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ABSTRACT
Uncertain data arises from various applications such as sen-
sor networks, scientific data management, data integration,
and location based applications. While significant research
efforts have been dedicated to modeling, managing and query-
ing uncertain data, advanced analysis of uncertain data is
still in its early stages. In this paper, we focus on sky-
line analysis of uncertain data, modeled as uncertain objects
with probability distributions over a set of possible values
called instances. Computing the exact skyline probabilities
of instances is expensive, and unnecessary when the user is
only interested in instances with skyline probabilities over a
certain threshold. We propose two filtering schemes for this
case: a preliminary scheme that bounds an instance’s sky-
line probability for filtering, and an elaborate scheme that
uses an instance’s bounds to filter other instances based on
the dominance relationship. We identify applications where
instance-level filtering is useful and desirable. Our algo-
rithms can be easily adapted to filter at the object level if
the application domain requires it. Moreover, the uncertain
model we adopt in this paper allows missing probabilities
of uncertain objects as well as arbitrary probability distri-
butions over instances. We experimentally demonstrate the
effectiveness of our filtering schemes on both the real NBA
data set and the synthetic data set.

1. INTRODUCTION
Skyline analysis is widely used in multi-criteria decision

making applications where different criteria often conflict
with each other [3]. A classic example is to find a hotel that
is close to the beach, yet not expensive. However, proximity
to the beach usually suggests higher rates. If we consider
hotels as two-dimensional points in the data space with one
dimension being the distance to the beach and the other
being the hotel rate, we say point p1 dominates p2 if p1 is
no worse than p2 in all dimensions and better than p2 in
at least one dimension. The skyline analysis then returns
all points that are not dominated by any other point in the
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data set, known as “skyline points” [6].
In applications where uncertainty is inherent, such as sen-

sor networks, scientific data management, data integration,
and location based applications, the skyline analysis needs
to be performed on uncertain data. [29] first proposed prob-
abilistic skylines for uncertain data modeled as uncertain
objects with probability distributions over a set of possi-
ble values called instances. This model is useful in practice
when the probability density function of an uncertain object
is approximated by sampling [29]. Unlike the traditional
skyline analysis, with uncertain data many points can rep-
resent mutually exclusive instances of the same object, and
each instance is now associated with a skyline probability :
the probability that the instance (i) is the one that occurs
among the mutually exclusive set of instances (i.e., the ob-
ject) to which it belongs, and (ii) is not dominated by any
occurring instance of another object. The probability of an
instance belonging to the skyline is therefore not only a func-
tion of its own probability but also of “how good it is” (as
captured by the dominance relationship).

In this paper, we study the problem of identifying “inter-
esting” instances for probabilistic skylines, defined as those
with skyline probabilities above a given threshold (the in-
stances are “uninteresting” otherwise). Our goal is to design
a scheme that quickly filters (un)interesting instances while
avoiding the expensive computations of their exact skyline
probabilities. Here by “filtering” an instance we mean that
we merely do not bother computing the exact skyline prob-
ability of the filtered instance: It is called “negative (resp.,
positive) filtering” if we do it because we know the instance’s
skyline probability is below (resp., above) threshold. The
key idea of filtering is that the determination of “above
threshold” or “below threshold” is done using computations
that are much less expensive than the full-blown computa-
tion of exact skyline probabilities.

Unlike [29] where thresholding happens at the object level,
we filter with a threshold at the instance level. This comes
naturally in many applications where the user would be more
interested in instances than in the object as a whole. The
following two examples give an intuitive motivation for the
instance-level filtering.

Example 1 (Job hunting): Similar to the example in [3],
our protagonist Alice is looking for a job with her MBA de-
gree. There are many companies she could consider, each of-
fering multiple job positions for MBAs, with different salaries
and job security due to different job responsibilities, work
units, geographic locations, etc. Each job is associated with



a probability that it will be offered to an MBA by the com-
pany (the probabilities of all jobs offered within a company
sum up to at most 1). Since Alice can only take one job in
the end, she wants to save time in job application by look-
ing only at jobs with desirable salary as well as job security
(the higher the better for both) and at the same time have a
relatively high chance to be offered to her.

If we model the companies as uncertain objects and the
job positions available at each company as its instances of
two dimensions (salary and job security), then the problem
for Alice is really identifying interesting instances with rel-
atively high skyline probabilities (e.g., above a threshold).

Example 2 (Professional Services): Jane works for a
biotech company that uses an expensive piece of equipment
that periodically requires servicing (e.g., repair, maintenance,
etc.) by a professional who has the specialized skills for the
job. Many service providers exist, each of which employs a
number of professionals who can do the job. These profes-
sionals have different quality characteristics, such as expe-
rience, education and professional certification. Moreover,
the ability of a service provider to send a particular pro-
fessional is uncertain and is modeled by a probability, with
different professionals possibly having different probabilities
due to their different availabilities at the time of the ser-
vice request (depending, e.g., on whether they work full time
or part time, on other customers’ demand for them, etc).
Since the equipment is expensive and important to the com-
pany, Jane wants to find a group of professionals who have
high quality characteristics and are likely to be sent over now
to examine the equipment.

Similar to Example 1, we model the service providers as
uncertain objects and the professionals who work for each
service provider as its instances. Each quality characteristic
is modeled as a dimension of the instance. What Jane needs
then is a set of instances (i.e., professionals) with relatively
high skyline probabilities.

The instance-level probabilistic skyline is especially use-
ful in applications where there is high variability of instances
within an object, i.e., some have much higher skyline prob-
abilities than others; the low skyline probabilities of the
latter could occur because an instance has a low probabil-
ity to begin with, or alternatively because it is dominated
by too many instances of other objects. In such situations
one wants to avoid investing extensive computation time in
determining the very low skyline probabilities, instead one
wants to quickly identify instances whose skyline probabili-
ties are above the threshold of interest. What to do when an
object’s instances all fall below the threshold is a separate
matter: Our job is only to tag them as such.

1.1 Contributions
We give mechanisms for filtering instances based on ap-

proximate values that are easier to compute than these in-
stances’ exact skyline probabilities. These values fall into
two categories: Upper bounds on the exact skyline proba-
bilities, and lower bounds. If an instance’s upper bound is
shown to be below the threshold, its exact skyline prob-
ability is guaranteed to be below the threshold, i.e., the
instance is “uninteresting”; we call this “negative filtering”.
Conversely, if an instance’s lower bound is shown to be above

or equal to the threshold, then its exact skyline probability
is guaranteed to meet the threshold, i.e., the instance is “in-
teresting”; we call this “positive filtering”.

Our main contributions are as follows:

• We propose an instance-level probabilistic skyline prob-
lem for identifying instances with skyline probabili-
ties over a given threshold. Our algorithm produces
fine-grain (i.e., instance-level) information about prob-
abilistic skylines.

• We present two instance-level filtering schemes:

1. Preliminary filtering scheme: techniques for avoid-
ing the expensive computation of exact skyline
probabilities by bounding them with easier-to-
compute values for comparing to the threshold.

2. Elaborate filtering scheme: techniques for mas-
sive filtering through inter-instance comparisons
that leverage one instance’s bounds to filter other
instances based on the dominance relationship.

• We adopt a more general uncertain data model than
[29] (see Section 2.1). Our experimental results on
both real and synthetic data sets under this model
show that our algorithms are highly effective in fil-
tering out unqualified instances.

Our preliminary filtering scheme maximizes filtering of in-
stances by tightly bounding their skyline probabilities using
indexing structures called “probabilistic range trees”, which
are range trees [35] enhanced with probabilities. Our elab-
orate filtering scheme further offers the opportunity to take
advantage of instances whose bounds have already been com-
puted to either massively “kill” (i.e., filter negatively) or
“save” (filter positively) other instances. For instances that
cannot be filtered by our schemes, we resort to the proba-
bilistic range trees for computing exact skyline probabilities.
We refer to this as the “refinement stage” as opposed to the
filtering stage. We measure the merit of our approach by the
percentage of instances filtered – the higher the better. This
is equivalent to minimizing the number of the exact skyline
probability computations carried out.

The rest of the paper is organized as follows: Section
2 formally defines our problem. Section 3 introduces the
probabilistic range trees for bounding skyline probabilities.
Section 4 and Section 5 present our two filtering schemes,
followed by the algorithms for computing the exact skyline
probabilities in Section 6. The final algorithm for proba-
bilistic skylines is presented in Section 7. Section 8 discusses
our experimental study on both real and synthetic data sets.
Section 9 reviews the related work, and Section 10 concludes
the paper.

2. PROBLEM DEFINITION
In this section, we first review the uncertain data model

and the formal definition of the skyline probability. We then
define the skyline analysis problem tackled in this paper.

2.1 Uncertain Data Model
Our uncertain data model is similar to that in [29], where

uncertain data is modeled as uncertain objects with prob-
ability distributions over a set of possible values called in-
stances. Like [29], we also assume that uncertain objects
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Skyline Probability 0.2 0.144 0.24 0.32 0.128 0.048 0.16 0

Figure 1: Probabilistic skylines with three objects and eight instances

are independent from each other to keep our model sim-
ple. However, we allow arbitrary probability distributions
among the instances of an uncertain object, i.e., the in-
stances can take different probabilities to occur. We further
allow missing probabilities of uncertain objects: Specifically,
if the probabilities of all instances of an uncertain object add
up to s, then we call 1− s the missing probability of the ob-
ject. This is consistent with the concept of tuple probability
proposed in the uncertain database community [32].

Figure 1 shows an example of three uncertain objects with
their corresponding instances in a two-dimensional space.
Notice that O2 has a missing probability of 0.2, since the
probabilities of its three instances sum up to 0.8. This is
our running example in the paper that will be referenced
frequently in later sections.

2.2 Probabilistic Skylines
Generally, we consider each instance as a d-dimensional

point in the data space D. The dominance relationship “≺”
between such points (i.e. instances) is the same as the dom-
inance relationship between points for certain data: Given
a data set S of n data points: p1, · · · , pn in the data space
D of d dimensions: D1, · · · ,Dd, point pi is said to dominate
point pj (denoted as pi ≺ pj) if ∀k ∈ [1, d], pi.Dk ≤ pj .Dk

and ∃l ∈ [1, d], pi.Dl < pj .Dl. Following the convention in
the database community, we assume that smaller values in
each dimension are preferred over larger ones. We hence use
p to refer to an instance, i.e. a data point in D. The transi-
tivity of the dominance relationship holds between instances
[29], i.e. if p1 ≺ p2, p2 ≺ p3, then p1 ≺ p3. An uncertain
object O with k instances can be denoted as O = {p1, ..., pk}
where pi(1 ≤ i ≤ k) is an instance of O.

Definition 1. The skyline probability of an instance p, de-
noted as Prsky(p), is the probability that p exists and no
instance of other uncertain objects that dominates p ex-
ists. Let m be the total number of uncertain objects and
let p ∈ Ok. The skyline probability can be computed as:

Prsky(p) = Pr(p) ·
m∏

i=1,i 6=k

(1−
∑

q∈Oi,q≺p

Pr(q)) (1)

The skyline probability of an uncertain object O = {p1, ..., pk}
is the sum of the skyline probabilities of all its k instances:

Prsky(O) =

k∑
i=1

Prsky(pi) (2)

We denote the upper bound of Prsky(p) as Pr+sky(p), and

the lower bound as Pr−sky(p). Similarly, we also have Pr+sky(O)

and Pr−sky(O) for an uncertain object O. In Equation 1,∏m
i=1,i 6=k(1 −

∑
q∈Oi,q≺p Pr(q)) is the probability that no

instance of other uncertain objects that dominates p exists.
This can be obtained by a simple multiplication of prob-
abilities computed from respective uncertain objects due
to the independence of the objects. For example, in Fig-
ure 1, for p6 to be a skyline point, none of the instances:
p1, p3, p4, p7 should exist. Since p6 and p4 both belong to O2,
the existence of p6 guarantees that p4 does not exist. Hence
Prsky(p6) = Pr(p6)∗ (1−Pr(p1)−Pr(p3))∗ (1−Pr(p7)) =
0.2 ∗ 0.3 ∗ 0.8 = 0.048.

The probabilistic skyline problem we study in this paper
is defined as follows:

Definition 2. Given a data set S of n instances that be-
long to m uncertain objects and a probability threshold θ,
the instance-level probabilistic skyline analysis returns all in-
stances with skyline probabilities at least θ. i.e. return the
skyline set Ssky such that:

Ssky = {p ∈ S|Prsky(p) ≥ θ}

We also refer to Ssky (the skyline results) as probabilistic
skylines for threshold θ. The main notations used through-
out the paper are summarized in Table 3.1.

3. PROBABILISTIC RANGE TREES
We propose two indexing structures based on the range

tree [35] to facilitate bounding and computing skyline proba-
bilities. We augment the original range trees with additional
probabilistic information stored at the internal nodes, which
can be leveraged when querying the trees to quickly bound
the skyline probability of a given instance p (the query in-
stance). We call such trees probabilistic range trees (PRT).
Section 3.2 introduces a general PRT built upon all n in-
stances with probabilistic information. A similar indexing
structure is described in Section 3.3, which is built for every
uncertain object and has different probabilistic information.
A total of m such trees are needed for all m objects. Our
algorithms for the preliminary filtering use both trees, as we
will see later in Section 4.

3.1 Overview
We first give an overview of probabilistic range trees (PRT),

then introduce the two PRT indices we design specifically for
computing probabilistic skylines.

We explain the construction of the PRT on n d-dimensional
points (representing all instances in the data set S). We be-
gin with the base case of d = 2, and follow the presentation



Notation Meaning

m number of all uncertain objects
n number of all instances
D1, · · · , Dd the first, · · · , the d-th dimension
Oi the ith uncertain object
S the set of all instances (n = |S|)
p, q instance (point) in S
p ≺ q instance p dominates instance q
Prsky skyline probability

Pr+sky/Pr
−
sky upper bound/lower bound of Prsky

L/L̂ info-list/truncated info-list
Tg/Tci general-PRT/colored-PRT of color i
β probability info in L of the Tg

σ probability info in L of a Tci

Table 1: Summary of notations

of [35] modified to accommodate the probabilities. A com-
plete binary tree T is built on top of the points sorted ac-
cording to dimension D1. Each internal node v of T points
to an info-list Lv that contains the points at the leaves of
the subtree of T rooted at v, sorted according to their D2

dimension. Therefore, if v has children u and w, then Lv is
the merge of Lu and Lw; we assume that every element of Lv

stores its rank in each of the lists Lu and Lw (which implies
that once a search item’s position has been located in Lv it
can be located in Lu and Lw in constant time). The space is
obviously O(n logn). We also assume a derived probability
(defined later in Section 3.2.2 and Section 3.3 respectively
for the two kinds of PRTs) is associated with every element
of Lv.

Figure 2 illustrates a two-dimensional PRT built on top
of the eight instances in the example of Figure 1. The leaves
of the PRT are the instances by the first dimension. Each of
the internal nodes v1 to v7 points to an info-list that contains
instances sorted by the second dimension. For example, v2’s
info-list (Lv2) has four instances p1, p7, p4, p5 with ascend-
ing values in the second dimension. They are instances at
the leaf level of the subtree rooted at v2. Since v2 has two
children: v4 and v5, Lv2 can be obtained by simply merging
Lv4 and Lv5 .

In the hotel example we gave earlier the dimension d was
2, but in the NBA data set used in the experiment of [29] d
was 3, and in most other examples d is a fairly small integer
but often exceeds 2. We now sketch how the PRT we gave
for d = 2 extends to d dimensions within O(n(logn)d−1)
performance; note that d is independent of n (i.e., d is O(1))
and hence there is always a large enough n that makes the
quantity n(logn)d−1 less than dn2 (if the dataset size n is
not truly massive then there is no need for sophistication
and even the brute-force dn2 is practical enough).

A d-dimensional PRT is built inductively using d − 1 di-
mensional PRTs: A complete tree T is built whose leaves are
the n points sorted according to dimension D1, and each in-
ternal node v of T points to a d − 1 dimensional PRT that
contains the elements at the leaves of the subtree of T rooted
at v, organized according to the remaining d− 1 dimensions
(i.e., ignoring D1). The space complexity is O(n(logn)d−1).
Note that our construction ensures that the points in the
info-lists are always sorted according to the last dimension.
Figure 3 illustrates such a d-dimensional PRT with d = 3. A

1p 4p 7p 5p 2p 3p 6p 8p

1p 4p
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Figure 2: A 2-dimensional probabilistic range tree

…

u

v

Figure 3: A 3-dimensional probabilistic range tree

node u in this PRT points to a two-dimensional PRT where
a node v points to an info-list.

3.2 General Probabilistic Range Tree
To compute probabilistic skylines, we build the general

probabilistic range tree (general-PRT ) on all n instances in
the data set S.

3.2.1 Probabilistic Information
In the overview of probabilistic range trees, we did not

explain what probabilistic information an info-list contains.
Here we take a closer look at the info-lists in the general-
PRT.

Figure 2 gives us a preliminary idea of info-lists in a PRT.
The probabilities associated with the instances in the list
are not shown in the figure, since they differ between the
general-PRT and colored-PRTs. For the general-PRT, such
probabilities are defined as follows:

Definition 3. Let p be the k-th instance in an info-list L.
Let p belong to an uncertain object Oi(1 ≤ i ≤ m), let L̂
be the list of the first k instances in L, then the probability
associated with p (denoted as βp) in L is computed as:

βp =

m∏
i=1

(1−
∑

q∈L̂,q∈Oi

Pr(q)) (3)

In other words, the probability βp is the probability that

no instance in L̂ exists, i.e., the probability that p does not
exist and no instance before p in the info-list L exists.

3.2.2 Creating Info-Lists
Given a set of instances, we can create an info-list L by

adding each instance to L and then sort all instances by their
d-th dimension values. After this, we need to compute the
probabilistic information associated with each instance in



Goal: compute βp for each instance p in info-list L
Algorithm:
1. for each p ∈ L do
2. if p ∈ Oi then
3. si = 0 // initialize probability sums
4. end if
5. end for each
6. β = 1 // initialize the current β
7. for each p ∈ L do
8. if p ∈ Oi then
9. s = si // back up the old si

10. si = si + Pr(p) // update si

11. βp = β/(1− s) ∗ (1− si) // compute βp

12. β = βp // update the current β
13. end if
14. end for each

Figure 4: Computing β’s for an info-list

the info-list. Based on Equation 3, we compute βp for each
p in L as shown in Figure 4. We use si to record the current
probability sum for object Oi that has appeared in L. As we
go through the instances in L, we update the corresponding
probability sum (line 10), and compute βp based on the β
of the instance immediately before p in L (line 11).

As a concrete example on computing β’s, let us look back
at Figure 2 where info-lists of a PRT is shown. Since the
instances in this figure are from the example in Figure 1,
they are from different objects. Hence the PRT is actually
the general-PRT. Therefore, for the info-list of the node v2
(Lv2), we can compute the probabilities associated with each
instance using the algorithm in Figure 4. For example, βp1

in Lv2 is 1 − Pr(p1) = 1 − 0.2 = 0.8, and βp7 is 0.8 ∗ (1 −
Pr(p7)) = 0.8 ∗ (1− 0.2) = 0.64.

The time needed to compute β′s for an info-list L is
O(|L|), since we only scan the list twice. Note that the list
of probability sums is only used for computing β′s of the
instances when creating the info-list. It is not stored along
with the info-list. Therefore, it will not bring an additional
worst-case O(m) space complexity for each info-list in the
general-PRT.

3.3 Colored Probabilistic Range Trees
Besides the general-PRT built upon all n instances in S,

we also have m specific PRTs, each built upon the instances
of the corresponding object. If we render each instance with
a color that indicates the source of the instance and match
color i to objectOi, then each of these specific PRTs has only
one color. Hence we call these trees colored-PRTs as opposed
to the general-PRT. For the rest of the paper, whenever we
say “instance p of color i”, we mean “instance p that belongs
to object Oi”.

Unlike the info-lists of the general-PRT, an info-list of a
colored-PRT is associated with probability sums for each
instance in the list. For the k-th instance p in an info-list
L of a colored-PRT, its probability sum σp is computed as
follows:

σp =
∑
q∈L̂

Pr(q) (4)

where L̂ is the list of first k instances in L. That is, σp

is the sum of probabilities of all instances up until p in L.
For computing all σ’s, we simply need to go through each

instance in L and accumulate the probability sum. The time
complexity is O(|L|). As an example, if we build a colored-
PRT upon the instances of O3 in Figure 1, the colored-PRT
has p7 and p8 as the leaves and an internal node that is also
the root. The info-list pointed to by the root contain the
two instances: p7 and p8 sorted by the second dimension
values. We compute their σ’s as follows: σp7 = Pr(p7) =
0.2, σp8 = σp7 + Pr(p8) = 0.2 + 0.8 = 1.

4. A PRELIMINARY FILTERING SCHEME
Now that we have introduced both the general-PRT and

them colored-PRTs, we can use them to compute the bounds
of the skyline probabilities that are used for filtering. The
scheme presented in this section works at the individual in-
stance level without comparing instances; the next section
will present a more refined scheme where more savings are
achieved through a mechanism of inter-instance comparisons
whereby one instance’s elimination (it is not a skyline result)
implies a mass extinction of other instances that dominate
it, and one instance’s survival (it is a skyline result) implies
a mass survival of other instances that are dominated by it.

4.1 Obtaining an Upper Bound
Given a query instance p, we can obtain Pr+sky(p) by

querying the general-PRT Tg as follows:
We begin with the base case of d = 2, as shown in Figure

5. Given the two-dimensional query p = (p.D1, p.D2), we
first locate the search path (call it P) in Tg from the root
to the position of the value p.D1 among the leaves, then do
one binary search for p.D2 in the info-list Lroot of the root
of Tg. We record the position (rank) k of p.D2 in Lroot and
call it the search position in Lroot. We use Lv[k] to denote
the k-th instance (let it be q) in the info-list of the node v
and Lv[k].rankL, Lv[k].rankR to denote the rank of q in the
info-lists of v’s left child and right child respectively. These
ranks are stored so that given the position of q in Lv, we
can locate its position in info-lists of v’s children in constant
time. Since v is initially the root and k is initially the search
position in Lroot, we can obtain the search positions in the
successive nodes as we walk down the search path P.

We define the left fringe nodes of the PRT given the query
instance p as the left children of the nodes on the search
path P and are not nodes on P themselves. For example, in
Figure 2, the search path P for p6 is v1− > v3− > v7− >
p6 (rendered with dashed arrows). The corresponding left
fringe nodes are v2 and v6 (highlighted), who are left children
of v1 and v3 respectively. The leaf p6 is on P, so it is not a
left fringe node despite the fact that it is a left child of v7
on P.

We use L̂v to denote the truncated info-list of node v
(Lv) with instances up till the search position in Lv. If v

is a left fringe node, we call such L̂v a qualified info-list .
Figure 2 highlights two qualified info-lists for the query p6:
One contains the first three instances of Lv2 and the other
contains the first instance of Lv6 (refer to Figure 1 for the
values of instances).

When we reach the leaf at the end of the query, the vari-
able upperBound in Figure 5 is the product of all β’s we
read along P. It is indeed an upper bound of Prsky(p), as
we will see shortly. The time complexity for such a query is
O(logn). In the example of Figure 2, the upper bound that
we get for Prsky(p6) is βp4 ∗ βp3, where p4 and p3 are the
last instances of the two qualified info-lists.



Input: the general PRT Tg and a query instance p
Output: an upper bound of Prsky(p)
1. binary search for p.D1 to find the search path P
2. binary search for p.D2 in Lroot, let the position be k
3. upperBound = 1
4. v = root //walk along P starting from root
5. while current node v is not a leaf do
6. if the next node w ∈ P is v.rightChild then
7. k′ = Lv[k].rankL
8. u = v.leftChild
9. β = Lu[k′].beta // read β from v’s left child
10. upperBound = upperBound ∗β
11. k = Lv[k].rankR // locate the position in Lw

12. end if
13. else // w is a left child of v
14. k = Lv[k].rankL // locate the position in Lw

15. v = w // go one level down
16. end while
17. return upperBound

Figure 5: Compute an upper bound of Prsky(p)

When d > 2, we obtain the upper bound Pr+sky(p) by
querying inductively on d− 1 dimensional PRTs: Given the
query p = (p.D1, · · · , p.Dd), we first locate the path P in Tg

from the root to the position of the value p.D1 among the
leaves. Then we walk along P and issue the query of p′ =
(p.D2, · · · , p.Dd) for every d−1 dimensional PRT associated
with every qualified node. The final Pr+sky(p) is obtained by
multiplying the values returned by all sub-queries. Such
a query takes altogether O((logn)d−1) time, as we cannot
avoid doing at most O(logn) binary searches in PRTs of the
left fringe nodes for the first d − 1 dimensions in order to
find the qualified info-lists for reading β’s.

We can obtain the qualified info-lists (L̂’s) by modifying
the algorithm in Figure 5: Instead of reading β’s in line 9
and multiplying them along the path in line 10, we create an
info-list L̂u containing the first k′ instances of Lu and add
it to the result. The lemma below states that the set of all
instances in L̂’s is the set of all instances in S that dominate
p, which can be easily proved from the search process and
the definition of the general-PRT. Note that the notation L̂i

in the lemma is the i-th qualified info-list, not the qualified
info-list at node i.

Lemma 1. Let L̂1 · · · L̂t be qualified info-lists for query p.
Let SL̂ = ∪t

i=1SL̂i
, where SL̂i

is the set of instances in L̂i.

Then we have: 1) ∀q ∈ SL̂, q ≺ p; 2) ∀q′ ∈ S − SL̂, q
′ 6≺ p.

For every L̂i, let βi be the β associated with the last in-
stance in L̂i, i.e. βi is the probability that none of the in-
stances in L̂i exists. The next lemma (can be easily proved
by induction) and theorem show that although we cannot
compute Prsky(p) directly from βi’s, we can compute Pr+sky(p)
to help prune p if this upper bound falls below the threshold
θ.

Lemma 2. (1−a1) · · · (1−at) ≥ 1− (a1 + · · ·+at), where
0 ≤ ai ≤ 1, 1 ≤ i ≤ t, and t ≥ 1

Following the notations in Lemma 1, we have:

Theorem 1. Let βi be the probability associated with the
last instance in L̂i(1 ≤ i ≤ t) where Li is a qualified info-list

for query p, then
∏t

i=1 βi is an upper bound of Prsky(p), i.e.

t∏
i=1

βi ≥
m∏

j=1

1−
∑

q∈Oj ,q∈S
L̂

Pr(q)

 ≥ Prsky(p) (5)

The proof of Theorem 1 is available in Appendix A.1.
Theorem 1 shows that

∏t
i=1 βi is an upper bound of the

desired Prsky(p), which proves that the value returned by
Tg.getUpperBound(p) is indeed a Pr+sky(p). This directly
points out a way of pruning the query instance: Given a
threshold θ, as soon as we see the current product of β’s
(which is a Pr+sky(p)) fall below θ, we can stop and declare

that p is not in the skyline, since Prsky(p) < θ must also
hold.

4.2 Obtaining a Tighter Upper Bound
While using the general-PRT alone gives us an upper

bound of the skyline probability, a tighter upper bound can
be achieved by using both the general-PRT and the colored-
PRT.

First, let us review Theorem 1: We have proved that

t∏
i=1

βi ≥

1−
∑

q∈Ok,q≺p

Pr(q)

· m∏
j=1,j 6=k

1−
∑

q∈Oj ,q≺p

Pr(q)


By dividing

(
1−

∑
q∈Ok,q≺p Pr(q)

)
and multiplying Pr(p)

at both sides, we have∏t
i=1 βi · Pr(p)

1−
∑

q∈Ok,q≺p Pr(q)
≥ Pr(p) ·

m∏
j=1,j 6=k

1−
∑

q∈Oj ,q≺p

Pr(q)


= Prsky(p)

We further observe that Pr(p) ≤ 1 −
∑

q∈Ok,q≺p Pr(q)

(remember p ∈ Ok), hence

t∏
i=1

βi ≥
∏t

i=1 βi · Pr(p)
1−

∑
q∈Ok,q≺p Pr(q)

≥ Prsky(p)

i.e.
∏t

i=1 βi ·Pr(p)/
(

1−
∑

q∈Ok,q≺p Pr(q)
)

is a tighter up-

per bound of Prsky(p) than
∏t

i=1 βi.

We know Pr(p) and
∏t

i=1 βi from querying the general-
PRT, to obtain this tighter upper bound, the only part we
need to know is

∑
q∈Ok,q≺p Pr(q), which is a probability

sum that can be obtained by querying the PRT of color k,
denoted as Tck . The algorithm for computing this sum given
a query instance p is the same as computing the upper bound
with the general-PRT in Figure 5 except this time we carry a
sum instead of a product along the search path: Whenever a
new probability is read from a qualified info-list (remember
that the probability now is σ instead of β, see Section 3.3),
we add it to the current sum (initialized to 0). The final sum
is then the sum of all σ’s we read as we walk along the path.
The algorithm to get all qualified info-lists in a colored-PRT
given query p is exactly the same as that in the general-PRT
described in Section 4.1.

The corollary below for querying colored-PRTs can be de-
rived immediately from Lemma 1:

Corollary 1. The set of instances of all qualified info-
lists by querying Tck is the set of all instances of color k in
S that dominate p.



Input: query instance p, the general-PRT Tg

and m colored-PRTs Tc1 , · · · , Tcm

Output: a tighter upper bound for Prsky(p)
1. obtain Pr+sky(p) (oldBound) by querying Tg //Figure 5
2. if p ∈ Ok then //Section 4.2
3. obtain the probability sum (sum) by querying Tck

4. end if
5. newBound = oldBound * Pr(p) / (1 - sum)
6. return newBound

Figure 6: Compute a tighter upper bound

Therefore, the probability sum returned by querying Tck

is indeed
∑

q∈Ok,q≺p Pr(q), i.e., the sum of probabilities of
all instances that dominate p and belong to Ok at the same
time. The algorithm to compute the tighter upper bound is
summarized in Figure 6.

4.3 Obtaining a Lower Bound
We start with d = 2. For every instance (x, y), we define

siL(x) (resp., siB(y)) to be the sum of the probabilities of
instances of color i that are to the left of x (resp., below y).
It is straightforward to preprocess the n instances so that
a query that asks for siL(x) or siB(y) can be processed in
O(logni) time: Simply x-sort (resp., y-sort) the instances
of color i and store in that sorted list the prefix sums of the
probabilities: For each instance p in the list, the prefix sum
of p is the sum of probabilities of all instances in the list
up till p. Then we process a siL(x) (resp., siB(y)) query
by locating x (resp., y) in that list and reading the relevant
prefix sum. Doing such preprocessing for all m colors takes
O(
∑m

i=1 ni logni) = O(n logn), where ni is the number of
instances of object Oi. We assume this has been done.

The following lower bound (whose proof we omit) Pr−sky(p)

holds for any instance p = (p.D1, p.D2) and p ∈ Ok.

Pr(p) ·
m∏

i=1,i6=k

(1−min{siL(p.D1), siB(p.D2)})

The above lower bound for all n instances can be computed
in time O(m2 +n logm) (due to the space limit, we omit the
details here). While this is good if m is much smaller than n
(i.e., if each object has many instances), it is not satisfactory
if m is close to n. In such a case we can compute the n lower
bounds given below in total time O(n logn) (they are thus
easier to compute, but also less sharp than the above lower
bound).

Pr(p)·max


m∏

i=1,i 6=k

(1− siL(p.D1)) ,

m∏
i=1,i6=k

(1− siB(p.D2))


The above lower bounds can be easily extended to d > 2

by computing the sums of probabilities for each dimension,
as we did for the first and second dimension in case d = 2.

5. AN ELABORATE FILTERING SCHEME
Recall that the preliminary filtering tries to filter out in-

stances by bounding their respective skyline probabilities.
The improved filtering scheme of the present section adds
inter-instance comparisons to achieve wholesale filtering (pos-
itive or negative), i.e., it considers the impact of one in-
stance’s elimination or survival on other instances related

p

q

)(pcount 

)(qcount 

Figure 7: Massive filtering with p and q

to it by the dominance relationship. Therefore, the order
in which instances are processed (individually, by bounding
skyline probabilities as in the preliminary scheme) becomes
crucial.

5.1 Filtering Rationale
Before presenting our elaborate filtering scheme, we first

define a ratio called the “key ratio” for an instance p:

Definition 4. For any instance p ∈ Ok, p’s key ratio r is:

rp =
Pr(p)

1−
∑

p′∈Ok,p′≺p Pr(p
′)

(6)

If rp ≥ 1
2
, we call p a “target instance”.

rp can be easily computed in O(logn) by querying Tck to
get the probability sum

∑
p′∈Ok,p′≺p Pr(p

′).
The following theorem states the conditions for negative

filtering (see Appendix A.2 for detailed proof):

Theorem 2. Let instance p ∈ Ok, instance q ∈ Ol. If
Prsky(p) < θ and p ≺ q, then:
1) k 6= l: If p is a target instance, then Prsky(q) < θ.
2) k = l: If p is a target instance or if Pr(p) ≥ Pr(q), then
Prsky(q) < θ.

We call instances satisfying the above conditions “killers”
– the elimination of themselves causes the massive extinction
of others from the skyline result set. In contrast, the corol-
lary below states the conditions for instances to be “saviors”
– the survival of themselves causes the survival of others in
the final skyline result. The proof of this corollary depends
on the proof of Prsky(p) ≥ Prsky(q), which is exactly the
same as the proof in Theorem 2 given in Appendix A.2.

Corollary 2. Let instance p ∈ Ok, instance q ∈ Ol. If
Prsky(q) ≥ θ and p ≺ q, then:
1) k 6= l: If p is a target instance, then Prsky(p) ≥ θ.
2) k = l: If p is a target instance or if Pr(p) ≥ Pr(q), then
Prsky(p) ≥ θ.

5.2 Schedule Instances
The theorem and corollary in the previous section together

point out a way of filtering instances massively based on a
single instance’s skyline probability. As we have mentioned
earlier, the order in which instances are processed is crucial.
The goal of our refined filtering scheme is to maximize both
negative filtering (“killing”) and positive filtering (“saving”)
as we process the candidates list so that the number of the
PRT queries (either for bounding or computing the exact



skyline probability) is minimized. We propose the following
heuristic for scheduling instances to achieve this goal:

Using the standard dominance counting techniques [30],
we preprocess all n instances in O(n logn) time to compute
two quantities count+(p) and count−(p) for every instance
p, where count+(p) is the number of instances dominated by
p and count−(p) is the number of instances that dominate
p. We first sort the instances according to count+ in the de-
scending order. The list then becomes our initial candidate
list for computing the skyline results.

Figure 7 shows two instances p and q whose skyline prob-
abilities have been bounded. If p is not a skyline result and
is also a target instance, then p can kill all instances in the
shaded region at the top-right corner (the number of such
instances is count+(p)). Hence q will be killed. On the other
hand, if q is a skyline result and p is a target instance, then
q can save all target instances in the shaded region at the
bottom-left corner (the number of such instances is less than
or equal to count−(q). Hence p will be saved.

5.3 Algorithm
The algorithm for the elaborate filtering consists of two

parts: first the negative filtering, then the positive filtering.
After scheduling all n instances to form the initial candi-
date list, we process each instance p in the candidate list
in order by upper bounding Prsky(p) (using the techniques
in the preliminary filtering scheme). Then we do the nega-
tive filtering as shown in Figure 8. In line 6, we obtain the
set of instances that are dominated by p by querying a mir-
ror of our general-PRT (i.e. instead of returning instances
that dominate p, it returns instances that are dominated
by p). The order that we process instances guarantees that
the current instance, if turned out to be a killer, can kill
the largest number of instances (because its count+ is the
biggest among the unprocessed candidates).

After the candidate list has been exhausted, i.e. all killings
have been done, we sort the remaining instances in the list by
their count− in the descending order. We then process each
instance q in this new candidate list in order by computing
Pr−sky(q) and compare it with θ to see whether q survives as
a skyline result. If it survives, we move it from the candidate
list to the skyline result Ssky. The rest of the algorithm is
similar to the one in Figure 8.

Notice that we do negative filtering (killing) first, followed
by positive filtering (saving). This is due to the asymmetry
of killing and saving: A killer p kills all instances dominated
by p, whereas a savior q only saves a portion of all instances
that dominate q — only the target instances among them
can be saved. Hence killing filters more than saving. It
should come before saving to minimize the number of in-
stances that need to be processed or further evaluated.

6. COMPUTING SKYLINE PROBABILITIES
If an instance cannot be pruned by the preliminary or the

elaborate filtering, we need to further evaluate it to decide
whether the instance is really a skyline result by computing
the exact skyline probabilities. This can be done by querying
either the general-PRT or the colored-PRTs.

6.1 Using General-PRT
From qualified info-lists (L̂’s) for query p (see Section 4.1),

we can get all instances in L̂’s. By Theorem 1, these in-
stances are all instances that dominate the query instance

Input: data set S, threshold θ
Output: the candidate list Cand after filtering
1. create the initial Cand from S //Section 5.2
2. for each instance p in Cand do
3. compute Pr+sky(p) // Figure 5 and 6

4. if Pr+sky(p) < θ then
5. remove p from Cand
6. get the set of instances dominated by p
7. for each instance q in the set do
8. if p is a target instance then
9. remove q from Cand
10. else
11. if p, q are of the same color and Pr(p) ≥ Pr(q) do
12. remove q from Cand
13. end if
14. end if
15. end for each
16. end if
17. end for each
18. return Cand

Figure 8: Algorithm for negative filtering in the
elaborate filtering scheme

p in S. Therefore, we can go through all such instances to
compute the exact Prsky(p) according to Equation 1 and
add p to the skyline result if Prsky(p) ≥ θ. The time com-
plexity for computing Prsky(p) is O((logn)d−1 + t), where t

is the number of all instances in L̂’s.

6.2 Using Colored-PRTs
For the instance p that belongs to object Ok, we can com-

pute Prsky(p) by querying all colored-PRTs except the one
with color k. For each colored-PRT Tci (1 ≤ i ≤ m, i 6= k),
we obtain the sum of probabilities of all instances of color
i that dominate p (see Section 4.2). We denote this sum
as si. Then Prsky(p) = Pr(p)

∏m
i=1,i 6=k(1 − si). The time

complexity for computing Prsky(p) is O(m(logn)d−1).

7. PROBABILISTIC SKYLINE ALGORITHM
Now that we have presented our preliminary and the more

elaborate filtering schemes and our algorithm for computing
the exact skyline probabilities, we can propose our final algo-
rithm for computing the instance-level probabilistic skylines
given a threshold θ.

7.1 Two-Stage Algorithm
We propose a two-stage scheme for our instance-level prob-

abilistic skyline algorithm, given the threshold θ:

1. Filtering stage:
1) Initialize the skyline result Ssky to an empty set
2) Initialize the candidate list to be all n instances in S
3) Use the elaborate filtering scheme to reorder the can-

didate list, eliminate instances with skyline probabilities be-
low θ, and move those with skyline probabilities at least θ
to Ssky

2. Refining stage:
1) For each remaining instance p in the candidate list,

compute the exact Prsky(p) by querying the PRTs
2) Add p to Ssky if Prsky(p) ≥ θ
3) Return the final Ssky as the set of skyline results to our



probabilistic skyline problem

The filtering stage uses the elaborate filtering scheme we
proposed in Section 5, which includes the usage of the pre-
liminary filtering scheme in Section 4. We can also use the
preliminary filtering scheme alone in the above algorithm,
by changing Step 3 of the filtering stage. The remaining
instances in the candidate list after the filtering stage are
instances that can neither be eliminated nor guaranteed to
belong to Ssky. We then query either the general-PRT or
the colored-PRTs to compute the exact skyline probabilities
of the instances and add those with skyline probabilities at
least θ to Ssky.

7.2 Probabilistic Skylines at Object Level
While [29] computes all uncertain objects whose skyline

probabilities meet a given probability threshold, our proba-
bilistic skyline algorithms return all instances in the data set
S whose skyline probabilities meet the threshold. The gran-
ularity of our skyline results is at the instance level, which is
finer compared with the object level in [29]. Moreover, our
instance-level algorithms can be adapted for obtaining the
skyline results at the object level as follows:

For each object Oi, we compute the lower and the upper
bounds of all its instances by using the preliminary filtering
scheme. The sum of the lower bounds (resp. upper bounds)
of Oi’s instances becomes Pr−sky(Oi) (resp. Pr+sky(Oi)). Let
the threshold for the object-level probabilistic skylines be
θo. We then check whether Pr−sky(Oi) ≥ θo (i.e. Oi is a

skyline result) and whether Pr+sky(Oi) < θo (i.e. Oi is not
a skyline result). If Oi can neither be put to the skyline
result set nor be discarded, we further compute the exact
skyline probabilities of its instances, sum them up to obtain
Prsky(Oi) and compare it with θo.

8. EXPERIMENTAL RESULTS
To evaluate the effectiveness of our filtering schemes and

the scalability of our algorithms, we used two data sets,
one real data set and one synthetic data set. The exper-
iments were performed on a PC with Intel Core 2 Duo
T9600 2.8GHz CPU and 6GB main memory running Ubuntu
Linux operating system. All algorithms were implemented
in C++. Currently our probabilistic range trees are stored
in memory. Our future work will be to store the data struc-
tures on the disk to support efficient query processing at a
larger scale.

8.1 Data Sets
In our experiments, we used the real data set: the NBA

data set as in [29], kindly provided to us by the authors of
[29]. The NBA data set contains 339,721 records about 1,313
players. Like in [29], we treat each player as an uncertain
object and the records of the player as the instances of the
object. Each record has three attributes: number of points,
number of assists, and number of rebounds (large values are
favored over small ones), i.e., the dimension d = 3. We as-
sign random probabilities to instances of the same object
such that the probabilities sum up to 1 (later for the syn-
thetic data set, we allow missing probabilities of objects).
This is different from [29], which assigns equal probabilities
to instances of an object. Allowing different records of a
player have different probabilities captures the fact that the

physical condition of a player usually changes from game to
game (e.g., the player could be in great physical condition
in some games, and have suffered from small injuries prior
to other games).

Besides the NBA data set, we also used a synthetic data
set generated similarly to [29, 6, 3] as follows: We first ran-
domly generated the centers c of each uncertain object. The
value at each dimension of an instance has a domain [1,
1000] and was randomly generated in the hyper-rectangular
region centered at c with the edge size uniformly distributed
in the range [1, 200]. The default number of uncertain ob-
jects m is 20,000. The number of instances for an object is
uniformly distributed in the range [1, 30] by default. There-
fore, if m = 20, 000 the expected total number of instances
n is around 300,000. The default threshold θ is 0.01 for the
instance-level skyline probabilities. Although the absolute
value of the threshold seems small, this threshold is already
very selective among skyline probabilities of all instances, as
we can see later in the experiments below. This is mainly
due to the fact that an uncertain object may have many in-
stances, resulting in small occurrence probabilities for these
instances to begin with before bounding/computing their
skyline probabilities.

8.2 Effectiveness of Filtering
We evaluated the effectiveness of our two filtering schemes:

we computed the percentage of instances filtered by the up-
per bounds and the lower bounds in the preliminary scheme,
as well as the percentage of instances filtered by massive
killing and saving in the elaborate scheme. During the eval-
uation, we also varied several parameters of the data set to
test the scalability of our algorithms as well as to see how
the parameters affect the filtering gain. Such parameters in-
clude: the data set size (number of objects/instances), the
threshold, the average number of instances per object, the
number of dimensions.

8.2.1 Effectiveness of the Preliminary Scheme
We evaluated the percentage of instances filtered by the

upper bounds and the lower bounds in our preliminary scheme
on the synthetic data set with m = 2000. We also evaluated
the respective filtering capabilities of the upper bounds (Sec-
tion 5) and the corresponding tighter upper bounds (Section
6). The result is shown in the first chart of Figure 9. We al-
ways use the“normal”upper bounds (as opposed to“tighter”
upper bounds) first to filter instances, as they are easier to
compute than the tighter ones. If the normal upper bound
is above the threshold (i.e., cannot filter), then we further
compute the tighter upper bound to see if the tighter one will
help us filter the instance. Notice that if the upper bound
is below the threshold, then the tighter upper bound must
also fall below the threshold, indicating that both bounds
can filter the instance.

Similarly, we show the effect of the lower bound on fil-
tering in the second chart of Figure 9. While the filtering
percentage of both upper bounds increases as the threshold
increases, the trend is reversed for the lower bound. This
is because with higher thresholds, it is easier for an upper
bound to fall below the threshold but harder for a lower
bound to exceed it. Furthermore, we can see that the two
upper bounds filter much more than the lower bound (over
97% of instances are filtered by the upper bounds), although
these two kinds of bounds are computed independently.
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Figure 9: Effectiveness of preliminary filtering and elaborate filtering with respect to threshold
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Figure 10: Effect of data set size (m), threshold and instance count per object

8.2.2 Effectiveness of the Elaborate Scheme
The elaborate scheme uses the upper and lower bounds

from the preliminary scheme, and further exploits the dom-
inance relationship between instances for massive filtering
(negative or positive). We evaluated the effectiveness of our
elaborate filtering on both the real NBA data set and the
synthetic data sets. The percentage of instances filtered af-
ter “killing” (i.e., negative filtering) and that after “saving”
(i.e., positive filtering) are shown in the third chart of Figure
9 for the NBA data with a varying threshold. The same plot
is drawn for the synthetic data in the last chart of Figure 9.
For both data sets, killing filters instances massively while
saving contributes an additional 0.1% or less to the final
filtering percentage, as most of the instances (above 99.5%
for a threshold over 0.002) have already been identified as
uninteresting. This demonstrates our earlier statement that
negative filtering filters much more than positive filtering in
the elaborate filtering scheme. We also plotted the filter-
ing percentage against the data set size (i.e., different m’s)
on the synthetic data in the first chart of Figure 10. As
the number of objects increases, the filtering percentage in-
creases in general (because more instances are present to
compete with each other and more instances are likely to be
dominated by others) with an exception from m = 12k to
m = 16k, which might due to their particular distributions
of instances in the data space.

As we know from Section 7, the final skyline result set
consists of two parts: the instances that are saved during
the elaborate filtering, and the instances whose exact skyline
probabilities are verified to be above the threshold during
the refining stage. We call the former “saved” ones; and the
latter “refined” ones. The second and the third charts in
Figure 10 both compare “saved” and “refined”, and display
them in stacked columns, since the sum of the two is the
actual skyline result size. The former is plotted from the real
NBA data set while the latter is drawn from the synthetic
data set. The two charts also differ in the x-axes: the former
plots the skyline set against the threshold while the latter
plots it against the data sizem with a fixed threshold at 0.01.
We observe that the threshold seems to have a much more
significant effect than m on the size of the skyline results
– the higher the threshold, the smaller the set. The effect
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Figure 11: Comparison between our algorithm and
the näıve algorithm
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Figure 12: Effect of dimensionality

of m on the skyline size is not as obvious, though we can
still presume that the bigger the data set, the bigger the
final skyline set. It may depend heavily on the threshold in
use: a smaller threshold may yield a clearer trend of this,
since there are more instances that are likely to be above
the threshold with a larger data set.

8.2.3 Comparison with the Naive Approach
We implemented the näıve approach to the instance-level

probabilistic skylines for benchmarking, which uses a nested
loop (O(n2)) to compute the exact skyline probability of an
instance by looking at all other instances. The time cost of
our algorithm using the elaborate filtering scheme and that
of the näıve algorithm are shown in the first chart of Figure
11. The dimensionality is 3 and the threshold is 0.01. Our
algorithm performs significantly better than the näıve one,
and the advantage of our algorithm becomes even bigger as
the data set size grows. The second chart of Figure 11 pro-
vides a detailed view on how the time cost of our algorithm



breaks down to three parts: the time cost for constructing
PRT’s (the general-PRT and the colored-PRT’s), the time
cost for negative filtering (killing) and that for positive fil-
tering (saving). We can see that constructing the indices
is actually the most expensive of the three: This is due to
the fact that when we construct the trees, we also need to
compute the probability information stored with each node
for later use. Time cost for killing and saving also increases
as m grows. More optimizations can be done for saving to
reduce the time cost, which involves designing strategies to
efficiently compute the lower bound. Due to the space limit,
we will not discuss the details here.

Since our algorithms are designed specifically for the instance-
level filtering with a more general uncertain model, while [29]
focuses on the object-level filtering for probabilistic skylines,
we do not think a comparison of the two will yield convinc-
ing results when either their algorithms or our algorithms
have to be specifically modified and optimized in order to
suit the other’s case and become comparable.

8.2.4 Effect of Other Parameters
We have mentioned the effect of the threshold and m on

filtering in the previous sections. Now we will discuss the
effect of the dimensions as well as the effect of the number
of instances per object.

The two charts in Figure 12 show how filtering percentage
and time cost change with different dimensions and different
data set size. Here the filtering percentage is computed as
the total number of instances killed and saved divided by the
total number of instances in the data set. We observe that
given a data set, the filtering percentage decreases as the di-
mension increases. This is because an instance p is less likely
to be dominated by another instance q that has values better
than or equal to p’s own values in every dimension. In addi-
tion, for all dimensions, the filtering percentage increases as
m increases. For the time cost, increasing dimensions bring
increasing overhead in constructing and querying PRT’s, as
seen in the second chart of Figure 12: the time cost of the
4d data is over ten times more than that of the 2d data for
the same number of objects.

Finally, the last chart of Figure 10 shows how filtering
changes with respect to the number of instances per object.
The x-axis represents the maximum number of instances
an uncertain object can have. For example, 90 means the
instance count per object is generated uniformly between 1
and 90. We fixed the total number of instances to around
300,000 while changing the range of the instance count per
object from [1, 30] to [1, 150]. Intuitively, more instances
per object implies fewer objects given a fixed total number
of all instances. It also suggests that each instance now
has smaller probabilities to occur in the first place (the sum
of the probabilities over all instances of an uncertain object
cannot exceed 1), which means that the skyline probabilities
of these instances may also be smaller because they cannot
exceed their own occurrence probabilities. Therefore, the
filtering percentage increases, as the number of interesting
instances has decreased.

9. RELATED WORK
Many studies have been conducted to design efficient sky-

line algorithms for large data sets [6, 28, 21, 22, 16, 23].
Various kinds of skyline analysis have been proposed for dif-
ferent settings. For example, skylines for distributed data

sets [2, 38], for dynamic data sets [36], for incomplete data
[20], for time series [18], etc. In addition, many interest-
ing variations of skyline computation have been explored
recently, including representative skylines [27, 34], reverse
skylines [14, 25], and privacy-preserving skylines [8].

All the above skyline research focuses on certain data.
However, uncertainty in data is inherent in many applica-
tions due to the incompleteness of data, delayed updates,
measurement inaccuracy, etc. As research on uncertain data
draws increasing attention to the database research com-
munity, much work has been done to design databases to
manage uncertainty [4, 7, 32]. Such uncertainty in data
also poses many problems for querying the data, such as
the nearest-neighbor problem [10, 12, 5, 9], indexing [31, 11,
19, 1], ranking and top-k queries [33, 26, 17, 13, 15, 24],
etc. Advanced data analysis with uncertain data has also
been studied recently. For example, several papers have
studied skyline analysis for uncertain data [3, 25, 37] fol-
lowing the pioneering work of [29]. Such analysis is useful in
applications where uncertainty is inherent. While some ap-
plications model uncertainty as continuous with probability
density functions (pdf’s), others model it as discrete with
probability distributions over a set of possible values [32].
This latter case is useful when the nature of the uncertainty
is discrete (e.g. integrating data from different sources), or
when the underlying pdf is unknown and a set of samples
have to be drawn to approximate the real pdf [29]. While
[25] focuses on reverse skyline queries for uncertain data,
[3, 37, 29] all studied the probabilistic skyline analysis pro-
posed in [29]. The goal in [29] was to find all uncertain
objects with skyline probabilities greater than or equal to
a given threshold. Two algorithms (top-down and bottom-
up) were proposed to efficiently compute the skyline results
by leveraging upper and lower bounds of the objects’ sky-
line probabilities to avoid the expensive computations of the
exact skyline probabilities. In contrast, [3] took a different
approach by motivating the problem of computing skyline
probabilities for all instances and proposed a sub-quadratic
algorithm for doing so. It also removed the two assumptions
made in [29] that the instances of the same object has equal
probabilities and the probabilities of the instances sum up to
1. [29, 3] are closest to our work. The difference between our
paper and [3] is obvious: We aim at minimizing the number
of skyline probability computations by introducing a thresh-
old and designing algorithms to leverage the threshold for
filtering, whereas [3] designed an algorithm with a worse-
case sub-quadratic time complexity to compute all skyline
probabilities and hence no threshold is needed. The differ-
ence between our paper and [29] is two-fold: i) we filter at
the instance level instead of the object level; ii) like [3], we
remove the two assumptions of [29] made on the uncertain
data model. [37], on the other hand, extends [29] by contin-
uously retrieving skyline results over sliding windows.

10. CONCLUSIONS
In this paper, we study the problem of computing the

probabilistic skylines at the instance level for uncertain ob-
jects with multiple instances. We propose two filtering schemes
for avoiding the expensive skyline probability computations.
In our preliminary filtering scheme, we design two index-
ing structures based on the range search tree to facilitate
bounding of a query instance’s skyline probability for ei-
ther negative or positive filtering. Such range trees are aug-



mented with probabilistic information and are hence called
probabilistic range trees. Our more refined filtering scheme
uses the preliminary filtering scheme, and further explores
the dominance relationship between instances to filter out
other instances given one instance whose skyline probability
has been shown to either meet the threshold or fall below
the threshold. We propose our instance-level probabilistic
skyline algorithm based on our filtering schemes, which can
also be easily adapted to the computation of the object-
level probabilistic skylines. Our experiments show that our
algorithm can filter massively to avoid computing the exact
skyline probabilities.
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APPENDIX
A. DETAILED PROOFS

A.1 Proof of Theorem 1 (Section 4.1)
Proof. We know from Definition 3 that βi =

∏m
j=1(1 −

sij) where sij is the sum of probabilities of instances that

belong to Oj and at the same time are instances in L̂i. We
expand β1, · · · , βt as follows:

β1 = (1− s11) · (1− s12) · · · (1− s1m)

β2 = (1− s21) · (1− s22) · · · (1− s2m)

...
...

...
...

βt = (1− st1) · (1− st2) · · · (1− stm)

We multiply the above t equations together and obtain:

t∏
i=1

βi =

t∏
i=1

(1− si1)

t∏
i=1

(1− si2) · · ·
t∏

i=1

(1− sim)

Each product
∏t

i=1(1 − sij), 1 ≤ j ≤ m on the right hand
side (RHS) is for the same uncertain object Oj . Since 0 ≤
sij ≤ 1, apply Lemma 2 m times and we have:

t∏
i=1

βi ≥
m∏

j=1

(
1−

t∑
i=1

sij

)
=

m∏
j=1

1−
∑

q∈Oj ,q∈S
L̂

Pr(q)


From Lemma 1, we further conclude that

t∏
i=1

βi ≥
m∏

j=1

1−
∑

q∈Oj ,q≺p

Pr(q)


Let p ∈ Ok. Since

∑
q∈Ok,q≺p Pr(q) + Pr(p) ≤ 1, the fol-

lowing holds for the RHS of the above inequality:

RHS =

1−
∑

q∈Ok,q≺p

Pr(q)

 · m∏
j=1,j 6=k

1−
∑

q∈Oj ,q≺p

Pr(q)


≥ Pr(p) ·

m∏
j=1,j 6=k

1−
∑

q∈Oj ,q≺p

Pr(q)

 = Prsky(p)

Therefore, Inequality 5 holds.

A.2 Proof of Theorem 2 (Section 5.1)
Proof. 1) Since p is a target instance, rp ≥ 1

2
. We can

deduce that

Pr(p) ≥ 1−
∑

p′≺p,p′∈Ok

Pr(p′)− Pr(p) (7)

Due to the transitivity of the dominance relationship, any
instance that dominates p must dominate q. Hence

(7) ≥ 1−
∑

p′≺q,p′∈Ok

Pr(p′)

Using the above inequality and the transitivity of the dom-
inance relationship as well as the fact that Pr(q) ≤ 1 −∑

p′≺q,p′∈Ol
Pr(p′) (because both p′ and q belong to Ol),

we have

Prsky(p) = Pr(p) ·
m∏

i=1,i 6=k

1−
∑

p′≺p,p′∈Oi

Pr(p′)


≥

1−
∑

p′≺q,p′∈Ok

Pr(p′)

 · m∏
i=1,i 6=k

1−
∑

p′≺q,p′∈Oi

Pr(p′)


=

1−
∑

p′≺q,p′∈Ol

Pr(p′)

 · m∏
i=1,i 6=l

1−
∑

p′≺q,p′∈Oi

Pr(p′)


≥ Pr(q) ·

m∏
i=1,i 6=l

1−
∑

p′≺q,p′∈Oi

Pr(p′)

 = Prsky(q)

Since Prsky(p) < θ, Prsky(q) < θ also holds.
2) If p is a target instance and k = l, the proof in 1) still
holds; if Pr(p) ≥ Pr(q), since k = l, we have:

θ > Prsky(p) = Pr(p) ·
m∏

i=1,i 6=k

1−
∑

p′≺p,p′∈Oi

Pr(p′)


≥ Pr(q) ·

m∏
i=1,i6=k

1−
∑

p′≺q,p′∈Oi

Pr(p′)

 = Prsky(q)
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