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Abstract

Because debugging concurrent software failures is so challenging,
there has been much interest in developing analyzes to detect con-
currency bugs that arise because of data races, atomicity violations,
execution omission, etc. However, determining whether reported
bugs are in fact real, and understanding how these bugs lead to
incorrect behavior, remains a labor-intensive process. This paper
proposes a novel dynamic analysis that automatically produces the
causal path of a concurrent failure leading from the root cause to
the failure. Given two schedules, one inducing the failure and the
other not, our technique collects traces of the two executions, and
compares them to identify salient differences. The causal relation
between the differences is disclosed by leveraging a novel slicing
algorithm called dual slicing that slices both executions alterna-
tively and iteratively, producing a slice containing trace differences
from both runs. Our experiments show that dual slices tend to be
very small, often an order of magnitude or more smaller than the
corresponding dynamic slices; more importantly, they enable pre-
cise analysis of real concurrency bugs for large programs, with rea-
sonable overhead.

1. Introduction

Debugging concurrent software is a challenging exercise because
of non-determinism induced by scheduling decisions and thread
interactions. There has been much recent interest on developing
techniques to identify potential concurrency bugs such as data
races [2, 14, 17, 18, 27], atomicity violations [5, 7, 15, 22, 25],
or deadlocks [9]. Common to these approaches is a means to check
that important properties sufficient to guarantee the absence of a
concurrency bug are maintained. For data race detection, this may
entail checking that all accesses to the same shared variables are
protected by the same set of locks. To ensure the absence of an
atomicity violation, an analysis must guarantee that all accesses
performed within an atomic section can be serialized with accesses
to the same data in other concurrently executing atomic regions.
Regardless of how these properties are validated, the onus remains
on the programmer to interpret reported violations and to determine
whether they truly represent a bug, and if so, how the bug causally
results in a run time failure. Understanding causality is particularly
important because many concurrency bugs cannot simply be as-
cribed to the proper lack of synchronization, but rather are a mani-
festation of complex and often subtle protocol violations [12].

To make concurrency bug detection more useful, we explore the
realization of a more general debugging and analysis framework.
Given an execution known to manifest a concurrency bug, we
perform a postmortem dynamic analysis to localize the failure, i.e.
our analysis identifies the statement level causal path that leads to
the failure. Our approach is not biased towards any specific kind of
concurrency error (e.g., data races, atomicity violations, execution
omission, etc.)

A significant challenge in defining such an analysis is ensuring
that we can deterministically reproduce the failure. Fortunately,
recent advances in the field [3, 13, 16, 18] have shown that such
a goal can be achieved cost-effectively by systematically exploring
a certain set of deterministic schedule permutations. For instance,
given a buggy program and failure inducing input, CHESS [13]
is able to identify a schedule comprising a bounded sequence of
preemptions that induces the failure.

The above mentioned techniques can help construct failure-
inducing schedules. They are, however, by themselves insufficient
to explain how these schedules cause an observable failure. Con-
sider a concurrency bug we encountered in MySQL described in
detail in Section 5.1. The bug is due to an atomicity violation, but
most atomicity checkers would find it difficult to detect because
the atomic region spans multiple methods, and is thus not easily
identified. Although the failure also involves a data race, shared
variables are well-protected by locks, and the race only manifests
under a specific interleaving. Even though the bug report explains
how to produce the failure using thread preemption, the report also
notes that it is very difficult to explain the failure because it is hard
to associate the schedule perturbation that induces the failure to the
final crash. In fact, after the failure-inducing preemption, the pro-
gram continues to execute 7 million instructions, corresponding to
roughly 500K source code line instances. Our analysis facilitates
identifying the fault by producing a precise causal execution path
consisting of only 23 source line statement instances.

Informally, our technique works as follows. Given two runs, one
passing and the other failing as dictated by two deterministic sched-
ules, it produces a sequence of execution points in both runs that
are causally related and lead from the program point representing
the root cause of the failure to the program point at which the fail-
ure is detected. The technique exploits the assumption that the two
runs only differ after the first schedule difference by computing
their trace differences. It then uses a novel slicing algorithm called
dual slicing that works on both runs alternatively and iteratively
to causally connect these trace differences to construct the causal
path.

Contributions

• We propose a dynamic analysis to identify the root causes of
concurrency failures, given two schedules with one inducing
the failure, and the other not.

• We define a new trace comparison technique for concurrent ex-
ecutions. The technique collects traces of a passing and failing
run of a program. It then aligns the two traces before they are
compared. Trace alignment for large multi-threaded programs
is challenging in the presence of loops, recursion, and thread in-
terleavings. These features make simple solutions such as using
program counters to determine alignment ineffective. Instead,
we leverage execution indexing [24] to produce precise trace
alignments.



• We devise a new slicing algorithm called dual slicing that pro-
duces significantly smaller and more accurate slices compared
to traditional dynamic slicing techniques. Its improved accuracy
stems from its ability to exploit salient dependence information
from both passing and failing runs. Consequently, it is able to
generate highly precise causal paths for a number of different
concurrent program failures including data races, atomicity vi-
olations (see Section 4.1), and execution omission errors.

• We evaluate our technique on a set of large realistic open-source
multithreaded programs, and show our technique is highly ef-
fective in precisely identifying the cause of a concurrency fail-
ure.

The remainder of the paper is organized as follows. The next
section provides motivation for the problem and an overview of our
approach. Section 3 discusses our trace comparison mechanism.
Section 4 presents the dual slicing algorithm. Experiments and
results are presented in Section 5. Section 6 presents related work
and conclusions are given in Section 7.

2. Motivation

To motivate our technique, consider the example shown in Fig. 1.
The code snippet is shown in (a), which consists of two threads.
The init() method executed by thread T2 is supposed to initialize
x to 5 before the predicate at line 3 is executed, as shown in the
passing run (b). However, as the result of the data race between
statements 3 and 8, x may be initialized after it is used by the
predicate. This results in the false branch being taken, leading to
the wrong observable output in the failing run (c).

In order to construct a statement-level causal path of this failure,
a naive approach would be to apply dynamic slicing [10]. Given a
variable at an execution point, a dynamic slice identifies the state-
ment executions that contribute to the variable’s value at this point
through data and control dependences. However, dynamic slicing
falls short as a useful technique for concurrent failure explanation.
Figure (d) represents the slice of the wrong output. Extracting a
useful explanation of the failure from this slice is not possible be-
cause the slice fails to reveal whether the statements it includes
have a benign or visible effect on the fault. For example, although
the assignment at statement 2 is included as part of the slice, it is
not clear how this assignment contributes to the failure; specifically,
the presence of the assignment does not explain why the predicate
at line 3 remained false even though the intended semantics was
that it should be true. In other words, the slice does not convey that
it was the absence of the initialization (and thus assignment of x to
5 in statement 8) prior to the conditional test at line 3 that led to
the failure. Hence, the root cause of the failure is not present in the
slice.

Thus, the failing run by itself does not contain enough informa-
tion to localize the root cause of the failure, and construct a mean-
ingful causal path from the root to the failure point. To incorpo-
rate information missing from the failed run, we must examine a
passing execution as well to compose a high-quality explanation.
Specifically, in a concurrent setting, as long as a failure can be re-
produced, we can produce a passing run from the same input using
only schedule perturbation; this approach is different from debug-
ging sequential program failures, where passing runs are signifi-
cantly harder to acquire. Armed with both a passing and failing run,
our technique first computes the trace differences between them. In
Fig. 1 (b) and (c), two types of differences are identified. Bullets
represent value differences, meaning corresponding variables have
different values in the two respective runs. Triangles represent flow
differences, meaning a statement execution occurs in one run but
not the other.

In the next step, we apply a novel slicing technique to construct
a failure causal path out of these trace differences. The technique
works alternatively and iteratively on both the passing and the
failing runs. The basic idea is to compute positive information
using the passing run and negative information from the failing
run. Positive information tells us that in order to avoid the failure,
the program should have performed some operation(s). Negative
information tells that in order to avoid the bug, the program should
not have performed some operation(s). A failure explanation is
generated by fusing both pieces of information.

In the example, the algorithm starts from the failure point 6
in the failing run, which is a flow difference. Through control
dependence, the value difference at line 3 is included. At this point,
lines 1 and 2 are not included as they are not trace differences,
i.e. they do not contain a faulty value. In order to understand why
line 3 contains a faulty value, the algorithm alternates to slice the
passing run from line 3. In this process, it identifies that x at line 3
in the passing run is data dependent on line 8 while it exhibits a data
dependence on line 1 in the failing run. These two lines are included
in the slice although they are not trace differences. Since line 3
receives its values from two different otherwise benign definitions
in the two respective runs, there must be a data race between 3
and 8. The causal path leading from the root to the failure is now
easily derived: “statement 3 should have received its value from
statement 8 which should have executed prior to 3 and after 1. The
faulty value read at statement 3 leads to the final faulty output at
6.” Observe that we use the information from the passing run to
prune benign states (line 2) and avoid spurious entries in the path.

Fig. 2 illustrates how dual slicing leverages information gleaned
from passing and failing runs iteratively to construct a meaningful
failure explanation. The code snippet in (a) represents a thread
containing predicate race that is not properly protected against
races. In the passing run (b), race at line 3 evaluates to false so
that the value of x is not updated; this results in the predicate at
line 5 evaluating to true, ensuring y has the value of 1 at line 7. In
the failing run (c), a write to race from another thread between the
execution of statement 2 and 3 changes the thread’s control-flow
such that x acquires the value 1, causing the branch outcome at
statement 5 to yield false. Consequently, y has the wrong value of
0 at line 7.

Fig. (e) represents the failure slice of y at line 7. It contains only
line 7 itself and line 2 due to the data dependence on y. Note that
line 7 is not control dependent on any other statement. Such a slice
clearly does not identify the root cause of the failure. The reason
is that the connection between the faulty value at 7 and the faulty
predicate outcome at line 5, i.e. the predicate at 5 should have taken
the true branch such that y would get the correct value 1 at 7, is
not captured.

With dual slicing (Fig. (f)), the algorithm starts with 7 in the
failing run. Since 7 is not dependent on any trace differences, the
algorithm does not have enough information to proceed further in
the failing run, except that it discloses that 7 has a wrong value. The
algorithm thus switches to slicing the passing run, and dependence
edges 7 → 6 → 5 are added as shown in (f). At this point, we
cannot go further in the passing run as 5 does not depend on any
trace differences, again due to the omission of line 4; the value
difference at 5 triggers a switch back to slicing the failing run for
the second round. An intuitive interpretation is that by slicing the
passing run, we have new information about what is faulty in the
failing run. This time, slicing the failing run from 5 adds edges
5 → 4 → 3 to the slice. The constructed slice captures the fact
that ”Statement 3 should not have had the value of true since that
would lead to the execution of statement 4, which in turn produces
the faulty value of false at 5. As a consequence, 6 was not executed
while it should have been, leading to the final faulty output at 7.”
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Figure 1. Motivating Example (I) – data race.
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Figure 2. Motivating Example (II) - execution omission.

The mutual symbiosis between the failing and passing run is the
key to effectively handling execution omission [29] resulting from
concurrency bugs.

3. Trace Comparison

Our technique consists of two phases: trace differencing and dual
slicing. Given two runs defined by a correct schedule and a failure-
inducing one, the first phase computes their differences. As vali-
dated by systems like CHESS [13], in most cases, a failure-inducing
schedule can often be derived from a passing one by injecting only
a few preemptions. Such preemptions lead to value and/or control
differences, some of which are harmful and eventually lead to the
failure.

Execution comparison can be carried out on traces. In general,
traces maybe either lossy or lossless. Lossless traces [11] record dy-
namic information for each execution step and thus require space
proportional to the execution length. In contrast, lossy traces are ac-
quired by accumulation. For example, a lossy trace captures control
flow using program counters, or sometimes more elaborately, as a
set of tuples such as instruction: frequency and path: frequency [1].
The main benefit of lossy traces is that their space requirement can
be made linear in static program size. Comparison based on lossy
traces is simply comparison of tuples with the same key.

Despite its simplicity and space efficiency, lossy trace compar-
ison is insufficient for our purposes. For example, assume a case
in which one run executes a statement s i times, denoted as a fre-
quency pair s : i, while the other run executes s i + 1 times. Al-
though lossy trace comparison can identify that s is different in
the two runs, it fails to identify which instance of s is correlated
with the failure. This degree of precision is essential for our pur-
poses. Furthermore, in a concurrent setting, it may happen that a
statement s has exactly the same value and execution frequency in
both runs and hence is not a trace difference, but it is still strongly
correlated to the failure if it is involved in a data race.

Our technique therefore relies on comparing lossless traces. In
the context of comparing traces induced by different schedules, the
space requirement of lossless tracing is significantly alleviated be-
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int cnt=2; 

void main ( ) {

   Queue reqs;

   spawn (t_configure( ));

   while (!reqs.isEmpty( )) {

      spawn (t_request(reqs.pop( )));

    }

}

void t_configure () {

    if (command==”change count”) 

        cnt=readInt();

    … 

}

void t_ request () {

    int A[100], B[100];

    int sum=0, j=0, t_cnt;

    t_cnt=cnt;

    while (j<t_cnt) {

        A[j]=readInt();

        sum=sum + A[j];

        B[j]=Integrate(B, j);

        j++;

    }

    if (t_cnt % 2 ==0) 

         sum=sum+A[0];

    else 

         sum=sum-A[0];

    output (sum);

}

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

d
a
ta
 r
a
ce

Figure 3. A program with a data race. The program creates a
configuration thread t configure() and a number of computation
threads t request(). A computation thread computes the sum of
an input array and the integrals (array B) up to each element in the
array. Users can set the number of elements to be considered during
computation in the configuration thread. The race lies in lines 22
and 33. If, by chance, line 33 is executed before line 22, t cnt
receives the old value of cnt and leads to unexpected output.

cause we do not need to record any dynamic information before the
first schedule difference since the two executions are identical be-
fore that point. Hence, the main challenge lies in solving the prob-
lem of trace alignment. Due to schedule variance, the perturbed
execution often makes different function invocations, has different
predicate outcomes leading to different control flows, and computes
different values for the same variables. If the two traces are not pre-
cisely aligned, the computed differences may be due to misalign-
ment, i.e., a trace difference may not be a real difference but instead
may be caused by the comparison being carried out at inappropriate
points. For example, due to non-determinism, if the same request



is served by thread t in one run E but by t + 1 in the other run E′

and trace alignment aligns t in E with t in E′, the resulting trace
differences are meaningless. Therefore, correctly aligning the two
traces before they are compared is critical.

To retain the high degree of precision required, execution com-
parison is therefore performed on lossless traces [11] in which dy-
namic information is recorded at each execution step.

In this paper, we align two traces of concurrent executions based
on their execution structure, leveraging execution indexing [24].

2 Background : Execution Indexing.
We use execution indexing [24] to identify the same execution

point in both passing and failing executions. The idea is to construct
a tree, called the index tree, that represents the hierarchical structure
of an execution so that executions can be aligned by simply aligning
their trees.

Fig. 3 shows a sample program. The program is explained in
the caption. Fig. 4 present two executions of the program and their
index trees. In the two executions, the user sets cnt=1 in the con-
figuration thread. In the passing run, the update is successful before
the value cnt is copied to t cnt in the request thread, whereas in
the failing run, the configuration thread is preempted so that cnt is
not copied to t cnt in time. Let us first focus on the passing exe-
cution on the left. The nodes and edges represent the index tree for
the trace. The root node denotes the entire execution, which is the
body of the main function, represented by node main. Informally,
this node encapsulates the dynamic scope of the main function. The
main body comprises the executions of statements 4 and 5, which
are represented by the edges leading from the main node to the
trace entries representing the statements. Observe statement exe-
cutions 4 and 5 have their own scopes; their immediate enclosing
scope is main. Intuitively, the tree captures the fact that execution
of the main function is composed of two sub-executions, one initi-
ated at statement 4 and the other at statement 5. Note that a state-
ment execution is not part of its own scope. Thus, we introduce
an edge between main and the trace entry 4 instead of between the
internal node “4 spawn” and the entry. Similarly, the nesting struc-
ture of thread t request is represented by the subtree rooted at “6
spawn”. That is, thread execution comprises the execution of state-
ment 33, two instances of the while statement 34, the conditional
statement 40 and the output statement 44. Furthermore, the first 34
instance and the conditional statement 40 have substructures. The
index tree of the failing run is similarly computed and presented on
the right. The orientation of the tree is reversed to facilitate easy
trace comparison.

Informally, the leaf nodes must be statement executions, i.e.
trace entries. An internal node represents a dynamic scope iden-
tified by the trace entry that immediately precedes the scope. An
edge represents a nest-in relation.

Definition 1. Given an execution point, represented as a trace
entry s, the index of s, denoted as idx(s) is the tree path leading
from the root node to s.

For example, the index of statement instance 22 in the passing
run is of “(main) → (4 spawn) → (21 if) → (22)”. The index
precisely represents the nesting structure of 22. Traces are aligned
by aligning their index trees. More particularly, point x in E aligns
with y in E′ iff idx(x) ≡ idx(y). Since the index of statement
instance 22 in the failing run is the same as that in the passing run,
the two 22s align. 2

As mentioned earlier, the challenge of trace comparison in the
presence of schedule perturbations is that order of statement exe-
cutions may change, leading to different values produced for the
same execution point in the two runs. Intuitively, trace alignment
provides a canonical order of statement executions so that compar-

ison can be performed between corresponding (i.e., aligned) exe-
cution points, even though they may occur at completely different
points in the overall execution order. For instance, statement 22 in
the two runs are aligned even though they occur at different places
in the traces. Then, the comparison of the aligned 22s determines
that statement instance 22 does not have a faulty state in the failing
run. In contrast, the second instances of the while statement 34 in
the two runs are aligned according to the tree alignment. The loop
predicate takes a false value in the passing run and a true value in
the failing run. Note that the canonicalization induced by the ex-
ecution index tree does not mean we discard schedule differences.
Instead, schedule differences will be faithfully reflected as state dif-
ferences at aligned points. For instance, it might appear that align-
ing the instances of 22 incorrectly masks a schedule difference. In
fact, the effect of the different schedules is captured by the differ-
ent values of the aligned instances of statement 33, one of which
acquires its value from 22 (in the passing run) and the other (in the
failing run) not.

Next, we define trace differences based on execution indexing.
We assume the value of each execution instance is also recorded
as part of the trace entry. We use val(s) to represent the value of
an execution point s. The value of a statement is the value stored
in the destination variable. The value of a predicate is its boolean
outcome. The value of a method invocation is the return value.

Definition 2. Given an execution E and a reference execution E′,
an execution point s ∈ E is a trace difference if one of the following
three conditions is satisfied:

(1) idx(s) is not a valid index in E′;

(2) There is an execution point s′ inE′ such that idx(s) = idx(s′),
but val(s) 6= val(s′).

(3) There is an execution point s′ in E′ such that idx(s) = idx(s′)
but s and s′ have at least one use which is data dependent on
two definitions d and d′ where idx(d) 6= idx(d′).

If condition (1) is satisfied, s is called a flow difference. If (2) is
satisfied, s is called a value difference. If (3) is satisfied it is called
a def-use difference. Observe that conditions (2) and (3) may be
satisfied simultaneously.

According to the definition, an execution point s is a flow differ-
ence if it is not aligned with any point in the reference execution.
If it does have an alignment but its alignment has a different value,
it is a value difference. Thus, if s is a value difference, it implies s
has an alignment. Finally, if an execution point has an alignment,
but some of the subterms of the aligned statement are themselves
not aligned, the point is a def-use difference.

In Fig. 4, bullets represent value differences and triangles rep-
resent flow differences. Statement 33 in the passing run is a value
difference because although t cnt has value 1 at this point, it has
value 2 at its alignment in the failing run. For the same reason, state-
ment 33 in the failing run is also a value difference. Also note that
33 in the passing run is data dependent on statement 22 whereas it
is data dependent on 1 in the failing run (see Fig. 3). This is a def-
use difference. Statement 43 in the passing run is a flow difference
as it is not aligned with any statement in the failing run. Similarly,
statement 41 in the failing run is a flow difference. The second in-
stances of statements 35, 36, 37 and 38 in the failing run are also
flow differences.

Observe that our trace differences are defined over statement
instances, meaning we can identify the specific instance of a state-
ment as a trace difference even though the statement might be exe-
cuted multiple times in an execution. We discuss how to make use
of these trace differences in the next section.
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Figure 4. In these two runs, one configuration thread and one request thread are spawned. In the failing run, the user sets parameter cnt=1
in the configuration thread, but the thread is preempted by the request thread before the user’s change is updated to the variable. As a result,
t cnt takes the stale cnt value in the request thread.

4. Dual Slicing

Trace differences alone cannot localize the root cause of concur-
rency failures. To clearly understand a failure, it is necessary
to observe a minimum sequence of statement executions that are
causally connected, leading from the root cause to the failure. Trace
differences often contain excessive redundant information not re-
lated to the failure. For example, the second instance of statement
37 in Fig. 4 that assigns to B[j] in the failing run is a trace differ-
ence. But, it has nothing to do with the observed wrong output at
statement instance 44. In our experiments, trace differences for re-
alistic concurrent program executions often subsume 100K or more
statements, even though the portion relevant to the failure can be lo-
calized to a few tens of statements.

We propose to combine dynamic slicing with trace differenc-
ing to identify the root cause of a concurrency failure, and enable
construction of the salient execution path from this root to the fail-
ure point. Dynamic slicing [10] is a technique that discloses depen-
dences between execution instances and is often used in debugging.
A data dependence exists between two statement instances i and j if
i writes a value to a variable and that value is used at j, e.g. the first
statement instance 34 is data dependent on 33 in the passing run in
Fig. 4. A statement instance j is control dependent on a predicate
instance p if p directly decides the execution of j. For instance, in
the passing run, 43 is control dependent on 40. Given an execu-
tion point, its dynamic slice is the transitive closure of the value
at that point along dependence edges. Slicing overcomes the afore-
mentioned limitations of trace differencing. More specifically, trace
differences can be connected through dependence edges, which es-
sentially represent causality. Redundant information can be pruned
by slicing if the failure is not (transitively) dependent on the in-
formation. On the other hand, trace differencing substantially im-
proves the effectiveness of dynamic slicing. For example, the slice
of statement instance 44 in the failing run includes the first instance
of statement 36 because 44 is data dependent on 41, which in turn
is data dependent on the second instance of 36 and then the first
instance of 36. Similarly, the first instances of 34, 35 and 38 are

also in the slice. Using trace differencing, we can easily identify
these statement instances as having benign effect, and do not need
to include them in the output of the analysis.

Slicing determines the parts of a program ”relevant” to some
slicing criterion. In traditional slicing, relevance is defined as any
statement possibly affecting the values computed by the criterion..
Like thin slicing [19], dual slicing differs from classical slicing pri-
marily in its more selective notion of relevance. Given a trace dif-
ference, its dual slice consists of other relevant trace differences. A
trace difference d1 is relevant to another trace difference d2 if there
exist a chain of control and data dependencies from d1 to d2 com-
prising only of trace differences. Hence, unlike a traditional slice,
a dual slice does not provide an executable program. For instance,
the value difference of a traditional slice necessarily includes the
predicate on which it is control dependent. However, if the predi-
cate is aligned in both passing and failing runs, it itself is not a trace
difference, and does not need to be included in the dual slice.

A value difference could be the result of the particular statement
being data dependent on other value differences or its uses being
part of one or more def-use differences. A flow difference could be
the result of a particular statement being control dependent on an-
other flow difference or a value difference. However, if we assume
the two traces were aligned at the beginning, all flow differences
must eventually be control dependent on a value difference. Lastly,
a def-use difference could be the result of either a flow difference
or a schedule perturbation. If the def-use difference is the result of a
flow difference, one or more of its defining statements must be flow
differences. However, if it is caused by a schedule perturbation, it
is not data or control dependent on any other trace difference.

The algorithm is described in Algorithm 1. For brevity, it as-
sumes data and control dependences are already available. The
symbols used are defined in Table 1. The algorithm produces the
dual slice of the failure point, represented by two node sets Nf (Np)
and two dependence edge sets Ef (Ep). The subscript represents
the failing (f) or passing (p) execution. A node is an execution point
identified by its index, e.g. d and t. A node representing a value dif-
ference is in both Nf and Np.



Input:

• Tf , Tp: the traces of the failing run and the passing run;

• DTYPEf/p(s): decides if s is a value difference (VAL D), a flow

difference (FLOW D); the subscripts denote the run.

• DEPf/p(s): the set of execution instances that s depends on, in-

cluding data and control dependences.

Output: Nf/p, Ef/p: slice node sets and edge sets.

Note:
isVisitedInPass(s) and isVisitedInFail(s) decide if s has been traversed in
Tp and Tf .

f wl and p wl are worklists for the failing and the passing runs.

t and d are execution points identified by their index.

Table 1. Symbols used in Algorithm 1.

In the algorithm, the slice node set in the failing run Nf and
the failing run worklist f wl are initialized with the failure point at
line 1. The while loop in lines 3-27 describes the main dual slicing
process. It alternatively and iteratively slices the failing run and
then the passing run. Lines 4-23 correspond to slicing the failing
run. At line 6, if a value difference is encountered and it has not
been encountered in the construction of the passing run slice, it is
added to the passing run worklist p wl at line 7, and the passing
slice node set Np at line 8. The for-loop in lines 10-22 examines
t’s dependences. In lines 11-15, the algorithm adds a dependence d
to the slice and the work list, if d is a value difference or a flow
difference. Otherwise, the algorithm handles def-use differences
by adding the dependence d to the slice if the dependence d′

corresponding to d in the passing run does not align with d (lines
16-21). Observe that though d is added to the slice it is not placed
in the work list. Slicing the passing run is symmetric to slicing the
failing run and elided for brevity.

Nf ← f wl← {the failure point in Tf} ;1

Np← p wl← φ ;2

while f wl 6= φ and p wl 6= φ do3

while f wl 6= φ do4

t← f wl.pop() ;5

if DTYPEf (t) ≡ VAL D and !isVisitedInPass(t) then6

p wl← p wl ∪ {t};7

Np←Np ∪ {t} ;8

end9

foreach d ∈DEPf (t) do10

if
DTYPEf (d) = VAL D or
DTYPEf (d) = FLOW D

then
11

Nf ←Nf ∪ {d} ;12

Ef ← Ef ∪ {t→ d} ;13

if !isVisitedInFail(d) then f wl← f wl ∪14

{d}
else15

d′← The dependence in DEPp(t) that16

corresponds to d ;
if d 6= d′ then17

Nf ←Nf ∪ {d} ;18

Ef ← Ef ∪ {t→ d} ;19

end20

end21

end22

end23

while p wl 6= φ do24

Slicing Tp, adding nodes into f wl. It is symmetric to25

failure run slicing.
end26

end27

Algorithm 1: Dual Slicing

Example. The dual slice of the example in Fig. 4 is presented in
Fig. 5. During the analysis, the algorithm first adds the index of
441, denoting the first instance of statement 44 in the failing trace,
to f wl. The index is then popped from the worklist at line 5 of
the algorithm. Since it is a value difference, it is added to p wl and
Np in lines 7 and 8. Next, the algorithm adds the dependence of
441, here 411 to the dual slice and f wl. Since 411 is not a value
difference, the algorithm simply adds its control dependence 401

and the data dependence 362 to Nf and f wl. The index of 401 is
added to p wl as well since it is a value difference. The failure
slicing loop terminates when 331 is reached because 331 is not
dependent on any trace differences. At this point, all the shaded
nodes and their edges as shown in Fig. 5 have been added to the
dual slice, and the passing run worklist contains the indices 441,
401, 342, and 331. The algorithm switches to slicing the passing run
with these criteria. After the passing slicing loop terminates, all the
executions represented by plain nodes and their edges are added.
This time, no new value differences are added to f wl and the
main computation loop terminates. The rectangular nodes represent
either value differences or flow differences. The rounded nodes are
non trace differences added to the slice since they define values
used by def-use differences. For example, 221 and 11 are added
to the slice since the values they define are used by the def-use
difference at 331.

sum=A[0]+A[1]+A[0]sum=A[0]-A[0]

t_cnt=2

441 output(sum)

411 sum=sum+...

401 if (t_cnt...)

362 sum=sum+F(A[j])

352 A[j]=...

342 while (j<t_cnt)

441 output(sum)

431 sum=sum-...

401 if (t_cnt...)

342 while (j<t_cnt)

331 t_cnt=cnt 331 t_cnt=cnt

t_cnt=1

false true

false true

221 cnt=readInt…  11 cnt=2 
data race

Figure 5. The dual slice of the failure in Fig. 4. A symbol si

represents the ith instance of statement s in the trace.

4.1 Identifying the Root Cause

Dual slicing is essential to fusing both positive and negative in-
formation to better understand failures. Observe that in Fig. 5, the
faulty slice indicates how a faulty value is been generated at 441,
but the faulty slice alone is not sufficient to understand why this pro-
cess is faulty. For example, by studying the chain 441 → 411 →
401 in the failing run part of the dual slice we can deduce that “401

having the true branch outcome leads to sum being updated at 411,
and hence induces an observable wrong output”. By analyzing the
accompanying positive chain 441 → 431 → 401 in the passing run
part of the slice, it can be concluded that “401 should have had the
false branch outcome, which would have led to the subtraction of

sum at 431, leading to the correct output A[0]-A[0]=0”. Observe
that information gathered from the two runs are complementary.

The dual slicing algorithm terminates if it cannot make progress
in either run. In the presence of crashes, some flow differences in
the passing run may be caused by the failing run being prematurely
interrupted, not by different branch outcomes. For example, if the
two runs take the same branch but the failing run crashes before



it finishes executing the branch by reaching the immediate post-
dominator, unexecuted instructions become flow differences in the
passing run. We define them as non-trace-differences (because they
would have been present in the trace without the crash, as dictated
by the fact that both runs are executing the same branch).

Consider the example in Fig.5. The last trace difference added
to the slice is at 331 in both runs, which is a def-use difference.
The non trace differences 221 and 11 are added to the slice since
they contribute to the def-use difference at 331. Specifically, the
use of cnt at 331 has two distinct definitions in the two runs. In
the passing run, the definition of cnt at 221 is used. Instead, in the
failing run the definition at 11 is used.

Dual slices are particularly useful in debugging concurrency
bugs because a correct concurrent execution can be usually ob-
tained easily. This is because concurrency bugs are often the result
of def-use differences that arise because of schedule perturbations
that expose data races or atomicity violations.

Property 1. The root cause of a concurrency bug is a def-use dif-
ference in which there exists a chain of data and control depen-
dencies between the difference and the failure such that each trace
difference in the chain is the result of the dependence on its pre-
decessor and if a statement on the chain is control dependent on a
trace difference this control dependence is also part of the chain.

Theorem 1. The dual slice extracted from a failure point includes
the root cause of the failure.

lock (o) {

   p = alloc (…); 

}

… 

lock(o) {

   *p = init(…);

}  

T2T1

1.

2.

3.

4.

5.

6.

lock (o) {

   if (p) {

     free (p); 

     p = NULL;     

   }

}

7.

8.

9.

10.

passing
failing

Figure 6. Atomicity violation.

While we have considered how dual slicing can be used to find
the root cause of concurrency bugs that arise due to data races and
execution omission, it can also be used to identify atomicity viola-
tions as well (see Fig. 6). In the example, note that all operations
on p are protected by locks and there is no data race. Statements 2
and 6 should be atomic. Otherwise, the remote access 10 may in-
terfere and lead to a null pointer dereference. Assume the dual slice
is computed on 6. The dual slice terminates on 6 itself which is a
value difference. It is data dependent on 2 in the passing run and
on 10 in the failing run. Note that neither 2 nor 10 is a trace differ-
ence. 6 and its immediate dependences clearly indicate that 2 and
6 should be atomic and the interference from 10 causes the failure.
Deadlock failures are similar.

4.2 Removing Redundancy in Dual Slices

In this section, we explore a more restrictive form of dual slicing. In
the previous section, we defined the dual slice as those trace differ-
ences that are relevant to the failure. Recall that a value difference
cannot be control dependent on a trace difference and it can only be
data dependent on other trace differences. Hence, the data depen-
dence directly contributes to the value difference. However, flow
differences can be both control and data dependent on other trace
differences. Thus far, we have considered both these relationship
as being relevant. Assume that the data dependence and the control
dependence are part of independent dependence chains. Note that
without the control dependence, the dependence chain with the data
dependence has no effect on the failure. Hence it cannot lead to the

root cause. Thus, we can safely define data dependence chains that
fall through flow differences as being irrelevant to a failure.

Consider the dual slice in Fig. 5. In the failing half of the slice,
362 is a flow difference. Observe that in order to understand the
failure, it is important to know that the execution of 362 is decided
by the faulty branch outcome at 342. In contrast, how the value in
362 is computed is not important. Hence, we should consider the
control dependence of 362 but not its data dependences. As a result,
352 can be excluded from the slice. One can also interpret this
intuition as follows: since both 352 and 362 are not (transitively)
data dependent on any value differences (i.e., faulty values), the
computations of their values are not faulty. What is faulty is the fact
that they get executed. To preserve such information, the control
dependence from 362 to 342 is sufficient and hence the dependence
from 352 to 342 is redundant, which justifies removing 352 from
the slice.

/* the same as Algorithm 1. lines 1-9*/;9

foreach d ∈ DEPf (t) do10

if
DTYPEf (d) = VAL D

∨DTYPEf (d) = FLOW D

[1]

and
11

(( DTYPEf (t) ≡ VAL D ∧ t
dd
−−→ d

[2]

) or

( DTYPEf (t) ≡ FLOW D ∧ t
cd
−→ d

[3]

) or

( DTYPEf (t) ≡ FLOW D ∧ t
dd
−−→ d ∧

VAL({d}) − VAL(CDf (t)) 6= φ

[4]

))

then

Nf ←Nf ∪ {d} ;12

Ef ← Ef ∪ {t→ d} ;13

if !isVisitedInFail(d) then f wl← f wl ∪ {d}14

end15

end16

/* the same as Algorithm 1. lines 17-21*/17

Algorithm 2: Optimized Dual Slicing. Edge
cd
−→ de-

notes control dependence and
dd
−→ denotes data depen-

dence. Method VAL(s) returns the set of value differ-
ences reachable from s. Method CD(s) returns the con-
trol dependence of s.

Based on the above observation, we propose an optimized dual
slicing algorithm, shown in Algorithm 2. The difference from Al-
gorithm 1 lies in the loop (lines 10-16) that adds a trace difference
t’s dependences into the slice and the worklist. More particularly,
the conditions at line 11 controlling the traversal are different. Con-
dition [1] makes sure the dependence d is a trace difference, other-
wise it is not traversed. It further controls traversal based on trace
difference type and dependence type. Condition [2] specifies that d
will be added and traversed if t is a value difference and t is data
dependent on d. Condition [3] specifies that if t is a flow differ-
ence, its control dependence is added and traversed (data depen-
dences are usually not interesting). Condition [4] specifies an ex-
ception: a flow difference’s data dependence d may be traversed if
d can transitively reach a value difference that can not be reached
through the control dependence of t. This means there is a faulty
value contributing to t only through d, thus requiring further exam-
ination of this dependence. Though condition [4] is not necessary
for capturing the root cause, the value differences captured by it
help understand the different ways in which the root cause identi-
fied by traversing the control dependence in [3] may be affecting
the failure. The same optimization is conducted in the passing part
of Algorithm 1 except that condition [4] is not considered because



Table 2. Bugs and Tracing.
bug ID type Ttracing / threads trace size

Tslice (P/F)(MB)

apache-1 21285 atom 320s/89s 2 1240/1227

apache-2 44402 atom 139s/2742ms 5 326/289

apache-3 45605 race 105s/948ms 2 176/59

apache-4 25520 atom 95s/636ms 2 86/86

mozilla-1 133773 race 74s/1476ms 2 497/477

mozilla-2 342577 race 25s/1353ms 2 290/290

mysql-1 12212 race 218s/623ms 2 110/61

mysql-2 12228 atom 225s/1640ms 2 342/328

mysql-3 12845 atom 133s/589ms 2 83/70

mysql-4 12848 atom 269s/416ms 2 52/62

mysql-5 42419 race 614s/89s 2 567/1297

mysql-6 21587 atom 280s/1637ms 2 72/60

mysql-7 17404 atom 166s/1764ms 3 266/229

pbzip2* - race 38s/494ms 2 392/389

race= data race, atom=atomicity violation, *the bug appeared in version 0.9.4

Table 3. Trace Comparison.
bug t(s) align % (P,F) val. diff. flow diff. (P,F)

a-1 104 (99.7, 100), (99.6,

100)

282, 352 (11k, 151), (12k, 93)

a-2 12 (96.6, 99.7), (99.8,

99.5), (4, 99), (99.8,

96), (96, 99.5)

3k, 40k, 1k,

40k, 3k

(4k, 359), (320, 765),

(135k, 55), (221, 5k),

(3k, 342)

a-3 1 (96.8, 1.0), (87.2,

66.5)

12, 217 (517k, 42k), (1k, 3k)

a-4 1 (97.5, 97.1), (98.8,

98.8)

690, 586 (3k, 4k), (1k, 1k)

mzl-1 5 (27, 4), (81, 96) 6k, 115 (124k, 1264k), (2k, 329)

mzl-2 2 (76.9, 88.1), (84.5,

69.5)

34, 27 (250, 113), (139, 332)

m-1 6 (48, 93), (58, 95) 385, 377 (164k, 10k), (34k, 2k)

m-2 4 (93, 99), (100, 100) 437, 464 (82k, 9k), (8, 8)

m-3 1 (48, 81), (94, 91) 923, 811 (146k, 31k), (2k, 4k)

m-4 3 (89, 83), (59, 91) 18, 263 (6k, 10k), (36k, 5k)

m-5 50 (83, 75), (60, 86) 1557, 4183 (110k, 184k), (587k,

147k)

m-6 1 (54, 70), (71, 84) 241, 741 (84k, 42k), (19k, 9k)

m-7 5 (67, 95), (99.9, 99.8),

(99.6, 99.3)

529, 337,

1307

(149k, 17k), (48, 180),

(934, 1594)

pbz 1 (92, 99), (87, 84) 8, 7 (122, 19), (39, 50)

in the passing run, all values are correct, thus making data depen-
dences of a flow difference in the passing run uninteresting.

Property 2. A pruned dual slice (as defined by Algorithm 2)
includes the root cause.

Example. In the failing part of the slice in Fig. 5, we do not

traverse along 362
dd
−→ 352 as mentioned earlier. In contrast, we

traverse along 411
dd
−→ 362 because VAL({362})−VAL({401}) =

{331, 342} − {331, 401} = {342}, meaning the value of 411 is
affected by a faulty value 342 exclusively through the dependence

411
dd
−→ 362, hence requiring the edge to be traversed.

Note that such selective traversal is not applicable for traditional
dynamic slicing as it leverages information from trace differencing.

5. Experiments and Results

Our system is implemented using gcc and valgrind. Indexing is
implemented in gcc in order to support large multi-threaded pro-
grams. The modified gcc compiler instruments a given program to
construct and maintain the index tree. Tracing is implemented in
valgrind. Trace differencing and dual slicing are implemented in C.

We have collected a pool of 14 real bugs of different types
from various sources as shown in Table 2. These bugs are from
MySQL (668K LOC), Apache (253K LOC), Pbzip2 (2.9K LOC),
and Mozilla-extracts (61K and 3K LOC); their bug report ids are
presented in column ID. Note that the bugs were collected using
full program version for all the benchmarks other than Mozilla,

Table 4. Slicing
bug dyn. slice dual slice breakdown fun

full bfs full opt bfs (P/F/vdiff)

a-1 78k 74 33 9 9 6, 8, 5 5

a-2 20k 695 443 116 106 103, 104, 91 19

a-3 893 113 968 113 41 86, 53, 26 11

a-4 15k (201)** 99 21 21 20, 21, 20 2

mzl-1 119 3 7 3 2 2, 3, 2 2

mzl-2 346 183 1k 48 34 32, 34, 18 5

m-1 14k 4 7 3 3 2, 2, 1 3

m-2 18k 619 105 43 32 29, 29, 15 5

m-3 5k 101 66 23 19 12, 17, 6 11

m-4 10k 70 75 19 19 17, 13, 11 3

m-5 165k * 14k 549 121 233, 376, 60 19

m-6 15k 1276 5k 72 60 34, 56, 18 13

m-7 37k 99 131 46 28 28, 42, 24 6

pbz 13 4 7 3 3 2, 2, 1 3

* execution omission leads to root cause vicinity not being reachable.

** another execution omission case: the root cause vicinity can not be reached by slic-

ing trace differences in the failing run, i.e., not reachable through faulty dependences.

Interestingly, it can be reached in the dynamic slice through a dependence path that

does not contribute to the failure.

which was reproduced on isolated components1 Many of the bugs
shown here have not been previously studied in any detail in the
literature. In this paper, we used the inputs from the reports and
reproduced the bugs according to the preemptions mentioned in the
reports. Passing runs are acquired by suppressing the preemptions
that lead to the bug. In the future, we envision our technique can be
integrated with failure inducing schedule generators [3, 13, 16].

Table 2 also shows the cost of our technique including tracing
and dual slicing time. The machine used for measurements is an In-
tel core 2 duo 2.2GHz with 4GB RAM. The number of threads in-
volved in the slice is presented in column threads. The aggregate
trace size for all threads in the slice is reported in the last column.
The required space for each traced instruction is roughly 20 bytes
without compression. As mentioned earlier, we start tracing only
when the two executions start to diverge, thus avoiding the need to
collect the full execution traces. Space costs are less than 1.3 GB
across all runs. Tracing and slicing times are all within 11 mins.

Table 3 quantifies the effect of trace differencing. The second
column shows the time to collect differences. Each pair of entries
in the third column represents the alignment percentage of a thread
between the passing (P) and the failing (F) runs. For example, for
bug mysql-5, 83% of the statements executed by thread one in
the passing run align with 75% of the statements executed by the
thread in the failing run. The fourth column shows the number of
value differences. The last column shows flow differences for each
thread. The number of differences are in source code line instance
units. Note that except for a few cases, such as apache-4, the con-
trol flow of the two executions are quite different, reflected by the
alignment ratio and the number of flow differences. Observe also
that there are many more flow differences than value differences,
implying the two runs mainly differ in their control flow. For ex-
ample, the pair (11k, 151) in the first row (bug a-1) indicates that
thread one executes 11k lines exclusively in the failing run and 157
exclusively in the passing one. Thread one of mzl shows the other
extreme. Both benchmarks reflect widely differing behavior in the
passing and failing runs, making it difficult for tools that do not
consider both together to localize the root cause of the fault.

Table 4 shows the results of dual slicing and compares it with a
traditional dynamic slicing strategy. The second and third columns
show the sizes of dynamic slices. Significantly, information gleaned
from the dynamic slices extracted from the failing run was not
sufficient to identify the root cause of the failure for any of the

1 Unfortunately, reproducing the bugs on the full Mozilla version requires
supporting multiple languages. Our methodology is consistent with other
efforts [26].



benchmarks. To reason about why a value is wrong in the failing
run, without benefit of examining the passing run, a developer
would need to inspect bfs number of statements before entering
the vicinity of the root cause. We say the vicinity of the root cause is
reached if only one of the memory accesses involved in a data race,
atomicity violation, or deadlock is reached. We assume the traversal
proceeds by a breadth-first search from the failure, a common
practice in evaluating effectiveness of slicing [19]. The columns
under dual slice show the data for dual slices, including the
full dual slice, computed by Algorithm 1, the optimized dual
slice (column opt), computed by Algorithm 2, and the statements
needed to be inspected in the optimized slices (column bfs). The
breakdown (P/F/vdiff) column shows how many statements in the
optimized dual slices belong to the passing run, the failing run, and
are value differences. Column fun shows how many source code
functions span a bfs exploration.

Our results reveal that dynamic slices are substantial in large
programs. Note that these executions are not loop intensive, and
thus the slices mainly contain executions of unique statements.
Even getting to the vicinity of the root cause is non-trivial, e.g.,
1276 statements need to be inspected in mysql-6. Not surpris-
ingly, dual slices are much smaller than dynamic slices on almost
all benchmarks, in many cases, requiring an order of magnitude
fewer statements to be inspected. Note also that the optimized al-
gorithm is very effective in pruning redundancy in large dual slices.
For example, mysql-5 is an omission case in which a substantial
piece of code is executed in only the passing run but not the fail-
ing one; slicing the failing run does not lead to the root cause. The
original dual slicing algorithm includes a large portion of the omit-
ted execution into the slice because they are transitively involved
in computing the criterion value. However, such information is re-
dundant in identifying the failure point. Our optimized algorithm
reduces the slice from 165K to 549 source line statements without
degrading the accuracy (see case study II). Column (fun) reveals
that dual slices are effective in capturing complex causal relations,
including those that span multiple function boundaries.

5.1 Case Studies

Case I. Consider the following bug from the MySQL 5.0 (bug m-3):

1. CREATE TABLE a1 (id INTEGER NOT NULL\

PRIMARY KEY AUTO\_INCREMENT);

CREATE TABLE a2 SELECT id FROM a1;

2. DROP TABLE a1;

In MySQL, each client connection is handled by a separate
thread. In this example, the above two CREATE TABLE queries are
executed by one thread, T1, to create tables a1 and a2, and the DROP
TABLE query that drops a1 is performed by another thread, T2. In
most interleavings of T1 and T2, the program behaves normally: it
either creates the tables and then drops a1 or reports errors such as
dropping a non-existent table or creating a new table from a non-

existent table. However, as described in the bug report2, if control
is transferred from T1 to T2 at a specific program point where T1 is
in the middle of creating a2, MySQL crashes. Even though the bug
report describes how to reproduce the bug, it also states that it is
very difficult to understand how the preemption leads to the failure.

Our technique computes a slice with only 23 source line in-
stances. The dual slice and the traces for the two runs are shown
in Fig. 7. The source code locations are also presented on the left.
Note that these statement instances cross multiple functions and
source code files.

In the failing run, steps (1) and (2) correspond to the initial-
izations in T1. Step (3) occurs after T1 creates a2 and is about to

2 http://bugs.mysql.com/bug.php?id=12845

initialize a2 with a1; it sets the in use flag of a1 to express its
intention. Then, T1 is preempted by T2 after step (3) and then step
(4) is executed, which tests the flag in use. Steps (5) and (6) are
executed due to this faulty branch outcome at (4). Step (5) tests if
T2 is the one that sets in use and it fails. Subsequently, T2 in step
(6) sets the flag some table deleted to indicate it wants to delete
a table and yields the control back to T1. T1 proceeds. At step (7),
T1 tests if another thread has expressed its intention to remove a ta-
ble. If so, T1 closes the table at step (8) and resets the info pointer
at step (9), which results in the segmentation fault at (10) when it
tries to use info to finish constructing a2.

In contrast, in the passing run, T2 executes after T1 finishes so
that (4) is executed after T1 resets in use at step (11) at the end
of its execution, denoting it finishes using a1. Note that in the T1
execution, the fall-through path is taken at (7) and hence info is
not null at (10).

Our dual slice precisely identifes the causal path of the failure.
Translated to text, the generated slice can be read to mean “in use
should not have had the value of thd (as manifested in the failing
run) but rather the value of 0 (as defined in the passing run) at
(4); the false branch of (4) should not have been taken, leading to
the executions of (5) and (6); some tables deleted should not
have the value 1, and hence info should not be 0, leading to the
final failure”. Although not shown in the figure, accesses to in use
are protected with a common lock such that the root cause is an
atomicity violation in the scenario of creating a table. Note that,
the positive information from the passing run clearly pinpoints the
root cause on in use, which is not feasible otherwise.

Although the violation can be identified, the fault is hard to
identify. Setting pointer info to null causes the crash, but the code
for closing a table and cleaning up the pointer is not buggy. In
many scenarios, step (4) receiving its value from step (3) (as part
of the root violation in the failing run) is legal as it is part of the
synchronization protocol. The goal of the complex protocol is to
achieve high concurrency by not requiring queries to be executed
atomically. The bug lies in a hole in the protocol that fails to
consider this specific interleaving. Five of the bugs studied exhibit
similar characteristics: they have intentional races and/or atomicity
violations that by themselves do not contribute to the failure.

Case II. Fig. 8 presents the dual slice for the mysql-5 bug. 3 It
occurs because of an execution omission error that fails to properly
clean up a pointer. In this case the server crashes on step (16)
because ref item is corrupted. Hence, we compute the dual slice
on this variable at (16). Step (16) is control dependent on (15) and
is data dependent on (14). Both (15) and (14) are value differences.
The value difference at (15) causes the flow difference at (16). In
the passing run (14) is data dependent on (12) while in the failing
run it is data dependent on (13). Both are control dependent on step
(11) that is a value difference. Slicing in the failing run has to stop
at (11) because its dependence (step (3)) is not a trace difference.

Switching to slicing the passing run on (11) identifies this as an
omission case because (10) was not executed in the failing run,
resulting in a dangling pointer. Step (10) is transitively guarded
by the predicate at (8), which is a value difference. The edge
from (10) to (8) denotes a control dependence chain of length 45
because (10) is nested very deep in the region of (8). We indeed
have each individual step in the chain captured in the slice, which
explains the large slice size for this case. Suppressing such single
line chains leads to much smaller slices with a corresponding loss
of information. For instance, from the line numbers on the left, we
can see (8) and (10) are very distant in the code and it is unclear why
(10) is control dependent on (8) without the chain, which clearly
provides the context under which (10) is executed.

3 http://bugs.mysql.com/bug.php?id=42419



sql_class.cc:97 some_tables_deleted=…=0

… info=mi_open(…) )

/*thd is the current thread*/

table→in_use=thd;

if  (!table→in_use)

… 

else if (table→in_use !=thd) 

   table→in_use→some_table_deleted=1

… if (!thd→some_tables_deleted) 

         table→file→close();

              info=0;  /*inside close( )*/

MYISAM_SHARE * share=info→s;

table→in_use=0;

ha_myisam.cc:229

sql_base.cc:906

sql_base.cc:2508

sql_base.cc:2514

sql_base.cc:2517

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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lock.cc:137

sql_base.cc:453

ha_myisam.cc:249

mi_locking.cc:35

T1
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T2

some_tables_deleted=…=0

… info=mi_open(…) )

/*thd is the current thread*/

table→in_use=thd;

… if (!thd→some_tables_deleted) 

MYISAM_SHARE * share=info→s;

table→in_use=0;

if  (!table→in_use)

(1)

(2)

(3)

(7)

(10)

(11)

(4)

●

▲

▲

●

▲
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failing passing
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preemption

Figure 7. Case Study I.

(1)

lock0lock.c:2257  (2)

(3)

(4)

(5)

(7)

(8)

sql_select.cc:6627      (10)

(11)

(12)

(14)

(15)

HASH_INSERT(lock_t, hash, ...);

HASH_DELETE(lock_t, hash, ...);

table->reginfo.join_tab = s;

lock = HASH_GET_FIRST (...);

if (join_read_const_table(s, ...))

else DBUG_RETURN(0);

if ((err= join->optimize()))

...

else table->reginfo.join_tab= 0;

if (!table->reginfo.join_tab)

 return (Item*) 0;

ref_item = part_of_refkey(...);

if (ref_item)

HASH_INSERT(lock_t, hash, ...);

table->reginfo.join_tab = s;

lock = HASH_GET_FIRST (...);

if (join_read_const_table(s, ...)) 

  DBUG_RETURN(1);

if ((err = join->optimize())) 

   return ... ;

if (!table->reginfo.join_tab)

...

else return table->

         reginfo.join_tab->ref.items[part];

ref_item = part_of_refkey(...);

if (ref_item)

   ref_item->type(...))

   lock0lock.c:1738       (1)

sql_select.cc:2509       (3)

lock0lock.c:1218       (4)

sql_select.cc:2758       (5)

sql_select.cc:959       (6)

sql_select.cc:2360       (8)

(9)

sql_select.cc:12541    (11)

sql_select.cc:12556    (13)

sql_select.cc:12406    (14)

sql_select.cc:12407    (15)

(16)
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passing

T1

T1

T2 T2

Figure 8. Case Study II.

Identifying the value difference (8), the algorithm can proceed.
In the failing run join->optimize() returns 1 at (6) whereas it
returns 0 at line (7) in the passing run, determined by the value dif-
ference on (5). Again the edges here represent transitive control de-
pendence chains. At (5), join read const table returns an error
in the failing run indicating the server tries to abort a transaction.
The error code is first detected when it tries to acquire a lock at (4)
and fails. The root cause is identified by step (4) receiving the lock
value from different places. It is an atomicity violation because (1)
and (2) should be atomic. Note that step (1) and (4) are equivalent
to a lock acquire while (2) is equivalent to a lock release.

6. Related Work

There has been extensive investigation of race detection [2, 14, 17,
18, 27] and atomicity violation detection [5, 7, 15, 22, 25]. When
a race or atomicity violation is reported, however, it remains the
programmer’s responsibility to decide if the candidate is a false
positive and, more importantly, to reason about how true positives
lead to failures. As shown in this paper, the explanation of how a
race induces a failure may oftentimes entail a complex causal chain
of effects, not easily derived by mere identification of the race.

There has also been recent progress in devising techniques that
can generate deterministic failure-inducing schedules [3, 4, 13, 16,
18]. These techniques systematically explore a bounded space of
schedules with various search strategies. Our work is complemen-



tary to these techniques insofar as it can derive a meaningful expla-
nation as to why a schedule lead to a failure.

In [28], a technique is proposed to compare a failing execution
and a similar run to explain a failure. Such techniques rely on online
memory state comparison and minimization during execution. As
a result, they are often able to produce very concise failure causal
chains. However, because the approach relies on mutating a passing
run to a failing run by changing memory state, using the mutation
as an indicator of failure relevance, it is unclear how it could be
adapted to work in the presence of multiple threads.

There has also been work on slicing concurrent programs [8]
and concurrent executions [20]. Our technique is more related
to slicing execution. Existing solutions focus on the failing run.
Without the passing run, they have to speculate what could have
happened in a different run by considering write-after-read and
write-after-write dependences, which are often numerous, resulting
in slices larger than dynamic slices, which are already substantial as
shown by our experimental results. Furthermore, these techniques
are not robust in the presence of execution omission errors.

Recently, thin slicing [19] was proposed to selectively traverse
dependences to produce very thin slices. Inspired by their observa-
tion, we leverage two runs and use trace differences to guide selec-
tive traversal to produce concise and precise failure explanations.

Solutions have been proposed for execution omission in the
context of dynamic slicing [6, 29]. These solutions produce slices
larger than dynamic slices. For example, in [29], a large number of
re-executions are needed to reason about omitted dependences.

Cooperative Crug Isolation (CCI)[21], is a low-overhead instru-
mentation technique to isolate the root causes of concurrency bugs
(or crugs). CCI inserts instrumentation that records occurrences of
specific thread interleavings at run-time. This technique is comple-
mentary to our contributions, which provides a causal explanation
for why a concurrency error occurs by comparing the behavior of
passing and failing runs.

7. Conclusion

We have proposed a new dynamic analysis that identifies the root
cause of different kinds of concurrency bugs. It does so by produc-
ing a causal path leading from the root cause to the failure point.
Provided with two schedules, one corresponding to a correct run,
and the other a failure, the technique collects traces for the two
runs. It aligns the two traces and then identifies trace differences.
Our dual slicing algorithm is applied to causally connect these trace
differences. We show that the technique is highly effective in pro-
ducing small yet accurate failure traces for real bugs in large con-
current software.
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