Design and Numerical Parametric Study of Fractal Heat Exchanger

Paper 2381

Zhiwei Huang, Jiazhen Ling, Yunho Hwang, Vikrant Aute, Reinhard Radermacher

Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742-3035, USA

16th International Refrigeration And Air Conditioning Conference at Purdue, July 11-14, 2016, Purdue, Indiana
Contents

- Introduction
- Fractal heat exchanger design
- Parametric study
 - Parameters
 - CFD modeling
 - Results and discussion
- Conclusions
- Future work
Introduction

Heat exchanger

- Fin-and-tube heat exchanger (>5 mm)
 - $j=0.009$, $f=0.035$ at $Re=400$, $OD=10.7$ mm (Joardar and Jacobi, 2008)

- Microchannel heat exchanger (1 ≤ mm)
 - $j=0.025$, $f=0.28$ at $Re=400$ (Joardar and Jacobi, 2005)

- Bare-tube heat exchanger (0.5~5 mm)
 - $j=0.035$, $f=0.1$ at $Re=400$, $OD=0.8$ mm (Bacellar et al., 2016)

Fractal channels

- Intrinsic advantage of minimized flow resistance and strong heat transfer capability over serpentine and parallel channels (Chen and Cheng, 2002, Wang et al., 2010, Yu et al., 2012).

- No application in liquid-to-gas heat exchangers
Fractal Heat Exchanger Design

Figure 1(a): HCHX-tube structure

Figure 1(b): HCHX-staggered pattern

Figure 2: HCHX schematic (staggered) and simulation domain

Figure 3: Baseline BTHX (staggered)
CFD Modeling

<table>
<thead>
<tr>
<th>Type</th>
<th>Parameter</th>
<th>Unit</th>
<th>BTHX</th>
<th>HCHX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>P_i</td>
<td>[mm]</td>
<td>1.5 D</td>
<td>1.5D_1</td>
</tr>
<tr>
<td>Constant</td>
<td>P_t</td>
<td>[mm]</td>
<td>1.5 D</td>
<td>1.5D_1</td>
</tr>
<tr>
<td>Variable</td>
<td>DR=D_1/D_2</td>
<td></td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>Variable</td>
<td>D or D_1</td>
<td>[mm]</td>
<td>1, 2, 3</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Variable</td>
<td>V_a</td>
<td>[m/s]</td>
<td>0.5, 2, 3.5</td>
<td>0.5, 2, 3.5</td>
</tr>
<tr>
<td>Variable</td>
<td>θ</td>
<td>[deg]</td>
<td>-</td>
<td>30, 45, 60</td>
</tr>
<tr>
<td>Variable</td>
<td>LR=l_1/l_2</td>
<td></td>
<td>-</td>
<td>1.414, 1.732</td>
</tr>
</tbody>
</table>

- $T_{air,in} = 300K$
- $T_{wall} = 350K$

Figure 4: BTHX computational domain

Figure 5: HCHX computational domain (left) and bottom view (right)
Heat Transfer Area

Figure 6: Air-side heat transfer area improvement compared with bare tube heat exchanger

LR = L_1 / L_2
Heat Transfer Coefficient

- Air velocity↑, diameter↓, bifurcation angle↑ and length ratio
- Preferred: smaller diameter and larger bifurcation angle

Figure 7: Heat transfer coefficient comparison (LR=1.414)

Figure 8: Heat transfer coefficient comparison (LR=1.732)
Pressure Drop

- Air velocity↑, diameter↓, bifurcation angle↑ and length ratio↓
- Preferred: larger diameter, smaller bifurcation angle and larger length ratio

Figure 11: Heat exchanger air-side pressure drop comparison (LR=1.414)

Figure 12: Heat exchanger air-side pressure drop comparison (LR=1.732)
hA_{air} Value

- Air velocity \uparrow, diameter \uparrow, bifurcation angle \downarrow, and length ratio \uparrow
- Preferred: larger diameter, smaller bifurcation angle and larger length ratio

Figure 15: hA value (LR=1.414, angle=30°)

Figure 16: hA value (LR=1.414, angle=45°)

Figure 17: hA value (LR=1.414, angle=60°)

Figure 18: hA value (LR=1.732, angle=30°)

Figure 19: hA value (LR=1.732, angle=45°)

Figure 20: hA value (LR=1.732, angle=60°)
Conclusions

- A novel finless fractal heat exchanger design was proposed.
- A parametric study was conducted, thermal and hydraulic performances were analyzed.
- Parameters were studied including air velocity (1~3 m/s), tube diameter (1, 2, 3 mm), bifurcation angle (30, 45, 60°) and length ratio (1.414, 1.732).

<table>
<thead>
<tr>
<th></th>
<th>Air velocity</th>
<th>Tube diameter</th>
<th>Bifurcation angle</th>
<th>Length ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTC</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Pressure drop</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>hA</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>
Future Work

- Design optimization
- Prototype manufacturing
- HX performance tests
ACKNOWLEDGEMENT

This work was supported by the United States Department of Energy Grant Number DE-EE0006114, and the Center for Environmental Energy Engineering (CEEE) at University of Maryland.

Thank you
Backup Slides
HTC Percentage Improvement

- Air velocity↑, diameter↑ and bifurcation angle↑ and length ratio
- Preferred: larger diameter and larger bifurcation angle

![Graphs showing heat transfer coefficient improvement](image)

Figure 9: Heat transfer coefficient improvement compared with BTHX (LR=1.414)

Figure 10: Heat transfer coefficient improvement compared with BTHX (LR=1.732)
Pressure Drop Percentage Penalty

- Air velocity, diameter↓, bifurcation angle↑ and length ratio↓
- Preferred: larger diameter and smaller bifurcation angle with larger length ratio

Figure 13: Heat exchanger air-side pressure drop improvement compared with BTHX (LR=1.414)

Figure 14: Heat exchanger air-side pressure drop improvement compared with BTHX (LR=1.732)
hA Value Percentage Improvement

- Air velocity↑, diameter↑, bifurcation angle↑ and length ratio↓
- Preferred: larger diameter, larger bifurcation angle and smaller length ratio

Figure 21: hA improvement compared with BTHX (LR=1.414)

Figure 22: hA improvement compared with BTHX (LR=1.732)