
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

2010 

One Stack to Run Them All Reducing Concurrent Analysis to One Stack to Run Them All Reducing Concurrent Analysis to 

Sequential Analysis Under Priority Scheduling Sequential Analysis Under Priority Scheduling 

Nicholas Kidd 
Purdue University, nkidd@cs.purdue.edu 

Suresh Jagannathan 
Purdue University, suresh@cs.purdue.edu 

Jan Vitek 
Purdue University, jv@cs.purdue.edu 

Report Number: 
10-005 

Kidd, Nicholas; Jagannathan, Suresh; and Vitek, Jan, "One Stack to Run Them All Reducing Concurrent 
Analysis to Sequential Analysis Under Priority Scheduling" (2010). Department of Computer Science 
Technical Reports. Paper 1733. 
https://docs.lib.purdue.edu/cstech/1733 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


One Stack to Run Them All

Reducing Concurrent Analysis to Sequential Analysis
Under Priority Scheduling

Nicholas Kidd, Suresh Jagannathan, and Jan Vitek

Purdue University. {nkidd,suresh,jv}@cs.purdue.edu

Abstract. We present a reduction from a concurrent real-time program
with priority preemptive scheduling to a sequential program that has
the same set of behaviors. Whereas many static analyses of concurrent
programs are undecidable, our reduction enables the application of any
sequential program analysis to be applied to a concurrent real-time
program with priority preemptive scheduling.

1 Introduction

Embedded systems are pervasive and are becoming ever more dependent on
complex software with significant correctness and reliability requirements. From
automobiles to the space shuttle, software is rapidly becoming the most significant
part of development time of new devices. Due to the drastic costs of software
errors, it is crucial that verification techniques handle the demands and specific
requirements of embedded systems. The goal of this work is to broaden the
applicability of known software verification techniques from sequential programs
to a large class of real-time concurrent programs.

The programming model used in the vast majority of deployed devices defines
a set of periodic tasks—tasks that perform computation at a regular interval
(period)—that respond to or monitor events. Each task is typically assigned a
priority, and tasks are scheduled by a priority preemptive scheduler—a scheduler
that always chooses to schedule the highest-priority task that is currently runnable.
A lower-priority task is preempted when a higher-priority task becomes runnable,
and is rescheduled only when the higher-priority task has finished.

For many real-time programs, especially those used in safety-critical devices,
certification is an essential requirement for deployment (e.g., D0178-b). A major
aspect of certification is to show full code coverage; because of lack of automated
tools, the current state of the art is to employ exhaustive test suites. While
there has been much progress in automated testing for sequential [1–3] programs,
coverage for concurrent programs is more difficult because of the number of
interleavings that must be considered. (Tools such as CHESS [4] check all possible
interleavings for a given test, but do not perform test generation.)

The main contribution of our work is a general reduction from a concurrent
program with priority preemptive scheduling to a sequential program, which
makes the concurrent program amenable to the aforementioned research on
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automated testing of sequential programs. Our only two restrictions are that the
concurrent program has a finite number of tasks, and that the tasks execute with
interleaved semantics (e.g., on a uniprocessor). In the embedded world, these
restrictions are the norm as they ensure predictability, which is oftentimes more
important than absolute performance.

For the important case of finite-data concurrent programs, (i.e., can be
modeled as a Boolean program or multi-pushdown system), our reduction shows
that not only is full code coverage decidable, but also that the stronger property
of full path coverage is decidable. While finite-data may seem restrictive, for
embedded systems and especially safety-critical systems, it is often the case that
a program will pre-allocate the required amount of memory to provide greater
predictability (i.e., to remove unpredictable and potentially costly invocations of
the memory allocator).

The reason that it is not readily apparent that a concurrent program with
priority preemptive scheduling could be reduced to a sequential program is because
all of the characteristics of traditional concurrent programs that make analysis
difficult are still present. There are multiple threads of execution, shared state,
locks, and preemption. Furthermore, each thread is likely to be non-terminating
as it must execute once per period. The key insight behind our reduction is
that because a preempted lower-priority thread is not rescheduled until the
higher-priority thread has finished, the two threads can share the same stack.
That is, preemption can be modeled as merely a function call. Thus, a concurrent
(multi-stack) program can be reduced to a sequential (one-stack) program.

Another important aspect of real-time programming is avoiding priority
inversion. Priority inversion occurs when a higher-priority thread th cannot make
progress because a lower-priority thread tl has ownership of a shared resource,
such as a lock. Even worse, a medium-priority thread tm can preempt tl, in
effect giving tm priority over th. Overall, priority inversion causes th’s priority to
be lowered to that of tl so long as tl owns the resource. Coupled with priority
scheduling, priority inversion can lead to deadlock. Two common protocols [5]
for addressing priority inversion include:

1. Priority Ceiling Protocol (PCP) statically associates with each shared resource
(lock) the priority of the highest-priority thread that may acquire that resource.
When a thread t acquires a resource r, t’s priority is temporarily raised to
r’s priority, and is restored when r is released. Note that due to the way
priorities are assigned to resources, r’s priority must be at least as high as t.

2. Priority Inheritance Protocol (PIP) temporarily elevates the priority of a
lower-priority thread tl that owns a resource r required by a higher-priority
thread th to that of th until tl has released r.

In comparison, PCP is an eager (or pessimistic) protocol, while PIP is a lazy
(or optimistic) protocol that avoids elevating priorities until strictly necessary.
Moreover, PCP guarantees dead-lock freedom [5], whereas PIP does not.

Our second contribution is to show that full path coverage of finite-data
programs (i) remains decidable for a PCP-extended programming model, (ii)
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is undecidable in general for a PIP-extended programming model, and (iii) is
decidable for a PIP-extended programming model with properly nested locks.

2 Reduction

A concurrent program is a shared-memory computation of a finite number of
threads t1, . . . , tn that execute with interleaved semantics. Associated with each
thread ti, 1 ≤ i ≤ n, is a priority, priority(ti), and a period, period(ti), in which
ti must perform its computation. We assume that each thread completes its task
once per period (i.e., all deadlines are met). In addition, our abstraction of time is
a hyperperiod H, which is the least common multiple of the periods of all threads.
Observe that each thread ti, 1 ≤ i ≤ n, must execute ai , H/period(ti) times
per hyperperiod H. Thus, we reduce a concurrent program with heterogeneous
periods to a concurrent program with a single period, namely H, by extending
the concurrent program to have ai copies of ti, where each copy has the same
priority. For the remainder of the paper, all threads are assumed to have the
same period H. Finally, each thread (copy) becomes schedulable (i.e., is awoken)
non-deterministically.

u u'

⊕

u'

u

⇒

Fig. 1. Sharing stacks u and u′.

The key insight behind our reduction is
that because of priority preemptive schedul-
ing, all running threads can share the same
stack. Consider the case where a thread t
is executing with current stack contents u,
and another thread t′, such that priority(t) <
priority(t′) is awoken non-deterministically.
At this point, and with a traditional non-
deterministic scheduler, a concurrent pro-
gram must maintain two active and distinct
stacks, namely u and u′, because t′ could be
preempted at any time to allow t to resume execution. However, with priority
preemptive scheduling, it is guaranteed that t′ will not be preempted by t, or by
any thread t′′ where priority(t′′) < priority(t′). Thus, t′ can share the same stack
at t (see Fig. 1).

The reduction is then as follows. First, the priority preemptive scheduler
is made explicit by adding to the program the code shown in Fig. 2. The
Hyperperiod procedure in Fig. 2 executes each thread one time, choosing non-
deterministically a sleeping thread to execute via the choose operation, which
returns an index that satisfies the supplied guard. An infinite cycle of hyperperiods
is simulated by invoking Hyperperiod in a non-terminating loop. During each
hyperperiod, the scheduler has two tasks: (i) it must ensure that each thread t
is awoken so that t can execute its task; and (ii) the wake-ups should happen
non-deterministically. The first task is handled by defining a Boolean array of
size n, where each entry in the array denotes whether a thread t is sleeping or not.
(In Fig. 2, the array is named Sleeping.) The scheduler loops until all threads
have been awoken and completed their periodic task.
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// Sleeping flags

Sleeping[n] = {true,...,true};
// Thread priorities

Priorities[n] = ...;

// Thread entry points

Threads[n] = ...;

// 0 => choose any thread

Prio = 0;

void Hyperperiod() {
while (

∨
iSleeping[i]) {

j = choose j: Sleeping[j];

Sleeping[j] = false;

Threads[j].entry();

}
}

// Wake-up higher-priority thread

void Schedule() {
// Save current priority

int prevPrio = Prio;

for i in (1..n) {
if (Priorities[i] <= Prio)

continue;

if (nondet() && Sleeping[i]) {
Prio = i;

Sleeping[i]=false;

Threads[i].entry();

break;

}
}
// Restore priority

Prio = prevPrio;

}

Fig. 2. Pseudo-code to execute one hyperperiod.

The second task is handled by performing a source-to-source transformation
on the code of each thread so that it non-deterministically invokes Schedule

before each statement st. That is, if a thread is comprised of program statements
st1,. . . ,stk, then the transformed program will have program statements st′1,. . . ,st′k,
where each st′ is defined as: st′ , Schedule(); st. In the definition of Schedule
in Fig. 2, the function nondet non-deterministically returns true or false. When
Schedule is invoked, the code of a higher-priority thread ti′ than the thread ti
whose code is currently executing may be invoked, which corresponds to ti being
preempted by ti′ . Before executing a thread ti by invoking Threads[i].entry(),
the flag Sleeping[i] is set to false to ensure that ti is executed exactly once per
hyperperiod H.

Note that non-determinism plays a second role, namely, to enumerate all
possible orderings of same-priority threads. With priority-preemptive scheduling,
a thread will only be preempted by a higher -priority thread. If two threads
t and t′ have the same priority, and because our programming model uses
non-deterministic wakeups, schedules in which t executes before t′ and vice
versa must both be considered. Non-determinism allows for both schedules to
occur. Moreover, in the finite-data case that is discussed next, pushdown-system
reachability algorithms naturally consider both schedules.

By reducing a concurrent program with priority preemptive scheduling to a
sequential program, existing automated techniques for sequential programs, such
as model checkers [6, 7] and code-coverage techniques [1–3], can be applied to
the generated sequential program. Of practical interest are the automatic code
coverage tools [1–3] because a major component of certification is coverage.
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Table 1. The encoding of an ICFG’s edges as PDS rules.

Rule Control flow modeled

〈p, n1〉 ↪→ 〈p, n2〉 Intraprocedural edge n1 → n2

〈p, nc〉 ↪→ 〈p, ef rc〉 Call to f , with entry ef , from nc that returns to rc
〈p, xf 〉 ↪→ 〈p, ε〉 Return from f at exit xf

3 Reduction for Multi-PDSs

For the important case of a finite-data programs, each thread can be modeled
by a pushdown system (PDS), and the program as a multi-PDS [8–10]. A PDS
naturally captures the interprocedural control flow of a thread (see Tab. 1), and
a mulit-PDS the interleaved execution of a finite set of threads (PDSs). We will
use the term thread and PDS interchangeably.

Definition 1. A pushdown system (PDS) is a tuple P = (P, Γ, γ0, ∆), where
P is a finite set of control states, Γ is a finite stack alphabet, γ0 is the initial stack
symbol of P specifying the entry point of the modeled thread, and ∆ ⊆ (P ×
Γ )× (P ×Γ ∗) is a finite set of rules. A rule r ∈ ∆ is denoted by 〈p, γ〉 ↪→ 〈p′, u′〉.
A PDS configuration 〈p ∈ P, u ∈ Γ ∗〉 is a control state along with a stack. ∆
defines a transition system over the set of all configurations. From c = 〈p, γu〉, P
can make a transition to c′ = 〈p′, u′u〉, denoted by c⇒ c′, if there exists a rule
〈p, γ〉 ↪→ 〈p′, u′〉 ∈ ∆. The reflexive transitive closure of ⇒ is denoted by ⇒∗.

In general, a concurrent program consists of a set of PDSs P1, . . . ,Pn that
share a common set of control states P . For PDS synchronization, any finite-state
synchronization protocol can be embedded in P . Because in §4 we consider
protocols for addressing priority-inversion in finite-data programs, we will require
a mechanism to associate priorities to sections of code that manipulate shared
resources (i.e., critical sections). A natural choice—and one common to real-time
programming—is to use locks to synchronize execution of critical sections. Thus,
we will facilitate these extensions by distinguishing the set L, a finite set of
non-reentrant locks.1 We now require a mechanism to specify when a thread
acquires and releases a lock. We assume that for a PDS P = (P, Γ, γ0, ∆) and for
each lock l in L, the following subsets of ∆ are defined:

– acq(l ∈ L,P) is the set of rules that acquire l;
– rel(l ∈ L,P) is the set of rules that release l;
– acq(P) ,

⋃
l∈L acq(l,P) is the set of rules that acquire any lock;

– rel(P) ,
⋃
l∈L rel(l,P) is the set of rules that release any lock; and

– nolock(P) , ∆ \
(
acq(P) ∪ rel(P)

)
is the set of non-locking rules.

1 Reentrant locks that are acquired and released at procedure boundaries are reducible
to non-reentrant locks [11].
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Altogether, a concurrent program consists of a global state space P , a finite set
of threads P1, . . . ,Pn, and a finite set of locks L. Because a concurrent program
consists of a finite number of threads P1, . . . ,Pn, we assume that the threads are
sorted according to their priority.

Definition 2. A multi-PDS is a tuple Π = (P, p0,P1, . . . ,Pn,L), where P is
the shared control state of each PDS Pi = (P, Γi, γ

i
0, ∆i), 1 ≤ i ≤ n; p0 ∈ P is

the initial control state; and L = {l1, . . . , l|L|} is a finite set of |L| non-reentrant
locks. A global configuration 〈p, u1, . . . , un, ō〉 is a tuple consisting of:

– a control state p ∈ P modeling the global state of Π;
– a stack ui ∈ Γ ∗i for each PDS Pi, 1 ≤ i ≤ n; and
– an ownership array ō of length |L|, in which each entry indicates the

owner of a given lock: for each 1 ≤ j ≤ |L|, ō[j] ∈ {0, 1, . . . , n} indicates the
identity i of the PDS Pi that holds lock lj (0 signifies that lj is free). Given
ō, a state change in which Pi acquires lock lj is denoted by ō[j 7→ i], and a
state change in which Pi releases lock lj—setting lj ’s owner to 0—is denoted
by ō[j 7→ 0]. Let ō0 denote ō with all entries set to 0.

The set of all global configurations is denoted by G. The initial global con-
figuration is g0 = 〈p0,>γ10 , . . . ,>γn0 , ō0〉, where > is a unique stack symbol
that is not a member of Γi, 1 ≤ i ≤ n; >γi0 is the initial stack contents of
PDS Pi, 1 ≤ i ≤ n; and ō0 is the initial ownership array that maps each entry
ō[i], 1 ≤ i ≤ |L|, to 0 (i.e, each lock is free). Pi is active in global configura-
tion g, denoted active(g,Pi) if its stack contents ui 6= >γk0 ∨ ε, which stipulates
that Pi is neither sleeping—ui 6= >γi0—nor has finished execution—ui 6= ε.
The priority of g, denoted priority(g), is the maximum of the active threads:
priority(g) = max({priority(Pi) | active(g,Pi)}).

A global configuration g = 〈p, u1, . . . , un, ō〉 can be thought of as representing
the set of (local) PDS configurations {〈p, ui〉 | 1 ≤ i ≤ n}. For the initial global
configuration g0 = 〈p0,>γ10 , . . . ,>γn0 , ō0〉, the special stack symbol > denotes
that each thread is waiting to be awoken by the priority preemptive scheduler.

Interleaved execution of Π is defined by the transition relation  ⊆ G × G
on global configurations. As is customary, we will use g  g′ to denote that
(g, g′) ∈ . Intuitively, there are two types of transitions that Π can perform
to go from g to g′. The first transition type is that a sleeping thread is awoken
non-deterministically. Recall that in the initial global configuration g0, the stack
contents of each PDS Pi, 1 ≤ i ≤ n, is >γi0. The special stack symbol > denotes
that Pi is sleeping. For Pi to be awoken, the special stack symbol > must be
popped from the top of Pi’s stack. We observe that at a global configuration g
where Pi is sleeping, delaying the wake-up of Pi until after all currently-running
higher-priority threads Pi′ , priority(Pi) ≤ priority(Pi′), have finished execution
results in the same set of configurations being reachable from g—{g′ | g  ∗ g′}—
modulo>, where modulo> denotes that the stacks >γi0 and γi0 are considered
equal. The reasoning is straightforward: even if Pi were to be awoken, it would
not be able to perform any computation steps until Pi′ has finished execution, at
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which point non-determinism in  would allow Pi to be awoken resulting in the
same set of reachable configurations modulo>.

The second transition type is that the highest-priority thread that has already
been awoken is able to update the global state and its (local) stack. Only the
highest-priority thread is able to make a transition because the programming
model uses a priority preemptive scheduler. We now formally define exactly when
g  g′ holds for Π.

1. 〈p, u1, . . . ,>γi0, . . . , un, ō〉  〈p, u1, . . . , γi0, . . . , un, ō〉 iff priority(g) <
priority(Pi). Thread Pi is only awoken if Pi has a higher-priority than the
currently executing thread.

2. 〈p, u1, . . . , γiui, ui+1, . . . , un, ō〉 〈p′, u1, . . . , u′ui, ui+1, . . . , un, ō
′〉 iff

priority(g) = priority(Pi) and ri = 〈p, γ〉 ↪→ 〈p′, u′〉 ∈ ∆i and:
(a) If ri ∈ nolock(Pi), then ō′ = ō. The transition enabled by ri does not

update the state of any lock lj ∈ L.
(b) If ri ∈ acq(lj ∈ L,Pi) and ō[j] = 0, then ō′ = ō[j 7→ i]. The lock lj must

be free in g, and is owned by Pi in g′.
(c) If ri ∈ rel(lj ∈ L,Pi) and ō[j] = i, then ō′ = ō[j 7→ 0]. The lock lj must

be owned by Pi in g, and is free in g′.

The reflexive transitive closure of  is denoted by  ∗.

3.1 Model Checking Problem

As is common in PDS-based model checking [12, 13, 8, 9], the problem of interest
is to compute reachability.

Problem 1. Given Π and g ∈ G, compute the set of forwards reachable configu-
rations G′ = {g′ | g  ∗ g′}.
A method to solve Problem 1 would also solve the problem of full code coverage
for finite-data programs with priority preemptive scheduling, and, in addition,
would provide full path coverage.

Note that we restrict ourselves to reachability from a single global configuration
g not for any technical reason, but because of the nature of embedded software.
As discussed in §2, the target application consists of a finite set of periodic tasks
(threads), and it is assumed that each thread has the same period and completes
one task each period (i.e., makes its deadline). Hence, the concurrent program
consists of an infinite cycle of periods, where for the finite-data case, the only
difference between starting configurations is the initial state p, which is p0 at
program onset. Given a black box to solve Problem 1 (i.e., to compute the set
of single-period reachable configurations G′ from g ∈ G), then the set of all
reachable configurations can be computed via repeated queries—there are only a
finite number of states p to start from because P is finite, the stack of each PDS
Pi always begin in the initial stack >γi0, and a successive period can only begin
from a state p in the set {p | 〈p, ε1, . . . , εn, ō0〉 ∈ G′}.2

2 We assume that each thread releases its acquired locks before completing the desired
task. Otherwise, one would also have to possibly enumerate over the ownership arrays
when starting a new period as well.
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Problem 1 is decidable for Π, and shown by reduction to context-bounded
analysis (CBA) [8, 14].3

Theorem 1. Given Π = (P, p0,P1, . . . ,Pn,L) and g ∈ G, the set G′ = {g′ |
g  ∗ g′} of single-period forwards reachable configurations from g is computable
in at most O(2n) execution contexts.

Proof. A thread Pi can preempt another thread Pj at most one time because
once Pi preempts Pj , by definition Pj cannot restart execution until Pi has
finished execution. Thus, the number of preemptions is bounded by O(n), and
the number of execution contexts is then bounded by O(2n), where the factor of
2 accounts for the restarting of previously preempted threads. ut

3.2 A More Efficient Reduction

We now present a reduction from a multi-PDS Π with priority preemptive
scheduling to a single PDS PΠ , the benefit of which is that all of the known
existing techniques for model checking PDSs, including those for expressive logics
both linear and branching [12, 15], can be used for model checking multi-PDSs
with priority preemptive scheduling. Moreover, the most efficient algorithms for
CBA [14] require creating a copy of the global state space for each execution
context, resulting in an algorithm to solve Problem 1 with complexityO(|P×Ō|2n),
where Ō is the finite set of all ownership arrays.4 Because of priority preemptive
scheduling, our reduction avoids the need to create copies, resulting in a complexity
on the order of O(|P × Ō|22n), where the 2n factor accounts for the n bits in
the array Sleeping that track whether a thread has run during the (current)
hyperperiod. In other words, our reduction adds n bits, whereas [14] would add
n copies of P . (We note that [14] solves a harder problem because it allows for
the non-deterministic preemption of any thread, i.e., a stack must be maintained
for each thread.)

Combining P1,. . . ,Pn, and ownership arrays. The first part of the reduc-
tion follows naturally from the definition of Π, G, and  from §3. Recall that
the PDSs of Π and, in particular, their constituent stack contents in a configura-
tion g = 〈p, u1, . . . , un, ō〉 ∈ G are sorted based on priority. Because of priority
preemptive scheduling, one can view g as having a stack of stacks. For example,
consider a concurrent program Π3 that consists of three PDSs P1, P2, and P3

and set of locks L3, and let g3 = 〈p, u1, u2, u3, ō〉 be a configuration of Π3. To
represent g3 as a single-PDS configuration c3, we must rearrange the stacks into a
single stack as follows: c3 = 〈p, u3u2u1〉. We must also store the ownership array

3 CBA is a program analysis that only considers executions with a bounded number
of execution contexts, where an execution context is one continuous (sequential)
execution of a single thread (albeit there can be many execution contexts of a thread
due to context switching).

4 Ō is finite because there are a finite number of locks and threads (indices), and can
thus be encoded in the control state of a PDS.
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ō somewhere in c3, and the natural solution is to pair it with the control state p,
yielding c3 = 〈(p, ō), u3u2u1〉. Of course, if a thread has yet to be awoken (e.g.,
u3 = >γ30), then it must not be included in c3, for otherwise threads of lesser
priority (e.g., P1 and P2) would not be able to make progress.

Our first step towards defining PΠ is to define the PDS Pn1 that models
the execution of PDSs P1, . . . ,Pn of Π. Moreover, from the above example
configuration c3, we can see that the ownership array ō must be encoded in the
control state, and the PDS rules of Pn1 must perform updates to the embedded
ownership array. With Ō being the set of all ownership arrays, we define for each
PDS Pi, 1 ≤ i ≤ n, the PDS P ′i whose PDS rules have been modified to account
for ownership arrays as follows:

Definition 3. Given a PDS Pi and set of ownership arrays Ō, define P ′i as
follows: P ′i = (P × Ō, Γi, γ

i
0, ∆

′
i), where P × Ō encodes an ownership array in

each control state of P ′i, Γi and γi0 are unchanged from the definition of Pi, and
∆′i contains a set of rules for each rule r = 〈p, γ〉 ↪→ 〈p′, u′〉 ∈ ∆i, where each
set is r extended to update ownership arrays, defined as follows:

– If r ∈ acq(lj ∈ L,Pi), then ∆′i contains the set of rules: {〈(p, ō), γ〉 ↪→
〈(p′, ō′), u′〉 | ō ∈ Ō ∧ ō[j] = 0 ∧ ō′ = ō[j 7→ i]}.

– If r ∈ rel(lj ∈ L,Pi), then ∆′i contains the set of rules: {〈(p, ō), γ〉 ↪→
〈(p′, ō′), u′〉 | ō ∈ Ō ∧ ō[j] = i ∧ ō′ = ō[j 7→ 0]}.

– If r ∈ nolock(Pi), then ∆′i contains the set of rules: {〈(p, ō), γ〉 ↪→
〈(p′, ō), u′〉 | ō ∈ Ō}.

Definition 4. Given Π = (P, p0,P1, . . . ,Pn,L), and for each Pi =
(P, Γi, γ

i
0, ∆i), 1 ≤ i ≤ n, define P ′i = (P × Ō, Γi, γ

i
0, ∆

′
i) according to Defn. 3,

then the PDS Pn1 that models the execution of Π’s constituent PDSs is defined
as: Pn1 = (P × Ō, Γn1 =

⋃n
i=1 Γi, γ

1
0 , ∆

n
1 =

⋃n
i=1∆

′
i).

From Defn. 4, we can see that a control state (p, ō) of Pn1 is a pair that models
a control state p ∈ P from Π, as well as an ownership array ō. The stack alphabet
is merely the union of the stack alphabets of the constituent PDSs. By defining
P ′i for PDS Pi, the set of PDS rules have been modified to properly update
the ownership array when a PDS transition is made. Overall, Pn1 models the
execution of each PDS, as well as tracking the ownership status of each lock l ∈ L.
What is missing is the priority preemptive scheduler that non-deterministically
awakens threads and schedules the highest-priority active thread.

Explicit Scheduler. The scheduler shown in Fig. 2 is finite-data (i.e., a Boolean
program [16]), and thus convertible into a PDS [17], which we will refer to as
Psched = (Psched, Γsched, γH , ∆sched).

– Psched = {1 . . . n} × {0, 1}n is a pair where the first component holds the
current value of Prio, and the second component is the Boolean array
Sleeping.5

5 The number of distinct priorities is bounded by n because there are only n threads.
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– Γsched = {1 . . . n} × Locs is a pair where the first component is the current
value of prevPrio and the second component is the set of program locations
for the code in Fig. 2.

– γH is the program location for the start of the Hyperperiod procedure in
Fig. 2.

– ∆sched is defined using standard Boolean program-to-PDS conversion [17].

Combining Pn1 with Psched. We now define from Pn1 and Psched, the PDS PΠ
whose transition system ⇒ simulates the multi-PDS Π with transition system  .
Observe that the transition system of PΠ must include both Pn1 and Psched, and
thus to the first degree the two PDSs are unioned together. The only modification
to either PDS is to stitch the set of control states together, and reflect this join
in the final set of PDS rules of PΠ .

Definition 5. Given Pn1 = (Pn1 , Γ
n
1 , γ,∆

n
1 ) and Psched = (Psched, Γsched,

γH , ∆sched), define PΠ = (PΠ , ΓΠ , γH , ∆Π), where

– PΠ = Psched × Pn1 is a pair where each component holds a value from its
constituent set of control states. Recall that Psched = {1 . . . n} × {0, 1}n is a
priority and an array that determines whether a PDS is sleeping or not, and
Pn1 = P × Ō is P , the original set of control states of Π, paired with Ō, the
set of ownership arrays.

– ΓΠ = Γn1 ∪ Γsched is the union of the constituent stack symbols.
– γH is the program location for the start of the Hyperperiod procedure in

Fig. 2.
– ∆Π consists of the following two sets of rules:

1. For each rule r = 〈(p, ō), γ〉 ↪→ 〈(p′, ō′), u′〉 ∈ ∆n
1 and control state

(ς, b̄) ∈ Psched, ∆Π contains the set of rules:

{〈(ς, b̄, p, ō), γ〉 ↪→ 〈(ς, b̄, p′, ō′), u′〉, 〈(ς, b̄, p, ō), γ〉 ↪→ 〈(ς, b̄, p, ō), γn5γ〉}

In the set, the first rule is r extended with a control state from Psched.
The control state is not modified as the rules from ∆n

1 do not modify
the state of the scheduler. The second rule implements a function call
to Schedule in Fig. 2, which will non-deterministically invoke the code
of a higher-priority thread or return. Moreover, from a configuration
〈(ς, b̄, p, ō), γu〉 of PΠ , PΠ non-deterministically chooses to simulate Pn1
or Psched depending on which rule is invoked.

2. For each rule r = 〈(ς, b̄), γ〉 ↪→ 〈(ς ′, b̄′), u′〉 ∈ ∆sched and control state
(p, ō) ∈ Pn1 , ∆Π contains the set of rules:

{〈(ς, b̄, p, ō), γ〉 ↪→ 〈(ς ′, b̄′, p, ō), u′〉}.

These rules combine the rules of Psched with the control states Pn1 of
Pn1 . Similar to the above set of rules, the control state of Pn1 is “passed
through” unmodified because the scheduler does not affect that control
state of Pn1 .
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3.3 Correctness

Correctness of the reduction is established by defining a weak bisimulation
between the transition systems of Π and PΠ . Weak bisimulation is used because
in PΠ , the scheduler is made explicit whereas it is implicit in the definition of
 for Π. Thus, configurations of PΠ should only be considered visible if the
top-of-stack symbol is not a member of Γsched. Formally, for a configuration
c = 〈(ς, b̄, p, ō), γu〉 of PΠ , we define vis(c) = γ /∈ (Γsched \ {γH}), and extend
vis to sets of configurations in the usual way. Finally, we define the transition
relation ⇒vis between visible configurations of PΠ as follows:c⇒vis c

′ | vis(c) ∧ vis(c′) ∧ ∃c1, . . . , ck : c⇒ c1 ⇒ . . .⇒ ck ⇒ c′
∧

1≤i≤k

¬vis(ci)


We define the relation �⊆ G×vis(C) from the set G of all global configurations

of Π to the set vis(C) of all visible configurations of PΠ as follows: g � c iff g =
〈p, u1, . . . , un, ō〉 ∧ c = 〈(priority(g), b̄, p, ō), un ◦ · · · ◦ u1〉, where b̄[i] , ui = >γi0,
◦ denotes stack concatenation with the exception that the “sleeping stack” >γi0
for thread Pi is considered a neutral element with respect to concatenation.
In addition, we special case the initial global configuration by defining g0 �
〈(0, b̄, p0, ō0), γH〉 (note that b̄ is true in each position because ui = >γi0 for all i
in g0).

Theorem 2. The binary relation �⊆ G × vis(C) is a weak bisimulation between
the transition systems (G, ) and (C,⇒vis) of Π and PΠ , respectively.

Proof (Sketch). The proof proceeds by showing that for g � c and g  g′, then
there exists a configuration c′ ∈ vis(C) such that c⇒vis c

′ and g′ � c′. Likewise, if
g � c and c⇒vis c

′′, then there exists a global configuration g′′ such that g  g′′

and g′′ � c′′. The complete proof is given in App. A. ut

4 Priority Inversion

In systems with priority preemptive scheduling, a situation known as priority
inversion occurs when a higher-priority thread Ph cannot make progress because
it waits on a resource (lock) currently owned by a lower-priority thread Pl. Two
protocols for addressing priority inversion are Priority Ceiling Protocol (PCP) and
Priority Inheritance Protocol (PIP). We next define each protocol, and show that
Problem 1 is (i) decidable for PCP-extended semantics, (ii) undecidable in general
for PIP-extended semantics, and (iii) decidable for PIP-extended semantics when
lock usage is properly nested.

4.1 Priority Ceiling Protocol

Priority Ceiling Protocol (PCP) statically associates with each shared resource
(lock) the priority of the highest-priority thread that may acquire that resource.
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When a thread acquires a resource, the thread’s priority is temporarily set to the
priority of the resource, and is restored when the resource is released.

A multi-PDS Π is extended as follows to define the PCP-extended semantics:

1. Π is equipped with a map ML from (sets of) locks to (sets of) priorities.
2. For a global configuration g = 〈p, u1, . . . , un, ō〉, define LocksHeld(Pi) = {lj |
ō[j] = i} to be the set of locks held by Pi at configuration g.

3. The PCP-extended priority of Pi, denoted by priorityPCP(Pi), is the maximum
of Pi’s statically determined priority and of the set of locks held by Pi:
priorityPCP = max(priority(Pi),ML(LocksHeld(Pi)).

We now show that for the PCP-extended semantics, Problem 1 remains
decidable. Decidability follows from Thm. 1. Though not presented here, it is also
possible to extend the construction of PΠ to support PCP-extended semantics,
which would benefit from the improved complexity.

Theorem 3. For concurrent program Π = (P, p0,P1, . . . ,Pn,L,ML) with pri-
ority preemptive scheduling and PCP-extended semantics, Problem 1 is decidable.

Proof. Thm. 3 follows from Thm. 1. PCP-extended semantics reduces the number
of threads that can preempt the currently executing thread Pi: if Pi has acquired
a lock lj such that ML(lj) > priority(Pi), then fewer threads can preempt Pi
until Pi releases lj . Thus, the number of execution contexts remains bounded by
O(2n) because the number of valid schedules (i.e., preemptions) of PCP-extended
semantics is a subset of non-extended semantics, and the problem is decidable. ut

4.2 Priority Inheritance Protocol

Priority Inheritance Protocol (PIP) temporarily elevates the priority of a low-
priority thread that owns a resource required by a high-priority thread to that
of the high-priority thread until it has released the resource. The PIP-extended
semantics is defined by extending Π in the following ways:

1. Associated with each lock lj is a set Waiting(lj) of threads that are waiting
to acquire lj .

2. The PIP-extended priority of thread Pi, denoted by priorityPIP(Pi), is defined
as the maximum of Pi’s statically determined priority and of the threads
that wait on a lock owned by Pi:

priorityPIP(Pi) = max(priority(Pi), priority(Waiting(LocksHeld(Pi)))).

We consider two cases, that of non-nested and nested lock usage, where lock
usage is said to be properly nested if for all program paths, locks are released in
the opposite order in which they were acquired. We show that Problem 1 for a
concurrent program with PIP-extended semantics is undecidable in general, and
decidable for properly nested locks.
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Non-nested locks. When lock usage is not restricted to proper nesting, Prob-
lem 1 for a concurrent program with PIP-extended semantics is undecidable. The
proof of undecidability follows from Kahlon et al. [9]. Consider a 2-PDS with
three locks (P, p0,P1,P2, {l1, l2, l3}), where P2 has a higher priority (2) than P1

(1). One way to show that reachability analysis is undecidable in general for such
a system is to develop a scenario where P1 and P2 move in lock-step, which
would allow the 2-PDS to determine the emptiness of the intersection of two
context-free languages—a well-known undecidable problem. To make P1 and P2

move in lock-step we must use the PIP-extended semantics. Namely, the PDSs
need to acquire and release locks in such a fashion that P2, which has a higher
priority than P1, repeatedly needs to acquire a lock that is held by P1. Thus, P1

will repeatedly inherit P2’s priority so that it can release the lock.
In [9], this is accomplished by acquiring and releasing the three locks l1–3 in

a cycle using hand-over-hand locking. Assume that P1 currently owns l1, then
P1 will first acquire l2 before releasing l1, and subsequently will acquire l3 before
releasing l2, and so on ad infinitum. In the same scenario, assume that P2, which
in our programming model has a higher priority than P1, currently owns l2 and
acquires and releases the locks in the same fashion. We can see then that P2 will
acquire l3, release l2, and then attempt to acquire l1, which causes P1 to inherit
the priority of P2. However, instead of reaching a state when P1 releases the
resources needed by P2, P1 acquired l2 and then releases l1, which will cause P2

to again wait on P1 then next time it completes the cycle and needs l2. The end
result is that P1 and P2 chase each other around the lock cycle, which leads to
an unbounded number of execution contexts and the ability to solve undecidable
problems.6

Theorem 4. For concurrent program Π = (P, p0,P1, . . . ,Pn,L) with priority
preemptive scheduling and PIP-extended semantics, Problem 1 is undecidable.

Proof. The proof follows from the proof of Theorem 8 [9, Section 11]. ut

Nested locks. When lock usage is properly nested, Problem 1 is decidable for
the PIP-extended semantics. The proof is by reduction to CBA.

Theorem 5. For concurrent program Π = (P, p0,P1, . . . ,Pn,L) with priority
preemptive scheduling, PIP-extended semantics, and nested locks, Problem 1 is
decidable.

Proof. Because lock usage is properly nested, the number of locks held by a lower-
priority thread Pl is monotically decreasing each time Pl inherits the priority of
higher-priority thread Ph. Thus, the number of times Pl can inherit a priority is
bounded by |L|, the number of locks in L. From Thm. 1, each thread Pi can still
perform at most one preemption. As we have just shown, once Pi is executing,
it can cause a lower-priority thread Pl to inherit its priority at most |L| times.

6 For the reader concerned with reaching a configuration where P1 owns l1 and P2

owns l2, refer to [9, Appendix].
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Thus, for n threads there is at most one preemption and |L| inheritances per
thread, where each gives rise to two execution contexts for an upper bound of
O(2n|L|). ut

5 Related Work

Lal and Reps [14] gave a reduction from analysis of concurrent programs under
a context bound to analysis of sequential programs. Unlike their reduction, our
reduction is sound and complete, i.e., it is not an under-approximation aimed
at bug-finding but a technique for verifying properties of concurrent real-time
programs.

Jhala and Majumdar [18] showed that interprocedural analysis of concurrent
asynchronous programs is decidable. Whereas they take advantage of asynchrony,
we take advantage of having a priority preemptive scheduler. Atig et al. [19]
generalized the asynchronous programming model to allow for a finite number
of priority levels. They show that reachability analysis of the more general
programming model is decidable by reduction to the reachability problem of Petri
nets with inhibitor arcs. While their model is more general, our reduction to a
single-PDS is more efficient and we consider important protocols for addressing
priority inversion.

KISS [20] coined the merging of two-threaded programs into single-threaded
programs. Our scheduler concretization is the generalization of their technique
where thread T1 non-deterministically invokes thread T2 and the return to T1 is
also non-deterministic. We take advantage of the properties of priority preemptive
scheduling to show that the model checking problem is in fact decidable.

Lindstrom et al. [21] use Java PathFinder (JPF) [22] to model check Real-Time
Java [23]. While they also consider priority preemptive scheduling, and other
RTSJ details not covered here, their approach is a bug-finding approach because
JPF is an explicit state model checker that in general cannot explore the entire
state space.

6 Concluding Remarks

Our reduction shows that a concurrent real-time program is, in essence, a se-
quential program under the covers. By reducing the multi-PDS Π to a PDS PΠ ,
we are able to leverage efficient algorithms for sequential program analysis to an
important class of concurrent ones. A limitation of our approach is the lack of a
model of time. For future work, we intend to consider how timed automata [24]
could be integrated with Π, and how it would affect the reduction to PΠ .
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A Proof of Thm. 2

Theorem 2. The binary relation �⊆ G × vis(C) is a weak bisimulation between
the transition systems (G, ) and (C,⇒vis) of Π and PΠ , respectively.

Proof. The proof is in two parts on g � c.

1. Show that ∀g′ : g  g′.∃c′ : c⇒vis c
′ ∧ g′ � c′.

2. Show that ∀c′′ : c⇒vis c
′′.∃g′′ : g  g′′ ∧ g′′ � c′′.

We first observe that the initial global configuration g0 and the initial config-
uration of PΠ , c0 = 〈(0, b̄, p0, ō0), γH〉, are in � by definition. The only transition
that Π can make from g0 is to wake up a PDS by popping > from one of the
stacks >γi0, 1 ≤ i ≤ n. From configuration c0, the only visible transition is one
where the entry procedure Pi is called (i.e., the call to Threads[j].entry() in
Fig. 2). Thus, items 1 and 2 above are satisfied for g0 � c0. Only g0 and c0 are a
special case, and we now consider items 1 and 2 for any two configurations g and
c such that g � c and g 6= g0 and c 6= c0.

Part 1. We perform a case analysis on the type of the transition that leads g to
g′ (see items 1 and 2 on page 7).

1. g = 〈p, u1, . . . , ui′ , . . . ,>γi0, . . . , un, ō〉  g′ =
〈p, u1, . . . , ui′ , . . . , γi0, . . . , un, ō〉 by thread wake-up. Assume that
priority(g) = i′, and thus for each Pk, i′ ≤ k ≤ n, Pk is inactive and
its stack contents reflect that Pk is either sleeping—uk = >γko or has
completed execution—uk = ε. For Pi, ui = >γi0 because Pi is awoken. By
definition, we then have the following:
– g � c = 〈(priority(Pi′), b̄, p, ō), ui′ ◦ · · · ◦ u1〉; and
– b̄[i] = true;
– g′ � c′ = 〈(priority(Pi), b̄′, p, ō), γi0 ◦ · · · ◦ ui′ ◦ · · · ◦ u1〉; and
– b̄′ = b̄[i 7→ false].

We argue that c ⇒vis c
′. The changes from c to c′ are that the priority

increases from priority(Pi′) to priority(Pi), that Pi is recorded as awoken by
setting b̄[i] to false, and that γio is pushed onto the stack. From the definition
of PΠ , at configuration c, PΠ can invoke the procedure Schedule. The
switch statement for Schedule—or rather the PDS that implements the
switch statement—will jump to the priority(Pi′) case, at which point the
code non-deterministically chooses to awaken a higher-priority thread, and
thus can invoke the entry point of PDS Pi. In doing so, the Boolean array
Sleeping, which is represented in PΠ via b̄ is updated at position i to be
false; the global priority is set to priority(Pi), and the entry function of Pi
is invoked pushing γi0 onto the stack. All of the steps discussed result in
non-visible configurations except for the final step that invoked Pi’s entry
function. Thus, c⇒vis c

′.
2. g = 〈p, u1, . . . , γiui, . . . , un, ō〉  g′ = 〈p′, u1, . . . , u′iui, . . . , un, ō′〉 by PDS

rule ri = 〈p, γi〉 ↪→ 〈p′, u′i〉. By definition we have the following:
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– g � c = 〈(priority(Pi), b̄, p, ō), γiui ◦ · · · ◦ u1〉;
– g′ � c′ = 〈(priority(Pi), b̄, p′, ō′), u′iui ◦ · · · ◦ un〉; and
– c ⇒vis c

′ by r = 〈(i, b̄, p, ō), γi〉 ↪→ 〈(i, b̄, p′, ō′), u′i〉 ∈ ∆Π , where r
originates from ri = 〈p, γi〉 ↪→ 〈p′, u′i〉 ∈ ∆i.

Part 2. We perform a case analysis on the type of made transition that leads c
to c′ (see items 1 and 2 on page 10).

1. c = 〈(i, b̄, p, ō), ui ◦ · · · ◦u1〉 ⇒vis c
′ = 〈(i′, b̄′, p, ō), γi′0 ◦ui ◦ · · · ◦u1〉. Similar to

case 1 above, Pi′ has been awoken non-deterministically. In c, it must be the
case that all PDSs with priority greater than priority(Pi) are either sleeping
or have finished execution, and that Pi′ must be sleeping because it is the
thread that is awoken. We have the following:
– g = 〈p, u1, . . . , ui, . . . ,>γi

′

0 , . . . , un, ō〉 � c because b̄[i′] = true;
– g′ = 〈p, u1, . . . , ui, . . . , γi

′

0 , . . . , un, ō〉 � c′;
– g  g′

We note that there can be many g and g′ that map to c and c′, respectively,
because of the definition of ◦; however, it is only necessary to show that there
exists at least one.

2. c = 〈(i, b̄, p, ō), γiui◦· · ·◦u1〉 ⇒vis c
′ = 〈(i, b̄, p′, ō′), u′iui◦· · ·◦u1〉. In this case,

the transition simulates PDS Pi making a transition via rule ri = 〈p, γ〉 ↪→
〈p′, u′〉 ∈ ∆i. The control-state component (i, b̄) is unchanged because only
transitions due to rules from Psched update that component. Because the
priority at c and c′ is i, then all PDSs Pi′ such that priority(Pi) <= priority(Pi′)
must have either completed execution or remain sleeping. Similar to case 2
above, we have:
– g = 〈p, u1, . . . , γiui, . . . , un, ō〉 � c;
– g′ = 〈p′, u1, . . . , u′iui, . . . , un, ō′〉 � c′; and
– g  g′ by ri ∈ ∆i.

We note that there can be multiple global configurations g that map to c due
to the definition of ◦. However, in each case, g′ is reachable via the transition
enabled by ri.

By completing the proofs of parts 1 and 2 we complete the proof of Thm. 2.
ut
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