
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

2010 

Transactional Support in MapReduce for Speculative Parallelism Transactional Support in MapReduce for Speculative Parallelism 

Naresh Rapolu 
Purdue University, nrapolu@cs.purdue.edu 

Karthik Kambatla 
Purdue University, kkambatl@cs.purdue.edu 

Suresh Jagannathan 
Purdue University, suresh@cs.purdue.edu 

Ananth Y. Grama 
Purdue University, ayg@cs.purdue.edu 

Report Number: 
10-001 

Rapolu, Naresh; Kambatla, Karthik; Jagannathan, Suresh; and Grama, Ananth Y., "Transactional Support in 
MapReduce for Speculative Parallelism" (2010). Department of Computer Science Technical Reports. 
Paper 1737. 
https://docs.lib.purdue.edu/cstech/1737 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


Transactional Support in MapReduce for Speculative Parallelism

Naresh Rapolu Karthik Kambatla Suresh Jagannathan Ananth Grama

Department of Computer Science, Purdue University

{nrapolu, kkambatl, suresh, ayg}@cs.purdue.edu

Abstract
MapReduce has emerged as a popular programming model for
large-scale distributed computing. Its framework enforces strict
synchronization between successivemap andreduce phases and
limited data-sharing within a phase. Use of key-value basedper-
sistent storage with MapReduce presents intriguing opportunities
and challenges. These challenges relate primarily to semantic in-
consistencies arising from the different fault-tolerant mechanisms
employed by the execution environment and the underlying storage
medium. We define formal transactional semantics for MapReduce
over reliable key-value stores. With minimal performance overhead
and no increase in program complexity, our solutions support broad
classes of distributed applications hitherto infeasible in MapRe-
duce.

Specifically, this paper (i) motivates the use of key-value stores
as the underlying storage for MapReduce, (ii) defines transac-
tional semantics for MapReduce to address any inconsistencies,
(iii) demonstrates broader application scope enabled by data shar-
ing within and across jobs, and (iv) presents a detailed evaluation
demonstrating the low overhead of our proposed semantics.

1. Introduction
The need to support diverse distributed data processing ap-
plications, combined with rapid advances in inexpensive
commodity storage and networking solutions, motivate tech-
niques and infrastructure for effective and reliable manage-
ment of large volumes of data. On the storage side, systems
such as Bigtable [3], Dynamo [7], and Cassandra [17] offer
reliable, efficient and scalable storage for clients requiring
key-value access. These systems are primarily differenti-
ated by their consistency guarantees and the API. Open-
source implementations of Bigtable (HBase 1) and Cas-
sandra2 have been deployed on commodity hardware at
data-centers and in cloud computing environments, provid-
ing terabytes of fault-tolerant storage to diverse applications.
On the compute side, effectively processing large datasets
requires scalable and fault-tolerant distributed execution en-
vironments. MapReduce [6] – its open source implemen-
tation Hadoop 3, Dryad [12], and All-Pairs [21], among
others, address these needs to varying degrees. They support

1 HBase. http://hadoop.apache.org/hbase
2 Cassandra Project. http://incubator.apache.org/cassandra
3 Hadoop. http://hadoop.apache.org

a diverse application base, spanning data-warehousing, data-
mining/analytics [24], and scientific computing. Widespread
use of these systems is motivated by their support for scal-
able distributed applications without burdening developers
with node-level scheduling, load-balancing, and fault toler-
ance.

Integration of current key-value based storage and key-
value based distributed execution engines presents signifi-
cant opportunities and challenges. These challenges relate to
definition of suitable semantics, efficient implementations,
and application integration. Effective integration allows dis-
tributed coarse-grained computations to have a shared view
of the data being processed by other tasks, enabling de-
pendency tracking, pipelining, and speculative parallelism.
This broadens the scope of MapReduce applications beyond
traditional data-parallel computations. Furthermore, since
many important data processing applications span long dura-
tions, leveraging the fault-tolerance capabilities of thestor-
age infrastructure to store intermediate results potentially of-
fers significant savings in re-computations.

The disparate fault-tolerance mechanisms adopted by
the storage system (which are primarily replication and
recovery-based) and the execution engine (which rely on de-
terministic replay of coarse-grained computations) present
technical challenges for effective integration. We investigate
these challenges in the context of MapReduce (Hadoop im-
plementation) for the distributed execution environment and
Bigtable (HBase implementation) as the distributed storage
infrastructure. Our results, though, are more general and ap-
ply to other systems as well. We specifically examine the
semantics of when and how the results of a computation
(map), as reflected in changes to the global store, should be
made visible to other computations. Of particular concern
is the effect of failures of compute and storage nodes on
performance of protocols for proposed semantics. The se-
mantics should support application optimizations and high
performance within the context of current systems.

To address this important problem, we propose transac-
tional execution of computations (maps/reduces). The
results of one computation (writes to the global key-value
store) become atomically visible to other computations and
to other concurrent jobs (only) upon successful comple-
tion of the computation. This allows data sharing across



maps/reduces, speculative parallelism for computations
with potential dependencies, and several other performance
optimizations. We propose robust protocols and implemen-
tations for these semantics, that introduce minimal overhead,
while being resilient to failures. We support our claims of
performance and enhanced application scope in the con-
text of a variety of applications – maximum flow, classi-
fication, minimum spanning tree, and online aggregation.
All of these computations involve dynamic data dependen-
cies across computations, making them ill-suited to conven-
tional MapReduce environments. By storing results from
completed computations in persistent storage, our protocol
also reduces overheads associated with replay, in the event
of a failure.

In Section 2, we present necessary background on MapRe-
duce and Bigtable, and motivate the need for their integra-
tion, along with associated technical considerations. In Sec-
tion 3, we identify desired attributes of a failure-transparent
model and transactional execution engine, and use these to
highlight the specific contributions of our work. Section 4
describes (i) proposed semantics for the global store and
distributed computations operating on the store, (ii) an effi-
cient protocol implementing our semantics, and (iii) how the
protocol can be realized within MapReduce, operating on
Bigtable. Section 5 demonstrates the enhanced application
scope enabled by our transactional semantics using a diverse
set of illustrations, including modified WordCount, semi-
supervised classification in support vector machines, Boru-
vka’s Minimum Spanning Tree algorithm, Maximum flow
calculation using the Push-Relabel algorithm, and applica-
tions requiring online aggregation. Computations associated
with these applications involve dynamic data dependencies,
which can not be trivially specified within the traditional
MapReduce framework. We conclude by putting our contri-
butions in the context of related work in Section 6.

2. Background and Motivation
In this section, we provide the systems context for our pro-
posed methods and motivate the usage of key-value based
storage for MapReduce using illustrative examples. We also
discuss inconsistencies arising from naive integration ofcur-
rent key-value stores and compute engines, and describe po-
tential solutions.

Key-Value Storage: Bigtable Bigtable [3] is a scalable
storage system for sparse, semi-structured data built on top
of GFS [8]. Data is indexed by row, column and timestamp.
Columns are grouped together into column families, and
data items corresponding to a single column family are
stored together, since they are likely to be accessed to-
gether. Keys (rows) are distributed across storage nodes.
Fault-tolerance is delegated to the underlying file system,
GFS, which replicates each block. In case of a failure, a
new replica is created from other known replicas. The open
source implementation of Bigtable,HBase, is built on top of

HDFS, and provides several useful features, including trans-
actional commits to multiple rows. Our proposed develop-
ment builds onHBase to store key-value pairs operated on
by MapReduce.

Key-Value Processing: MapReduceDean and Ghemawat
proposed MapReduce [6] to facilitate development of highly-
scalable, fault-tolerant, large-scale distributed applications.
The MapReduce runtime system divests programmers of
low-level details of scheduling, load balancing, and faulttol-
erance. Themap phase of a MapReduce job takes as input
a list of key-value pairs,< key, value >: list, and applies
a programmer-specified (map) function, independently, on
each pair in the list. The output of themap phase is a list
of keys and their associated value lists –< key, value :
list >: list, referred to as intermediate data. Thereduce
phase of the MapReduce job takes this intermediate data as
input, and applies another programmer-specified(reduce)
function on each pair of key and value list. The MapReduce
runtime supports fault-tolerance through a deterministicre-
play mechanism, described below.

In the open source implementation of MapReduce –
Hadoop on top of HDFS4, map andreduce phases are
split into multiple tasks operating on parts of the input, with
each task executing on a separate node. When a node fails,
the corresponding tasks are re-executed on another node.
The output ofmap tasks is sorted locally and stored, and
upon completion of themap phase, thereduce tasks pull
the data that they are supposed to operate on from the corre-
spondingmap tasks. Thereduce phase waits for the com-
pletion of themap phase since all the values corresponding
to each key are needed by the correspondingreduce func-
tion.

The rigid semantics of MapReduce are well-suited to reg-
ularly structured data-parallel applications, since theydo not
allow data-sharing across computations within, or across
jobs. MapReduce does not naturally support task-parallel
jobs, jobs exploiting optimistic parallelism (through spec-
ulative parallel execution) [14, 25], jobs with data depen-
dencies [20], jobs that build a model over iterations on the
same input [26], jobs leveraging pipelining-based workflows
such as online aggregation,etc.. To broaden the scope of the
MapReduce framework, many system level modifications,
such as inherent pipelining and extreme checkpointing, sim-
ilar to those discussed in the recentMapReduce Onlinepro-
posal [5], are being investigated. Dryad [12] achieves some
of this generality by incorporating extra features and intelli-
gence into the underlying execution environment. However,
this is not a general-purpose solution since applications with
diverse data-flow characteristics necessitate modifications to
the execution environment, which is hard to provide.

Application Scope One way to allow data-sharing in the
MapReduce framework without compromising fault-tolerance

4 Hadoop Distributed File System. http://hadoop.apache.org/hdfs



or significantly altering the programming interface is to al-
low applications to operate directly on a (persistent) key-
value store, making all the writes immediately visible to all
subsequent computations with well-defined semantics.

public void map(key, value, context) {
StringTokenizer itr =
new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

word.set(itr.nextToken());
context.write(word, one);

}
}
public void reduce(key, values, context){

int sum = 0;
for (IntWritable val : values)

sum += val.get();
result.set(sum);
context.write(key, result);

}

Figure 1. WordCount implementation fromHadoop src

public void map(key, value, context) {
StringTokenizer itr =
new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {
outTable.incrementColumnValue(
Bytes.toBytes(itr.nextToken()),

family,
qualifier, 1, true);

}
}

Figure 2. WordCount implementation usingHBase

Consider an illustrative application adapted from the orig-
inal wordcount example [6] to compute thek most frequent
words in a large corpus. A simple implementation would cre-
ate two jobs — a WordCount MapReduce job to compute
the word-counts, and another job to find thek most frequent
words from the word-counts. The implementation of Word-
Count inHadoop source is shown in Figure 1. The input to
themap function is a line (or block) of text. For each word
in the line, themap function emits the word and the number
1. Thereduce function receives a word and a list of counts
(1’s in this case), which it sums up and computes the total
number of occurrences of each word. For a large corpus, the
WordCount job, and themap phase in particular, might take
a long time to execute. Other jobs that rely on this output
(eg., that finds thek most-frequent words) must wait until
the entire WordCount application completes.

Consider an alternate implementation of WordCount
shown in Figure 2. For every word themap function en-
counters, a corresponding counter is incremented inHBase
(persistent storage), and the updated count is instantly vis-
ible to other applications. Even if the WordCount job runs
for a long time, the partial counts and frequencies for the
corpus parsed thus far can be made visible. Interestingly, the
implementation does not require areduce function, since
the aggregation is done implicitly byHBase. Using these

counts, one can compute frequencies of words in an online
fashion. Such online aggregation (asynchronousreduce)
is enabled by the fact that the persistent store makes data
visible as soon as it is computed.

Pingali and Kulkarni [14] recently introduced the notion
of amorphous data parallelism in irregular applications. This
form of parallelism is manifested in parallel computationsin
which most of the operations can occur in parallel; however,
a few of the operations conflict with others. As an exam-
ple, if we define an operation to be acting on a node and
its neighbours in a graph, operations on non-neighbor nodes
can execute in parallel, while those on the neighbors need to
be serialized. Interestingly, in many graph algorithms, data
dependencies cannot be detected statically as the neighbors
of a node change dynamically. Hence, these dependencies
must be tracked and resolved dynamically at runtime. Opti-
mistic parallel execution allows exploitation of amorphous
data parallelism, by speculatively executing concurrent op-
erations and rolling back if the runtime detects a conflict.
The technical challenge of efficiently accomplishing this in
a distributed environment forms the focus of this paper. Us-
ing shared-persistent storage facilitates such applications,
since concurrent operations (map andreduce functions)
can transparently operate on shared data-structures. The de-
sired semantics of such concurrent manipulations are not
completely defined for MapReduce programs. These seman-
tics must support broad classes of applications, while ad-
mitting efficient implementations within the programming
framework.

An example of how such an infrastructure could be used
is Boruvka’s algorithm for finding the minimal spanning tree
of a graph [22]. In the sequential version of the algorithm,
each iteration (on different nodes) coalesces a node and its
closest neighbor. Storing the graph as an adjacency matrix
in a key-value store allows execution of these iterations con-
currently (map phase). However, two iterations might in-
volve conflicting operations (two nodes may attempt coa-
lescing with the same node) and may need to be serialized.
In this paper, we propose novel transactional semantics for
MapReduce over key-value storage to resolve such conflicts
and to enable broad classes of applications hitherto inacces-
sible within current MapReduce frameworks.

Inconsistencies Naively accessing a global key-value store
from within amap or reduce function potentially leads to
inconsistencies —

Failures MapReduce implements fault-tolerance through
deterministic-replay. Amap/reduce task is re-executed
with the same input if the original task fails. Such replay
does not roll back any side-effects of the failed execution
of the task, and can thus result in inconsistencies arising
from writes to persistent storage from partially completed
(and replayed)maps.



Figure 3. A sample execution ofmap function of WordCount
from Figure 2

Conflicts Optimistic parallel execution of applications with
dependencies might lead to conflicting concurrent opera-
tions compromising isolation and serializability. Isolation
is violated when a computation’s commit to the global
store is only partially witnessed by another computation’s
reads.

Figure 3 demonstrates the inconsistencies due to failures
that might arise in our modified implementation of Word-
Count described earlier. Themap function takes as input
a line, l, denoted as input in the Figure. Execution1 cor-
responds to an execution of themap task whose first line
is l, which crashes during the execution of ourmap func-
tion. In this execution, themap function parses the words –
the-quick-brown-fox, and crashes while parsing the
next word. The word-counts corresponding to these words
are updated in theHBase table as shown in the figure. These
updates are made persistent, and the only way to roll-back is
to revert to old values (or delete). Since MapReduce em-
ploys a deterministic-replay for failure recovery, themap
task is re-executed, say execution2, which finishes success-
fully. During the re-execution, themap function increments
the word-counts of previously encountered words again, re-
sulting in the incorrect counts, shown in the second table in
the Figure.

The source of this inconsistency lies in the different fault-
tolerance mechanisms employed at the computation and
storage layers. Each computation must be executed atom-
ically to prevent such inconsistencies. In case of optimistic
parallel execution (as in Boruvka’s), all but one of the con-
flicting operations must be rolled back and re-executed to
guarantee isolation and serializability.

This paper defines transactional semantics for MapRe-
duce over global key-value stores to ensure atomic, isolated,
serializable execution of computations. Such semantics al-
low applications to exploit parallelism (even in cases with
data dependencies) through data-sharing over the global
store. The paper discusses our implementation of these se-
mantics in the context ofHadoop operating overHBase.
Furthermore, our approach inherently makes intermediate
data persistent, which is desirable for long-lived applications

that benefit from intermediate checkpointing (e.g., multi-
stage MapReduce jobs as found in Pig [23]) and applications
where intermediate data also contains valuable information.

3. Contributions
This paper makes the following specific contributions:

• It defines transactional semantics for MapReduce com-
putations operating on a global key-value store. The pro-
posed semantics ensure atomic, isolated execution of the
computations in a failure-transparent manner.

• It provides the design and implementation of a protocol
that implements proposed semantics, through the use of
global and computation-collocated stores.

• It demonstrates enhanced application scope of the ex-
tended semantics using four sample applications – max-
imum flow, minimum spanning tree, classification, and
online aggregation. Data-sharing and resolution of run-
time dependencies in these applications is enabled by
our proposed semantics. In each case, it shows signifi-
cant performance improvements (speedups) on commer-
cial cloud environments.

• It demonstrates that the overhead of the proposed inte-
grated system for traditional workloads (those with no
dependencies, supported by MapReduce) is minimal.

4. Semantics
In this section, we define the semantics of a Global Store
(GS) and a computation unit (CU), along with a protocol de-
scribing their interactions. A computation unit is a sequence
of operations executed transactionally. In MapReduce, the
map andreduce functions are abstracted as computation
units. We represent MapReduce using this protocol so that
the computation and storage layers are aware of each other’s
fault-tolerance mechanisms. Both storage and computation
are assumed to be distributed, and span multiple nodes. A
node refers to a set of resources — a processor, local mem-
ory, and local disk space.

4.1 Global Store

The Global Store (GS) is a set of global mappings of keys
to values. This mapping is stored in a distributed fashion on
multiple nodes. The keys are distributed across nodes and
all accesses to a key are directed to the associated node. The
underlying file system, on top of which the store is built,
provides reliability and persistence.

The proposed semantics of the GS formalize operations
supported by Bigtable and its open-source versionHBase.
They can be extended to any key-value store based on the
consistency guarantees they offer. As described in Chang
et.al. [3], Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row key,
column key, and a timestamp; each value in the map is an



uninterpreted array of bytes. The timestamp can be inter-
preted as an update counter that monotonically increases
on each write to the value in that row and column. We use
the term update-counter instead of timestamp, since the no-
tion of time has other connotations in distributed systems.
The mapping for a GS is given by:mapping = {(row :
col : update − counter, value)}. For a write request to
the GS with an unspecified update-counter, the value is ap-
pended with an update-counter higher than the highest ex-
isting update-counter in the GS. One can scan all the val-
ues associated with a given row:col pair with monotonically
increasing update-counters. Similarly in a read request, if
the update-counter is not specified,HBase returns the value
with the highest update-counter. For the sake of simplicity,
in this paper, we assume that the key for read/write access to
GS is of the form row:column (without the update-counter).
Note that the terms GS andHBase are used interchangeably
in this paper.

The following consistency guarantees are provided by the
current version ofHBase. The global store supports atomic
commits on single-row operations, by acquiring a lock on
the row. This can be used to perform atomic read-modify-
write sequences on the data stored under a single row key.
Building on this atomic row commit, the global store also
allows a transactional commit on multiple rows, using a two-
phase commit protocol [1] to lock and atomically update
each row.

4.2 Computation Unit

A Computation Unit(CU)is an abstraction of a sequence
of computations on a certain input. GS serves as source
and sink for a CU’s input and output, respectively. Fault-
tolerance is achieved through deterministic replay. If the
node executing the CU fails, the CU is re-executed, from
the beginning, on a different node. In the proposed model, a
CU is executed as a transaction using the protocol described
below.

4.3 CUGS protocol

The proposed CUGS protocol (Computation Unit over
Global Store) attempts to integrate the execution of CU over
the GS in a failure-transparent manner. It provides transac-
tional semantics to a CU. We defineComputation Store(CS)
as a temporary buffer for storing the key-value pairs accessed
by the CU during its execution. It serves as a read-write list
of a CU, to be used for validation and concurrency control
of the CU transaction.

read(Row:Col)During a read(Row:Col), the fetched value
from GS is first stored in the Computation Store(CS)
along with its key (serves as a read-list for this trans-
action) and then returned to the CU. The most recent
update-counter for this Row:Col pair is also stored along-
side. The value is fetched from GS only if there does
not already exist a copy of Row:Col in the CS. Oth-

erwise, the value present in CS is returned (to provide
read-after-write consistency). This technique is usually
referred to as optimistic-reads in software transactional
memory (STM) literature.

write(Row:Col, value)A write request is always fulfilled
by the Computation Store. If a read on the same key is
performed before the write, then the CS would have a
copy of it, which gets updated by this write; otherwise, a
new copy is created in the CS. GS is never immediately
accessed in a write request. All updated key-values in the
CS form its write-list. This technique is generally termed
write-buffering in STM literature.

The validation, atomic commit, and fault-tolerance of this
transaction clearly depend on the physical placement of the
Computation Store. There are two design choices here. The
Computation Store can reside on the same node on which
CU executes (client-side buffering) or it may reside on the
nodes hosting the GS (server-side buffering).

Each region, potentially hosted at a different node, in
HBase spans a set of rows. In server-side buffering of CS,
the read/write lists of the CU corresponding to a row are
placed at the node containing its corresponding region. Since
all read/write lists of concurrent transactions are present at
the same node, they can be validated against each other
to detect conflicts during an atomic commit. A transaction
would be committed only if all the regions successfully
validate. Every transaction increases an atomic counter be-
fore its validate-and-commit phase. The read/write lists of
a transactionti, are validated against those transactions that
committed their writes, between the start ofti and the time it
increased the atomic counter. This approach is similar to the
well-known optimistic concurrency control method used in
most databases [16]. The atomic commit of all the writes is
executed using the two-phase commit protocol [1]. To han-
dle CU failures using server-side buffers, each CU acquires
a lease on the region before the start of its transaction. The
lease is periodically renewed as the transaction proceeds.If
the CU fails and the lease is not renewed for a long time,
the region inHBase automatically revokes the lease and re-
claims the CS buffers for the specific transaction.

Consider the case in which a CU executes many read-
/write operations during its execution. Since reads/writes get
buffered in the Computation Store present at the server, each
read/write operation incurs heavy network latency. One so-
lution to this is to have the CS reside at the node where the
CU executes (client-side buffering). The read/write seman-
tics of the transaction, mentioned above, are affected locally,
in-memory, leading to better performance. Once the CU exe-
cutes, during transactional commit, the entire read/writelists
on the local CS can be transferred to the server for validation
and atomic commit. Handling CU failures is less complex
in client-side-buffering. In this method, if the node execut-
ing the CU crashes, the entire Computation Store present on
the node is also lost. Deterministic replay of CU would re-



sult in the creation of a new local store. Failure during the
transactional commit is handled by the server-side lease and
two-phase commit, as described above.

While client-side-buffering appears superior, it has a few
inherent disadvantages. If the amount of data being accessed
by the CU from GS is large, buffering all of it at a single
client node is not feasible. This overhead is significant if the
number of reads is considerably larger than writes. If many
CU’s execute on the same node, this can lead to severe mem-
ory overheads. As mentioned above, server-side buffering is
not feasible for applications with a large number of writes
to the GS. Consequently, the choice is dependent on the data
access patterns of the CU and the physical location of its exe-
cution. We test our applications with both server-side buffer-
ing and client-side buffering. For applications, involving few
reads and writes to the GS, there is no significant difference
in performance.

4.4 Guarantees provided by the protocol

Definitions

Scheduleis an interleaving of successful completions of the
computation units(CU) within a job.

Mutation is an insert/update to the global store.

Mutation orderof a job is the order in which mutations
occur in the job’s execution.

The execution of a job isfaulty if failures occur during the
execution. Otherwise, it isfaultless.

The CUGS protocol mentioned in the paper ensures the
following invariant.

Invariant 1. For every mutation order of a job,J , under
faulty execution, there exists a faultless execution ofJ with
the same mutation order.

Proof. The mutation order of a job depends on its schedule.
Upon successful completion, each computation atomically
writes its output to the global store. The set of mutations
corresponding to a single computation unit are written atom-
ically. This is achieved in the GS by using the atomic counter
and two-phase commit protocol for mutations. Given a mu-
tation order, one can decipher the schedule and vice-versa.
Hence, it suffices to prove that for every schedule in a faulty
execution, there exists a faultless execution with the same
schedule.

Let C be the set of computation units, andS be the
set of all possible schedules forC. Clearly, S is the set
of all permutations of elements ofC. Consider a particular
faultless schedule,siǫS. Whensi’s execution encounters a
fault (a particular computational unitci fails), it re-executes
resulting in a different schedulesj . Thoughsi 6= sj , sjǫS,
sincesj is still a valid permutation of elements ofC.

The above invariant assures that, the order of CU execu-
tion is serializable. With respect to MapReduce, let us con-

sidermap as a CU which operates on elements of a list. If
the elements are unordered, i.e., the application admits any
order of their execution, then the above invariant assures that
the protocol will guarantee a serializable execution even in
fault-prone environments.

4.4.1 Consistency and Reliability

We show that the protocol guarantees the following proper-
ties, even in failure-prone conditions.

• Deadlock Freedom.Note that the CU transaction is based
on optimistic reads. No locks are acquired during reads.
The protocol allows stale reads during the CU execution,
which is verified only at commit time. Since reads go
through without waiting, there cannot be a deadlock on
reads. Furthermore, writes happen only during the trans-
actional commit. As mentioned in the protocol, during
the atomic commit of writes, the CU first acquires a lease
on all the regions, and increases an atomic counter. All
the writes get committed only in the order of this counter.
If a transaction in this list crashes, GS forcibly revokes
the lease after a time-out. This allows for other subse-
quent transactions in the commit-pending queue to ac-
quire the lease and transactionally commit. This time-out
mechanism eliminates the possibility of deadlocks dur-
ing writes. The same holds even if multiple nodes host-
ing Computation Units crash in the system. The two-
phase commit protocol handles the case for consistency
of writes during GS failure. During writes, if a node host-
ing a region of GS fails, none of the writes go through.
This failure of transactional commit, will force any pend-
ing transaction to revoke the lease.

• Livelock FreeThe transactions at the regions hosting the
GS, during atomic commits, are stored in FIFO order. If
a transaction fails during its transactional commit (either
due to read-write dependencies or due to the correspond-
ing CU crash), a time-out mechanism forcibly removes it
from the list. Consequently, every transaction commits in
bounded time.

• ProgressA failed Computation Unit is re-executed, as-
suring Progress. In case of a crash failure,Hadoop af-
fects re-execution. In case of a failure due to conflict,
the CU is queued for later re-execution. On the storage
front, HBase uses the distributed file system for repli-
cation of its data. Consequently, when one of its regions
fail, HBase re-spawns it at another node using the repli-
cated data.

4.5 Realizing CUGS protocol in MapReduce

We now demonstrate how MapReduce can utilize the CUGS
protocol to provide well-defined semantics and high perfor-
mance on applications with potential data dependencies. To
realize the CUGS protocol in MapReduce, we treat themap
andreduce function instantiations as Computation Units
(CU). Themap andreduce functions are executed trans-



actionally and upon successful completion, their outputs are
stored in persistent storage. Thus, the output becomes visible
to othermap/reduce functions of the same job scheduled
after the current function, and also to other jobs – MapRe-
duce or otherwise.

Speculative or optimistic parallelism requires serializabil-
ity to address data-dependencies. Traditional MapReduce
supports only data-parallel applications; it has no provision
for taking data dependencies into account while schedul-
ingmap/reduce tasks. However, the CUGS protocol keeps
track of the accesses made by each concurrent computation,
and serializes their execution in case of conflicts. If there
are no conflicts, all computations run through to completion.
Hence, we spawn and execute themap/reduce functions as
in traditional MapReduce. In case of a conflict, all but one
of the conflicting functions are queued for later re-execution
assuring serializability.

4.5.1 Fault-tolerance model

Our proposed approach to fault-tolerance is markedly differ-
ent from that adopted byHadoop. In Hadoop, to achieve
coarse-grained control over re-execution and data-movement,
map functions are grouped into amap task. Similarly,
reduce functions are grouped into areduce task. A
task executes its corresponding functions iteratively. Failure
during the execution of any one function leads to the re-
execution of the entire task. Re-execution of a reduce task
is more complicated, since the input to thereduce tasks is
stored locally on the nodes which executed themap tasks. In
order to re-execute thereduce task, the input is fetched
from the correspondingmap tasks, which potentially in-
volves re-execution of somemap tasks whose nodes might
have crashed since the last pull.

In our approach, we can not re-execute the entiremap
task, since we make the output of every function persis-
tent upon completion. Also, this persistence allows us to
execute only the partially executed and unexecuted map in-
stances, as opposed to the entiremap task. We maintain
a system table in GS, which stores the number of functions
successfully committed by all tasks. The keys in this sys-
tem table correspond to task-ids, which are unique ids as-
signed byHadoop. Furthermore, the id for a re-executing
task is obtained by appending the attempt number to the
original task-id. Before starting iterative re-executionof the
map functions, we parse the map-task-id to get the original
id and determine the number of functions successfully exe-
cuted during prior runs, and start executing from last failure.
Note that the system table is updated atomically, during the
transactional commit, at the end of a function, avoiding in-
consistent behaviour during faults. Thereduce task also
can be re-executed similar to a map task, on the intermediate
data stored in the GS, maintaining its transactional nature.
Upon completion of the job, intermediate data can be deleted
from the GS by a background cleanup job.

4.5.2 Advantages of persistent intermediate data

There are several advantages associated with storing inter-
mediate data on the GS, in addition to safeguarding the trans-
actional nature of reduce functions. As mentioned earlier,the
output of themap functions is made visible to other maps
and other MapReduce jobs as and when they are completed,
instead of waiting for the entiremap phase to finish. This al-
lows data-sharing among applications involving partial de-
pendencies, asynchronous and online aggregationetc., ex-
plained in detail in the evaluation section. In many multi-
stage dataflow frameworks such as Pig [23], intermediate
data after every stage is stored in the local filesystems. The
crash failure of a node at a stage can lead to expensive cas-
caded re-execution, involving re-execution of certain tasks
from prior stages. Checkpointing intermediate data [13] is
an obvious solution. However, the overhead of n-copy repli-
cation in the underlying distributed file system potentially
causes significant network overhead, since this happens con-
currently with the reduce tasks fetching their input from the
map tasks. Koet.al. [13] propose replicating the intermedi-
ate data asynchronously using TCP-Nice [28] at the end of
map phase. Our solution allows asynchronous data transfer
even during the execution ofmap phase as and when each
function completes, further reducing network overhead. Per-
sisting data during themap phase sorts intermediate data
(HBase sorts the data based on key similar to insertion sort),
eliminating the need for a special sorting/shuffling/merging
phase. Thereduce tasks can be spawned just like themap
tasks.

4.5.3 Handling conflicts among concurrent
Computation Units

If transactional commit of a map function fails due to con-
flicting transactions, it is inserted into a queue, and re-
executed upon successful execution of all the other map
functions in the task. This technique of backing-off reduces
the possibility of another conflict, if the transaction is re-
executed immediately. Re-executions continue until all map
functions are successfully executed and committed. Due to
the optimistic nature of concurrency control, all transactions
eventually commit. The same holds true for reduce func-
tions.

5. Evaluation
In this section, we demonstrate the performance gain from
our transactional MapReduce semantics. We use the trans-
actional client package in theHBase API to implement the
two-phase commit, re-execution mechanism, client-side, and
server-side buffering. All applications are executed on an
eight-node cluster in Amazon EC25 under real-world cloud
latencies. Each node is anxlarge instance with16GB of
RAM and four virtual cores (32 cores in all). We demon-

5 Amazon EC2. http://aws.amazon.com/ec2



strate our results on four applications – push-re-label maxi-
mum flow computations, Boruvka’s minimum spanning tree
algorithm, generalized learning vector quantization, andon-
line aggregation. In each case, we show how our seman-
tic model can be used to specify underlying computations
(with dependencies), and the performance enhancements
achieved.

 500

 1000

 1500

 2000

 2500

 3000

1 4 8
 0

 50

 100

 150

 200

 250

T
im

e 
(s

ec
on

ds
)

N
um

be
r 

of
 q

ua
sh

es

Number of computing nodes

Execution Time
Number of Quashes

 500

 1000

 1500

 2000

 2500

 3000

1 4 8
 0

 50

 100

 150

 200

 250

T
im

e 
(s

ec
on

ds
)

N
um

be
r 

of
 q

ua
sh

es

Number of computing nodes

Execution Time
Number of Quashes

Figure 4. PreflowPush-Relabel

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

1 4 8
 0

 5

 10

 15

 20

 25

 30

T
im

e 
(s

ec
on

ds
)

N
um

be
r 

of
 q

ua
sh

es

Number of computing nodes

Execution Time
Number of Quashes

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

1 4 8
 0

 5

 10

 15

 20

 25

 30

T
im

e 
(s

ec
on

ds
)

N
um

be
r 

of
 q

ua
sh

es

Number of computing nodes

Execution Time
Number of Quashes

Figure 5. Boruvka’s MST

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

1 4 8
 0

 500

 1000

 1500

 2000

 2500

 3000

T
im

e 
(s

ec
on

ds
)

N
um

be
r 

of
 q

ua
sh

es

Number of computing nodes

Execution Time
Number of Quashes

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

1 4 8
 0

 500

 1000

 1500

 2000

 2500

 3000

T
im

e 
(s

ec
on

ds
)

N
um

be
r 

of
 q

ua
sh

es

Number of computing nodes

Execution Time
Number of Quashes

Figure 6. GLVQ classification

5.1 Push-Relabel maximum flow algorithm

The maximum flow problem is to find a feasible flow
through a single-source, single-sink, flow network with the
maximum capacity. ThePush-Relabelalgorithm [9] main-
tains a preflow – a flow function with the possibility of ex-
cess at the vertices. ThePushoperation increases the flow on

a residual edge, and a height function on the vertices identi-
fies the residual edges that can be pushed. When there are no
morePushoperations to be executed, aRelabeloperation in-
creases the height of the vertices, which have excesses. This
sequence of operations continues until there are no more
excesses on any of the vertices other than the source. It is
evident that the same operationPushor Relabelcannot be
applied to neighboring nodes concurrently. As long as the
neighbourhoods of two nodes do not intersect, operations
on them can occur in parallel. However, since this can only
be determined at runtime, it is difficult to specify this in the
form of maps (andreduces).

In our transactional MapReduce formulation, eachmap
function operates on a node and its adjacency list, which is
stored as one row in aHBase table. In thePushoperation, a
residual edge is chosen from the nodes adjacency list and its
capacity is updated. Data corresponding to the other vertex
connected by the edge, its values of excess, and residual
capacity are updated, and both of the updated nodes (rows)
are atomically committed. During the transactional commit,
concurrentmap-transactions are checked for reads or writes
to the two rows being updated. If a conflict is detected, the
transaction which is later in the commit-pending-queue is
quashed and the correspondingmap function is re-executed
from the beginning.

The input flow network is generated using the Washing-
ton network generator6. The network is a200 x 500 grid
with the source connected to all the nodes in the first row
and the sink connected to all the nodes in the last row. Every
node in a column randomly connects to three other nodes in
the next column. The edge weights are randomly generated.
Figure 4 shows the average times taken over a window of
10 iterations ofPushandRelabeloperations. Speedups of
up to 3.5 were observed on 8 nodes. The average number of
map-transaction re-executions due to conflicts are under0.8
percent implying considerable speculative execution. While
the speedup may not appear large, when viewed in the con-
text of the dynamic data dependencies underlying the appli-
cation, this is significant.

5.2 Boruvka’s Minimal Spanning Tree (MST)
Algorithm

Boruvka’s MST algorithm iterates over the nodes (u) in the
graph, finding the nodev closest tou’s component, adding
the edge between these two nodes to the minimal spanning
tree, and coalescingu andv. The process is initiated with
as many components as nodes (each node forming a compo-
nent); each iteration coalesces two components – the result-
ing component at the end of all iterations being the minimal
spanning tree of the input graph. In its MapReduce formu-
lation, themap function takes the adjacency list of a node
u, finds the nodev closest to the component that containsu,

6 Washington max flow network generator.
http://www.avglab.com/andrew/CATS/maxflow/synthetic.htm



and coalesces these two nodes (addsu to v’s component and
vice-versa). Twomap functions attempting to coalesce with
the the same node must be serialized. In our implementation,
we useHBase to store the input graph as well as informa-
tion regarding coalescing nodes. Each row in theHBase ta-
ble corresponds to a node, the adjacency list is stored as one
family and the corresponding coalesced node list is stored as
another family.

We run Boruvka’s algorithm on a 100,000 node graph
with an average degree of 20, generated using the forest
fire model of iGraph7. Figure 5 shows the average time
taken to compute the spanning tree with 1,4 and 8 nodes.
We observe speedups of2.82 and4.48 for 4 and8 nodes,
respectively. Due to the graph structure and sparsity, the
average number of conflicts detected amount to less than
0.5 percent of total executions. As before, considering the
dynamic data dependencies, this is excellent speedup.

5.3 Generalized Learning Vector Quantization
(GLVQ)

We focus on parallelizing the compute-intensive training
phase of the GLVQ algorithm [10]. In its sequential ver-
sion, given two sets of labeled training and reference vectors,
the training phase sequentially computes distance betweena
training vector and all of the reference vectors. The nearest
reference vector belonging to the same class as the train-
ing vector is brought closer to it, whereas the nearest vec-
tor belonging to the other class is pushed farther. The train-
ing vectors must be processed sequentially due to a poten-
tial read-after-write dependency. The key observation here
is that every training vector updates only two reference vec-
tors. Therefore, the distance calculation phase can happen
in parallel for all the training vectors. Once all the training
vectors choose their nearest reference vectors, each training
vector needs to re-calculate its distance from updated refer-
ence vectors to ensure that changes to other reference vectors
do not affect the nearest-neighbour decision of individual
training vectors. Any serializable execution of this check-
and-commit operations of all the training vectors is a valid
execution.

In the MapReduce formulation of the problem, eachmap
function takes a training vector, calculates its distance from
all reference vectors, chooses the nearest two and writes their
identifiers in an intermediate table. Each reduce function op-
erates on a training vector which scans and recalculates its
distance from the reference vectors in the intermediate table;
updates and atomically commits the nearest reference vec-
tors. Eachreduce fetches the latest values fromHBase,
before re-calculating the distances, therefore the read-after-
write dependency is not violated. The transactional commit
handles concurrent updates to the same reference vector. As
test input to our program, we use the URL Reputation Data
Set [18] from UCI Machine Learning Repository. We use

7 iGraph. http://igraph.sourceforge.net

10000 training and 10000 reference vectors. Figure 6 shows
the average times taken for the entire training phase. We ob-
serve speedups of1.9 and2.3 on4 and8 nodes, respectively.
This moderate improvement in performance is mainly due to
the large number of conflicts (23%) detected during in-order
commit of thereduce phase. The number of conflicts is a
function of the dataset – a dataset with better separation of
classes is likely to have lower conflict rates.

5.4 Online Aggregation

Traditional MapReduce implementations provide a poor in-
terface for interactive data analysis tasks. They do not pro-
duce any output until the job runs to completion. Online ag-
gregation [11] has been proposed in the database literature
to address this problem. Our CUGS protocol enables mak-
ing the output of amap function visible to other jobs as they
complete. Consider as an example, the task of extracting the
top-k words in a document corpus. This can be implemented
using a regular WordCount job and an online aggregator job.
Themap function of the WordCount job parses a line from
the given document and scores each encountered word in
HBase. The online aggregator job is spawned at regular in-
tervals. Themap function of this job scans a row(word) and
sums up the frequencies. Thereduce function in the aggre-
gator job sorts the frequencies and outputs the top-k words.
We test this on a 5 GB text dataset from project Gutenberg8

is used as input. Though the WordCount job took460 sec-
onds to complete, the aggregator job emitted the exact top-10
words in130 seconds.

5.5 PageRank

We run PageRank (mentioned in the original MapReduce
paper [6]) on traditional and transactional MapReduce to
show that CUGS protocol has very low performance over-
head. PageRank takes a document-links graph and outputs
the pageranks of documents, implemented as an iterative
MapReduce job. In themap phase, each node pushes its
pagerank to each of its outlinks. In thereduce phase, each
node aggregates the contributions of each of its inlinks. We
iterate until the pageranks converge. We ran PageRank on
a 5 million node sparse graph. Traditional MapReduce ver-
sion took 134 seconds per iteration, while the transactional
MapReduce version took146 seconds per iteration. Given
the transactional execution and checkpointing of intermedi-
ate data, this overhead is very low. The main reason for the
low overhead is the spreading of the network traffic over the
entire MapReduce job.

It should be evident that our proposed transactional model
(i) is general and applies to broad classes of applications;(ii)
is capable of speculatively executing complex applications
with dynamic data dependencies with well-defined seman-
tics; and (iii) incurs low overhead, delivering high overall

8 Project Gutenberg. http://www.gutenberg.org



application performance without altering the programming
API.

6. Related work
A number of research and development efforts have tar-
geted both systems and applications aspects of MapRe-
duce. On the application front, the MapReduce program-
ming model has been validated on diverse application do-
mains including, machine learning [4], scientific computing,
data-mining [27], and database operations [23]. These ap-
plications are largely data-parallel, and well-suited to the
MapReduce programming model. To the best of our knowl-
edge, this paper represents the first attempt to exploit spec-
ulative or optimistic parallelism in MapReduce, while pro-
viding well-defined execution semantics.

Dryad [12] is a data-parallel programming environment
supporting a more general model of acyclic data-flow graphs.
This model admits pipelining among nodes in the graph.
However, it is unclear how this can be adapted to a dis-
tributed environment in which the underlying storage is a
distributed filesystem. In the recentMapReduce Online[5]
proposal,map tasks push parts of their output toreduce
tasks, as and when they are generated. Since communica-
tion happens over a filesystem to account for failures, tasks
need to checkpoint each file that is being sent. Reduce tasks
need to be aware of the possibility ofmap task failure, and
consequently have roll-back functionality. The protocol gets
further complicated for a multi-stage pipeline, or when a
large number of jobs are waiting for themap output. In con-
trast, our protocol uses an intermediate key-value store, into
whichmaps push data, and from whichreduces pull data.
By making the key-value store aware of the failures in com-
putations through transactional mechanisms, we eliminate
the need for the computation to be aware of the other com-
putations involved in the pipeline. This solution is inherently
scalable and does not increase program complexity.

Study of Software Transactional Memory (STM) and
transactions is an active area of research in fine-grained
concurrent and parallel systems [2]. Our protocol includes
concepts such as optimistic reads and pessimistic writes,
which are well-known in the STM literature. Though, they
are being extensively examined with respect to fine-grained
shared-memory systems, the relative overheads of target dis-
tributed systems yield much better performance than fine-
grained systems, where overhead of rollback negates some
of the gains of reduced locking and serialization.

Recent research efforts have also focussed on understand-
ing the performance potential of optimistic parallelism [25]
and best-effort computing [20] in irregular applications.It
has been shown that many commonly used algorithms can
be efficiently parallelized through optimistic or speculative
parallelism. Work by Pingali and Kulkarni et.al. [14, 19] on
speculative parallelism has resulted in the Galois runtime
environment [15] for shared-memory systems. The system

maintains a working set and a pool of threads, which pick
an element from the set and speculatively execute. By defin-
ing a set of commutativity rules, the system eliminates the
overhead of transactions. In contrast, our protocol works
in a fault-prone distributed environment with limited con-
trol over the executing threads. Furthermore, by integrating
the concept of speculative parallelism in the well known
MapReduce paradigm, we simplify the programming of
speculatively parallel applications.

7. Conclusion and Future Work
In this paper, we demonstrated the use a global key-value
store as underlying storage for MapReduce allowing data-
sharing and asynchrony to extend MapReduce to support
task-parallel applications with minor dependencies. By ex-
ploiting speculative parallelism, we increase the applicabil-
ity and performance of MapReduce. As naively using the
global store leads to inconsistencies, we proposed trans-
actional semantics for MapReduce using optimistic reads
and buffered writes for accesses to the global store from
within a computation (map or reduce). We evaluate var-
ious methods of achieving the proposed semantics. Our per-
formance evaluation showed significant speed-ups for dif-
ferent classes of applications – maximum flow, classifica-
tion, minimal spanning tree, online aggregation. We plan
to include the implementations of the above mentioned and
other speculatively parallel applications into the ApacheMa-
hout 9 open source repository for MapReduce-based ma-
chine learning and data mining applications. We are eval-
uating other application specific optimizations which can be
leveraged in a distributed setting along with speculative par-
allelism.

References
[1] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Good-

man.Concurrency control and recovery in database systems.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1987.

[2] Chi Cao Minh, Martin Trautmann, JaeWoong Chung,
Austen McDonald, Nathan Bronson, Jared Casper, Christos
Kozyrakis, and Kunle Olukotun. An effective hybrid trans-
actional memory system with strong isolation guarantees. In
Proceedings of the 34th Annual International Symposium on
Computer Architecture. Jun 2007.

[3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra,
Andrew Fikes, and Robert E. Gruber. Bigtable: a distributed
storage system for structured data. InOSDI ’06: Proceedings
of the 7th USENIX Symposium on Operating Systems Design
and Implementation, pages 15–15, Berkeley, CA, USA, 2006.
USENIX Association.

[4] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu,
Gary R. Bradski, Andrew Y. Ng, and Kunle Olukotun. Map-

9 Apache Mahout. http://lucene.apache.org/mahout



reduce for machine learning on multicore. InNIPS, pages
281–288, 2006.

[5] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Heller-
stein, Khaled Elmeleegy, and Russell Sears. Mapreduce
online. Technical Report UCB/EECS-2009-136, EECS De-
partment, University of California, Berkeley, Oct 2009.

[6] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified
data processing on large clusters.Symposium on Operating
System Design and Implementation (OSDI), 2004.

[7] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. Dynamo: amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41(6):205–220, 2007.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The google file system.SIGOPS Oper. Syst. Rev., 37(5):29–
43, 2003.

[9] Andrew V. Goldberg and Robert E. Tarjan. A new approach
to the maximum-flow problem.J. ACM, 35(4):921–940,
1988.

[10] Grana M. D’Anjou A. Gonzalez, A.I. An analysis of the
glvq algorithm. Neural Networks, IEEE Transactions on,
6(4):1012 –1016, Jul 1995.

[11] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang.
Online aggregation. pages 171–182, 1997.

[12] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and
Dennis Fetterly. Dryad: distributed data-parallel programs
from sequential building blocks.Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on Computer
Systems, 2007.

[13] Steven Y. Ko, Imranul Hoque, Brian Cho, and Indranil
Gupta. On the availability of intermediate data in cloud
computations.12th Workshop on Hot Topics in Operating
Systems, 2009.

[14] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu,Keshav
Pingali, and Calin Casçaval. How much parallelism is there
in irregular applications?SIGPLAN Not., 44(4):3–14, 2009.

[15] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh
Ramanarayanan, Kavita Bala, and L. Paul Chew. Optimistic
parallelism requires abstractions. InPLDI ’07: Proceedings
of the 2007 ACM SIGPLAN conference on Programming
language design and implementation, pages 211–222, New
York, NY, USA, 2007. ACM.

[16] H. T. Kung and John T. Robinson. On optimistic methods for
concurrency control.ACM Trans. Database Syst., 6(2):213–
226, 1981.

[17] Avinash Lakshman and Prashant Malik. Cassandra: a
structured storage system on a p2p network. InSPAA
’09: Proceedings of the twenty-first annual symposium on
Parallelism in algorithms and architectures, pages 47–47,
New York, NY, USA, 2009. ACM.

[18] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M.
Voelker. Identifying suspicious urls: an application of large-
scale online learning. InICML ’09: Proceedings of the

26th Annual International Conference on Machine Learning,
pages 681–688, New York, NY, USA, 2009. ACM.

[19] Mario Méndez-Lojo, Donald Nguyen, Dimitrios Prount-
zos, Xin Sui, M. Amber Hassaan, Milind Kulkarni, Martin
Burtscher, and Keshav Pingali. Structure-driven optimiza-
tions for amorphous data-parallel programs. InPPoPP ’10:
Proceedings of the 15th ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 3–14,
New York, NY, USA, 2010. ACM.

[20] Jiayuan Meng, Srimat Chakradhar, and Anand Raghunathan.
Best-effort parallel execution framework for recognitionand
mining applications. InIPDPS ’09: Proceedings of the 2009
IEEE International Symposium on Parallel&Distributed
Processing, pages 1–12, Washington, DC, USA, 2009. IEEE
Computer Society.

[21] C. Moretti, J. Bulosan, P. Flynn, and D. Thain. All-pairs: An
abstraction for data intensive cloud computing.International
Parallel and Distributed Processing Symposium (IPDPS),
2008.

[22] Nesetril, Milkova, and Nesetrilova. Otakar boruvka on
minimum spanning tree problem: Translation of both
the 1926 papers, comments, history.DMATH: Discrete
Mathematics, 233, 2001.

[23] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi
Kumar, and Andrew Tomkins. Pig latin: A not-so-foreign
language for data processing.SIGMOD ’08: Proceedings of
the ACM SIGMOD international conference on Management
of data, 2008.

[24] Spiros Papadimitriou and Jimeng Sun. Disco: Distributed co-
clustering with map-reduce: A case study towards petabyte-
scale end-to-end mining. InICDM ’08: Proceedings of
the 2008 Eighth IEEE International Conference on Data
Mining, pages 512–521, Washington, DC, USA, 2008. IEEE
Computer Society.

[25] Keshav Pingali, Milind Kulkarni, Donald Nguyen, Martin
Burtscher, Mario Mendez-Lojo, Dimitrios Prountzos, Xin
Sui, and Zifei Zhong. Amorphous data-parallelism in irreg-
ular algorithms. Technical Report TR-09-05, Department
of Computer Science, The University of Texas at Austin,
February 2009.

[26] P.Dubey. Recognition, mining and synthesis moves comput-
ers to the era of tera.Technology@Intel Magazine, 2005.

[27] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary
Bradski, and Christos Kozyrakis. Evaluating mapreduce
for multi-core and multiprocessor system.Proceedings of
the 13th Intl. Symposium on High-Performance Computer
Architecture (HPCA), Phoenix , AZ, 2007.

[28] Arun Venkataramani, Ravi Kokku, and Mike Dahlin. Tcp
nice: a mechanism for background transfers. InOSDI ’02:
Proceedings of the 5th symposium on Operating systems
design and implementation, pages 329–343, New York, NY,
USA, 2002. ACM.


	Transactional Support in MapReduce for Speculative Parallelism
	Report Number:
	


