
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2010

Path-Sensitive Analysis Using Edge Strings Path-Sensitive Analysis Using Edge Strings

Armand Navabi
Purdue University, Anavabi@cs.purdue.edu

Nicholas Kidd
Purdue University, nkidd@cs.purdue.edu

Suresh Jagannathan
Purdue University, suresh@cs.purdue.edu

Report Number:
10-006

Navabi, Armand; Kidd, Nicholas; and Jagannathan, Suresh, "Path-Sensitive Analysis Using Edge Strings"
(2010). Department of Computer Science Technical Reports. Paper 1732.
https://docs.lib.purdue.edu/cstech/1732

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Path-Sensitive Analysis Using Edge Strings

Armand Navabi, Nicholas Kidd, and Suresh Jagannathan

Purdue University
{anavabi,nkidd,suresh}@cs.purdue.edu

Abstract. Path sensitivity improves the quality of static analysis by avoiding
approximative merging of dataflow facts collected along distinct program paths.
Because full path sensitivity has prohibitive cost, it is worthwhile to consider
hybrid approaches that provide path sensitivity on selected subsets of paths. In
this paper, we consider such a technique based on an edge string, a compact
abstraction of a set of static program paths. The edge string es = [e1, e2, . . . , ek],
where each ei is an edge label found in a program’s control-flow graph, is used to
disambiguate dataflow facts that manifest only on paths in which es occurs as a
subsequence. The length of es dictates the tradeoff between precision and analysis
cost. Loosely speaking, edge strings are a path-sensitive analog to the notion of
call-strings exploited by context-sensitive analyses .

We present a formalization of edge strings and discuss optimizations that
incorporate additional relevance measures, based on the structure of the control-
flow graph, to avoid exploring edge-string paths if no added precision accrues.

We also provide a detailed implementation study in the context of the
functional SSA intermediate representation used by MLton, a whole-program
optimizing compiler for Standard ML. Our results indicate that small edge strings
provide the necessary precision to identify infeasible paths for functional programs
that leverage complex control and dataflow.

1 Introduction

Classical dataflow analyses are structured to compute a fixpoint of a system of equations
whose solution defines a conservative approximation to a program property of interest.
Oftentimes, analyses sacrifice precision by (a) allowing facts collected along different
unrelated paths to be merged at join points, and (b) ignoring how branches are corre-
lated [3], leading to facts collected along infeasible paths to unfavorably influence the
analysis of feasible regions.

A fully path-sensitive analysis avoids merging facts discovered along distinct control
paths. Unfortunately, naive path enumeration is impractical for all but the simplest of
programs. Approximations that limit the number of paths that are explored are therefore
necessary. While it is especially useful to avoid exploring infeasible paths, the challenge,
of course, is to identify such infeasible paths without having to first enumerate an
intractably large set of potential paths, most of which may be feasible.

In this paper, we introduce a novel technique inspired by call-string approxima-
tions [15, 16] used to provide context-sensitivity by approximating the structure of a
program’s call stack, to build efficient path-sensitive approximations. An edge string
of length k disambiguates dataflow facts based on a sequence of k edges visited by the

2 Armand Navabi, Nicholas Kidd, and Suresh Jagannathan

analysis. For example, an edge string of length one parameterizes a dataflow analysis
based on a specific edge encountered along any path. In this setting, suppose an analysis
encounters a branch B1 with predicate p, where the outgoing true and false edges are
labeled by et and ef , respectively. Dataflow analysis along the true and false paths from
B1 are parameterized with an edge string containing the corresponding true (or false)
edge label. At a subsequent join, the abstract values propagated along the two outgoing
branch edges et and ef are not merged since their corresponding edge strings are distinct.

By associating an edge string with the abstract value(s) associated with different
sequences of edges, we have a simple and useful technique to identify infeasibility.
Continuing with our example, consider a subsequent post-dominating branch B2 with
predicate ¬p. Since a path-sensitive analysis that uses an edge string of length one
does not merge results computed along the different branches of B1 (because they are
associated with distinct edge strings et and ef , respectively), it can avoid propagating
facts collected from et (which assumes p) along B2’s true edge, and vise versa. Let
e′t and e′f be the edges that correspond to B2’s true and false branches. Querying the
dataflow facts associated with the edge string [et, e

′
t] and [ef , e

′
f] reveals that any path

containing these sequence of edges is infeasible since there are no consistent set of facts
that hold on any path containing these different edge pairings. (The former asserts p
from et and ¬p from e′t, and similarly for the latter.)

Thus, like context-sensitive analyses, the value of k dictates the degree of precision
achieved. Program analyses executed with edge-string length k = 0 are path-insensitive.
Edge strings of length n ensure full path sensitivity if the control-flow graph being
examined has no more than n edges that can be (statically) visited from entry to exit. We
note that while the analogy to call-strings is useful, the correspondence is not precise. A
call-string of length k represents an approximation of a program stack fixed to having no
greater than k activation frames. Thus, successive elements in the call-string represent
successive function calls. In contrast, an edge string represents a path constraint: the
edge string [e1, e2, . . . , en] represents a set of paths all of whom include the edges found
in the string in that order, but not necessarily as a contiguous sequence. Thus, an edge
string defines an abstraction of all paths for which the edge string is a subsequence. An
abstract value associated with edge string es represents a property derived by examining
only paths that include es.

Edge strings with gaps (i.e., containing sequences of edges that are not contiguous
in the control-flow graph) can be used to capture infeasibility relationships that manifest
across a potentially large set of intervening nodes. In contrast, edge strings whose
elements are contiguous can be used to identify infeasibility that arises within a localized
region of the flow graph.

Thus, we can think of an edge string as a path filtering abstraction over a flow
graph. Questions of infeasibility are addressed on this filtered graph using standard
path-insensitive techniques. Our intuition, validated by experimental results, is that the
benefits of full path sensitivity with respect to infeasible path detection can be achieved
using small values of k.

This paper makes three contributions. First, we present a general path-sensitive
dataflow-analysis framework using edge strings. Second, we consider refinements and
optimizations on edge string construction to improve efficiency and scalability. These

Path-Sensitive Analysis Using Edge Strings 3

optimizations impose relevance criteria that compute edge strings only if the dataflow in-
formation associated with the paths they abstract uniquely provides additional precision.
These relevance measures allow us to construct edge strings composed of contiguous se-
quences of relevant edges; surprisingly, the elements in such strings need not correspond
to contiguous edges in the control-flow graph. Third, we evaluate the effectiveness of our
approach in identifying infeasible paths over control-flow graphs expressed in the SSA
intermediate representation used by MLton [13], a high-performance whole-program
optimizing compiler for Standard ML [12]. Although our source language is ML, we note
that the realization of the analysis on an SSA representation makes it easily applicable to
other more imperative languages. Our results indicate that small edge-string lengths are
sufficient to identify a large number of interesting infeasible paths.

The remainder of the paper is structured as follows. §2 presents additional motivation.
§3 formalizes our approach. We also discuss various techniques that allow us to avoid
including edges in the construction of new edge strings if no additional precision is
achieved, leading to a more efficient analysis. Experimental results are given in §4. We
discuss related work in §5, and present conclusions and future work in §6.

2 Motivating Example

While path-sensitive analyses have been mostly studied in the context of imperative
programs [9, 3, 6, 2, 8], they have significant utility for optimizing functional programs as
well. For example, functional programs often use pattern-matching to express complex
data and control flow. Given a subject term t and set of patterns P , a pattern-matching
compiler [1, 10] yields a decision procedure that compares the equivalence of the tree
representations between t and each of the patterns in P . The implementation of this
procedure is typically in terms of a complex series of bindings and conditional checks
that often include infeasible paths that arise because of inconsistent pattern-matching
assumptions. Consider the following ML program fragment:

datatype t = P | Q | R
let val z = (case x of (P, Q) => c1 | (Q,) => c2 | => c3)
in (case (z,#1 x) of

(c1, R) => B1 | (c2, Q) => B2 | (c3, P) => B3 | => B4)

end

The first case deconstructs expression x whose type is (t * t) where t is a datatype
consisting of nullary constructors P, Q, and R. The second case expression uses the
result of the first to impose additional flow constraints. A control-flow graph for the
program fragment is shown in Fig. 1. Observe that there exists both infeasible paths and
(dynamically) unreachable code:1

– Expression B1 is unreachable—i.e., all paths to B1 are infeasible—because z is
bound to c1 precisely when the first component of x is P, which conflicts with the
second constraint in the conjunct: z = c1 ∧ #1 x = R.

1 The program fragment is contrived to be small and contain both infeasible paths and unreachable
code. However, redundant tests like the second case statement are not uncommon for a pattern-
matching compiler that performs aggressive inlining of (helper) functions (e.g. MLton).

4 Armand Navabi, Nicholas Kidd, and Suresh Jagannathan

x = (P,Q)

z = c1

#1 x = Q

z = c2

z = c3

B1

B3

B4

e1
e2

e3

e4
e5

e6
e7

e8 e9

e12

B2

e10

e13

e11

z = c1 /\ #1 x = RN1

N2 z = c3 /\ #1 x = P

z = c2 /\ #1 x = Q

N1, [e1, e3], [e1], [e3] 7→ {z = c1, x = (P, Q)}
N1, [e2] 7→ {z = >, x = (>,>)}

N1, [e2, e6], [e4], [e6] 7→ {z = c2, x = (Q,>)}
N1, [e2, e7], [e5], [e7] 7→ {z = c3, x = (>,>)}

N2, [e1, e9] 7→ {z = c1, x = (P, G)}
N2, [e6, e11] 7→ ∅
N2, [e7, e9] 7→ {z = c3, x = (>,>)}

B1, [e2] 7→ {z = >, x = (>,>)}
B1, [e3], [e4], [e6, e8] 7→ ∅

B1, [e3, e8] 7→ ∅

B2, [e2, e4], [e4, e10] 7→ {z = c2, x = (Q,>)}
B2, [e1, e10] 7→ ∅

B3, [e6, e12] 7→ ∅
B3, [e7, e12] 7→ {z = c3, x = (P,>)}

B4, [e1, e13] 7→ {z = c1, x = (P, Q)}
B4, [e6, e12] 7→ ∅

Fig. 1. On the left is the control-flow graph (CFG) for the ML program fragment in §2. On the
right is a listing of CFG node, a list of potential edge strings that reach a node (i.e., the list is
non-exhaustive), and dataflow facts associated with the edge strings in the list at the node.

– Expression B2 can be reached via several paths. One, e2 → e4 → e6 → e9 → e10
is feasible, and occurs when the second component of x is the nullary constructor
Q. Path e1 → e3 → e9 → e10 is infeasible, however. Discovering this infeasibility
requires that dataflow facts propagated along edge e3 not be merged with facts
propagated along edges e6 or e7 at the entry to node N1.

– ExpressionsB3 andB4 can be reached via several paths, both feasible and infeasible.
Path e5 → e7 → e9 → e11 → e12 is the only feasible path that leads to B3. Path
e5 → e7 → e9 → e11 → e13 is a feasible path that reaches B4. Paths through e3 or
e6 that reach B3 are infeasible because of the constraint z=c3, which only arises on
paths that include edge e7.

By avoiding a merge of flow information associated with paths that do not include
all of the edges in an edge string, the dataflow facts collected using edge strings allow
infeasible paths to be discovered. Fig. 1 also illustrates flow information (represented
as a set of abstract bindings for z and x) found at the entry to various nodes associated
with selected edge strings. For this example, we assume a standard join-over-all-paths
analysis, suitably parameterized by an edge string, in which ci t cj = > if i 6= j, P

t Q = >, and so on. The abstract-value domain is a simple flat lattice that consists of
constants c1, c2, and c3, and tuples built from constructors P, Q, and R, i.e., abstract
values are merely equality constraints on the variables x and z. (We do not consider
inequality constraints in the example.) Not all edge strings have sensible interpretations
based on the facts associated with each component edge in the string. Indeed, paths
associated with such edge strings are infeasible, and have an empty fact set (∅).

For example, parameterizing the analysis with edge strings e1 or e3 allows the
conclusion that z is c1 and x is (P,Q). Similarly, the dataflow facts associated with

Path-Sensitive Analysis Using Edge Strings 5

edge string e9 binds z to > and x to (>,>). This is because paths that emanate from
edges e1, e4 and e5 can also include e9. Each of these paths define potentially different
bindings for z and x. On the other hand, dataflow information associated with paths
that include the sequence [e1, e9] is more refined since paths are constrained by [e1]
to map z to c1 and x to (P,Q). Note also that the edge string [e2] defines a join over
dataflow facts collected along paths that include e4 or e5. In other words, computing
flow information using edge string [e2] provides no additional precision beyond what is
provided by computing flow information for edge string [e4] and [e5] separately. Some
of the infeasible paths found in the graph are listed in the table. For example, paths that
include edges e6 and e8 (leading to B1), or e1 and e10 (leading to B2) are infeasible.

Smaller length edge strings subsume information from a larger number of paths. In
this example, we see that even with an edge string of length two, a number of infeasible
paths can be detected. By using edge strings as a simple parameterizable mechanism
to identify infeasible paths, we can subsequently refine a control-flow graph using
techniques like syntactic language refinement [2] to eliminate the infeasible path from
consideration by subsequent optimizations. Our experimental results reveal that small
edge-string lengths are sufficient, in general, to identify many infeasible paths. Thus,
edge strings are a compact encoding of a set of paths that can be leveraged by both static
and dynamic program analyses.

3 Edge Strings

Before presenting a formal definition of edge strings, we first give background definitions
necessary for computing a join-over-all-paths dataflow analysis of a control-flow graph.

3.1 Background

A control-flow graph (CFG) G = (N,n0, nf , E) is a directed graph where N is a finite
set of nodes, n0 ∈ N is a distinguished start node, nf ∈ N is a distinguished exit node,
and E ⊆ N ×N is an edge relation on nodes. We use n, n′, n1,. . . to range over nodes
in N . For two nodes n and n′ such that (n, n′) ∈ E, denoted by n→ n′, we say there is
an edge from n to n′ whose head is n and whose tail is n′. We use e, e′, e1, . . . to range
over edges in E. For an edge e ∈ E, we use hd(e) and tl(e) to denote the head and tail
of e, respectively. Finally, we assume that n0 has no incoming edge and that nf has no
outgoing edge, i.e., 6 ∃ e ∈ E : tl(e) = n0 ∨ hd(e) = nf .

The abstract meaning of a CFG G is given by an abstract interpretation [5] S =
(L, FN , FE), whose components are defined as follows:

– L = 〈D,v,⊥,>,t,u〉 is a lattice where D is a partially ordered set under relation
v; ⊥ ∈ D and > ∈ D are a least and greatest element, respectively; t is a least
upper bound operation; and u a greatest lower bound operation.

– FN : N ×D → D is a monotonic function that gives the abstract interpretation for
executing a node n ∈ N from abstract state d ∈ D. For the CFGs of interest, FN

models the allocation and assignment of the variables of G.

6 Armand Navabi, Nicholas Kidd, and Suresh Jagannathan

– FE : E ×D → D is a monotonic function that gives the abstract interpretation for
an execution (path) of G to follow an edge e ∈ E from abstract state d ∈ D. FE

models the constraints that might be imposed on an abstract state d in order for an
execution to follow a branching edge.

A valid path p in G is a sequence of edges e1, . . . , em such that for all 0 < i < m,
tl(ei) = hd(ei+1). For two nodes n, n′ ∈ N , the set of all valid paths from n to n′ in G
is denoted by paths(n, n′). Because of cycles in G, |paths(n, n′)| can be infinite. The
meaning of a valid path p = e1, . . . , em when executed from initial abstract state dI ,
denoted by val(p, dI), is defined over S:

val(p, dI) , FN (n1, dI)� FE(e1)� FN (n2)� . . .� FN (nm)� FE(em)� FN (tl(em)),

where for 1 ≤ i ≤ m, ni = hd(ei), and � is a left-associative binary operator
that threads the output of its left-hand-side expression as input to its right-hand-side
expression.

For a given CFGG and abstract interpretation S , a path-insensitive dataflow analysis
computes for each node n ∈ N , the join-over-all-paths value from the start node n0 to
n with initial abstract state dI , denoted by JOP(n0, n) and defined as:

JOP(n0, n) ,
⊔
{ val(p, dI) | p ∈ paths(n0, n) }. (1)

From the definition of JOP(n0, n), one can see that the computed value does not retain
any path information. Such an analysis is sometimes referred to as a first-order collecting
semantics [14] because the JOP-value at a node n ∈ N is the collection of the set of
(abstract) states that arise at n via any path p ∈ paths(n0, n).

3.2 Edge String

An edge string is an abstraction of a program path. The goal of edge strings is to be
a simple yet effective mechanism to extend Eqn. (1) with a form of k-limited path
sensitivity. The idea is as follows: instead of extending the (likely already complex)
abstract domain to include path information, we make a minor extension to the definition
of JOP.

Formally, an edge string es is an ordered sequence of edges in E, [e1, . . . , ek], that
serves as an abstraction of a set of program paths. For a given value of k, the set of all
possible edge strings is then bounded by Ek. Because there are (potentially) infinitely-
many paths, there are (potentially) infinitely-many relations on paths and edge strings
that one can define. In this paper, we consider two such relations, αk

last and αk
gap.

The relation αk
last ⊆ E∗ ×Ek is the edge-string equivalent of call strings—it records

the k-most recent edges of a valid path. Specifically, for valid path p = e1, . . . , em,

α0
last(e1, . . . , em) = {[]}
αk

last(e1, . . . , em) = αk−1
last (e1, . . . , em−1) ./ {[em]},

where the ./ function returns the cross product of two sets (e.g., {[e], [e′]} ./ {[e1, e2]} =
{[e, e1, e2], [e′, e1, e2]}). For the case where m < k, αk

last(p) = [p]. Note that if m < k,

Path-Sensitive Analysis Using Edge Strings 7

then αk
last is not a path abstraction but the identify function. Thus, αk

last is fully path
sensitive for paths of length less than k.

The relation αk
gap ⊆ E∗ × Ek associates with every valid path p = e1, . . . , em, a set

of edge strings of length k such that (p, es) ∈ αk
gap iff the constituent edges [e1, . . . , ek]

of es occur in p in that order. We say that the relation is “gappy” because, for member
edges ei and ei+1 of es, 1 ≤ i < k, αk

gap allows for an arbitrary-length sequence of edges
to occur between them in p. Thus,

α0
gap(e1, . . . , em) = {[]}
αk

gap(e1, . . . , em) = αk−1
gap (e1, . . . , em−1) ./ {[em]} ∪ αk

gap(e1, . . . , em−1).

The underlined portion above highlights the extension to αk
last that results in αk

gap. It
is precisely this extension that allows for there to be (arbitrary-length) gaps between
two consecutive edges of an edge string es that models a valid path p. Moreover, the
extension is also the reason that αk

gap is a many-to-many relation (whereas αk
last is a

many-to-one relation). By definition, αk
gap is a partial function because it is undefined

when p has length less than k. We account for this case by defining αk
gap(p) to merely

return [p], and thus, like αk
last, be fully path sensitive for such paths.

For CFG G, the edge-string abstraction function αk ∈ {αk
last, α

k
gap} defines an

abstract interpretation of the paths in G defined by Sk = (Lk, F k
N , F

k
E), where Lk =

〈Dk = P(∪k
i=0E

i),⊆, ∅,∪k
i=0E

i,∩,∪〉 is a complete lattice with elements being sets
of edge strings; FN = λn, d.d is the identity function; and FE = λe, d.αk(d ./ {[e]})
is the function that extends an existing set of edge strings with the edge e and then
abstracts this new set via αk. Thus edge strings provide an infinite family of abstract
interpretations parameterized by k. Moreover, two abstract interpretations Sk+1 and
Sk are related via a Galois connection f : Dk+1 → Dk and g : Dk → Dk+1,
where f = αk removes one edge from an edge string, thereby reducing precision;
glast = λdk.αk+1

last ({[e] | e ∈ E} ./ dk) merely prepends an edge e to each edge string
in dk to generate a set of length k + 1 edge strings, thereby increasing precision; and
ggap = λdk.αk+1

gap ({[e] | e ∈ E} E dk) inserts an edge e at every position in an edge
string in dk via E , which denotes the shuffle operation on strings—ε E u = u = u E ε
and au E bv = a ./ (u E bv) ∪ b ./ (au E v)—extended to operate on sets of (edge)
strings in the natural way.

Edge-String Analysis. For CFG G, abstract interpretation S , bound k, and edge-string
abstraction function αk, where the edge-string abstraction functions of interest are either
αk

gap or αk
last, the goal of an edge-string analysis (ESA) is to compute for each es ∈ Ek

the edge-string JOP value from n0 and to every node n ∈ N defined as follows:

JOPESA(n0, n, es) ,
⊔
{ val(p, dI) | p ∈ paths(n0, n) ∧ es ∈ αk(p) }. (2)

Edge strings provide a limited form of path-sensitivity because they delay joins.
For example, consider two valid paths p and p′ in paths(n0, n) such that (p, es) ∈ αk

and (p′, es′) ∈ αk, and es 6= es′. Because es and es′ are not equal, the abstract values
for p and p′, val(p, dI) and val(p′, dI), respectively, will not be joined together as

8 Armand Navabi, Nicholas Kidd, and Suresh Jagannathan

input : CFG G, S, and bound k
output: JOPESA result mapMN : N 7→ Ek 7→ D
let Worklist = {n | (n0, n) ∈ E}; letMN (n0)([]) = dI ;
while Worklist 6= ∅ do

(Worklist, n) = Choose(Worklist);
foreach e′ = (n′, n) ∈ E do // Each predecessor n′ of n

foreach es ∈MN (n′) do // Each edge string that reaches n′

d =MN (n′)(es)� FE(e′)� FN (n);
foreach es′ ∈ αk(es · [e′]) do // Each extended edge string
MN (n)(es′) =MN (n)(es′) t d;

if Changed(MN (n)) then // Add n’s successors upon change
Worklist = Worklist ∪ {n′′ | (n, n′′) ∈ E};

Algorithm 1: Worklist algorithm to compute JOPESA for a given bound k.

in JOP(n0, n), but will only be joined with the abstract values for paths that have a
common edge string in the edge-string relation αk. For αk

last, only those paths that take
the exact same last-k edges will have their values joined. For αk

gap, paths that contain
common k-length “gappy” sequences will have their abstract values joined.

Alg. 1 presents a worklist algorithm to compute Eqn. (2).2 A few points are worth
mentioning. First,MN is a map from a node n ∈ N , edge string es ∈ Ek, to a lattice
element d ∈ D. Second, the function Choose chooses an element n from the worklist
Worklist and returns n and a new worklist without n. Third, the use of ’·’ in es · [e]
denotes sequence concatenation. Because the edge-string relations αk

gap and αk
last are

defined inductively, they are used to naturally extend the standard worklist algorithm
with a third loop over generated edge strings.

3.3 Relevant Edge

Revisiting Fig. 1, one can see that not all edges in the CFG add (flow) constraints. For
example, the edges e3, e6, and e7 are the result of a direct control transfer control to the
second case statement. Because edge strings provide only bounded path sensitivity, it
would be unproductive to use a non-branching edge, i.e., an edge that imposes no flow
constraints, as one of the precious few k edges in an edge string.

The function relevant : E → {tt, ff} specifies whether an edge e is relevant (tt) or
not (ff). Given a definition of relevant, we specialize the concatenation function ’·’ in
Alg. 1 for edge string es = [e1, . . . , ek] and edge e as follows:

es · [e] =
{

[e1, . . . , ek, e] relevant(e) = tt
es relevant(e) = ff

One natural definition of relevant is that for every non-branching edge e, relevant(e) =
ff, and relevant(e) = tt otherwise (i.e., e is a branching edge). For the CFG in Fig. 1,

2 Alg. 1 is precise when FN and FE are distributive, and a safe approximation otherwise.

Path-Sensitive Analysis Using Edge Strings 9

this definition of relevant would have the desired effect of eliminating e3, e6, and e7
from being included in an edge string.

Although the straightforward definition of relevant is useful, it can be further
improved. Specifically, observe the flow constraints [e2] 7→ {z = >, x = (>,>)} that
arise at the first case statement when using edge-string relation α1

gap. This constraint
is quite imprecise as every binding maps its variable to >. Due to the imprecision,
the edge-string analysis will soundly, yet unhelpfully, determine that expression B1 is
reachable since there is a valid path to B1 that includes edge e2.3

We can eliminate this imprecision by refining the relevant function. Intuitively, for a
node n ∈ N and edge e ∈ E, if for every p ∈ paths(n0, n), edge e is a member of p, then
the flow constraint FE(e) is contributed by every path p because e is always traversed.
Returning to the consideration of edge e2, every path from the root to its children must
include e2; thus, the flow constraint that e2 contributes, namely x <> (P,G), will flow
along those paths. This insight leads to the must-traverse-edge analysis, which computes
at each node n ∈ N the set of edges that all forward paths from n0 to n must traverse.
This is a simple and efficient path-insensitive analysis that is solved by giving as inputs
to Alg. 1: (i) the CFG G; (ii) SMTE = (L = 〈2E ,⊇, E, ∅,∩,∪〉, FN , FE), where lattice
elements are edge sets ordered by superset; FN is the identity function λn.λd.d; and FE

is the function λe.λd.d ∪ {e} that always adds the edge e to the MTE-abstract state; and
(iii) path-insensitive bound k = 0.

The result of Alg. 1 instantiated with SMTE is a map MTE : N → 2E such that for
a node n, MTE(n) is the set of edges that all paths from n0 must traverse to reach n.
We refine relevant then to be: relevant(e) = e /∈ MTE(tl(e)), i.e., e is relevant if it is
not a must-traverse edge. For the CFG in Fig. 1, an MTE analysis would compute that
the relevant edges are {e3, e6, e7}, and all other edges are implied by the structure of
the CFG. An interesting side effect is that MTE analysis allows for αk

last to allow for
a certain degree of “gappyness” (since relevant edges need not be contiguous), which
greatly increases the precision of αk

last, and also reduces the cost for αk
gap. For example,

at expression B4 of the CFG in Fig. 1, only the edge strings [e3], [e6], and [e7] will arise.
As a final remark, we observe that for independent-attribute domains such as the one

(briefly) discussed in §2, ESA extends such domains with limited relational information
of the form “variables x and y have abstract values dx and dy flow to node n along a
path that is abstracted to edge string es”, i.e., the edge string es disambiguates dataflow
information and this disambiguation serves as the relation between abstract bindings that
may arise during program execution.

4 Experiments

We implemented ESA in the MLton compiler [13], a whole-program optimizing compiler
for SML. An SSA program in MLton consists of datatype declarations, a sequence of
global statements and a collection of functions. Each function consists of a flat vector
of blocks which take arguments and contain statements. Each block contains a transfer

3 In this case, an edge-string analysis using α1
last will correctly determine that expression B1 is

unreachable.

10 Armand Navabi, Nicholas Kidd, and Suresh Jagannathan

Table 1. Benchmark Characteristics: Along with the number of blocks, edges, branches and
back-edges, we report the percentage of relevant edges as determined by MTE.

Benchmark Blocks Edges Branches Back Edges
MTE

Relevant Edges
barnes-hut 475 730 246 49 45%
count-graphs 285 424 147 47 46%
knuth-bendix 209 317 101 28 47%
lexgen 1068 1753 629 121 47%
md5 243 363 116 31 45%
nucleic 124 179 51 22 38%
tsp 217 328 104 32 46%
tyan 759 1132 379 100 44%
zern 315 465 143 43 41%

identifying control to other blocks and passing arguments to the blocks. Some transfers
define conditional control to multiple blocks (i.e., branches).

Our edge-string abstractions record the k-most recent, relevant edges of a path.
The implementation uses the must-traverse-edge (MTE) analysis discussed in §3.3 to
determine the relevance of edges and only extends edge strings with relevant edges, thus
capturing infeasibility relationships across a potentially large number of path edges. Our
analysis tracks dataflow through blocks, and control-flow through conditional transfers,
using a join-over-paths abstraction that supports equality and inequality constraints over
base types and datatype constructors.

Because MLton performs aggressive inlining of functions, leading to larger functions
with potential many blocks, and a correspondingly large number of infeasible paths,
we run the analysis after inlining. For the remainder of the section we write IESAk to
refer to a last relevant-k edge string analysis for detecting infeasible paths, where edge
relevance is determined by MTE.

4.1 Benchmarks

We present results for nine of the benchmarks in the MLton benchmark suite. The
benchmarks considered represent various programming styles and constructs that SML
programs typically exhibit. In particular, count-graphs uses continuations extensively,
barnes-hut and nucleic contain a large number of tail calls (i.e., loops) and lexgen

and tyan perform repeated operations on lists.
After SSA inlining, programs typically contain a few large functions with more than

100 blocks and many small functions. Our analysis did not identify infeasible paths
in many of the smaller functions. It did identify infeasible paths in all but one of the
20 functions we analyzed with more than 100 blocks. We present results for the main

function—the function with the most blocks after inlining—for each benchmark (see
Table 1). In §4.4 we examine what size k achieves the needed precision for infeasible
path detection.

Path-Sensitive Analysis Using Edge Strings 11

0

3

6

9

12

15

18

barnes count knuth lexgen md5 nucleic tsp tyan zern

Average (and Maximum) Length of Infeasible Edge Strings

k1 k2 k3

26 23 29 24 34

Average (and Maximum) Length of Infeasible Edge Strings

N
u

m
.
o

f
E

d
g

e
s

Fig. 2. We report the average and maximum number of edges along the shortest path from the first
edge string to an infeasible edge for all infeasible paths identified by IESAk.

4.2 Implementation Details

Alg. 1 was extended to explore the CFG G in reverse post-order, collapsing strongly
connected components in G. Moreover, inner loops are explored before propagating
the dataflow facts to the outer loop. We found that this ordering was essential for
performance because it expedites the generation of edge strings. We also optimized
the abstract domain to only interpret facts for variables that are in scope. In MLton’s
SSA, variable definitions dominate all uses, and thus traversing the dominator tree is
sufficient to compute the in-scope variables at a CFG node. Restricting facts to in-scope
variables greatly reduces the size of variable maps, resulting in better memory and time
performance.

IESAk uses a path-insensitive must-traverse-edge analysis (MTE) (explained in
§3.3) to record only relevant edges for edge strings. MTE leads to increased precision
for a given k. By only recording edges that are relevant, an edge string of length k
may contain edges that are further than k edges away. Fig. 2 reports the average and
maximum number of edges along the shortest path in the CFG from the the head of
the first edge in the edge string to the head of an infeasible edge for all infeasible paths
identified at k = 1 to 3. For example, in barnes hut for k = 3 (i.e., IESA3) the average
length is roughly 7 and the maximum length is 26.

Fig. 3 illustrates the effectiveness of MTE. The figure shows infeasible paths cor-
responding to edge string [e′, e′′] in tyan. The edge string implies that the edge e is
infeasible for all paths that traverse edge e′ and then e′′. Note that the shortest path from
e′ to the infeasible edge e contains 6 edges, but the infeasible path is identified with
IESA2 because there are only two relevant edges, e′ and e′′, along the path of interest
(i.e. traversal of the other edges is implied by the edge string). The infeasible path is on
a branch on variable x 1963. Note that constraint-inducing edge, shown in box A, which
produces constraint x 1963 = nil 5 is not in the edge string. This is because the edge
must be traversed every time that e′ is traversed and thus is not relevant according to
MTE. Any edge string with edge e′ will contain the constraint x 1963 = nil 5 causing
the interpretation of edge e to be infeasible (i.e., ⊥) for the edge string.

12 Armand Navabi, Nicholas Kidd, and Suresh Jagannathan

r_0 control-flow graph

L_1238 ()
...
case x_1963

L_1240 (x_2000: list_9, x_1999: word32)
L_1239 (x_2000, x_1999, global_81)

::_7

L_1244 ()
L_1242 (global_81)

nil_5

L_1257 (x_2017: list_9, x_2016: word32)
L_1252 (x_2017, x_2016, global_3, global_81, x_2012, x_1963)

n1252

L_1279 ()
L_1254 (global_3, global_81, x_2012, x_1963)

L_1253 (x_2015: list_9, x_2014: word32)
L_1252 (x_2015, x_2014, x_2013, global_81, x_2012, x_1963)

L_1255 ()
L_1254 (x_2013, global_81, x_2012, x_1963)

L_1251 (x_2013: word32)
case x_1963

::_7nil_5

L_1250 ()
global_82 - x_1996

L_1380 ()
raise (global_8)

Overflow

L_1256 ()
case x_1963

::_7 nil_5

L_1249 (x_2011: list_8 ref, x_2012: list_9)
case x_1996

default 0

L_1381 ()
x_2192: (word32 * list_9) = (x_1996, x_1963)
r_0 (x_1959, x_2160, x_2076, x_1998)

L_1382 (x_2194: list_8)
x_2193: list_8 = ::_9 (x_2194, x_2192)
return (x_2193)

L_1246 ()
raise (x_2008)

L_1247 ()
x_2009: Primitive.Option.t_4 = ! result_1
case x_2009

SOME_4 NONE_3

L_1245 (x_2008: exn)
case x_2008

defaultFound_0

L_1248 (x_2010: Primitive.Option.t_4)
case x_2010

SOME_4 NONE_3

L_1242 (x_2007: list_9)
s_2 (mt_3, global_81, x_2007, result_1)

L_1241 (x_2006: list_9, x_2005: word32)
L_1239 (x_2006, x_2005, x_2004)

L_1239 (x_2001: list_9, x_2002: word32, x_2003: list_9)
...
case x_2001

::_7

L_1243 ()
L_1242 (x_2004)

nil_5 e’

e’’

e

r_0 control-flow graph

L_1238 ()
...
case x_1963

L_1240 (x_2000: list_9, x_1999: word32)
L_1239 (x_2000, x_1999, global_81)

::_7

L_1244 ()
L_1242 (global_81)

nil_5

L_1257 (x_2017: list_9, x_2016: word32)
L_1252 (x_2017, x_2016, global_3, global_81, x_2012, x_1963)

n1252

L_1279 ()
L_1254 (global_3, global_81, x_2012, x_1963)

L_1253 (x_2015: list_9, x_2014: word32)
L_1252 (x_2015, x_2014, x_2013, global_81, x_2012, x_1963)

L_1255 ()
L_1254 (x_2013, global_81, x_2012, x_1963)

L_1251 (x_2013: word32)
case x_1963

::_7nil_5

L_1250 ()
global_82 - x_1996

L_1380 ()
raise (global_8)

Overflow

L_1256 ()
case x_1963

::_7 nil_5

L_1249 (x_2011: list_8 ref, x_2012: list_9)
case x_1996

default 0

L_1381 ()
x_2192: (word32 * list_9) = (x_1996, x_1963)
r_0 (x_1959, x_2160, x_2076, x_1998)

L_1382 (x_2194: list_8)
x_2193: list_8 = ::_9 (x_2194, x_2192)
return (x_2193)

L_1246 ()
raise (x_2008)

L_1247 ()
x_2009: Primitive.Option.t_4 = ! result_1
case x_2009

SOME_4 NONE_3

L_1245 (x_2008: exn)
case x_2008

defaultFound_0

L_1248 (x_2010: Primitive.Option.t_4)
case x_2010

SOME_4 NONE_3

L_1242 (x_2007: list_9)
s_2 (mt_3, global_81, x_2007, result_1)

L_1241 (x_2006: list_9, x_2005: word32)
L_1239 (x_2006, x_2005, x_2004)

L_1239 (x_2001: list_9, x_2002: word32, x_2003: list_9)
...
case x_2001

::_7

L_1243 ()
L_1242 (x_2004)

nil_5

r_0 control-flow graph

L_1238 ()
...
case x_1963

L_1240 (x_2000: list_9, x_1999: word32)
L_1239 (x_2000, x_1999, global_81)

::_7

L_1244 ()
L_1242 (global_81)

nil_5

L_1257 (x_2017: list_9, x_2016: word32)
L_1252 (x_2017, x_2016, global_3, global_81, x_2012, x_1963)

n1252

L_1279 ()
L_1254 (global_3, global_81, x_2012, x_1963)

L_1253 (x_2015: list_9, x_2014: word32)
L_1252 (x_2015, x_2014, x_2013, global_81, x_2012, x_1963)

L_1255 ()
L_1254 (x_2013, global_81, x_2012, x_1963)

L_1251 (x_2013: word32)
case x_1963

::_7nil_5

L_1250 ()
global_82 - x_1996

L_1380 ()
raise (global_8)

Overflow

L_1256 ()
case x_1963

::_7 nil_5

L_1249 (x_2011: list_8 ref, x_2012: list_9)
case x_1996

default 0

L_1381 ()
x_2192: (word32 * list_9) = (x_1996, x_1963)
r_0 (x_1959, x_2160, x_2076, x_1998)

L_1382 (x_2194: list_8)
x_2193: list_8 = ::_9 (x_2194, x_2192)
return (x_2193)

L_1246 ()
raise (x_2008)

L_1247 ()
x_2009: Primitive.Option.t_4 = ! result_1
case x_2009

SOME_4 NONE_3

L_1245 (x_2008: exn)
case x_2008

defaultFound_0

L_1248 (x_2010: Primitive.Option.t_4)
case x_2010

SOME_4 NONE_3

L_1242 (x_2007: list_9)
s_2 (mt_3, global_81, x_2007, result_1)

L_1241 (x_2006: list_9, x_2005: word32)
L_1239 (x_2006, x_2005, x_2004)

L_1239 (x_2001: list_9, x_2002: word32, x_2003: list_9)
...
case x_2001

::_7

L_1243 ()
L_1242 (x_2004)

nil_5

e

A
A

B

B

Fig. 3. Infeasible paths in tyan identified with IESA2 with the MTE relevance. Relevant edges
are bold; irrelevant edges are dashed. The edge string [e′, e′′] creates constraints which results in
the identification of edge e as infeasible. Interesting parts of the infeasible path are shown larger
to demonstrate the path is infeasible on a branch on variable x 1963.

It is worth noting that IESA 2 identifies edge e as infeasible for all edge strings which
contain e′ as the first edge. Also note that IESA1 would not identify edge e as being an
infeasible branch, because all paths from edge e′ to e traverse at least one relevant edge.
This example demonstrates how a larger k results in greater precision.

4.3 Performance

Fig. 4 shows the performance for running the analysis on the main function of the
benchmarks we considered. We report analysis costs for IESAk for k = 0 to 3. The data
was generated on a 2.53GHz Intel Core 2 Duo Processor with 4GB of RAM running
Mac OS X 10.5.8.

The experimental results find that in general, the analysis time for IESAk is expo-
nential in k (i.e., the length of the edge string). The reason is that with MTE edge strings
are only extended at join points (see the bold edges in Fig. 3). In the worst case all paths
in the CFG join at the same join points. ESA provides a way to limit the analysis cost
by using smaller edge strings (i.e., smaller k).

Path-Sensitive Analysis Using Edge Strings 13

0.01

0.10

1.00

10.00

100.00

1,000.00

 k = 0 k = 1 k = 2 k = 30.01

0.11

0.63

1.60

0.01

0.34

4.07

11.55

0.01

1.00

7.22

52.80

0.01

4.51

37.62

283.21

0.01

18.20

243.61

4,200.65

Analysis Times In Seconds (log scale)

barnes count

knuth

tsp

nucleic

lexgen

md5

zern

tyan

k = 0

s
e

c
o

n
d

s

Fig. 4. Analysis times for IESAk.

4.4 Edge String Length

We ran IESAk for k = 0 to 3. As a property of ESA, all infeasible paths identified
with edge strings of length k are identified with edge strings of length k + 1. While
increasing k improves precision, it decreases performance. Thus, it is interesting to
quantify increased precision as k increases.

For each k, we report the number and percentage of infeasible edge strings detected
which were not detected (i.e., covered) at k − 1. We say that an infeasible edge string es
of length k is covered by an edge string es′ of length k − 1, if 1) both es and es′ imply
the same infeasible edge, and 2) the paths represented by es are a subset of the paths
represented by es′. For example, the set of paths represented by edge string [e1, e2, e3]
of length 3 is a subset of the paths represented by edge string [e1, e2] of length 2 since
the set of all paths that traverse edges e1 and e2 includes those paths that traverse e3.

Consider the edge string es = [e′, e′′] in Fig. 3 and the infeasible path through edge
e. While the paths represented by es are a subset of paths represented by edge string
es′ = [e′′] of length one, we do not say that es′ covers es because es′ does not identify
edge e as infeasible (the first condition we listed above). Thus es identifies new infeasible
paths. On the other hand, all edge strings of length 3 which contain edge e′ would be
covered by the edge string [e′, e′′] of length 2 for infeasible paths that traverse edge e.

Fig. 5 depicts how much precision is gained by increasing k for IESAk. Recall
that the paths represented by a single edge string of length k − 1 includes the paths
represented by many edge strings of length k. We are interested in determining when
more specific path data leads to the identification of infeasible paths not identified by the
less specific edge strings. The percentage of edge strings that represent infeasible paths
not discovered (i.e., covered) at k − 1 is presented in a logarithmic-scale bar graph. The
number of new edge strings is also included directly above each bar.

Our results show that all infeasible paths identified by IESA1 are not found by a
path-insensitive (i.e., IESA0) analysis. More interestingly our experiments show that
1) a large majority of infeasible paths identified by IESA2 are found by IESA1, and 2)
an even larger majority of infeasible paths identified by IESA3 are found with IESA2.

14 Armand Navabi, Nicholas Kidd, and Suresh Jagannathan

1

10

100

barnes count knuth lexgen md5 nucliec tsp tyan zern

Percent of New Infeasible Paths Identified for each k (log scale)

k1 k2 k3

10

10

0 0 0 0 00

10

6

17

4

4

4

9

9 4

4

2

2

4

4

7

13

4

4

2

%

%

%

Fig. 5. The figure shows the percent of new infeasible edge strings discovered by increasing k for
each benchmark (the number is also given above each bar). For all benchmarks, the infeasible
paths identified by IESA1 were not identified by a path insensitive (i.e., IESA0) analysis. In all
but 3 benchmarks (i.e., count-graphs, lexgen, and tyan) all infeasible paths identified by
IESA3 where covered by IESA2.

The largest percentage of new infeasible edge strings discovered at k = 2 was 25%
for tyan, and at k = 3 it was 5% for count-graphs. For 6 out of the 9 benchmarks,
no new infeasible paths were discovered by IESA3. While IESA3 did identify new
infeasible paths in the other 3 benchmarks, the number of such new paths is very small.
For example, in lexgen IESA3 identifies 444 infeasible edge strings. Only 2% (i.e., 9)
of those infeasible edge strings are not represented by infeasible edge strings in IESA2.

The experiments validate our intuition that while increasing k provides for greater
precision, most of the benefits of full path sensitivity with respect to infeasible path
detection can be achieved using ESA with small values of k (i.e., 2), avoiding greater
analysis costs associated with larger values of k.

4.5 Infeasible Path Characteristics

0

300

600

900

1200

barnes count knuth lexgen md5 nucleic tsp tyan zern

Types of Infeasible Paths at IESA3

List Bool Exception

N
u

m
.

In
fe

a
s
ib

le
 E

d
g

e
 S

tr
in

g
s

(k
 =

 3
)

3Our experiments show that a large per-
centage of infeasible paths in MLton’s
SSA manifest on dispatches of datatype
constructors (as shown in Fig. 1). For ex-
ample, the infeasible edge string in tyan

illustrated in Fig. 3 is on a dispatch of a
list datatype.

Fig. 4.5 presents characteristics of de-
tected infeasible paths. For each edge
string of length k = 3 that detects infea-
sible paths, we report the different types
of variables on which the infeasible path was detected. We distinguish between lists,
exceptions, and booleans, which are all treated as datatypes in SSA. These account for
more than 99% of detected infeasible paths.

The experiments found that 93% of all infeasible edge strings were a result of an
infeasible branch deconstructing an exception type. Lists accounted for most of the

Path-Sensitive Analysis Using Edge Strings 15

remaining 7%. Lexgen and tyan were the only two benchmarks to mostly identify
infeasible paths that deconstructed list types. Lexgen, which produces random lists of
words based on a grammar, and tyan, which performs a Grobner Basis calculation to
generate subsets in a polynomial ring, use lists extensively. We believe that elimination of
infeasible paths that arise because of infeasible branches, as illustrated in our motivating
example, and evidenced experimentally, detected by our analysis can be profitably used
by subsequent optimization passes.

5 Related Work

There are many general frameworks for performing a path-sensitive analysis (cf. [9, 7,
6, 11]); in each case an original abstract domain is (more or less) made more precise
by further partitioning the set of abstract states with an element from a finite set of
qualifiers: a finite relation in [9]; a 4-tuple representing a set of program paths in [7]; a
state from a property automaton in [6]; and a combination of user-specified partitions
along with {0, 1,∞}-partitioning of loops in [11]. For each of these techniques, edge
strings, and hence edge-string analysis, could be obtained via the appropriate encoding.
The main purpose of edge strings, however, is not to specify a generic framework, but
to provide an effective path-sensitive extension to standard dataflow analyses found in
modern compilers. Moreover, the design of edge strings is so that they are lightweight
for both static and dynamic analysis (see §6).

Compared to heavyweight model-checking techniques that enumerate all paths in
an abstract program (cf. [4, 2, 8]), we view edge strings as an efficient pre-enumeration
analysis that can eliminate many infeasible paths before explicit path enumeration begins.
In fact, the observation in [2] that many infeasible paths are witnessed by just two edges
was one of our motivations for exploring edge-string analysis.

[3] presents an infeasible-path analysis that is then used to improve the precision
of dataflow analysis. Their algorithm begins by working backwards from a particular
branch to determine the set of predecessor nodes (if any) that imply the direction that
the branch will take, i.e., to find correlated branch predecessors. Correlated-predecessor
information is then propagated forwards through a CFG by marking paths in the CFG.

6 Conclusions and Future Work

This paper discusses edge strings, a technique inspired by call strings used to achieve
context-sensitivity, that provides k-limited path-sensitivity to an existing dataflow analy-
sis. We have implemented an edge-string analysis in MLton, and used it to detect many
infeasible paths in SML programs that have been compiled into MLton’s first-order SSA
intermediate representation. Our results show that a substantial number of infeasible
paths can be detected with just k = 2.

With respect to extensions of this work we are currently considering, we note that
Sumner et al. [17] present a technique to efficiently track call-string information in a
dynamic analysis. We intend to investigate notions of edge-string encodings, which
would make available both interprocedural (via call strings) and intraprocedural (via
edge strings) path information.

16 Armand Navabi, Nicholas Kidd, and Suresh Jagannathan

References

1. Augustsson, L.: Compiling Pattern Matching. In: Functional Programming Languages and
Computer Architecture. pp. 368–381. Springer-Verlag New York, Inc. (1985)

2. Balakrishnan, G., Sankaranarayanan, S., Ivančić, F., Wei, O., Gupta, A.: SLR: Path-sensitive
analysis through infeasible-path detection and syntactic language refinement. In: SAS. pp.
238–254 (2008)

3. Bodı́k, R., Gupta, R., Soffa, M.L.: Refining data flow information using infeasible paths. In:
FSE. pp. 361–377 (1997)

4. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K.,
Podelski, A. (eds.) Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2004). Lecture Notes in Computer Science, vol. 2988, pp. 168–176. Springer (2004)

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL ’77: Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages. pp. 238–252
(1977)

6. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in polynomial time.
In: PLDI. pp. 57–68. ACM, New York, NY, USA (2002)

7. Handjieva, M., Tzolovski, S.: Refining static analyses by trace-based partitioning using control
flow. In: SAS. pp. 200–214 (1998)

8. Harris, W.R., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis via satisfiability
modulo path programs. In: POPL. pp. 71–82 (2010)

9. Holley, L.H., Rosen, B.K.: Qualified data flow problems. In: POPL. pp. 68–82 (1980),
http://doi.acm.org/10.1145/567446.567454

10. Le Fessant, F., Maranget, L.: Optimizing Pattern Matching. In: ICFP ’01. pp. 26–37. ACM
(2001)

11. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static analyzers.
In: ESOP. pp. 5–20 (2005)

12. Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT Press (1997)
13. MLton, http://mlton.org
14. Schmidt, D.A.: Data flow analysis is model checking of abstract interpretations. In: POPL. pp.

38–48 (1998)
15. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In: Program

Flow Analysis: Theory and Applications. pp. 189–233 (1981)
16. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis, Carnegie Mellon

University (1991)
17. Sumner, W.N., Zheng, Y., Weeratunge, D., Zhang, X.: Precise calling context encoding. In:

ICSE (May 2010)

	Path-Sensitive Analysis Using Edge Strings
	Report Number:
	

	tmp.1336503381.pdf.LaKov

