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Composable Asynchronous Events

Lukasz Ziarek, KC Sivaramakrishnan, and Suresh Jagannathan
Purdue University

{lziarek, chandras, suresh}@cs.purdue.edu

Abstract

Asynchronous communication is an important feature of many con-
current systems. Central to any asynchronous protocol is the abil-
ity to split the creation of a communication action from its con-
sumption. An important challenge to building expressive asyn-
chronous communication abstractions is defining mechanisms that
allow programmers to express composable post-creation and post-
consumption behavior.

Abstractions like CML’s synchronous events enable composable
construction of synchronous communication protocols. Supporting
similar functionality in an asynchronous setting leads to additional
challenges because different threads of control are responsible for
handling the action’s creation and consumption.

In this paper, we present the design and rationale for asynchronous
events, an abstraction that adapts CML’s synchronous events to sup-
port composable asynchronous protocols. Asynchronous events en-
able seamless composition of asynchronous protocols and interop-
erate cleanly with existing CML primitives. We discuss the defini-
tion of a number of useful asynchronous abstractions that can be
built on top of asynchronous events (e.g., composable callbacks)
and provide a detailed case study of how asynchronous events can
be used to substantially improve the definition and performance of
I/O intensive server applications.

1. Introduction

Asynchronous communication is used extensively in concurrent
programming. In message-passing functional languages like Er-
lang (1), F# (25; 19), JoCaml (16; 13), or CML (21), asynchrony
is typically expressed through the use of asynchronous messaging
primitives (such as asynchronous channels in JoCaml, mailboxes
in CML, or Erlang’s asynchronous send operation), or through
the use of threads which perform the desired asynchronous actions
synchronously.

Regardless of the technique chosen, an asynchronous communica-
tion protocol effectively splits the creation of the communication
action from its consumption. Thus, an asynchronous action is cre-
ated when a computation places a message on a channel (e.g., in the
case of a message send), and is consumed when it is matched with
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its corresponding action (e.g., the send is paired with a receive); the
creating thread may perform arbitrarily many actions before the
message is consumed. In contrast, synchronous message-passing
obligates the act of placing a message on a channel and the act of
consuming it to take place as a single atomic action.

The challenge to building expressive asynchronous communica-
tion abstractions is defining mechanisms that allow programmers
to express composable post-creation and post-consumption behav-
ior. Even with synchronous message-passing, which conflates no-
tions of creation and consumption, important functionality like se-
lective communication confounds the use of simple λ-abstraction
as a means of composability. This has led to the development of ex-
pressive abstractions like CML’s first-class synchronous events (21)
that enable construction of composable synchronous protocols.

Supporting composable post-creation and post-consumption in an
asynchronous setting leads to substantial additional challenges be-
cause achieving such composability necessarily entails the involve-
ment of two distinct threads of control – the thread that creates the
action, and the thread that discharges it. In other words, just as λ-
abstraction was found to be inadequate for supporting composable
synchronous actions, threads offer a poor foundation upon which
to build composable asynchronous ones.

To address this shortcoming, we introduce a new family of event
combinators and primitives that explicitly deal with asynchronous
communication. Our extensions enable seamless composition of
asynchronous protocols, and interoperate with existing CML prim-
itives. There are two key differences between an asynchronous
event primitive and its synchronous counterpart: (1) the base asyn-
chronous primitives we define ( aSendEvt and aRecvEvt ) ex-
pose both creation and consumption actions – this means that in-
ternal asynchrony (e.g., threads created by a synchronous event)
is never hidden within events; (2) the asynchronous counterparts
to combinators like wrap and guard allow composition of post-
consumption and post-creation actions of an asynchronous event.

Contributions. In this paper, we explore the design and imple-
mentation of composable asynchronous events. Our motivation
stems from the observation that just as synchronous events provide
a solution to composable, synchronous message-passing that could
not be easily accommodated using λ-abstraction and application,
asynchronous events offer a solution for composable asynchronous
message-passing that is not easily expressible using synchronous
communication and explicit threading abstractions. We make the
following contributions:

1. We present a comprehensive design for asynchronous events,
and describe a family of combinators analogous to their syn-
chronous variants available in CML. To the best of our knowl-
edge, this is the first treatment to consider the meaningful inte-
gration of composable CML-style event abstractions with asyn-
chronous functionality.



2. We provide implementations of useful asynchronous abstrac-
tions such as callbacks and mailboxes, along with a number
of case studies extracted from realistic concurrent applications
(e.g., a concurrent I/O library, concurrent file processing, etc.).
Our abstractions operate over ordinary CML channels, enabling
interoperability between synchronous and asynchronous proto-
cols.

3. We discuss an implementation of asynchronous events that
has been incorporated into MLton (18), and present a detailed
benchmark study that shows how asynchronous events can help
improve the expression and performance of a highly concur-
rent web-server. Our modifications, which mostly involved me-
chanical conversion of synchronous event abstractions to asyn-
chronous ones, required changing less than 100 lines of code
(the entire application itself is roughly 16KLOC), but resulted
in over a 3.5X improvement in overall throughput and scalabil-
ity.

The paper is organized as follows. In the next section, we pro-
vide motivation for asynchronous events. Design considerations are
given in Sec. 3. In Sec. 4 we provide some background and describe
asynchronous events as well as associated combinators and abstrac-
tions. Sec. 5 gives a formal operational semantics for asynchronous
events. Implementation details are given in Sec. 6. We provide ad-
ditional details through case studies given in Sec. 7. Performance
results are discussed Sec. 8. Related work and conclusion are pro-
vided in Sec. 9 and Sec. 10, respectively.

2. Motivation

To illustrate the issues that asynchrony raises with respect to com-
posability, consider a simple asynchronous message send abstrac-
tion written in CML that realizes asynchronous behavior by using
a thread to encapsulate a synchronous action:

fun async-send-thread(f,g,c,v) =
let val = spawn(fn() => sync (wrap(sendEvt(c,v),f)))
in g()
end

The function async-send-thread takes two functions, f and g,
as well as a channel c and a value v, and creates a thread to place v
on c . Post-creation actions are encapsulated by the continuation of
the thread creating the asynchronous action (in this case g). A post-
consumption action is defined using CML’s wrap combinator; the
complex event created from wrap when synchronized upon by
sync , synchronously sends v on c and then evaluates f .

Suppose we want to leverage this simple abstraction to build more
complex asynchronous protocols. Our motivating example is a sim-
ple resource manager (like a web-server) that consists of three mod-
ules: (1) a connection manager that listens for and accepts new con-
nections, (2) a processor that processes and sends data based on
input requests, and (3) an orchestrator that enables different kinds
of interactions and protocols among: the clients, the processor, and
the connection manager. If each established connection represents
an independent group of actions (e.g., requests), we can leverage
asynchrony to allow multiple requests to be serviced concurrently.
Such a design would be particularly attractive on a multi-core sys-
tem, for example.

One simple definition of an orchestrator is a procedure that chooses
between the communication event defined by the processor (call
it processorEvt) and connection manager (call it managerEvt).
Even if the details of the communication protocol used by the con-
nection manager and processor were visible to the orchestrator, the
orchestrator would not be able to change their internal functionality

spawn

g()

f()

send(c,v)

recv(c')

h()

ProcessorEvt ManagerEvt

Orchestrator

logRequestStart()

logRequestEnd()

logConnStart()

logConnEnd()

choose

Figure 1. The figure shows the events built up by the three mod-
ules composing our abstract server. The events created by the pro-
cessor and connection manager, depicted with thick squares, are
opaque to the orchestrator and cannot be deconstructed. Notably,
this means the orchestrator does not have the ability to extend the
behavior of the thread created by processorEvt (shown in grey).

since they are encapsulated with events. However, the orchestrator
is free to augment the protocols via combinators.

fun orchestrate(processorEvt, managerEvt) =

sync(choose([processorEvt, managerEvt]))

The choose combinator non-deterministically selects whichever
event is available to be synchronized against. If processorEvt is
meant to perform its actions asynchronously, however, we need to
modify async-send-thread so that it operates over events:

fun async-send-event(f,g,c,v) =

wrap(alwaysEvt(),

fn() => spawn(fn() =>

sync(wrap(sendEvt(c,v), f)));

g())

To create an event, we must first start with a base event and build
the complex event (containing the spawn) through combinators.
Since CML does not provide an event to create a thread, we opt
to use alwaysEvt , which as its name suggests is always avail-
able for synchronization. The alwaysEvt does not have any com-
munication side-effects, so any wrapped functions are immedi-
ately executed when the event is synchronized on. The function
async-send-event is similar to async-send-thread , except
that it returns an event that when synchronized upon will create a
thread to perform the send asynchronously, executing g as a post
creation action and f as a post consumption action (see Fig. 1).

We would hope to leverage async-send-event to have the pro-
cessor module define useful asynchronous protocols. For example,
it could supply as the post-consumption action (i.e., the argument
bound to f ), a procedure that waits for an acknowledgment indicat-
ing the sent data was received with no errors, attempting to resend
otherwise. Similarly, it might supply as a post-creation action (i.e.,
the argument bound to g ), clean-up or finalization code that closes
a file after the data has been read.

Similarly, the connection manager can be written using syn-
chronous receive actions. We can wrap a function h around the
receipt of a connection to deal with post-processing actions re-
quired after the connection has been accepted, and to wait until the
client closes the connection to clean up any resources the connec-
tion utilized (see Fig. 1).



fun h() = post processing; close connection;
fun managerEvent(c’, h) = wrap(recvEvt(c’), h)

Unfortunately, our design, while easy to express, does not facilitate
the construction of composable asynchronous protocols. To see
why, consider a modification to the orchestrator that incorporates
logging information. We can wrap our processor protocol with a
function that logs requests and our connection manager with one
that logs connection details. The guard event combinator can
be used to specify pre-synchronization actions. In this example
these actions would be logging functions that record the start of
a connection or request. 1

fun orchestrate(processorEvt, managerEvt) =

sync(choose([guard(fn () => logRequestStart();
wrap(processorEvt, logRequestEnd)),

guard(fn () => logConnStart();
wrap(managerEvt, logConnEnd))]))

The logging functions can be simple counters that let the server
keep track of concurrent connections, connection and request rates,
as well as the number of outstanding requests.

This code, unfortunately, does not provide the functionality we
desire. Since the processor handles its internal protocols asyn-
chronously, wrapping the logRequestEnd around the processorEvt
specifies an action that will occur in the main thread of control after
the execution of g , the post-creation action (see Fig. 1). However,
the request is only completed after the post-consumption action
f , which is executed by the thread created internally by the event.
Since this thread is hidden by the event, there is no way to ex-
tend it. Significantly, there is no guarantee that the request has
been successfully serviced even after g completes. We could re-
cover composability by either not spawning an internal thread in
async-send-event , or weaving a protocol that required g to
wait for the completion of f , effectively yielding synchronous be-
havior. Either approach would force f and g to be executed prior
to logRequestEnd . Unfortunately, any such synchronous solution
would not allow multiple requests to be processed concurrently.

The heart of the problem is a dichotomy in language abstractions;
asynchrony is fundamentally expressed using distinct threads of
control, yet composablity is achieved through event abstractions
that are thread-unaware. The result is that CML events cannot be
directly applied to build post-consumption actions for realizing
composable asynchronous communication protocols.

Fig. 2 diagramatically shows how extensible post-creation and
post-consumption actions can be leveraged to achieve our desired
behavior. In Section 4.2, we show a modified implementation of the
orchestrator using asynchronous event primitives and combinators
that captures the behavior shown in the figure.

3. Design Considerations

There are three overarching goals of our design:

1. Asynchronous event combinators should permit uniform com-
position of pre/post creation and consumption actions. This
means that protocols should be allowed to extend the behav-
ior of an asynchronous event both with respect to the actions
performed before and after the asynchronous event is created
and consumed respectively.

1 In CML, we could also use the withNack combinator to avoid firing both
the logRequestStart and logConnStart during the choice.

place v on c consume v from c

aSendEvt(c,v)

g() f()

logRequestEnd()

logRequestStart()

post creation
post consumption

pre creation

Figure 2. The figure shows how asynchronous events can be con-
structed from combinators on creation and consumption actions to
alleviate the problems illustrated in Fig. 1. By making creation
and consumption actions explicit in an asynchronous event’s def-
inition, we are able to specify logRequestEnd as a post consump-
tion action and retain the ability to service multiple requests asyn-
chronously.

2. Asynchronous events should provide sensible visibility and or-
dering guarantees. A post-creation action should execute with
the guarantee that the asynchronous event it follows has been
created (i.e., the action has been deposited on a channel), and
the effects of consumed asynchronous events should be consis-
tent with the order in which they were created.

3. Communication channels should be agnostic with respect to
the kinds of events they handle. Thus, both synchronous and
asynchronous events should be permitted to operate over the
same sets of channels.

We elaborate on these points below.

Composable Pre/Post Creation and Consumption Actions: As
we have seen, using synchronous events to encapsulate thread cre-
ation for the purpose of defining asynchronous protocols prevents
composition of post-consumption actions. Once a thread is encap-
sulated within an event, as in the definition of async-send-event ,
we can no longer extend the asynchronous functionality of the
event.

Visibility Guarantees for Post Creation Actions: The use of
explicit threads for initiating asynchronous computation also fails
to provide any post-creation guarantees. In our example encoding
of async-send-event , g can make no guarantees at the point
it commences evaluation that v has actually been deposited on
c . This is because the encoding defines the creation point of the
asynchronous action to be the point at which the thread is created,
not the point where the sendEvt is synchronized on.

Ordering Guarantees on Asynchronous Actions: Using ex-
plicit threads to express asynchronous communication poses an-
other complexity. Because threads are inherently unordered and
agnostic to their payload, there is no transparent mechanism to en-
force a sensible ordering relationship on the events they encapsu-
late. In the example below, a post-creation action creates a new
thread to evaluate h , which in turn operates over c .

fun h () = ... ; sync(sendEvt(c, v’))

wrap(async-send-event(f,g,c,v),
fn () => spawn h)

To have a rational semantics for wrap , we need to ensure that
the original send of v in async-send-event evaluates be-
fore the send in h ; unfortunately, using threads prevents us from



spawn : (unit -> ’a) -> threadID

sendEvt : ’a chan * ’a -> unit Event

recvEvt : ’a chan -> ’a Event

never : ’a Event

alwaysEvt : ’a -> ’a Event

sync : ’a Event -> ’a

wrap : ’a Event * (’a -> ’b) -> ’b Event

guard : (unit -> ’a Event) -> ’a Event

choose : ’a Event list -> ’a Event

Figure 3. CML event operators.

making such guarantees. Although one could envision using pri-
vate channels to provide ordering between the thread created in
async-send-event and the one created by the wrap , this would
provide ordering between all actions executed within the threads
instead of just the sends themselves, effectively serializing the
threads. Additionally, it is not generally known if two threads will
utilize the same channels, requiring programmers to be conserva-
tive in their use of private channels, fundamentally limiting asyn-
chrony.

Specialized and Buffered Channels: Buffered channels (also
called mailboxes) exist in CML. These abstractions do indeed pro-
vide asynchronous FIFO ordering of the operations they consume,
but are not interchangeable with synchronous channels, necessitat-
ing careful delineation of asynchronous and synchronous behavior.

Putting it All Together. Although synchronous message pass-
ing alleviates the complexity of reasoning about arbitrary thread
interleavings, and enables composable synchronous communica-
tion protocols, using threads to encode asynchrony unfortunately
re-introduces these complexities. Our design equips asynchronous
events with the following properties: (i) they are extensible both
with respect to pre- and post-creation as well as pre- and post-
consumption actions; (ii) they can operate over the same channels
that synchronous events operate over, allowing both kinds of events
to seamlessly co-exist; and, (iii) their visibility, ordering, and se-
mantics is independent of the underlying runtime and scheduling
infrastructure.

4. Asynchronous Events

Background: Concurrent ML (CML) (21) is a concurrent exten-
sion of Standard ML that utilizes synchronous message passing to
enable the construction of synchronous communication protocols.
Threads perform send and recv operations on typed channels;
these operations block until a matching action on the same channel
is performed by another thread.

CML also provides first-class synchronous events that abstract syn-
chronous message-passing operations. An event value of type ’a
event when synchronized on yields a value of type ’a . An event
value represents a potential computation, with latent effect until a
thread synchronizes upon it by calling sync . The following equiv-
alences thus therefore hold: send(c, v) ≡ sync(sendEvt(c,v))
and recv(c) ≡ sync(recvEvt(c)) .

Besides sendEvt and recvEvt , there are other base events pro-
vided by CML: alwaysEvt which contains a value and is always
available for synchronization and never which is an event that is
never available for synchronization. Notably, thread creation is not
encoded as an event – the thread spawn primitive simply takes a
thunk to evaluate as a separate thread, and returns a thread identifier
that allows access to the newly created thread’s state.

Much of CML’s expressive power derives from event combinators
that construct complex event values from other events. We list some
of these combinators in Fig. 3. The expression wrap (ev, f)
creates an event that when synchronized on applies the result of
synchronizing on event ev to function f . Conversely, guard(f)
creates an event which when synchronized on evaluates f() to
yield event ev and then synchronizes on ev . The choose event
combinator takes a list of events and constructs an event value
that represents the non-deterministic choice of the events in the
list; for example, choose[recvEvt(a),sendEvt(b,v)] when
synchronized on will either receive a unit value from channel a ,
or send value v on channel b .

Selective communication provided by choice motivates the need for
first-class events. Composition of first-class functions prevents the
expression of choice because function abstraction does not allow
operators like choose from synchronizing on events that may be
embedded within function.

4.1 Primitives

In order to provide an asynchronous protocol mechanism that ad-
heres to the properties outlined above, we extend CML with the
following two base events: aSendEvt and aRecvEvt , for creat-
ing an asynchronous send event and an asynchronous receive event
respectively. The differences in their type signature from their syn-
chronous counterparts reflect the fact that they split the creation and
consumption of the communication action they define:

sendEvt : ’a chan * ’a -> unit Event
aSendEvt : ’a chan * ’a -> (unit, unit) AEvent

recvEvt : ’a chan -> ’a Event
aRecvEvt : ’a chan -> (unit, ’a) AEvent

An AEvent value is parametrized with respect to the type of the
event’s post-creation and post-consumption actions. In the case of
aSendEvt , both actions are of type unit : when synchronized on,
the event immediately returns a unit value, and the asynchronous
action responsible for actually performing the send also yields
unit . When synchronized on, an aRecvEvt also returns unit ;
the type of its post-consumption action is ’a reflecting the type of
value read from the channel.

As an example, consider Fig 2, where an event upon synchroniza-
tion initiates an asynchronous action to send the value v on chan-
nel c and then executes g . When the send completes, f is first
executed, and then logRequestEnd . In this case, the type of the
computation would be:

(return-type-of g, return-type-of logRequestEnd) AEvent

We also introduce a new synchronization primitive, aSync , to
synchronize asynchronous events. The aSync operation fires the
computation encapsulated by the asynchronous event of type (’a,
’b) AEvent and returns a value of type ’a , corresponding to the
return type of the event’s post-creation action (see Fig. 4).

sync : ’a Event -> ’a
aSync : (’a, ’b) AEvent -> ’a

Unlike their synchronous variants, asynchronous events do not
block if no matching communication is present. For example, exe-
cuting an asynchronous send event on an empty channel places the
value being sent on the channel and then returns control to the exe-
cuting thread (see Fig. 4(a)). In order to allow this non-blocking be-
havior, an implicit thread of control is created for the asynchronous
event when the event is paired, or consumed as shown in Fig. 4(b).
If a receiver is present on the channel, the asynchronous send event
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Figure 4. The figure shows a complex asynchronous event ev ,
built from a base aSendEvt , being executed by Thread 1. (a)
When the event is synchronized via. aSync , the value v is placed
on channel c and post-creation actions are executed. Afterwards,
control returns to Thread 1. (b) When Thread 2 consumes the
value v from channel c , an implicit thread of control is created
to execute any post-consumption actions.

behaves similarly to a synchronous event; it passes the value to the
receiver. However, it still creates a new implicit thread of control if
there are any post-consumption actions to be executed.

Similarly, the synchronization of an asynchronous receive event
does not yield the value received; instead, it simply enqueues the
receiving action on the channel. Therefore, the thread which syn-
chronizes on an asynchronous receive always gets the value unit,
even if a matching send exists (see Fig. 5(a)). The actual value con-
sumed by the asynchronous receive can be passed back to the thread
which synchronized on the event through the use of combinators
that process post-consumption actions (see Fig. 5(b)). To illustrate,
consider the two functions f and af shown below:

fun f () =

(spawn (fn () => sync (sendEvt(c, v)));

sync (sendEvt(c, v’));

sync (recvEvt(c)))

fun af () =

(spawn (fn () => sync (sendEvt(c, v)));

aSync (aSendEvt(c, v’));

sync (recvEvt(c)))

The function f , if executed in a system with no other threads
will always block because there is no recipient available for the
send of v’ on channel c . On the other hand, suppose there was
another thread willing to accept communication on channel c . In
this case, the only possible value that f could receive from c is
v . This is because the receive will only occur after the value v’
is consumed from the channel. Notice that if the spawned thread
enqueues v on the channel before v’ , the function f will block
even if another thread is willing to receive a value from the channel,
since a function cannot synchronize with itself.

The function af , on the other hand will never block. The receive
may see either the value v or v’ since the asynchronous send
event only asserts that the value v’ has been placed on the channel
and not that it has been consumed. Consider the following refine-
ment of af :

fun af’ () =

(aSync (aSendEvt(c, v’));

spawn (fn () => sync (sendEvt(c, v)));

sync (recvEvt(c)))

c

post creation
actions

aSync(ev)
ev

Thread 1 Thread 2

c

v send(c, v)

Implicit Thread

post consumption
actions

(a) (b)

recv

v

v

Figure 5. The figure shows a complex asynchronous event ev ,
built from a base aRecvEvt , being executed by Thread 1. (a)
When the event is synchronized via aSync , the receive action
is placed on channel c and post-creation actions are executed.
Afterwards, control returns to Thread 1. (b) When Thread 2 sends
the value v to channel c , an implicit thread of control is created to
execute any post-consumption actions passing v as the argument.

Assuming no other threads exist that read from c , the receive in
af’ can only witness the value v’ . Although the spawn occurs be-
fore the synchronous receive, the channel c is guaranteed to con-
tain the value v’ prior to v . While asynchronous events do not
block, they still enforce ordering constraints that reflect the order
in which they were created, based on their channels. This distin-
guishes their behavior from our initial definition of asynchronous
events that explicitly encoded asynchronous behavior in terms of
threads.

4.2 Combinators

In CML, the wrap combinator allows for the specification of a post-
synchronization action. Once the event is completed the function
wrapping the event is evaluated. For asynchronous events, this
means the wrapped function is executed after the action the event
encodes is placed on the channel and not necessarily after that
action is consumed.

sWrap : (’a, ’b) AEvent * (’a -> ’c) -> (’c, ’b) AEvent

aWrap : (’a, ’b) AEvent * (’b -> ’c) -> (’a, ’c) AEvent

To allow for the specification of both post-creation and post-
consumption actions for asynchronous events, we introduce two
new combinators: sWrap and aWrap . sWrap is used to specify
post-creation actions. The combinator aWrap , on the other hand,
is used to express post-consumption actions. We can apply sWrap
and aWrap to an asynchronous event in any order.

sWrap(aWrap(e, f) g) ≡ aWrap(sWrap(e, g), f)

We can use sWrap and aWrap to encode a composable variant of
async-send-event . We create a base asynchronous send event to
send v on c and use sWrap and aWrap to specify g and f as a
post-creation action and a post-consumption action respectively:

a-send-event(f,g,c,v) = aWrap(sWrap(aSendEvt(c,v),g), f)

Since post-creation actions have been studied in CML extensively
(they act as post-synchronization actions in a synchronous context),
we focus our discussion on aWrap and the specification of post-
consumption actions. Consider the following program fragment:
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actions

aSync(callBackEvt(ev, f))

ev
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Figure 6. The figure shows a callback event constructed from a
complex asynchronous event ev and a callback function f . (a)
When the callback event is synchronized via aSync , the action
associated with the event ev is placed on channel c and post-
creation actions are executed. A new event ev’ is created and
passed to Thread 1. (b) An implicit thread of control is created after
the base event of ev is consumed. Post-consumption actions are
executed passing v , the result of consuming the base event for ev ,
as an argument. The result of the post-consumption actions, v’ is
sent on clocal . (c) When ev’ is synchronized upon, f is called
with v’ .

fun f() =
let val clocal = channel()
in aSync (aWrap(aSendEvt(c, v),fn () => send(clocal, ())));

g();
recv(clocal);
h()

end

The function f first allocates a local channel c local and then
executes an asynchronous send aWrap -ed with a function that
sends on the local channel. The function f then proceeds to execute
functions g and h with a receive on the local channel between
the two function calls. We use the aWrap primitive to encode a
simple barrier based on the consumption of v . We are guaranteed
that h executes in a context in which v has been consumed. The
function g , on the other hand, can make no assumptions on the
consumption of v . However, g is guaranteed that v is on the
channel. Therefore, if g consumes values from c , it can witness
v and, similarly, if it places values on the channel, it is guaranteed
that v will be consumed prior to the values g produces. Note that
v could have been consumed prior to g ’s evaluation.

If the same code was written with a synchronous wrap, we would
have no guarantee about the consumption of v from the channel.
In fact, the code would block, as the send encapsulated by the
wrap would be executed by the same thread of control executing
f . Thus, the asynchronous event implicitly creates a new evalua-
tion context and a new thread of control; the wrapping function is
evaluated in this context, not the thread which performed the syn-
chronization.

We can now encode a very basic call-back mechanism using
aWrap . The code shown below performs an asynchronous receive
and passes the result of the receive to its wrapped function. The
value received asynchronously is passed as an argument to h by
sending on the channel clocal .

let val clocal = channel()
in aSync (aWrap(aRecvEvt(c), fn x => send(clocal, x)));

...
h(recv(clocal))

end

Although this implementation suffices as a basic call-back, it is
not particularly abstract, and cannot be composed with other asyn-
chronous events. We can create an abstract callback mechanism us-
ing both sWrap and aWrap around a base event.

callbackEvt : (’a, ’c) AEvent * (’c -> ’b) ->
(’b Event, ’c) AEvent

fun callbackEvt(ev, f) =
let clocal = channel()
in sWrap(aWrap(ev,

fn x => aSync(aSendEvt(clocal, x)); x),
fn => wrap(recvEvt(clocal), f))

end

If ev contains post-creation actions when the callback event is
synchronized on, they are executed, followed by execution of the
sWrap as shown in Fig. 6(a). It returns a new event (call it ev’ ),
which when synchronized on will first receive on the local channel
and then apply the function f to the value it receives from the local
channel. Synchronizing on this event will block until the event ev
is consumed. Once ev is consumed, its post-consumption actions
are executed in a new thread of control since ev is asynchronous
(see Fig. 6(b)). The body of the aWrap -ed function simply sends
the result of synchronizing on ev (call it v’ ) on the local channel
and then passes the value v’ to any further post-consumption
actions. This is done asynchronously because the complex event
returned by callbackEvt can be further extended with additional
post consumption actions. Those actions should not be blocked if
there is no thread willing to synchronize on ev’ . Synchronizing
on a callback event, thus, executes the base event associated with
ev and creates a new event as a post-creation action, which when
synchronized on, executes the callback function synchronously,
returning the result of the callback.

We can think of the difference between a callback and an aWrap of
an asynchronous event in terms of the thread of control which ex-
ecutes them. Both specify a post-consumption action for the asyn-
chronous event, but the callback, when synchronized upon, is exe-
cuted potentially by an arbitrary thread whereas the aWrap is al-
ways executed in the implicit thread created when the asynchronous
event is consumed. Another difference is that the callback can be
postponed and only executes when two conditions are satisfied: (i)
the asynchronous event has completed and (ii) the callback is syn-
chronized on. An aWrap returns once it has been synchronized on,
and does not need to wait for other asynchronous events or post-
consumption actions it encapsulates to complete.

A guard of an asynchronous event behaves much the same as a
guard of a synchronous event does; it specifies pre-synchronization
actions:

aGuard : (unit -> (’a, ’b) AEvent) -> (’a, ’b) AEvent

To see how we might use asynchronous guards, notice that our
definition of callbackEvt has the unfortunate drawback that it
allocates a new local channel regardless of whether or not the event
is ever synchronized upon. The code below uses an aGuard to
specify the allocation of the local channel only when the event is
synchronized on:

fun callbackEvt(ev, f) =
aGuard(fn () =>

let clocal = channel()
in sWrap(aWrap(ev,

fn x => aSync(aSendEvt(clocal, x));x),
fn => wrap(recvEvt(clocal), f))

end)

One of the most powerful combinators provided by CML is a non-
deterministic choice over events. The combinator choose picks



Thread 1

caSendEvt(c,v)

aSync(ev)
ev

c'

aSendEvt(c',v')

Thread 2

recv(c)

Figure 7. The figure shows Thread 1 synchronizing on a complex
asynchronous event ev , built from a choice between two base
asynchronous send events; one sending v on channel c and the
other v’ on c’ . Thread 2 is willing to receive from channel c .

an active event from a list of events. If no events are active, it waits
until one becomes active. An active event is an event which is avail-
able for synchronization. We define an asynchronous version of
the choice combinator, aChoose , that operates over asynchronous
events. Since asynchronous events are non-blocking, all events in
the list are considered active. Therefore, the asynchronous choice
always non-deterministically chooses between the list of available
asynchronous events. We also provide a synchronous version of
the asynchronous choice, sChoose , which blocks until one of the
asynchronous base events has been consumed. Post-creation ac-
tions are not executed, until the choice has been made. 2

choose : ’a Event list -> ’a Event
aChoose : (’a, ’b) AEvent list -> (’a, ’b) AEvent
sChoose : (’a, ’b) AEvent list -> (’a, ’b) AEvent

To illustrate the difference between aChoose and sChoose , con-
sider a complex event ev defined as follows:

val ev = aChoose[aSendEvt(c, v), aSendEvt(c’,v’)]

If there exists a thread only willing to receive from channel c
as shown in Fig. 7, aChoose will nonetheless, with equal prob-
ability execute the asynchronous send on c and c’ . Therefore,
aChoose behaves in much the same way as choose would select-
ing between a list of events encoded by async-send-event from
Sec. 1. This occurs because the base event for async-send-event
is an alwaysEvt and as such is always available for synchroniza-
tion. However, if we redefined ev to utilize sChoose instead, the
behavior of the choice changes:

val ev = sChoose[aSendEvt(c, v), aSendEvt(c’,v’)]

Since sChoose blocks until one of the base asynchronous events is
satisfiable, if there is only a thread willing to accept communication
on c (as in Fig. 7), the choice will only select the event encoding
the asynchronous send on c .

We have thus far provided a mechanism to choose between sets
of synchronous events and sets of asynchronous events. However,
we would like to allow programmers to choose between both syn-
chronous and asynchronous events. Currently, their different type
structure would prevent such a formulation. Notice, however, that
an asynchronous event with type (’a, ’b) AEvent and a syn-
chronous event with type ’a Event both yield ’a in the thread
which synchronizes on them. Therefore, it is sensible to allow
choice to operate over both asynchronous and synchronous events
provided the type of the asynchronous event’s post-creation action
is the same as the type encapsulated by the synchronous event. To
facilitate this interoperability, we provide combinators to transform

2 This behavior is equivalent to a scheduler not executing the thread which
created the asynchronous action until it has been consumed.

asynchronous events types to synchronous events types and vice-
versa:

aTrans : (’a, ’b) AEvent -> ’a Event
sTrans : ’a Event -> (unit, ’a) AEvent

The aTrans combinator takes an asynchronous event and creates
a synchronous version by dropping the asynchronous portion of the
event. As a result, we can no longer specify post-consumption ac-
tions for the event. However, we can still apply wrap to specify
post-creation actions to the resulting synchronous portion exposed
by the ’a Event . Asynchronous events that have been trans-
formed and are part of a larger choose event are only selected if
their base event is satisfiable. Therefore, the following equivalence
holds for two asynchronous events, aEvt1 and aEvt2 :

choose[aTrans(aEvt1), aTrans(aEvt2)] ≡ sChoose[aEvt1, aEvt2]

The sTrans combinator takes a synchronous event and changes
it into an asynchronous event with no post-creation actions. The
wrapped computation of the original event occurs now as a post-
consumption action. We can utilize sTrans to encode asyn-
chronous versions of alwaysEvt and never from their syn-
chronous counterparts.

aAlwaysEvt : ’a -> (unit, ’a) AEvent
aNever : (unit, ’a) AEvent

aAlwaysEvt(v) = sTrans alwaysEvt(v)
aNever = sTrans never

Armed with asynchronous events and the combinators discussed
above, we can now implement a composable orchestrator mod-
ule from our simple abstract server example given in Sec. 1. We
use aGuard to specify pre-creation actions, aWrap for asyn-
chronous post-consumption actions, and aTrans to hide the post-
consumption actions. This allows us to freely choose between the
asynchronous processorEvt and the synchronous managerEvt .

fun orchestrate(processorEvt, managerEvt) =
sync(choose([aTrans

aGuard(fn () => logRequestStart();
aWrap(processorEvt, logRequestEnd)),

guard(fn () => logConnStart();
wrap(managerEvt, logConnEnd))]))

4.3 Extending Mailboxes

Mailboxes, or buffered asynchronous channels, are provided by the
core CML implementation. Mailboxes are a specialized channel
that supports asynchronous sends and synchronous receives. How-
ever, mailboxes are not built directly on top of CML channels, re-
quiring a specialized structure, on the order of a 140 lines of CML
code, to support asynchronous sends.

Asynchronous events provide the necessary components from
which a mailbox structure can be defined, allowing the construc-
tion of mailboxes from regular CML channels, and providing a
facility to define asynchronous send events on the mailbox. Having
an asynchronous send event operation defined for mailboxes al-
lows for their use in selective communication. Additionally, asyn-
chronous events now provide the ability for programmers to spec-
ify post-creation and post-consumption actions. The asynchronous
send operator and asynchronous send event can be defined as fol-
lows:

fun send(mailbox, value) =
CML.aSync(CML.aSendEvt(mailbox, value))

fun sendEvt(mailbox, value) =
CML.aSendEvt(mailbox, value)



The synchronous receive and receive event are expressed in terms
of regular CML primitives. This highlights the interoperability of
asynchronous events with their synchronous counterparts and pro-
vides programmers with a rich interface of combinators to utilizes
with mailboxes.

5. Semantics

Our semantics (see Fig 8 and Fig. 9) is defined in terms of a
core call-by-value functional language with threading and commu-
nication primitives. Communication between threads is achieved
using synchronous channels and events. Our language extends a
synchronous-event core language with asynchronous constructs.
For perspicuity, the language omits many useful event combinators
such as chooseEvt and withNack , since they raise no interest-
ing semantic issues with respect to asynchronous communication.
References are also omitted for this reason. We focus in this section
on core synchronous and asynchronous events and their associated
wrap and guard combinators. The semantics for other combina-
tors (such as choice) are given in the appendix.3

In our syntax (see Fig. 8), v ranges over values, c over channel refer-
ences, γ over constants, e over expressions, and t over thread iden-
tifiers. We use an event context (ε[]) to demarcate event expressions
that are built from combinators such as guard and wrap as well as
their asynchronous counterparts. The semantics also includes a new
expression form, {e1, e2} to denote asynchronous communication
actions; the expression e1 corresponds to the creation (and post-
creation) of an asynchronous event , while e2 corresponds to the
consumption (and post-consumption) of an asynchronous event.

A program state consists of a set of threads (T ), a communication
map (∆), and a channel map (C ). The communication map is used
to track the state of an asynchronous action, while the channel
map records the state of channels with respect to waiting (blocked)
actions. Evaluation is specified via a relation (→) that maps one
program state to another program state. Evaluation rules are applied
up to commutativity of parallel composition (‖).

Encoding Communication: A communication action is split
into two message parts: one corresponding to a sender and the other
to a receiver. A send message part (m) is, in turn, composed of two
actions: a send act (sendActm(c,v)) and a send wait (sendWaitm).
The send act places the value (v) on the channel (c), while the send
wait blocks until the value has been consumed off of the channel.
The message identifier m is used to correctly pair the ”act” and
”wait” pieces. Similarly, a receive message part is composed of a
receive act (recvActm(c)) and a receive wait (recvWaitm) action.
A receive wait action behaves as its send counterpart. A receive act
removes a value from the channel. We can think of computations
occurring after an act as post-creation actions and those occurring
after a wait as post-consumption actions.

Splitting a communication message part into an ”act” and a ”wait”
allows for the expression of many types of message passing prim-
itives. For instance, a traditional synchronous send is simply the
sequencing a send act followed by a send wait: sendActm(c,v);
sendWaitm. This encoding immediately causes the thread execut-
ing the operation to block after the value has been deposited on a
channel, unless there is a matching receive act currently available.
A synchronous receive is encoded in much the same manner.

3 Defining choice requires bookkeeping to track which event from a list of
possible event is satisfied.

We use the global communication map (∆) to track act and
wait actions for a given message. When a new message is cre-
ated (Rules SENDEVENT, RECVEVENT, ASENDEVENT, and
ARECVEVENT), the communication map is augmented to reflect
this fact. If ∆(m) = ⊥, it means a message m has been created by
a base event, but a corresponding send act or receive act has not
yet occurred on m. Once such an act occurs, the map is updated to
reflect the value yielded by the act (see Rule MESSAGE) through
an auxiliary relation (�). Notice, when a send act occurs the com-
munication map will hold a binding to unit for the corresponding
message, but when a receive act occurs the communication map
binds the corresponding message to the value received. The values
stored in the communication map are passed to the wait actions cor-
responding to the message (Rules SEND WAIT and RECV WAIT).

Events and Combinators: There are four rules for creating base
events, (SENDEVENT) and (RECVEVENT) for synchronous events,
and (ASENDEVENT) and (ARECVEVENT) for their asynchronous
counterparts. From base act and wait actions, we define asyn-
chronous events (e.g., ε[{sendActm(c,v), sendWaitm}]). The first
component of an asynchronous event is executed in the thread in
which the expression evaluates, and is the target of synchroniza-
tion (sync ), while the second component defines the actual asyn-
chronous computation.

Complex events are built from combinators such as those defined in
Sec. 4.2. The rule (WRAP) takes a synchronous event and provides
a post-consumption action. It binds the result of the synchronous
event to the argument of the wrapped function. The rule (SWRAP)
takes an asynchronous event and provides a post-creation action. It
binds the result of the first component of the asynchronous event
(e) to the argument of the wrapped function. The rule (AWRAP),
however, specifies a post-consumption action by wrapping the sec-
ond component of the event (e′) to the argument of the wrapped
function. The rules (GUARD) and (AGUARD) provide pre-creation
actions; both rules take a function as an argument which returns an
event – (GUARD) returns a synchronous event and (AGUARD) an
asynchronous one.

We write (wrap(ε[e],λx.e′)) and (guard(λx.e′)) to wrap the event
(ε[e]) and create a guard function respectively. Similarly, we denote
wrapping post creation actions by (sWrap(ε[{e1, e2}],λx.e′)) and
post consumption actions by (aWrap(ε[{e1, e2}],λx.e′)) in rules
(SWRAP and AWRAP).

Event Evaluation: Events are deconstructed by the sync oper-
ator in rule (SYNC). It strips the event context (ε[]) and triggers
the evaluation of the internal expression. The expression can be an
arbitrary one, built from base actions (such as act and wait over
message sends and receives) and combinators.

The rule (ASYNC EVAL) defines the evaluation of an asynchronous
event. The asynchronous portion of the event is wrapped in a new
thread of control and placed in the regular pool of threads. The
newly created thread, however, will not be able to be evaluated
further as the first expression to be evaluated will always be a
”wait” for the corresponding act for the base event comprising
the complex asynchronous event (as defined by the base event and
combinator rules).

Communication and Ordering: There are five rules for com-
municating over channels (SEND MATCH, SEND BLOCK, RECV
MATCH, RECV BLOCK, and EMPTY BLOCK). The channel map
(C ) encodes abstract channel states mapping a channel to a se-
quence of actions. This sequence encodes a FIFO queue and pro-
vides ordering between actions on the channel. The channel will



e ∈ Exp := unit | γ | x | λx.e | e e | e;e
| {e, e}
| spawn e | sync e | ch()
| sendEvt(e,e) | recvEvt(e)
| aSendEvt(e,e) | aRecvEvt(e)
| wrap(e,e) | aWrap(e,e) | sWrap(e,e)
| guard(e) | aGuard(e)

v ∈ Val := unit | c | γ | λx.e | ε[e]
| sendActm(c,v) | sendWaitm
| recvActm(c) | recvWaitm

E := • | E e | v E | E;e | v;E | sync E
| sendEvt(E,e) | sendEvt(c,E)
| aSendEvt(E,e) | aSendEvt(c,E)
| recvEvt(E) | aRecvEvt(E)
| wrap(E,e) | aWrap(E,e) | sWrap(E,e)
| wrap(v,E) | aWrap(v,E) | sWrap(v,E)
| guard(E) | aGuard(E)

m ∈ MessageId
ε[e] ∈ Event

c ∈ Channel
A ∈ Action := Ar | As

Ar ∈ ReceiveAct := recvActm(c)
As ∈ SendAct := sendActm(c,v)

T ∈ Thread := (t,e)
T ∈ ThreadCollection := T | T || T
∆ ∈ CommMap := MessageId → Val+⊥
C ∈ ChanMap := Channel → Action

〈T〉∆,C ∈ State := 〈T,CommMap,ChanMap〉

Figure 8. A core language for asynchronous events.

have either a sequence of send acts (As) or receive acts (Ar), but
never both at the same time. This is because if there are, for ex-
ample, send acts enqueued on it, a receive action will immediately
match the send, instead of needing to be enqueued and vice versa
(rules SEND MATCH and RECV MATCH). If the channel is empty,
either a send act or a recv act will be enqueued (see rule EMPTY
BLOCK). If a channel already has send acts enqueued on it, any
thread wishing to send on the channel will enqueue its act and vice
versa. Notice after enqueueing its act, a thread can proceed with its
evaluation. Rules (SEND BLOCK) and (RECV BLOCK) enqueue the
act on the channel.

Ordering for asynchronous acts and their post consumption actions
as well as blocking of synchronous events is achieved by rules
(SEND WAIT) and (RECV WAIT). Both rules block the evaluation
of a thread until the corresponding act has been evaluated. In the
case of synchronous events, this thread is the one that initiated the
act; in the case of an asynchronous event, the thread that creates the
act is different from the one that waits on it, and the blocking rules
only block the implicitly created thread.

6. Implementation

We have implemented asynchronous events in a multi-core aware
implementation of MLton (18), a whole-program optimizing com-
piler for Standard ML (SML) (17). MLton has the ability to com-
pile SML programs to both native code as well as C; the results de-
scribed in this paper are based on code compiled to C and then com-
piled to native by gcc version 4.1.2. Our implementation closely
follows the semantics given in Section 5. To allow synchronous and
asynchronous events to seamlessly co-exist involved implementing
a unified framework for events, that is agnostic to the underlying
channel, scheduler and runtime implementation. The implementa-
tion of asynchronous events is thus composed of four parts: (i) the
definition of base event values, (ii) the internal synchronization pro-
tocols for base events, (iii) synchronization protocols for choice,
and (iv) the definition of various combinators. The implementation
is roughly 4KLOC lines of ML code.

7. Case Study: A Parallel Web-server

Swerve (18) is an open-source third-party web-server wholly writ-
ten in CML and is roughly 16KLOC of CML code. The server
is composed of five separate interacting modules. Communication
protocols that govern the interactions between the modules that
comprise Swerve makes extensive use of CML events and message-
passing.

To motivate the use of asynchronous events, we consider the
interactions of four of Swerve’s modules: the Listener, the
File Processor, the Network Processor and the Timeout
Manager. The Listener module receives incoming HTTP requests
and delegates file serving requirements to concurrently execut-
ing processing threads. For each new connection, a new listener
is spawned; thus, each connection has one main governing en-
tity. The File Processor module handles access to the under-
lying file system. Each file that will be hosted is read by a file
processor thread that chunks the file and sends it via message-
passing to the Network Processor. The Network Processor,
like the File Processor handles access to the network. The File
Processor and Network Processor execute in lock-step, requir-
ing the Network Processor to have completed sending a chunk
before the next one is read from disk. Timeouts are processed by
the Timeout Manager through the use of timed events.

We briefly touch upon three aspects of Swerve’s design that were
amenable to using asynchronous events. In Section 8, we show how
these changes lead to substantially improvement in throughput and
scalability.

Lock-step File and Network I/O. Swerve was engineered as-
suming lock-step file and network I/O. While adequate when under
low request loads, this design has poor scalability characteristics.
This is because (a) file descriptors, a bounded resource, can remain
open for potentially long periods of time, as many different requests
are multiplexed among a set of compute threads, and (b) for a given
request, a file chunk is read only after the network processor has
sent the previous chunk. Asynchronous events can be used to alle-
viate both bottlenecks.

To solve the problem of lockstep transfer of file chunks, we might
consider using simple asynchronous sends. However, Swerve was
engineered such that the file processor was responsible for detect-
ing timeouts. If a timeout occurs, the file processor sends a notifica-
tion to the network processor on the same channel used to send file
chunks. Therefore, if asynchrony was used to simply buffer the file
chunks, a timeout would not be detected by the network processor
until all the chunks were processed. Changing the communication
structure to send timeout notifications on a separate channel would
entail substantial structural modifications to the code base.

The code shown below is a simplified version of the file process-
ing module modified to use asynchronous events. It uses an arbi-
trator defined within the file processor to manage the file chunks
produced by the fileReader. Now, the fileReader sends file
chunks asynchronously to the arbitrator on the channel arIn (line
12). Note that each such asynchronous send acts as an arbitrator for
the next asynchronous send. The arbitrator accepts file chunks



APP

〈(t,E[(λx.e) v]) || T〉∆,C →
〈(t,E[e[v/x]]) || T〉∆,C

CHANNEL

c fresh

〈(t,E[ch()]) || T〉∆,C → 〈(t,E[c]) || T〉∆,C [c7→⊥]

SPAWN

t′ f resh

〈(t,E[spawn e]) || T〉∆,C →
〈(t′, [e]) || (t,E[unit]) || T〉∆,C

SYNC

〈(t,E[sync ε[e]]) || T〉∆,C → 〈(t,E[e]) || T〉∆,C

ASYNC EVAL

t′ f resh

〈(t,E[{e, e′}]) || T〉∆,C → 〈(t,E[e]) || (t′,e′) || T〉∆,C

SENDEVENT

m f resh

〈(t,E[sendEvt(c,v)]) || T〉∆,C →
〈(t,E[ε[sendActm(c,v);sendWaitm]]) || T〉∆[m7→⊥],C

ASENDEVENT

m f resh

〈(t,E[aSendEvt(c,v)]) || T〉∆ →
〈(t,E[ε[{sendActm(c,v), sendWaitm}]]) || T〉∆[m7→⊥],C

RECVEVENT

m f resh

〈(t,E[recvEvt(c)]) || T〉∆,C →
〈(t,E[ε[recvActm(c);recvWaitm]]) || T〉∆[m7→⊥],C

ARECVEVENT

m f resh

〈(t,E[aRecvEvt(c)]) || T〉∆,C →
〈(t,E[ε[{recvActm(c), recvWaitm}]]) || T〉∆[m7→⊥],C

SWRAP

〈(t,E[sWrap(ε[{e, e′}],λx.e′′)]) || T〉∆,C → 〈(t,E[ε[{(λx.e′′) e, e′}]]) || T〉∆,C

WRAP

〈(t,E[wrap(ε[e],λx.e′)]) || T〉∆,C → 〈(t,E[ε[(λx.e′) e]]) || T〉∆,C

AWRAP

〈(t,E[aWrap(ε[{e, e′}],λx.e′′)]) || T〉∆,C → 〈(t,E[ε[{e, (λx.e′′) e′}]]) || T〉∆,C

GUARD

〈(t,E[guard(λx.e)]) || T〉∆,C → 〈(t,E[ε[(λx.e) unit]]) || T〉∆,C

AGUARD

〈(t,E[aGuard(λx.e)]) || T〉∆,C → 〈(t,E[ε[(λx.e) unit]]) || T〉∆,C

SEND WAIT

∆(m) = unit

〈(t,E[sendWaitm]) || T〉∆,C → 〈(t,E[unit]) || T〉∆,C

RECEIVE WAIT

∆(m) = v

〈(t,E[recvWaitm]) || T〉∆,C → 〈(t,E[v]) || T〉∆,C

SEND MATCH

C (c) = recvActm′ (c) : Ar
∆,sendActm(c,v)�∆′ ∆′,recvActm′ (c),v�∆′′

〈(t,E[sendActm(c,v)]) || T〉∆,C → 〈(t,E[unit]) || T〉
∆′′,C [c7→Ar ]

SEND BLOCK

C (c) = As C ′ = C [c 7→ As : sendActm(c,v)]

〈(t,E[sendActm(c,v)]) || T〉∆,C → 〈(t,E[unit]) || T〉∆,C ′

RECV MATCH

C (c) = sendActm′ (c,v) : As
∆,sendActm′ (c,v)�∆′ ∆′,recvActm(c),v�∆′′

〈(t,E[recvActm(c)]) || T〉∆,C → 〈(t,E[unit]) || T〉
∆′′,C [c7→As]

RECV BLOCK

C (c) = Ar C ′ = C [c 7→ Ar : recvActm(c)]

〈(t,E[recvActm(c)]) || T〉∆,C → 〈(t,E[unit]) || T〉∆,C ′

EMPTY BLOCK

C (c) =⊥ C ′ = C [c 7→ A ]

〈(t,E[A ]) || T〉∆,C → 〈(t,E[unit]) || T〉∆,C ′

MESSAGE

∆(m) =⊥
∆,sendActm(c,v)�∆[m 7→ unit]

∆(m) =⊥
∆,recvActm(c),v�∆[m 7→ v]

Figure 9. Language semantics.



from the fileReader on this channel and synchronously sends the
file chunks to the consumer as long as a timeout has not been de-
tected. This is accomplished by choosing between an abortEvt
(used by the Timeout manager to signal a timeout) and receiving
a chunk from file processing loop (lines 13-20). When a timeout
is detected, an asynchronous message is sent on channel arOut to
notify the file processing loop of this fact (line 9); subsequent file
processing then stops. This loop synchronously chooses between
accepting a timeout notification (line 17), or asynchronously pro-
cessing the next chunk (lines 11 - 12). The arbitrator executes as a
post-consumption action.

datatype Xfr = TIMEOUT | DONE | X of chunk
1. fun fileReader name abortEvt consumer =
2. let
3. val (arIn, arOut) = (channel(), channel())
4. fun arbitrator() = sync
5. (choose [
6. wrap (recvEvt arIn,
7. fn chunk => send (consumer, chunk)),
8. wrap (abortEvt, fn () =>
9. (aSync(aSendEvt(arOut, ()));
10. send(consumer, TIMEOUT)))])
11. fun sendChunk(chunk) =
12. aSync(aWrap(aSendEvt(arIn, X(chunk)),arbitrator))
13. fun loop strm =
14. case BinIO.read (strm, size)
15. of SOME chunk => sync
16. (choose [
17. recvEvt arOut,
18. wrap(alwaysEvt,
19. fn () => (sendChunk(chunk);
20. loop strm))])
21. | NONE => aSync(aSendEvt(arIn, DONE))
22. val = aSync(aWrap(aRecvEvt(arIn),
23. fn chunk => send(consumer, chunk)))
24. in
25. case BinIO.openIt name of
26. NONE => ()
27. | SOME strm => (loop strm; BinIO.closeIt strm)
28. end

Since asynchronous events operate over regular CML channels, we
were able to modify the the file producer to utilize asynchrony with-
out having to change any of the other modules or the communica-
tion patterns and protocols they expect. Being able to choose be-
tween synchronous and asynchronous events in the fileReader
function also allowed us to create a buffer of file chunks, but stop
file processing file if a timeout was detected by the arbitrator.
Recall, each asynchronous send acts as an arbitrator for the next
asynchronous send.

Underlying I/O and Logging. To improve scalability and re-
sponsiveness, we also implemented a non-blocking I/O library
composed of a language-level interface and associated runtime
support. The library implements all MLton I/O interfaces, but inter-
nally utilizes asynchronous events. The library is structured around
callback events as defined in Sec. 4.2 operating over I/O resource
servers. Internally, all I/O requests are translated into a potential
series of callback events.

Web-servers utilize logging for administrative purposes. For long
running servers, logs tend to grow quickly. Some web-servers (like
Apache) solve this problem by using a rolling log, which automat-
ically opens a new log file after a set time period (usually a day).
In Swerve, all logging functions were done synchronously. Using
asynchronous events, we were able to easily change the logging in-
frastructure to use rolling logs. Because asynchronous events pre-
serve ordering guarantees, log entries reflect actual thread action

order. Post consumption actions were utilized to implement the
rolling log functionality, by closing old logs and opening new logs
after the appropriate time quantum.

8. Results

To measure the effectiveness of asynchronous events, we compared
the performance of Swerve, modified to use asynchronous events
(see Sec. 7), with the original (that uses only synchronous com-
munication), and two other widely-used web-servers – Apache and
Mongrel. Apache is written in C, while Mongrel is implemented
using Ruby on Rails.

The benchmarks were run on an AMD Opteron 865 server with 8
processors, each containing two symmetric cores, and 32 GB of to-
tal memory, with each CPU having its own local memory of 4 GB.
Access to non-local memory is mediated by a hyper-transport layer
that coordinates memory requests between processors. httperf, an
automated web-server performance analysis tool was used to con-
duct our experiments.

Fig. 10 shows detailed comparisons. In Fig. 10(a) we show through-
put numbers as a function of increasing connections. Fig. 10(b)
shows latency overheads, not including network latency, since
clients and server execute on the same machine. Fig. 10(c) shows
overall speedup between the original implementation and the mod-
ified one as a function of the number of processors. Translating the
implementation to use asynchronous events leads to a roughly 3.5X
performance improvement over the original, allowing the modified
version to significantly outperform Mongrel, and greatly increase
its competitiveness with Apache.

Not surprisingly, the results show that asynchronous commu-
nication, when carefully applied, can yield substantial perfor-
mance gains. More significantly, however, is that these gains were
achieved without having to perform large scale surgery on the ap-
plication: there were roughly a total of 100 lines of Swerve code
that needed to be modified to achieve these results. These changes
were almost always mechanical, often just involving the replace-
ment of a synchronous event combinator with an asynchronous one.
The most complex changes were on the order of the modifications
shown in Sec. 7. There were no changes required to module inter-
faces or the program’s overall logical structure. We believe these
experiments provide useful validation of the design goals given in
Section 3.

9. Related Work

Many functional programming languages such as Erlang (1),
F# (25; 19) and JoCaml (10) provide intrinsic support for asyn-
chronous programming. In Erlang, message sends are inherently
asynchronous. In JoCaml, complex asynchronous protocols are
defined using join patterns (2; 11) that define synchronization
protocols over asynchronous and synchronous channels. In F#,
asynchronous behavior is defined using asynchronous work flows
that permit asynchronous objects to be created and synchronized.
Convenient monadic-style let! -syntax permits callbacks (i.e.,
continuations) to be created within an asynchronous computation.
The callback defines the post-computation function for an asyn-
chronous operation. While these abstractions and paradigms pro-
vide expressive ways to define asynchronous computations, they
do not provide a convenient mechanism to specify composable
asynchronous abstractions, especially with respect to asynchronous
post-consumption actions. It is the investigation of this important
aspect of asynchronous programming, and its incorporation within
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Figure 10. Performance of Swerve, using synchronous and asynchronous events, compared to Apache and Mongrel.

a CML-style event framework, that distinguishes the contributions
of this paper from these other efforts.

Reactive programming (15) is an important programing style often
found in systems programming that uses event loops to react to
outside events (typically related to I/O). In this context, events do
not define abstract communication protocols (as they do in CML),
but typically represent I/O actions delivered asynchronously by the
underlying operating system. While understanding how reactive
events and threads can co-exist is an important one, it is orthogonal
to the focus of this work which is concerned with the efficient
expression of composable asynchronous protocols.

There have been incarnations of CML in languages and systems
other than ML (e.g., Haskell (4; 22), Scheme (8), and MPI (5))
There has also been much recent interest in extending CML with
transactional support (6; 7) and other flavors of parallelism (9). We
believe transactional events (6; 7) provide an interesting platform
upon which to implement non-blocking versions of sChoose that
retains the same semantics. Additionally, we expect that previous
work on specialization of CML primitives (20) can be applied to
improve the performance of asynchronous primitives.

10. Conclusions

This paper presents the design, rationale, and implementation for
asynchronous events, a concurrency abstraction that generalize the
behavior of CML-based synchronous events to enable composable
construction of asynchronous computations. Our experiments indi-
cate that asynchronous events can seamlessly co-exist with other
CML primitives, and can be effectively leveraged to improve per-
formance of realistic highly-concurrent applications.
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