Thermodynamic Analysis On a Novel Gas-gas Ejector Enhanced Autocascade Refrigeration Cycle

Author: Jiaheng Chen
Jianlin Yu
Gang Yan
Organization: Xi’an Jiaotong University, PRC

July 11 -14, 2016
Outline

Introduction Cycle description Simulation results Summary
Introduction

Background
- Increasing demands for the low temperature environments

Alternatives
- Cascade system
 - High cost
 - Complex
- Autocascade system
 - Simple
 - Low cost
 - Inefficiency

Other Researches
- Proposed a novel gas-gas ejector enhanced ARC
- Conduct a study on the cycle characteristics

Our work
- Choice of the mixtures
- System optimization
A Novel Gas-gas Ejector Enhanced Autocascade Refrigeration Cycle (NARC)

The ejector and phase separator can help to conduct a secondary composition separation and improve the performance.
Cycle description

Ejector: one-dimensional constant pressure mixing model

Cycle: common thermodynamic analysis method

\[
w_{p2} = \sqrt{2\eta_n (h_{p,i} - h_{p,s,0})} \times 1000
\]

\[
w_{m2} = \frac{w_{p2}}{1 + \mu} \sqrt{\eta_m}
\]

\[
h_{m2} = \frac{h_{p1} + \mu h_{s1}}{1 + \mu} - \left(\frac{w_{m2}^2}{2} \right)/1000
\]

\[
h_{d2} = h_{m2} + \frac{h_{d2s} - h_{m2}}{\eta_d}
\]

Nozzle
Based on the energy conservation law

\[
\mu = \frac{\dot{m}_s}{\dot{m}_p}, \quad r_{pj} = \frac{P_d}{P_s}
\]

Mixing chamber
Based on the momentum and energy conservation law

\[
W_{com} = m \frac{h_{2s} - h_1}{\eta_{com}}
\]

\[
\dot{Q}_c = m \left[\chi_{con} + \chi_{exp1} (1 - \chi_{con}) \right] (h_{i0} - h_s)
\]

\[
q_{vc} = \left[\chi_{con} + \chi_{exp1} (1 - \chi_{con}) \right] (h_{i0} - h_s) / v_i
\]

Diffuser
Based on the energy conservation law

\[
\text{COP} = \frac{\dot{Q}_c}{W_{com}}
\]
Simulation results

Refrigerant: R134a/R23

The isentropic efficiencies of the ejector:
- $\eta_n = 0.8$
- $\eta_m = 0.95$
- $\eta_d = 0.8$

The compression ratio can be lowered by an average of 9.2%.

Figure 3: The performance variations of two cycles versus t_e

<table>
<thead>
<tr>
<th>Evaporating Temperature</th>
<th>COP ↑</th>
<th>Volumetric Cooling Capacity ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>-60°C</td>
<td>29.2%</td>
<td>36.0%</td>
</tr>
<tr>
<td>-40°C</td>
<td>23.9%</td>
<td>29.3%</td>
</tr>
</tbody>
</table>
Simulation results

Figure 4: The performance variations of two cycles versus the intermediate pressure ratio Φ_m

Figure 5: The performance variations of the ejector versus the intermediate pressure ratio Φ_m

<table>
<thead>
<tr>
<th>Intermediate pressure ratio</th>
<th>COP↑</th>
<th>Volumetric cooling capacity↑</th>
<th>rpj↑</th>
<th>μ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>7.8%</td>
<td>9.6%</td>
<td>0.6</td>
<td>37.4%</td>
</tr>
</tbody>
</table>
Simulation results

Figure 6: The performance variations of two cycles versus the vapor quality at the condenser outlet x_{con}

- $\phi_m = 0.7$
- Vapor quality: 0.3 - 0.45
- Cooling capacity \uparrow
- Evaporating pressure \downarrow
- ARC COP \uparrow, $q_{vc} \uparrow$
- NARC COP, q_{vc} have the maximum values; the fluctuation is minor
- x_{con} always near the optimal value

July 11-14, 2016 Purdue Conferences
There exist \(z_{\text{opt}} \) for maximum COP

Optimum mass fractions are very close

The ejector improve the performance without affecting the \(z_{\text{opt}} \)

The \(q_{vc} \) decreases with increasing \(z \)
Summary

1. NARC can significantly improve the performance 26.9% of COP, 32.7% of q_{vc} (-60~-40°C)

2. Lowering the intermediate pressure benefits the performance of the NARC

3. There exist optimal vapor qualities for the NARC
 But the fluctuation is minor

4. There exists z_{opt} for maximum COP

5. Can be a guide for the design and operation of the NARC cycle
Thank you!