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Abstract

Recent paradigm shifts in distributed computing such as

the advent of cloud computing pose new challenges to the

analysis of distributed executions. One important new char-

acteristic is that the management staff of computing plat-

forms and the developers of applications are separated by

corporate boundaries. The net result is that once applica-

tions go wrong, the most readily available debugging aids

for developers are the visible output of the application and

any log files collected during their execution. In this pa-

per, we propose the concept of task graphs as a foundation

to represent distributed executions, and present a low over-

head algorithm to infer task graphs from event log files. In-

tuitively, a task represents an autonomous segment of com-

putation inside a thread. Edges between tasks represent

their interactions and preserve programmers’ notion of data

and control flows. Our technique leverages existing log-

ging support where available or otherwise augments it with

aspect-based instrumentation to collect events of a set of

predefined types. We show how task graphs can improve the

precision of anomaly detection in a request-oriented analy-

sis of field software and help programmers understand the

running of the Hadoop Distributed File System (HDFS).

1 Introduction

Large scale distributed applications running in third-

party data centers have become increasingly popular due to

the developments of search engines, e-commerce, and on-

line social networks. Notable examples of such distributed

services include Microsoft’s Windows Azure, Google’s

App Engine and Amazon’s Elastic Compute Cloud (EC2)

platform [16].

The computing paradigm of large scale distributed appli-

cations presents new challenges to reliability. Because the

administrative staffs of the platforms and the owners of ap-

plications running on them pertain to distinct corporate en-

tities, developers of distributed applications are commonly

limited to understanding execution and performing debug-

ging of their code based solely on visible outputs and logs

without the possibility of tapping into the execution. Tradi-

tional debugging practices such as stopping the application

and attaching debuggers to nodes are thus hardly feasible.

Yet, a developer still needs to understand how his/her

program proceeds when unexpected behavior occurs; how

the control flows through different nodes; what the com-

munication patterns and computing resource consumptions

are when the application serves different kinds of requests;

how a piece of high-level application logic ends up being

executed in smaller pieces on different nodes.

The goal of the work described in this paper consists in

developing lightweight techniques for forming a high-level

structural view of distributed program executions to facil-

itate understanding and reasoning. Traditional approaches

include representations of the structures and dependences

of computation units in a program (static) or in an execu-

tion of the program (dynamic). For example, to analyze se-

quential programs, researchers have extensively used con-

trol flow graphs (CFGs) and static or dynamic program de-

pendence graphs (PDGs). Research has been undertaken to

extend these representations for parallel and distributed pro-

grams. For example, TraceBack [5] is a system that builds

distributed control flow graphs with basic blocks and source

line level details. However, because of CFGs’ lack of inher-

ent support for modeling interactions between distributed

processes as opposed to their fine-grained structure offered

for actions, they are sub-optimal in distributed settings. Dis-

tributed executions can generate large amounts of CFG data.

Without further abstraction, it is difficult for programmers

to gain insights about the relevant portions of executions,

and it is unclear whether such approaches can scale beyond

simple scenarios such as web services implemented with a

three-tier architecture.

Alternative models conversely center around threads-

/processes and their interactions. Examples are vector

clock-related approaches proposed as a means to pre-

serve causality relations [15, 10, 19] between interleaving

threads/processes. These approaches do capture interac-

tions accurately but fail to link them to actions expressed

by high-level programming constructs.
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Our work aims at striking a balance between (a) concise-

ness of the data presented to programmers and (b) richness

of relationships preserved between different pieces of com-

putations through three contributions:

• We introduce the notion of task as abstraction for rep-

resenting distributed executions. One can think of a

task as an autonomous piece of computation that runs

within a thread or process and has only limited and

well-defined interactions with other tasks. These inter-

actions, e.g., a signal on a semaphore or data received

on a socket, induce task boundaries. Task graphs are

obtained by connecting tasks by pairing corresponding

waits and signals or sends and receives.

• We propose a purely log-based light-weight approach

to infer tasks and construct dynamic task graphs for ex-

ecutions of distributed applications.Event logging may

already exist as an integral part of the application or

can be augmented through aspects. We show how dy-

namic tasks are built by identifying two abstract types

of primitive events: acting and signaling events.

• We illustrate the benefits of inferred task graphs first

by showing — through Hadoop, an open-source dis-

tributed file system implemented in Java — how they

can aid in conveying the semantics of an application.

Then we show how task graphs can improve anomaly

detection [8] in distributed applications. We focus on

request-based analyses of such applications, one of

whose main goals is attributing resource consumptions

(CPU, network) to request types, and show how task

graphs can increase accuracy (by reducing false posi-

tives) while retaining completeness.

2 Model and Overview

We assume the following model for the distributed sys-

tems that we are analyzing. A distributed application con-

sists of a set of processes running on different nodes, con-

nected pair-wise through reliable communication channels.

Each process encompasses a number of threads. Threads

communicate with each other through inter-thread synchro-

nization mechanisms, e.g. semaphores, locks, or shared

data structures, and across processes with inter-process

communication mechanisms such as sockets or RPCs. Pro-

cesses or threads can log events into files. This execution

model accommodates realistic Java or C/C++ distributed

applications.

Figure 1 gives a high-level system overview of what we

propose. Users interact with a distributed application run-

ning in a computing cloud by sending requests and receiv-

ing replies. Event logs are collected independently on in-

dividual nodes and processed by our technique. The struc-

ture of the distributed execution is reconstructed by discov-

ering the inter-process and -thread relations from the linear

log files. Finally, a task graph is produced, describing the

logged execution.

[From log files]

Event stream

[Demultiplexed; thread 17/31 not shown.]

T=35 T=36

T=35: read.sock=[50010,36961],size=3474

T=35: read.sock=[50010,36961],size=56
T=31: Object.notify*() HC = 1301078346
T=31: write.sock=[36935,9000],size=291
T=17: read.sock=[36935,9000],size=148
T=35: write.sock=[50010,36961],size=1
T=17: Object.notify*() HC = 481105279

T=35: Object.notify*() HC = 919099148

T=36: Object.notify*() HC = 919099148
T=36: Object.notify*() HC = 151481191
T=31: Object.notify*() HC = 1301078346
T=31: write.sock=[36935,9000],size=424
T=36: write.sock=[50010,36961],size=10

T=17: Object.notify*() HC = 2121366929

T=35: Object.notify*() HC = 919099148

T=35: startRunnable = 1013462002

T=31: Object.wait() HC = 481105279
T=35: Thread.start() TID = 36

T=35: read.sock=[50010,36961],size=4
T=36: startRunnable = 919099148

T=36: finishRunnable = 919099148
T=17: read.sock=[36935,9000],size=95

T=31: Object.wait() HC = 2121366929
T=35: Object.wait() HC = 919099148

T=35: Thread.join() TID = 36
T=35: finishRunnable = 1013462002

                                                                                 

                                                                                                                           
                                                                               

                                                                                    
                                                                                
                                                                                

                                                                                

                                                                                 
                                                                                

                                                      

startRunnable = 1013462002             
read.sock=[50010,36961],size=56                                                                    

write.sock=[50010,36961],size=1         

Thread.start() TID = 36                                                                              
read.sock=[50010,36961],size=3474                                                                   
Object.notify*() HC = 919099148                                                                  
read.sock=[50010,36961],size=4                   

read.sock=[50010,36961],size=3474  

Object.wait() HC = 919099148                                                                                    
Object.notify*() HC = 919099148
Thread.join() TID = 36                        
finishRunnable = 1013462002           

                                                                       startRunnable = 919099148     
                                                                       Object.notify*() HC = 919099148
                                                                       Object.notify*() HC = 151481191

                                                                       write.sock=[50010,36961],size=10
                                                                        finishRunnable = 919099148       

Figure 2. Zoom in on the “distributed control

flow discovery” step in Figure 1.

Figure 2 zooms in on the phase of inter-process and inter-

thread relation discovery. The events in a log file (collected

for a process) are first demultiplexed into per-thread event

sequences; then, sequences of related events are abstracted

into tasks (shadowed boxes); finally, interactions between

events are established by matching event attributes, without

demanding expensive vector clocks. The relations between

tasks are abstracted from the relations between the events in

the tasks. Since the second task in thread T=35 starts thread

T=36, there is an interaction from the second task of T=35

to the first block of T=36. Furthermore, thread T=36 signi-

fies an object with id 919099148, on which thread T=35 is

waiting, hence there is an interaction from T=36 to the sixth

task of T=35.

3 Tasks and Task Graphs

In this section, we present our definitions of events,

tasks, and task graphs.

Definition 1 An event in a distributed program execution is

the execution of an operation that sends (receives) a signal

or data to (from) a different process/thread. There are two

types of events: acting events and signaling events. A sig-

naling event passes a signal or data to a different thread-

/process; the reception of this signal or data is called the

acting event; it enables the receiving thread/process to pro-

ceed.

Events are the smallest building blocks of our system.

Intuitively, a signaling event is the producer of a signal

or data; an acting event is the consumer of a signal or

data. For instance in Figure 2, in the per-thread log of

T=35, at the end of the first shaded block, the event of

“Thread_start() TID=36” is a signaling event and the
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...

Figure 1. Schematic view of dynamic task graph inference for understanding distributed executions.

corresponding acting event is the first log entry in the re-

ceiving thread (T=36).

Property 1 Every acting event must have a unique corre-

sponding signaling event; a signaling event can have zero

or multiple corresponding acting events.

The happens-before relation [15], −→e, is a partial order

over the set E of events of an application execution such

that for a, b ∈ E, a −→e b ⇔ a causally precedes b.

Relation −→e thus defines the set of such tuples (a, b); we

refer to these as happens-before (instances) (HBs). More

specifically, in this paper relation−→e is defined between

an acting event AE and its corresponding signaling event

SE, that is SE −→e AE.

In order to reconstruct system-wide task graphs, it is im-

portant to identify all inter-thread and inter-process events

reflecting causality and data dependences. Table 1 shows

the primitive events considered in Java-based systems.

Shared variable reads and writes are not considered (di-

rectly) in the table. If such reads and writes occur in a way

following specific synchronization then the synchronization

pattern is captured by other means, such as the acquiring

or relinquishing of a lock, leading to signaling and acting

events.

Definition 2 A task is an autonomous computation inside

a thread delimited by a pair of acting events, [AE, AE′),
consisting of all the logged events between these two events

inside the same thread.

Acting events inside a thread divide the whole computation

of that thread into tasks. A task starts with an acting event

and ends right before the next acting event. Conceptually, it

represents the execution enabled by the signal/data received

by the start event. Note that tasks are a dynamic concept.

The following property can be directly inferred from the

definition.

Property 2 A task must contain one acting event and zero

to multiple signaling events.

The happens-before relation between tasks, −→t, can be

defined based on the HBs between events, i.e., t1 −→t t2
if two events in the two respective tasks t1 and t2 comprise

an HB. For instance, thread T=36 in Figure 2 has one task

as there is only one acting event in this thread. Denote the

task as t36
1

, i.e., the first task in the thread. There are a

number of HBs involving t361 : t352 −→t t361 , t361 −→t t356
and t36

1
−→t t35

7
.

Definition 3 A task graph is a directed acyclic graph

(DAG), whose nodes are tasks from all threads in the sys-

tem, and edges represent HBs between these tasks.

Later on, we will conduct experiments of request-based

analyses of distributed systems. We formally define the

concepts of requests and replies as follows.

Definition 4 A request is a pair of signaling and acting

events, with the signaling event originating from outside the

system, while the acting event happens inside the system.

The task starts with the acting event represented as Treq.

A reply usually associated with a request is also a pair of

signaling and acting events, but with the scope of the two

events reversed, i.e., with the signaling event inside the sys-

tem and the acting event outside. The task ending with the

signaling event is represented as Trep.

With the definitions of request and reply, we can now

define end-to-end (E2E) request service graphs. The arrow
∗

−→t represents the transitive task level HBrelation.

Definition 5 A E2E request service graph for a request req

and corresponding reply rep is a task graph constructed

from the set of tasks, T = {Tx|Treq
∗

−→t Tx ∧Tx
∗

−→t Trep},

and their HBs.
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Categories Acting Signaling

Semaphore Object.wait unblock, Object.notify[All] call,

Threading Thread.run start, Thread.join return, Thread.start call, Thread.run finish,

Other (JCU)

Condition.await unblock,

Runnable.run start,

Callable.call start,

Future.get return,

BlockingQueue.[take|poll|remove] return

Condition.signal[All] call,

Executor.execute call,

ExecutorService.submit call,

BlockingQueue.[add|offer|put] call

Inter-process SocketChannel.read, InputStream.read∗ SocketChannel.write, InputStream.write∗

Table 1. Samples of primitive events for Java based systems. ∗ I/O streams created over sockets.

recv request

object.notify… o1
write socket[…]

… 

recv request

write socket[…]

object.notify… o2

… 

read socket[s1, p1]

T1 T2
A

object.wait … o1
… 

write socket[s1, p1]

… 

object.wait … o2
… 

r1

r2 B

C

D

E

r1  relevant r2  relevant

Figure 3. Intuition of task definition.

Our design choice of using acting events as task bound-

aries is essential to correctly attributing events to requests.

Consider the example in Fig. 3, which shows two threads.

T1 receives two requests, r1 and r2, and then delegates them

to T2. The request r1 starts task A© in T1. The task involves

all events until the next request r2 is received. Task A© has

a HB edge with D© due to the object notify/wait. Our tech-

nique does not introduce a HB edge between A© and B© like

most vector-clock based approaches do. The intuition is

that distributed systems implementations are mostly event

driven, the semantics of execution originate from events

from outside, namely, the acting events. Observe that later

in T1, task C© is again r1 relevant, due to the socket read-

/write. In comparison, if edges were introduced between

tasks in the same thread, all tasks would become r1 rele-

vant.

4 Task Graph Construction

4.1 Acquiring Events and HBs

We leverage aspect-oriented techniques [12] to emit nec-

essary logging data for task graph construction. Aspects

allow for the type of interested events to be specified very

generally, without specific programs in mind, and thus, per-

mit reuse with different distributed programs. We use As-

pectJ to instrument Java-based distributed applications. The

details are emitted for brevity.

Log files are parsed and each entry is canonicalized to

a 7-field tuple event: a unique event ID, process ID, thread

ID, source file location, type, tag, value. Most fields are

self-explanatory. The type field distinguishes acting and

signaling events. We discuss tag and value fields in the next

section. Samples are:

event(94,31,1,’Shell.java:189’,act,thread,37)

event(95,31,1,’Client.java:226’,sig,obj,484790)

HBs on events are essential for our task graph construc-

tion. Research has long focused on various designs of vec-

tor clocks and their variants in recording such relations. The

space cost of timestamps based on vector clocks can be-

come prohibitive when there are a large number of con-

current threads and processes or when inter-thread/inter-

process communication is intensive, as a timestamp (whose

size is decided by the number of threads and processes) has

to be assigned to each event, and piggy-backed on thread

and process interactions. While the resilience provided by

vector clock based approaches is necessary for online test-

ing or replaying concurrent applications, our goal is less

stringent, which is to discover event structure.

We observe that the pair of events involved in a HB usu-

ally share common event data (fields). They may record

the IDs of requests or objects on which the events execute.

For example, a socket send event has a tag sock and value

〈FromIP:FromPort, ToIP:ToPort〉. Such information

can be used to discover the corresponding receive event. In

addition, the event type field indicates if an event is sig-

naling or acting. Thus, for a pair of signaling and acting

events from different threads with the same data tag and

value, we infer that the signaling event happens before the

acting event. For example, for the following events

event(68,3,32,’Client.java:149’,sig,obj,280630)

event(69,3,1,’Client.java:724’,act,obj,280630)

we can infer e68 →e e69.

4.2 Prolog Based Event Processing

Our log processing and task graph construction tech-

niques are based using Prolog, for three reasons. First, Pro-

log excels in inference over relations. It also provides the

capability of recursive inference that is very desirable in our

application, for example, in finding all reachable tasks from

a given task. Second, although the techniques could also

be implemented in an imperative language, the declarative

style of Prolog allows us to easily generate various new rela-

tions from the existing ones. Third, Prolog implementation

is concise and well-formed.
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/ / Events are of form : ( parsed from log f i l e s )
event(#,Process,Tid,Source,act|sig,Tag,Value).

/ / Event happens-before: event (X)→e event (Y)
hb(X, Y):- event(X, M, T, _, sig, Tag, Data),

event(Y, M, S, _, act, Tag, Data),

not S = T, not Tag = sock.

/ / happens−before caused by socket communication
hb(X, Y):- event(X, M, T, _, sig, sock, Data),

event(Y, N, S, _, act, sock, Data),

par_cond(M, T, N, S).

hb(X, Y):- ...

/ / t rue when thread T in process M and S in N
par_cond(M, T, N, S) :- M = N, not T = S.

par_cond(M, _, N, _) :- not M = N.

/ / Event graph formed by event happens−before
event_graph(G):- findall(X-Y, hb(X, Y), L),

vertices_edges_to_ugraph([], L, G).

/ / Tasks: represented by two consecutive act ing
/ / event ids from the same thread
task(Start, End):- event(Start,N,T,_,act,_,_),

event(End,N,T,_,act,_,_),

Start < End,

not(event(Z,N,T,_,act,_,_), Start<Z, Z<End).

/ / Task happens-before: task (T , )→t task (S , )
task_hb(T,S):- task(T,E),task_has_sig(T,E,X),

hb(X, S), task(S, _).

/ / task (B, E) has an signal ing event S
task_has_sig(B,E,S):- task_event(B,E,S),

event(S,_,_,_,sig,_,_).

/ / task (B, E) has event X in i t
task_event(B,E,X):- event(B,N,T,_,_,_,_),

event(X,N,T,_,_,_,_),

B =< X, X < E.

/ / Task graph formed by task happens−before
task_graph(G):- findall(X-Y, task_hb(X, Y), L),

vertices_edges_to_ugraph([], L, G).

Listing 1. Prolog task graph inference algo-

rithm.

In the remainder of the paper, we will present our algo-

rithms using Prolog predicates. Each predicate consists of

two parts separated by the symbol “:-”: the left hand side

is called the goal; the right hand side is a set of conditions.

The goal and the conditions are essentially relations. The

meaning of the predicate is that an entry is created in the

goal relation if the set of conditions are satisfied. The vari-

ables are instantiated during the predicate evaluation. There

are basic relations that do not have right hand side condi-

tions. They are called facts. As shown in Listing 1, the

event fact is used to define basic events as parsed from

log files. It has 7 arguments or fields. The goal hb de-

fines an HB between two events. It can be satisfied in a

number of ways, exemplified by the two predicates with

hb being the left hand side. The first predicate describes

that any two events from different threads with matching

data (Tag,Value) pair define an HB. The second predicate

describes HBs caused by socket communications between

threads or processes1. Relation par_cond describes pair of

threads that are different. Note that simply using thread IDs

is inadequate as different threads in different processes may

have the same ID.

The remaining predicates in Listing 1 show how we can

build a system-wide task graph by processing existing re-

lations. The goal event_graph defines a directed graph

with events being the vertices and all event HBs being the

edges. Both findall and vertices_edges_to_ugraph

are Prolog library predicates. The predicate binds a vari-

able L by retrieving all hb edges and then transforms L

to a graph. There are also library predicates finding paths

or transitive closures in a graph. The goal task defines a

task as discussed in Section 3: a task is represented by the

IDs of two consecutive acting events from the same thread.

The goal task_hb defines HBs between tasks, namely, if

there is a signaling event in the first task [T, ) happen-

ing before an acting event in the second task [S, ), then

T →t S. Finally, the goal task_graph operates similar to

event_graph.

4.3 False Positives/Negatives in HBs

As mentioned earlier, in order to constraint the overhead,

our analysis infers tasks and HBs purely from logs. Since

event logs are lossy, meaning they do not contain enough in-

formation to faithfully reconstruct what had happened dur-

ing execution, our analysis has to handle false positives and

false negatives.

T1 T2

object.notify … o1
… 

object.notify … o1

object.wait … o1

… 

object.wait … o1

A

B
… 

C

D

Figure 4. False positives (dotted edges)
caused by synchronization objects.

False Positives Caused by Common Synchronization

Objects. It is very common in Java programming to use

the same synchronization object in multiple places, for in-

stance, notify/wait on the same object may have multiple

occurrences. Simply matching object ids in thread logs

gives rise to false positives. Consider the example in Fig. 4.

Thread T1 notifies object o1 at two places, A© and B©. The

corresponding acting events are C© and D©, respectively.

However, if we simply match the event parameters, false

1In Prolog, ’_’ represents a wildcard
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HBs are undesirably introduced between A© and D©, and be-

tween B© and C©.

Note that if there exists a global wall clock or a vector

clock is used, the false positives can be eliminated. How-

ever, we already mentioned that vector clocks are too expen-

sive in general. Realizing a global wall clock demands ex-

tracting the current timestamp, which entails a system call.

We observe that the order of the events in the original pro-

cess log file (before they are demultiplexed into per thread

logs) can serve as logical timestamp. Now an event con-

sists of 8 fields with an extra timestamp field ts. The revised

rule for the HB relation regarding inter-thread interaction is

shown in Listing 2.

preceding(X, Y):-

event(X, M, T, _, sig, Tag, Data, Ts1),

event(Y, M, S, _, act, Tag, Data, Ts2),

not S = T, not Tag = sock, Ts1 < Ts2.

sig_preceding(X, Y):-

event(X, M, T, _, sig, Tag, Data, Ts1),

event(Y, M, S, _, sig, Tag, Data, Ts2),

not S = T, not Tag = sock, Ts1 < Ts2.

hb(X, Y):- preceding(X,Y), not sig_preceding(X,_)

Listing 2. Prolog task graph inference algo-

rithm.

Relation preceding() describes all pairs of signal-

ing and acting events that operate on the same object

and the signal event precedes the acting event. Relation

sig_preceding specifies all pairs of signaling events that

operate on the same object and with the first event precedes

the second event. Therefore, the HB relation is defined as a

pair of signaling and acting events X and Y, with X preceding

Y, excluding any signaling events that precede X.

P1 P2

write socket[X], n=100

…

write socket[X], n=50

A

B

C

D

read socket[X], n=50

read socket[X], n=50

…

read socket[X], n=50 E

Figure 5. False positives caused by socket

communication.

False Positives Caused by Socket Communications. An-

other source of false positives is socket communication.

The root cause is that while the OS level I/O is able to re-

ceive an entire packet sent by a socket write from a remote

node, the JVM calls to socket reads often retrieve only a

piece of the packet at a time. As a result, multiple sock-

ets reads are the acting events corresponding to the single

signaling event. However, allowing one to many mapping

introduces false positives. Consider the example in Fig. 5.

Node P1 sends two packets using the socket. The packet

sent at A© is read at C© and D©; the packet sent at B© is read

at E©. Such scenarios create problems for us if we simply

match event parameters: false positives are introduced from

A© to E© and from B© to C© and D©. Note that we are deal-

ing with logs from two different processes and hence the

aforementioned timestamp idea is not applicable.

Our solution relies on the observation that the packet

sizes in the multiple reads corresponding to a write aggre-

gate to the size of the written packet. Hence, we maintain

the number of bytes that have been read, if the size of the

written packet has not been reached, the HB edges are still

introduced from the same write. Otherwise, the algorithm

moves on to the next written packet.

False Negatives Caused by Java’s Guarded Wait Idiom.

The intended semantics of Java wait/notify is as fol-

lows: a notify call unblocks a thread currently waiting

on the object. However, a precisely conforming implemen-

tation is very hard, if not impossible, due to the existence

of “spurious wakeups” (See the official Java API documen-

tation on java.lang.Object.wait(long) for details).

Spurious wakeups can unblock a thread when there has not

been a call to notify. To deal with this condition, Java

programmers are accustomed to write code like the follow-

ing:

synchronized (ackQueue) {

while(ackQueue.size() != 0) {

try{

ackQueue.wait();

//log.info(’’wait unblock’’+ackQueue);/*A*/

}catch(InterruptedException e) {}

}

//WaitMarker.markWait(ackQueue); /*B*/

}

Namely, a wait is always coupled with a condition (here

ackQueue.size() != 0). The meaning of the loop is

that when a notification occurs, the size of ackQueue has to

be 0. Otherwise, the unblocking of the wait is not caused

by a notification, but rather a spurious wakeup. However,

one side effect is that the wait may not even get executed,

depending on the condition. In other words, the condi-

tion may play the role of synchronization in place of the

wait. This poses a challenge to our event generation code

inserted at statement A, which is supposed to emit an event

after unblocking from wait. That is, an unblocking event

is missed. The missed unblocking events will further cause

missed event/task HBs when analyzing the logs (false nega-

tives). To combat this problem, such wait idioms are singled

out and a dummy API WaitMarker.markWait(Object)

is introduced and placed right after the condition checking

statement corresponding to each wait, as shown by state-

ment B in the above example. We then change our AspectJ

instrumentation code to log calls to markWait instead of

wait. We also found that the rewriting burden is accept-

able even for large systems like Hadoop, for which only 30

lines of code change are needed.
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5 Evaluation

5.1 Performance

Our experiments are done on the Hadoop Distributed

File System (HDFS), an open source project implemented

in Java. It is designed to run on commodity hardware and

supports MapReduce-style applications. The SVN check-

out as of February, 2009 of the system contains 1558 Java

source files, totaling 324K lines of code and 7.2M of class

files (excluding libraries).

The original logging statements in the source code do

not produce information meeting our requirements, i.e.,

they are insufficient to infer task graphs. Thus, we ap-

plied the logging aspects that we developed for Java-based

distributed code, and run the resulting modified version of

Hadoop. After weaving the aspects, the class file size grows

to 8.8M, a 22.2% increase. The end-to-end request handling

time increased by an average of 38% in instrumented ver-

sion, compared with original version. This number is col-

lected on an 8-node cluster on Emulab [1], with each node

consisting of a 850MHz PIII CPU and 500MB memory.

Table 2 shows the time that Prolog takes to infer the HBs

and build the task graphs for some sample logs. These logs

record between one to five minutes of Hadoop executions.

The second to fourth rows represent, respectively, the num-

ber of events, the number of inferred tasks, and the number

of happens-before relations in the logs. The final row rep-

resents the Prolog processing time in seconds; these num-

bers are collected on an AMD Opteron platform with two

2.4GHz CPUs and 6GB of RAM, running XSB Prolog Ver-

sion 3.2.

Properties Log-A Log-B Log-C Log-D Log-E

# of events 2604 4768 6058 14042 21915

# of tasks 1359 2545 3339 5216 9872

# task hbs 597 2140 1867 6607 8488

time (s) 6 19 37 93 437

Table 2. Task graph building time in Prolog.

5.2 Program Comprehension

We demonstrate the utility of task graph in program com-

prehension, using Hadoop HDFS project. HDFS imple-

ments a set of file system APIs (PUT, GET, etc.) just like

normal file systems. It transparently stores file data to hosts

in a network. On a high level, its functionality is divided

into three components: NameNode, DataNode, and Sec-

ondaryNamenode. More than one instance of these com-

ponents can be configured to run on hosts in a network.

Panoramic view. When a new developer or maintainer

joins the HDFS project, the first question to ask may be how

NameNode, DataNode, SecondaryNamenode are started
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(a) Overall task interactions.
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1. send RPC call;

3. perform RPC call,
    and send back results;

4. receive call results;

2. accept a call request,;
    and place it on a queue.

Task_a
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(b) Re-occurrent RPC call pattern from (a).

Figure 6. Task graph showing a panoramic

view of the Hadoop HDFS component inter-
actions. Nodes represent tasks; edges rep-

resent HBs.

and interact with each other. To answer this question, we

start HDFS with a simple configuration of one instance for

each component, collect the logs, and build the task graph.

Figure 6(a) shows a panoramic view of the obtained task

graph depicting the interactions. In this graph, nodes rep-

resent tasks; edges represent task HBs, with red edges de-

noting inter-process, blue edges denoting inter-thread, and

black edges denoting thread spawn and reap; tasks are

grouped by the component or process that executed them.

One can observe a re-occurrent task interaction pattern

from Figure 6(a). The first interaction of each occurrence is

labeled from 1 to 9 in the graph. This pattern is abstracted

and shown in Figure 6(b). For example, the interaction

170 →t 71 →t 73 →t 176 is an instance of the pattern. By

examining the source code location attributes of the events

in the tasks, we discover that they represent RPC calls, one

of the main communication patterns in Hadoop. The 9 RPC

calls in the graphs are shown in Table 3. The RPC call

names in the table suggest that at start-up, the very first

thing DataNode and SecondaryNamenode do is to ensure
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they are talking through the same protocol with NameNode.

Then, DataNode registers itself with the NameNode and re-

ports the data blocks managed by it. The multiple calls of

sendHeartbeat suggest that they are the keep-live messages be-

tween DataNode and NameNode. Indeed, the timestamp

difference between consecutive heartbeat calls matches the

value set in configuration file. These observations about the

behavior of HDFS largely match those described in its de-

velopment documentation.

# From To RPC Call Name

1 DataNode NameNode getProtocolVersion

2 DataNode NameNode versionRequest

3 SecondaryNamenode NameNode getProtocolVersion

4 DataNode NameNode register

5 DataNode NameNode sendHeartbeat

6 DataNode NameNode blockReport

7 DataNode NameNode sendHeartbeat

8 DataNode NameNode sendHeartbeat

9 DataNode NameNode sendHeartbeat

Table 3. Hadoop HDFS start-up interactions.

Closer look at distributed control flow. Another question

that a developer or debugger may ask is how a distributed

system proceeds after a certain “point”. A point, for exam-

ple, can be an event indicating a fault or an event signifying

the starting of a request. We show that task graphs are in-

strumental for answering such questions, using a case study

of how replication in HDFS works. In HDFS, client files

are broken into fixed-size data blocks; replication uses these

data blocks as basic units.

This experiment is conducted on a HDFS cluster in Em-

ulab with 7 hosts configured to run as DataNodes and one

remaining host to run as the master NameNode (as well

as SecondaryNamenode). We set the replication factor to

three. We then wrote a file of twice the configured data

block size to this cluster through the HDFS client, collected

logs, and built the task graph.

To see how replication requests are handled, the follow-

ing inferences are performed:

findall([A, B], req_task(datanode, A, B), L).

reachable_tasks(A, B, Out) :- task_graph(G),

reachable([A,B], G, Out).

A req_task(datanode,A,B) is a task, task(A,B), that

starts with a socket receive event that does not have a match-

ing socket send event (since the send event happened out-

side of the cluster in the client’s code). Thus, the first query

findall(..) will pick out all request starting tasks that

executed in DataNodes and put these tasks in a list L. With

our experiment set up, these tasks are the entry point of han-

dling file replication requests. For all the tasks in L, we can

run the second query to obtain all reachable tasks from L,

and save the result in Out. The subgraph, SubG, formed

by the tasks in Out are then converted to DOT file for vi-

sualization. SubG will show how the system proceeds after

receiving the replication request.

Due to space limitation, the complete graph of SubG is

not presented here. However, SubG consists of two disjoint

subgraphs with similar interaction patterns, one of which is

shown in Figure 7(a). Since the file written is of twice the

data block size, one can infer that each subgraph of SubG

may correspond to executions that replicate each of the two

data blocks.

From the structure of Figure 7(a), we can gain some

knowledge of how each data block is replicated: first, the

data block replication request comes in to DataNode-1 at

Task-3040 in the top left of Figure 7(a). Then, it gets for-

warded to DataNode-2 and DataNode-3. The actual file

block data is then received from the client and written at

Task-3046 in DataNode-1 before being forwarded to the

other two nodes. Finally, after receiving these data blocks,

acknowledgments are propagated in the reverse direction,

e.g. 1298 →t 3053. To offer some confidence to this un-

derstanding of replication, Figure 7(b) shows the task graph

with replication factor set to two.

As a side effect, we also notice a potential inefficiency

from the replication handling task graph: there seem to be

two kinds of acknowledgments being propagated, as shown

by the two different socket communications originated from

Task-1765 at Node-3 (highlighted green; similarly from

Task-1298 at Node-2). By querying the messages sizes

as well as the source code locations of the corresponding

events, we see that one acknowledgment is the packet se-

quence number of 8 bytes, and the other acknowledgment

is a status value of two bytes. It seems that the sequence

number acknowledgment alone is enough. Our communi-

cation on the Hadoop developer mailing list confirms this

observation.

Lastly, we want to show that the task graph can also

help understand the faults in the system. We rerun the

experiment with replication set to three and force an fault

by throwing an IOException at DataNode-3 in the repli-

cation chain. The exception is thrown in a try-catch

block where such an IOException could have happened.

The exception is thrown after DataNode-3 receives the data

block, but before it acknowledges. Figure 7(c) shows the

resulting task graph. Comparing it with Figure 7(a), we can

clearly see that Task-2322 (highlighted red) in DataNode-3

in Figure 7(c) has behaved differently than the correspond-

ing Task-1765 in DataNode-3 in Figure 7(a). To debug this

fault, the developer can not only narrow down the fault lo-

cation (by identifying the mal-aligned task), but also gain

a understanding of its context, i.e., after receiving a data

block and before acknowledging.

5.3 Request-Oriented Analyses

Modern distributed systems provide their services to

clients through requests and replies. The goal of request-
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Figure 7. Replicating a data block under different scenarios. The dotted edges serve to identify tasks in the same thread;

they are not HBs.

oriented analyses is to attribute runtime events and resource

consumptions to each request or each request type. Data

mining techniques can then be employed to find anomalies

or inefficiencies. To be able to precisely attribute runtime

data to individual requests, previous approaches assume that

a unique ID is associated with each request and propagated

throughout the entire execution serving the request. This

assumption is unrealistic in practice as all the relevant data

structures would need to be changed to accommodate the

piggy-backed information. Changing the code is difficult in

modern distributed applications as most of them use third-

party library code. In this experiment, we illustrate that the

granularity achieved with inferred task graphs can avoid the

necessity of changing data structures and yet, improve the

precision of attributing runtime data to requests.

Request-oriented analyses can be combined with a com-

ponent interaction model to detect anomalies [8] (see Sec-

tion 6). The premise of this technique is that a system’s ex-

ecution should behave similarly over time. One of the kinds

of behaviors is how the components in the system interact

with each other. Here, the number of interactions mea-

sures the number of communication operations over net-

work sockets. Assuming that component A interacts with n

other components, Bi, i ∈ [1..n] and we measure the num-

ber of interactions between them over two time periods, t1
and t2, as c1,i and c2,i, respectively, with cx,i represent-

ing the number of interactions between A and Bi over time

period tx, then the technique uses the following χ2 value to

quantify the behavior difference of time period t2 compared

to t1:

χ2 = ΣN
j=1

(c2,j − wj)
2

wj

, with wj = pjC2, pj =
c1,j

C1

,

and C1 = ΣN
j=1

c1,j, C2 = ΣN
j=1

c2,j

In particular, C1 and C2 represent the interactions of A with

all other components; pj is the ratio of the interactions be-

tween A and Bj over the total interactions in period t1; wj

can be understood as the expected interactions in period t2
if the same behavior pattern is assumed; χ2 computes the

standard deviation. Here, a higher value of χ2 indicates

a more significant divergence of the system behavior over

time period t2 from t1.

Without task graphs, it is hard to know to which request

an interaction should be attributed to, because answering a

request might involve multiple processes and a process may

be serving many requests in parallel. With task graphs, the

origin request of an interaction can be correctly identified

through graph reachability analysis (See Figure 3). We set

up an experiment to demonstrate how task graphs improve

the precision of the aforementioned χ2 based anomaly de-

tections. The experiment is conducted on a distributed stor-

age system being developed at Microsoft. It is used to pro-

vide storage services for the Windows Azure cloud comput-

ing platform. It is built with features such as load balancing

and fault tolerance. The application logic of the whole sys-

tem is divided into many modules, called roles. Depending

on the expected workload, these roles can be instantiated

into a variable number of instances when deploying a live

system. This system interacts with clients by supporting

basic file system related operations: PUT operations that
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applying the model after using task graph to classify the interactions for each request type.

store client data into the system, GET operations that re-

trieve previously stored data, and a few others. Developers

already have logging facilities implemented in the code, and

hence we use the log files generated by the default setting.

After collecting all the log files from all roles, events are

identified and connected as described in Section 4.

In anomaly detection, it is a common practice to com-

pare the system behavior of a later period to a previous

period [8]. During these two periods, it is highly likely

that the system will serve different mixtures of types of re-

quests. To simulate this situation, we then collect logs for

two runs: in Run 1, the system serves 750 PUT requests and

250 GET requests; in Run 2, the system serves 500 requests

of each type. Since we use the same version of the system,

we should expect any anomaly detection model to conclude

that the system behavior during Run 2 is similar to Run 1,

in other words, small χ2 values should be expected.

Figure 8 summarizes our findings. We focus on a key

component S in the system and observe its component in-

teraction behavior with other roles. From the figure, we

can see that if we apply the component interaction model

naively (Figure 8(a)), the χ2 value, 56.4, is quite large, sug-

gesting anomaly. However, the large χ2 is indeed caused

by different request combinations being served. After using

task graphs to attribute the interactions to different request

types (Figure 8(b)), the χ2 values are much smaller: 2.2 for

serving PUT requests and 2.9 for GET requests, which sug-

gests that the system behaviors during the two runs are sim-

ilar, i.e., there are no anomalies. This latter result matches

the experimental setup, suggesting that the attribution abil-

ity afforded by task graphs is critical to applying such mod-

els in practice and achieving results with low false positives.

6 Related Work

Tracing. TraceBack [5] and Magpie [7, 6] also target the

problem of understanding distributed applications. Trace-

Back aims to reconstruct basic block level or source line

level control flows by using traces generated from static and

dynamic instrumentation. Its focus is on merging traces

from multiple threads into a single master trace. The dif-

ference with our work is that the distributed control flows

that we aim to reconstruct are of coarser grain, i.e., tasks,

which enables us to reason about systems consisting of large

number of components and processes. Magpie generates

request description strings by joining logged events serving

the same request. These description strings record which

components and resources are used in serving requests. The

strings are then used to model workloads and detect anoma-

lies. The work focuses on mining request strings and re-

lies on domain knowledge to cluster events belonging to the

same request. The work in this paper moves us closer to

the goal of discovering request paths without relying on do-

main knowledge, by offering reusable tracing aspects for

Java-based systems.

Other systems use a black-box approach to infer causal

paths from protocol-level traces. Aguilera et al. [3] traces

inter-node RPC messages, then, statistically infers causal

paths offline and uses them to performance debugging.

BorderPatrol [14] uses library call interceptors to generate

traces, with every low overhead demonstrated in real sys-

tems (10-15%). To recover causal path, “a module desig-

nation identifies which request the module is currently pro-

cessing”. Compared with our approach, both of these sys-

tems miss the causal relations brought by inter-thread sig-

nals.

Debugging. Several efforts aim at finding bugs in dis-

tributed systems by verifying invariants locally at some

node or globally through data aggregated from multiple

nodes. Research issues include choosing a logically con-

sistent time to perform the checking, and developing scripts

for developers to specify invariants [13, 17]. General be-

havior models leverage statistical analysis on large sets of

system behavior data. Mirgorodskiy et al. studied the use of

function-level traces in debugging with fail-stop and non-

fail-stop failures in large systems with nodes running sim-

ilar activities [18] (replicated systems). For each node, a

time profile vector is built, summarizing percentages of time

spent in each function (or call chain). Outlier nodes are
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found by using a distance measure for these vectors.

Zhang et al. [20] studied how to use basic metrics at

system- and application-level to predicate service level ob-

jective (SLO) violations in three-tier architectures; in par-

ticular, how to adaptively select these metrics to be used in

an ensemble of models for SLO violation detection. So in-

stead of using just one model with a set of preset metrics

to monitor the health of a distributed system, ensembles of

models are used over time. They argue that as the system

evolves, the system behavior might not be captured by the

current model, so a new metric and new model need to be

introduced to capture the evolved behavior. Their work is

orthogonal to ours.

Cherkasova et al. [9] proposed a regression-based trans-

action model and an application performance signature

model to detect application performance changes and dis-

tinguish these changes due to workload change from those

due to performance anomaly.

Friday [11] is a replay based debugging system for

distributed systems, capable of causally consistent group

replay, with each replayed node running inside a GDB

process. A high-level script language is provided to

break/watch/examine/update the distributed system as a

whole; these commands are automatically translated into

sets of normal GDB commands.

Visualization models. TotalView [2] is a parallel de-

bugger. It can control multiple processes concurrently and

offers rich UI for programmers to visually examine and

change data arrays in MPI programs, for example. Arnold

et al. [4] proposes the concept of 2D-Stack Trace, which

provides a visualization of a snapshot of the call stacks of

all MPI processes by anchoring them in a tree structure. It

is shown to be quite effective in finding tricky bugs in large

networks running hundreds of MPI processes.

7 Conclusion

This paper introduced tasks and task graphs. They can

be used to analyze distributed systems the same way that

basic blocks and CFGs are used to analyze sequential pro-

grams and their executions. They offer a box-and-arrow

view of how distributed computation proceeds. Tasks can-

not be mapped directly to programming language constructs

for mainstream languages. Rather, they refine traditional

operating systems concepts such as threads or processes

and cut cross software engineering concepts such as classes

or packages. We showed that task graphs are high-level

enough to aid the understanding of the structure of dis-

tributed applications while the causal paths of the graphs

help increase the accuracy of request-oriented anomaly de-

tection.
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