampled packets.
By plotting (??) in the regime of (??), we found thatE[X |L = E[L]] is maximized whenW = pR. Second, we consider the
regime where (??) doesnot hold, we find thatE[X |L = E[L]] is actually maximized whenW = 0 so thatS = M .

Working with E[X]. Now, we show qualitatively that the stash sizing in equation(4) obtained by working with the conditional
expectationE[X |L = E[L]] also applies when we work with the unconditional expectationE[X] in (ugly) equation (??). To
do this, we substituteM = S −W into (??) and plot the resultingE[X] as a function ofW in Figure??.

From Figure?? we make a number of qualitative observations. First, we observe that when there are fewer bad sampled
packets, namelyp(R + βT) ≤ S = 160, the expected fraction of useful samples is maximized approximately when the stash
has sizeW slightly larger thanpR. That is, we want the stash to be slightly larger than the expected number of of out order
packets. On the other hand, when there are many bad sampled packetsi.e. p(R + βT) ≥ S = 160, the expected fraction
of useful samples is a monotonically decreasing function; it follows that maximizing the expected number of useful samples
requires us to allocate all the storage to the LDA, and set thestash size toW = 0. These qualitative results support our analysis
usingE[X |L = E[L]], and so we present the results in (4).

A.6 Optimizing sampling rate p with no Stash.

CLAIM A.3. When there is no stash, the optimal sampling rate isp∗∗ = S
R+βT

17

PROOF. We prove this directly fromE[X]. When there is no stash, thenW = 0 so thatA in (??) is simply a binomial
random variableA ∼ B(p,R). Then, if putM = S and approximateA as a Poisson random variable, the using (??) we find
that the expected number of samples is

E[X |W = 0] =

∞
∑

a=0

E[X |a] Pr[A = a]

=
∞
∑

a=0

pGe−pβT/S(1− 1
S)

a · e−pR (pR)a

a!

= pGe−p(R+βT)/S (21)

The claim follows by taking the derivative ofE[X |W = 0] and setting it equal to zero.

A.7 Optimizing p with StashW = pR.

Using E[X |L = E[L]]. Now, in (4) found that when we have a stash, it’s optimal size isW ∗ = E[A] = pR. We find the
optimal value ofp at this optimal value of stash sizeW = W∗ by settingM = S −W ∗ in (??) to obtain

E[X |L = E[L],W = pR] = pG

(

1− 1

S − pR

)βpT

(22)

Now, by taking the derivative and setting equal to zero, we find that the maxima of (??) occurs when the sampling rate is
approximately

p∗ ≈ 1

2(ρT)2
((2ρ+ β)TS − (ρ+ β)T

−
√

8(1− S)S(ρT)2 + ((2ρ+ β)TS − (ρ+ β)T)2
)

≈ S

2ρ2T

(

2ρ+ β −
√

4ρβ + β2
)

where the second approximation assumes thatS ≫ 1.

Working with E[X]. Now, we show qualitatively that the stash sizing in equation(4) obtained by working with the conditional
expectationE[X |L = E[L]] also applies when we work with the unconditional expectationE[X] in (ugly) equation (??). To
do this, we consider the two cases. For the first case, we assume that there is no stash (which we showed is optimal when
S < p(R + βT)) and plot equation (??) as the dotted (red) lines in Figure??. For the second case, we assume that the stash
is of sizeW ∗ = pR, and substituteW = W ∗ andM = S −W ∗ into (??) and plot the resulting as the solid (blue) lines in
Figure??. We can make a number of observation from Figure??:

• Stash is better than no stash. From Figure?? we can right away observe that for a fixed value forR, βT andS, the
expected number of useful samples is higher when we use a stash of sizeW ∗ than when we have no stash (since the
maxima of the solid (blue) curves are higher then the maxima of the dotted (red) curves).

• Our approximation for p∗ is good. Furthermore, Figure?? shows the our approximation for the optimal sampling
ratep∗ in (6) is quite good (since the vertical lines indeed coincide with the maxima of the solid (blue) curves). These
qualitative results support our analysis usingE[X |L = E[L]].

Recommendations. Thus we arrive at our recommendations; we would like to operate the data structure at the maxima
of the solid (blue) curves from Figure??. Thus, we suggest using a sampling rate ofp∗ per equation (6), and stash of size
W ∗ = 2γp∗T .

18

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sampling rate p

E
[X

]/
G

Stash

No Stash

R=100

R=178

R=316

R=560 T =100, S=160

Figure 9: Expected fraction of useful packetsE[X]/G vs sampling ratep when the total storage isS = 160 and
the number of dropped packets isβT = 100. The solid (blue) lines plot equation (??) when the stash is of size
W ∗ = E[A] = 2γpT , and for M = S − W ∗ and the dotted (red) lines plot (??). Each pair of lines has a
different value for the expected number of out-of-order packets 2γT from the logarithmicaly-spaced set2γT ∈
{100, 178, 316, 560, 1000, 1780, 3160, 5600, 10000}. The vertical lines are plotted according to equation (6) and represent
the approximate maxima of the solid (blue) curves.

19

	FineComb: Measuring Microscopic Latencies and Losses in the Presence of Reordering
	Report Number:
	

	mb_weibull_loss_est_rel_err_loss0.0001_fwd-ro.eps

