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Abstract— Real-world databases often contain both syntactic
and semantic errors, in spite of integrity constraints and other
safety measures incorporated into standard DBMSs. This is
primarily due to the broad scope of incorrect data values that
are difficult to fully express using the general types of constraints
available. As a result many errors are subtle, and laborious
to detect with manually-specified rules. However, combining
statistical methods with extensions to conventional integrity
constraints makes it possible to develop automated data cleaning
methods for a variety of relational dependencies. In this work, we
focus on exploiting the statistical dependencies among tuples in
relational domains such as sensor networks, supply chain systems,
and fraud detection. We identify potential statistical dependencies
among the data values of related tuples and develop algorithms
to automatically estimate these dependencies, utilizing them to
jointly fill in missing values at the same time as identifying
and correcting errors. The key features of our method are that
(1) it uses an efficient approximate inference algorithm that is
easily implemented in standard DBMSs and scales well to large
databases sizes, and (2) it uses shrinkage and joint inference
to accurately infer correct values even in the presence of both
missing and corrupt values. We evaluate the method empirically
on both synthetic and real-world genealogy data and compare to
a baseline statistical method that uses Bayesian networks with
exact inference. The results show that our algorithm achieves
accuracy comparable to the baseline with respect to inferring
missing values. However, our algorithm scales linearly rather
than exponentially and can also simultaneously identify and
correct corrupted values with high accuracy.

I. INTRODUCTION

Although the database community has produced a large
amount of research on integrity constraints and other safety
measures to maintain and ensure the the quality of information
stored in relational databases, real-world databases often still
contain a non-trivial number of errors. These errors, both
syntactic and semantic, are generally subtle mistakes, which
are difficult or even impossible to express (and detect) using
the general types of constraints available in modern database
management systems. In addition, quality-control on data
input is decreasing as collaborative efforts increase, with the
Internet facilitating widespread data exchange, collection, and
integration activities. Clearly, there is an increasing need for
new approaches to automate data cleaning methods and ensure
information quality in databases.

Researchers have recently begun to exploit new types of
integrity constraints for data cleaning [1]. Removing data
impurities is traditionally an engineering problem, where ad-
hoc tools made up of low-level rules and manually-tuned algo-

rithms are designed for specific tasks. Extensions to conven-
tional integrity constraints, together with statistical methods
for data cleaning [2], make it possible to automate some of
the cleansing process for a variety of domains.

For this work we consider the problem of cleaning relational
databases where there are both (1) missing values to be filled
in, and (2) corrupted or erroneous values to be identified
and corrected. We focus on developing automated, statistical
methods for domains with two important characteristics:
• The values of different attributes are correlated, both

within and across tuples.
• The attributes with large domains (i.e., many possible

values), exhibit higher-level dependencies among sets of
similar values (for categorical variables) or a numerical
functional dependency (for continuous variables).

As an example of this type of domain, consider the task
of inferring missing birth and death years of individuals in
genealogical databases. The individuals are related through
parent-child relationships and the birth and death years of an
individual are correlated due to life expectancies. In addition,
the birth dates of parents and children are correlated due to
parenting-age expectancies. Furthermore, since life expectan-
cies and parenthood age are likely to be similar over time,
the dependencies do not need to be modeled for specific birth
dates, but rather can be modeled as a higher-level functional
dependency (e.g., birth year = parent’s birth year + 25 + ε).
A statistical method can learn these dependencies from the
available data and then use them to infer missing values.

In this paper, we present an iterative statistical framework
for inferring missing information and correcting errors based
on belief propagation (see e.g., [3]), relational Bayesian net-
works [4], and convolution (see e.g., [5]). The imputation
and cleaning tasks go hand in hand: additional information
in the database helps identify errors more accurately, and
corrected data values improve the quality of inference for the
missing values. A salient feature of our approach is that we
integrate the data cleaning into the actual inference process,
rather than perform these two tasks separately. Although we
focus on a genealogical domain for illustration and evaluation,
the method is applicable to other relational databases with
similar properties, including sensor networks, fraud detection
domains, and supply-chain management.

Specifically, we propose a novel statistical approach for data
cleaning and imputation. The model is a form of relational



Bayesian network [6], which allows us to specify a small
model template to be rolled out based on the structure of
the database rather than explicitly modeling the full database.
Our approach uses convolution to efficiently and accurately
estimate the dependencies at a higher-level than standard
Bayes net conditional probability distributions. We develop an
approximate inference technique based on belief propagation,
which notably results in dramatic increases in efficiency. It
is also possible to implement in SQL with user defined
functions, and facilitates the integration of imputation and
data cleaning. We evaluate the method empirically on both
synthetic and real-world genealogy data, and compare to a
baseline statistical method that uses Bayesian networks with
exact inference. The results show that our algorithm achieves
accuracy comparable to the baseline with respect to inferring
missing values. However, our algorithm scales linearly rather
than exponentially and can also simultaneously identify and
correct corrupted values with high accuracy.

A. Running Example

We consider the task of inferring missing birth and death
years of individuals in genealogical databases. Common
sources of genealogical information include vital records
(e.g. birth, marriage, and death certificates), religious archives
(e.g. baptisms and funerals), and public records (e.g. census
data, immigration lists, and voter registrations). Integrating
these sources on a large scale for public consumption is a
challenging task. Ancestral File (AF) and Pedigree Resource
File (PRF), available online at FamilySearch.org, are examples
of such an effort. These systems include millions of individuals
and their pedigrees, and are compiled from thousands of
independent submissions over the past thirty years. Effective
techniques for data cleaning, record linkage, and attribute
standardization are crucial both during and after the integration
process in order to maintain quality in the resulting data.

Without loss of generality, we assume each individual has
a single birth date and death date, either of which may be
unknown (i.e. NULL). We also assume that the majority of
the known values are correct, but expect there to be many
nontrivial errors (i.e. which cannot be detected by standard
integrity constraints such as “birth year is less than death
year”). Our study is designed for lineage-linked databases with
a table of parent-child relationships between individuals. For
simplicity we assume that all relationships are both present
and correct; detecting and cleaning referential errors is a
complementary problem, which we leave as future work.

B. Contributions

The remainder of this paper follows this brief outline:
• We first present a baseline method for learning Bayesian

networks, which uses exact inference to infer missing
values jointly. This method provides a realistic objective
for empirical comparison with our approach.

• We then outline our framework for integrated imputation
and data cleaning, which uses a novel form of shrink-
age based on discrete convolution and an approximate

inference technique based on belief propagation. We
outline how our method performs data cleaning during
the inference process to improve the resulting estimates
and validate the underlying evidence.

• We discuss how our approach yields a natural imple-
mentation inside standard DBMSs (we have used Post-
greSQL), and is significantly more efficient than the
traditional inference techniques using Bayesian networks.

• We empirically study the accuracy and quality of the
two methods on synthetic datasets with varying lev-
els of missing and corrupt information. We show that
our method achieves similar accuracy to the Bayes net
method but with significant gains in runtime performance
and added benefit of simultaneous data cleaning. We then
demonstrate the effectiveness of our technique on a real
dataset of five million individuals.

In the long term, we envision a platform for DBAs to
specify or discover groups of attributes that are correlated, and
then install statistical constraints that validate and cleanse the
database over time. We have constructed the initial prototype
of such a system for this paper, and present our findings when
applied to genealogical databases.

II. AN INITIAL APPROACH

One natural approach for inferring missing values in ge-
nealogical data is to model family tree dependencies with
directed graphical models [6]. Graphical models leverage tech-
niques from graph theory and probability theory to represent
and reason with complex joint distributions of many random
variables compactly and efficiently. We refer the reader to
chapter eight of [7] for an overview of graphical models and
standard inference algorithms. In this section we assume the
reader has a basic understanding of Bayesian networks.

As a baseline, we outline an approach for constructing a
Bayesian network from a genealogical database and estimating
the model parameters from the non-null values in the database.
We then apply the learned model to perform statistical in-
ference, computing a posterior distribution for each missing
value in the data conditioned on the observed evidence. We
discuss the limitations of this method in practice and outline
several practical implementation challenges as motivation for
our approximation framework described in section III.

A. Bayesian Network Model

Let the random variables I.b and I.d denote the birth and
death years of the individual I in the database. The goal is to
infer posterior distributions for each I.b and I.d, based on the
observed birth and death values from the individual’s relatives
RI . We use parent-child relationships inherent in the data as
the template for our graphical model. This approach is similar
to learning a probabilistic relational model [6], a relational
extension to Bayesian networks.

Figure 1 shows our directed model template using plate
notation. For each individual we have a random variable rep-
resenting their birth and death year values—these correspond
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Fig. 1. Bayesian network template

to the nodes I.b and I.d. The edges represent statistical depen-
dencies between the random variables. Edges within a plate
represent dependencies among the random variables of a single
individual (e.g., a person’s death year depends on their birth
year). Edges that extend outside a plate represent dependencies
among the random variables of related individuals (e.g., a
person’s birth year depends on the birth year of their mother).
Directed graphical models capture causal dependencies, i.e. we
say that an individual’s birth date influences his or her death
date. Furthermore, a father’s and mother’s birth dates jointly
influence the birth dates of all of their children.

The Bayesian network structure specifies the conditional
dependencies in the data (i.e. which random variables depend
on each other). In addition to the network structure, the
quantitative dependencies are specified with a conditional
probability distribution (CPD) for each node in the network,
conditioned on its parents in the network. Our model template
consists of two CPDs: P (I.d|I.b) and P (I.b|M.b, F.b).

Note that this approach does not attempt to capture all
constraints present in the underlying database. Instead, for
this work, we focus on a reasonable subset of dependencies
which are likely to be most useful for inferring missing
values. For example, a child’s birth year is generally less
than both of the parent’s death years, but we do not include
edges from I.d back to I.b in our graphical model template
for several reasons. For one, this correlation is not a causal
relationship but a domain constraint. Secondly, capturing too
many constraints can lead to model overfitting and result in
less accurate inferences. And finally, additional dependencies
will increase the complexity of the network and significantly
hinder the runtime performance.

Figure 2 illustrates an example Bayesian network which
results from unrolling our model template (figure 1) over a
small set of individuals in the database. In this example we
have an individual with two parents, one spouse, and three
children. In terms of the Bayesian network, each child’s birth
date is influenced by the birth dates of both parents. Likewise,
each person’s death date depends only on his or her own birth
date. In this example, the father, mother, and spouse nodes
have no parents so they depend only on a prior distribution.
In reality the size of the model could grow to include the
entire database, as parents of the ancestors and children of the
descendants are added to the network.

B. Learning CPDs

Our goal is to automatically learn the parameters of the
CPDs based on the observed (i.e. non-null) instances in
the database. Such a data-driven approach is what makes
our method applicable to other applications with similarly-
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Fig. 2. Example instance of model

structured dependencies. In the case of genealogy, we may
be able to obtain accurate conditional distributions (e.g.,
life expectancy models) from social-science domain experts.
However, in other domains it is likely that such domain experts
and/or background knowledge do not exist. For this reason, we
learn the dependencies directly from the genealogical data.

To encode the CPDs (P (I.d|I.b) and P (I.b|M.b, F.b)) we
must represent a posterior probability distribution for each
variable (i.e. I.d and I.b) for each set of conditioning values
in the database (i.e. {I.b} and {M.b, F.b} respectively). We
represent these distributions using histograms, with one bin
for each year in the distribution.

We construct the CPDs automatically by aggregating the
known instances in the database. For example, the CPD
P (I.d|I.b) is given by:
SELECT birth, death, count(*)
FROM person
GROUP BY birth, death

The prior distribution P (I.b) is given by running the same
query without the death attribute. For each resulting CPD
table, we convert the raw counts into probability densities by
normalization (i.e. divide each count by the sum of all counts).

Learning the remaining distribution P (I.b|M.b, F.b) in-
volves self-joining the person table to group each individual
along with both parents:
SELECT

m.birth AS mb, f.birth AS fb,
i.birth AS ib, count(*)

FROM person AS i
INNER JOIN relative AS r1
ON i.ind_id = r1.ind_id AND r1.role = ’M’

INNER JOIN person AS m ON r1.rel_id = m.ind_id
INNER JOIN relative AS r2
ON i.ind_id = r2.ind_id AND r2.role = ’F’

INNER JOIN person AS f ON r2.rel_id = f.ind_id
GROUP BY mb, fb, ib

This process is completely data driven; we do not rely on
any domain specific knowledge to learn the model parameters.



The appeal of this approach is its simplicity and general
applicability. However, this will only work if the underlying
database has enough information to construct the complete
range of possible values. For example, if no person in the
database has an observed death year of 1900, then that year
will not be present in the posterior distribution of missing
death years.

To adjust for unobserved combinations, we applied Laplace
smoothing to the CPDs (i.e. add one to each frequency and
renormalize), since many P (I.b|M.b, F.b) combinations were
unobserved in the data. Although this results in a larger
space of possible values, it prevents the inference engine from
zeroing out intermediate potentials for the more likely answers.

Note also that the above queries have no WHERE clause.
This results in a single CPD over the entire database, which
can then be shared at each applicable node in the Bayesian
network. However, much of the CPD will be irrelevant at any
given node. For example, consider a person that is born in
1970—her parents and children will probably be born after
1900 so the CPD information for 1500-1800 will have little
influence on the posterior inference.

In our experiments using real data, the above query con-
structs a full CPD of about 150,000 rows. Smaller CPDs are
more desirable in practice because they reduce the runtime
and improve the quality of the inferences. Thus we refine
each CPD locally by dropping highly improbable entries and
renormalizing. Ideally, we would estimate a lower and upper
bound for each node (to minimize the size of each CPD),
but determining these bounds ultimately requires running
inference—the process we are currently setting up.

A compromise between these two extremes is to estimate
the lower and upper bound of birth and death years for each
inference subgraph or Markov blanket (described in more
detail in the next section). We do this by identifying the min-
imum and maximum generations of observed and unobserved
nodes in each Markov blanket, and apply a heuristic based
on maximum parenthood age in the database to estimate the
overall range of the entire blanket.

C. Exact Inference

To infer values for the missing birth and death years in
our data, we can use any inference algorithm to compute
posterior distributions conditioned on the observed evidence in
the database. For this work, we use the junction tree inference
method, included with the Bayes Net Toolbox for Matlab [8].
Exact inference in Bayesian networks is only linear (in the
size of the network) if the model corresponds to a polytree,
where there is at most one undirected path between any two
nodes of the network. In our case, since two parents can have
multiple children, the network will be multiply-connected and
inference is worst-case exponential in the size of the network.

Rather than run exact inference over the entire database
as one large graphical model, to reduce the runtime we
automatically decompose the network into a set of Markov
blankets, one for each group of related missing values. In a
Bayesian network, the Markov blanket for a random variable

X consists of the set of observed variables that render X
conditionally independent of the rest of the network—it con-
tains the node’s parents, children, and other parents of the
children (not necessarily “spouses” in terms of genealogy).
If any of these nodes are also unobserved, the blanket is
extended recursively along these same paths. The final sub-
graph contains all the information needed to jointly infer the
posterior of the unobserved variables in the blanket. Note that
a Bayesian network may contain multiple Markov blankets,
but each unobserved node belongs to exactly one blanket.

Once we find the Markov blankets, we can then per-
form exact inference on each blanket individually. For each
Markov blanket in the database, we construct the correspond-
ing Bayesian network and local CPDs. We then use the
junction tree inference algorithm in the Bayes Net Toolbox to
compute the posterior distribution of each missing value, given
the observed evidence. We acknowledge that in practice one
may prefer to use more sophisticated approximate inference
techniques or even expectation maximization (a joint learn-
ing/inference technique). However, this approach gives a finer
resolution of the resulting uncertainty and is more directly
comparable with our approximation framework in section III.

One main challenge with running inference at this level
of granularity is dealing with floating point underflows. The
total number of probability assignments for a Markov blanket
is proportional to the size of the CPDs and the number of
unobserved nodes. For example, a typical Markov blanket
ranges over 200 years, and has twenty birth and death nodes
(forty total), of which fifteen are unobserved. The likelihood
value for an assignment to these variables may become zero
in hardware is relatively high, given each of the fifteen nodes
can take up to 200 possible discrete values.

In addition to the computational issues of applying exact
inference methods, there are a number of limiting assumptions
of the Bayesian network approach which do not always hold in
practice. Up to this point we have assumed there are no errors
in the observed data. One common type of error is a simple
typo, for example a birth year of 840 instead of 1840, and
the Markov blanket is estimated to range from 1700 to 1900.
In our implementation we treat such nodes as unobserved,
since there is no mapping from their values into the discrete
domain of the CPD. Outliers are even more problematic when
learning the CPDs, as the presence of incorrect data values
makes estimating the lower and upper bounds for the Markov
blanket highly unreliable.

The graphical model template also imposes structural con-
straints which may not hold in the case of dirty databases. For
instance, we cannot directly apply this model to an individual
with more than two parents. We omit Markov blankets with
structural anomalies from our experiments, for the sake of
comparing the two algorithms.

III. OUR FRAMEWORK

The Bayesian network formulation is attractive due to its
principled mathematical formulation. However as discussed in
the previous section, it has a number of limitations:



• Inefficiency and (potential) inaccuracy due to a large
number of parameters in the CPDs

• Inflexibility due to fixed CPD structure
• Exponential exact inference algorithm
• Inability to identify and clean corrupt data values
In this section we propose a novel framework that uses a

shrinkage technique and approximate inference to offset these
problems and significantly improve runtime efficiency. The
algorithm makes an assumption of conditional independence
among parents and children that allows us to relax the restric-
tions on the CPD structures. In addition, the algorithm is flex-
ible enough to infer a posterior distribution for every variable,
which we use to identify outliers as errors for data cleaning.
Finally our method provides a natural implementation within
database systems via SQL and user defined functions.

The main ideas and contributions of this alternative ap-
proach are: 1) a shrinkage technique using discrete convo-
lution, and 2) an iterative approximation algorithm based
on belief propagation. Shrinkage is a statistical approach to
improve the accuracy of a local estimator by incorporating
additional (e.g., global) information to reduce the effects of
local sampling variation. For example in our application, we
can construct more accurate CPDs by considering not only the
counts for specific combinations of birth and death years, but
also incorporating the counts for similar combinations. Belief
propagation is an iterative algorithm used for approximate
inference in graphical models. We apply a similar message
passing technique in our framework.

A. Convolution Models

Our proposed model is similar in structure to the Bayesian
network model in figure 1. We model the missing data values
with random variables I.b and I.d with the same dependen-
cies. However, instead of choosing a fixed structure for the
CPDs, we model each parent’s influence independently and
aggregate the information during inference. This approach is
often used in relational learning to tie model parameters across
heterogeneous structures, for instance related individuals with
varying numbers of parents (see e.g., [4]).

In addition, we observe that the dependencies between
parent and child birth year are likely to be similar across
different years. The functional dependency is more likely
based on the offset or change in values rather than the specific
values of the random variables. To exploit this, we propose a
convolution-based approach to modeling death age and parent
age at birth and use this instead of the value specific CPDs
of the Bayesian network.

Consider a pair of attributes that correlated through this
kind of function, for example the birth and death year of
an individual. Instead of modeling the explicit dependence
of death year on birth year P (I.d|I.b), we can model the
distribution of the difference of the two variables as an
individual’s death age: MDA = P (I.d − I.b). Similarly, we
can model the difference in child and parent birth year as an
individual’s parent age: MPA = P (P.b − I.b). These two
distributions correspond to the two types of edges in figure 1.
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Fig. 3. Convolution model for “Death Ages”

Since we constructed the distributions using subtraction, we
use convolution to “add” information and make inferences
between two attributes. See the apply step in section III-C for
more details about the inference procedure. The notable prop-
erty of this approach is that it allows the use of information
across the entire database for estimation, instead of matching
on exact combinations of birth and death years. This is the
shrinkage aspect of the model.

B. Learning Dependencies

To estimate the convolution models, we first compute the
distribution of the difference of each pair of known instances.
We have implemented a user defined aggregate named model
that returns a (normalized) histogram of the values it scans:
SELECT model(death - birth)
FROM person

In this example, the resulting model represents the distri-
bution of death ages for all persons with known birth and
death years. Figure 3 illustrates an example histogram using
our real dataset. The spike on the left size suggests a high
child mortality rate for this dataset. We have also computed the
mean and standard deviation of this histogram, and plotted the
normal distribution for these parameters. Clearly, the normal
distribution does not provide a good approximation.

We likewise compute the distribution of parenthood ages,
i.e. parent birth minus individual birth, by self-joining the
person table via its relatives as before:
SELECT model(i.birth - p.birth)
FROM person AS i

INNER JOIN relative AS r
ON i.ind_id = r.ind_id
AND r.role IN (’M’, ’F’)

INNER JOIN person AS p
ON r.rel_id = p.ind_id

Notice that in contrast to the queries in section II-B, we no
longer need to group by the individual instance values, result-
ing in a more efficient query plan. We have also eliminated
two joins by shrinking across both parents.

These queries also require very little domain knowledge,
namely that birth dates and death dates for an individual are
correlated, as are the birth dates of parents and children. In
general, convolution models capture the dependencies between
any pair of relational attributes that lie within an expected



range of each other. For example, we can learn such models
for neighboring nodes in a sensor network.

C. Approximate Inference

Using the difference distributions constructed in the pre-
vious steps, we develop an iterative, approximate inference
procedure to estimate posteriors for each missing value and
identify/clean corrupt values. The algorithm uses a message-
passing approach to infer the posterior distribution locally
for each node in the entire database rather than explicitly
constructing Markov blankets over which to do (exponential)
joint inference. At a high level, the inference process iterates
over three major phases:

1) Apply models: for each value (or distribution) modified
in the previous round, construct (or update) an output
distribution for each applicable model and relative.

2) Combine inferences: aggregate and normalize the result-
ing predictions for each individual, and detect conflicting
evidence values using elections.

3) Evaluate changes: for each individual, accept or reject
the resulting distribution after comparing it with the
previous version.

We now explain the details of each step below in the context
of our genealogy example. Each step corresponds to a separate
UPDATE statement. The iteration repeats until all probability
distributions converge, i.e. when the update count in the final
step is zero. In our experiments, most datasets converged after
about five iterations.

1) Apply: Since we constructed the difference distributions
(MDA,MPA) using subtraction, we can use addition to make
inferences between two related attributes. For example, we can
infer a missing death year from a known birth year by shifting
the x-axis by the birth year. In other words: I.d = I.b+MDA

where MDA is the death age model. Similarly, we can infer a
missing birth year from a known death year by negating the
histogram (i.e. mirroring it across the y-axis) and then shifting
the result by the known death year: I.b = I.d+ [MDA ∗ −1].

Our algorithm will propagate these inferred posterior distri-
butions as new evidence, for example to infer birth dates of an
individual’s children. In this case, since the evidence is now
a distribution over possible values, we cannot simply add the
evidence to the model by shifting the x-axis. Instead we use
discrete convolution to add the two random variables:

C.b = P (I.b+PA) = PI.b∗MPA =
∑

b′∈PI.b

PI.b(b′)MPA(b−b′)

This gives us the probability distribution of the sum of these
two random variables.

For simplicity, we first construct initial point distributions1

over all the non-missing data. As a result we do not need to
differentiate between original evidence (scalar values) and in-
termediate inferences (histograms) when applying inference—
we can just use convolution throughout the entire algorithm.

1The point distribution over a known value is simply a histogram with one
bin, i.e. the value itself with a probability of one attached to it.

In the apply step, we use convolution to infer a separate pos-
terior distribution for each individual’s birth and death years
from each of his or her relatives (i.e. parents and children) that
were updated in the previous round. We make a conditional
independence assumption here for the sake of efficiency and
flexibility. In other words, for each value I.b we will infer a
posterior from each parent and child birth year independently
and then aggregate the predictions in the combine step below.
We will show empirically that the resulting accuracy of this
approximation is quite good in practice.

The inference algorithm will operate in a manner similar
to belief propagation [3], iterating over the apply, combine,
evaluate steps, and then propagating inferences about an
individual to its parent and children in the next step. To
prevent feedback and amplification of erroneous information,
we need to make sure to propagate from X to Y only the
information that did not originate at Y . To do this, we use a
lightweight form of lineage and only propagate those portions
of a predicted distribution that did not originate with the target.
For example, before convoluting the child’s birth year with the
parent age model to predict the individual’s birth year, we first
distill any portion of the child’s evidence which came from the
individual. To accomplish this, we associate a history identifier
with each inferred distribution, which represents the origin or
lineage of that data.

2) Combine: The next step is to aggregate the predictions
from the apply step. We interpret each bin of the histograms
P1..Pj as a weight for their corresponding values, and simply
add up the “votes” bin by bin using:

Pm =
1
Z

∑
j

∑
i

Pj(i)

where Z is a standard normalizing function to rescale the
probability distribution to sum to 1. Note that we currently
interpret each piece of evidence Pj with equal value. As
future work we plan to extend this method to compute a
weighted sum, depending for example on the reliability of
each information source.

Since the predictions may have been based on erroneous
information, we select a representative range from the com-
bined distribution based on a type of election process (see
figure 4 for an illustration). First, if the posterior distribution
contains multiple discontinuous regions (i.e. separated by zero
probabilities), we choose the sub-region of the distribution
with the highest probability, drop the other regions and renor-
malize the distribution. In case of ties (i.e. multiple disjoint
regions with equal mass), we select the region with lowest
variance. Otherwise, if there is a single continuous probability
distribution, we compute a 95% confidence interval, drop the
tails, and renormalize the resulting distribution. This prevents
the inference procedure from carrying forward trivial amounts
of probability mass due to error propagation.

Returning to our running example, the left plot in figure
4 shows multiple inferences for a missing birth year, using
evidence from the individual’s parents and children. Note the
gray distribution on the right likely resulted from an erroneous
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Fig. 4. Visual example of combining inferences (left), computing the confidence interval (middle), and normalizing the resulting distribution (right).

Evaluate: reviews changes after propagating evidence
Input: initial, current, and updated versions of pdf
Output: resulting pdf (at the end of the round)

1. missing := initial is null;
2. if missing = false
3. if suspect = false
4. if Outlier(initial, updated) = true
5. suspect := true;
6. return updated;
7. else
8. if Outlier(initial, updated) = false
9. suspect := false;
10. return initial;
11. else
12. missing := true;
13. if missing = true
14. if Diverge(current, updated) = true
15. return updated
16. return current

Fig. 5. Algorithm for evaluating updates

piece of evidence, and will be discarded since it is a disjoint
region of (relatively) low probability mass.

One we have aggregated the inferences, trimmed, and renor-
malized the posterior distributions, the algorithm evaluates
the resulting distribution to identify outliers and/or terminate
the inference process. To facilitate feedback prevention, the
algorithm stores the contributing sub-pdfs along with each
combined distribution.

3) Evaluate: In the final step of each iteration, we compare
the combined distribution with its previous version. Figure 5
summarizes our algorithm for evaluating updated inferences at
the end of each round. In addition to filling in missing values,
the other objective of our framework is to identify potential
errors in the underlying evidence data. For this reason, the
system computes expected distributions for all data items,
not just the missing values. We then check to see how close
the inferred distributions are to the point distributions of the
observed values.

Lines 1–12 analyze the updated distribution to validate
existing data. In the first case (lines 3–6), when the current

Outlier: is the original range outside of the inferred?
Input: known pdf P and inferred pdf V
Output: true if P lies outside of V , false otherwise

1. [a, b] := CI(P )
2. [c, d] := CI(V )
3. return a < c or b > d

Fig. 6. Algorithm for outlier detection

pdf is not marked as a suspect, we call the Outlier function
to see whether the observed value lies within the expected
pdf. Figure 6 gives our current method for outlier detection.
Specifically, an original distribution is an outlier if the majority
of it is not contained within the majority of the inferred
distribution resulting from the combine step.

If the distribution is determined to be an outlier, we set
the suspect flag and return the expected pdf as the updated
value. Consider for example an individual with the birth year
840 and the death year 1914. Clearly, one (or both) of these
values must be incorrect. After propagating known evidence
from several relatives, the birth date is estimated to be between
1819 and 1871. Since 840 lies outside this interval, we mark
it as an error and replace it with the inferred range.

In practice, we cannot tell which of the two conflicting
pieces of information is incorrect in a single round. Instead, we
aggressively identify errors and rely on lines 8–10 to correct
any false assumptions. Continuing our previous example, 1914
is also marked as an error because it lies outside of the
distribution inferred from the birth year 840. However at the
end of the second iteration, Evaluate runs with initial =
1914, current ≈ 908, and updated ≈ 1908. Since the initial
value no longer lies outside of the inferred range, we clear the
suspect flag and return the original point distribution.

Line 12 essentially means “treat suspicious base data as if
it were missing,” allowing the inference to be refined during
subsequent rounds. If no changes were deemed necessary
throughout the algorithm, line 16 simply returns the current
version of the distribution.

Lines 13–15 address the case of inferring missing data. The
Diverge function calculates the Jensen-Shannon divergence
to measure the difference between the inferred distribution and



its previous version (if any):

JS(P,Q) =
1
2

[KL(P,A) +KL(Q,A)]

where KL is the Kullback-Leibler divergence: KL(P,Q) =∑
i P (i) log P (i)

Q(i) and A is the average distribution: A(P,Q) =
1
2

∑
i [P (i) +Q(i)].

In other words, the JS divergence is the average KL diver-
gence from each distribution to the average between them. All
three of these measures can be computed efficiently in a single
loop. We chose JS divergence for our framework based on the
empirical results in [9]. Of course, other distributional simi-
larity functions may be more desirable for other applications.

The Diverge function returns true when the JS divergence
between the current and updated pdfs exceeds a user-defined
threshold. Put differently, the distribution converges when the
JS divergence becomes relatively small. We used the threshold
of JS > 0.05 in our experiments.

The output distribution from the evaluate function is then
propagated for inference in the next round. We attach the latest
sub-pdfs to the resulting distribution (or the previous value, if
not replaced) so that the distribution can be distilled appro-
priately. Before sending a posterior distribution to a particular
neighbor Y , the distilling process re-computes the distribution
as if all evidence from Y had been missing. This means we
must repeat all previous steps, including election and outlier
detection, before determining the appropriate distribution to
propagate. In some rare cases, that evidence may have been the
deciding factor in whether to flag an error or abort inference
altogether. For the most part, however, this function simply
ensures that all information flows in a single direction: either
from ancestors to descendants, or vice versa.

IV. EXPERIMENTS

We thoroughly evaluated the accuracy and quality of our
inference framework, using exact inference in Bayesian net-
works as a baseline. Our test server was a 2.4 GHz Pentium
4 with 2 GB of RAM, running Linux 2.6.27.10, PostgreSQL
8.3.5, and Matlab R2008a.

A. Data Sets

1) Population Generator: In order to control the amount
of missing and erroneous information in our experiments,
we implemented a synthetic data generator based on section
4.2 of [10]. The main approach is to simulate an isolated
population, given a variety of parameters that determine its
size and structure over time. Some of the parameters include
the starting and ending year, the initial population size and
age distribution, immigration rate and age distribution, divorce
rate, and maximum pregnancy age. In addition we can specify
the birth rate, life expectancy, and marriage age distribution
for different time periods.

The actual simulation process behaves as follows. We first
generate an initial population of founders with birth years cor-
responding to the age distribution for the starting year. When
constructing new individuals, the simulator determines their

birth and death years, their gender (uniformly distributed), and
the year they will be eligible to marry and have children. The
outer loop of the simulation updates the population each year
by introducing new immigrants, removing deceased individu-
als, terminating and arranging marriages, and adding newborns
to eligible couples. When finished, the simulator outputs two
relations: the set of individuals and their corresponding parent-
child relationships.

For our experiments we generated a population of one
million people born between the years 1500 and 2000. We
based most of our parameters on appendix B of [11], which
models the relatively isolated Finnish Kainuu sub-population
over the past several centuries. The main difference between
our simulator and theirs (and the corresponding parameter
values) is how we model population growth. Rather than
control the target population size for each year, we model
births with Poisson processes and maintain a constant rate of
immigration. We also discard individuals with no parents or
children, which are less interesting for our experiments.

2) Pedigree Resource File: We also obtained a sample
of five million individuals from the Pedigree Resource File2

(PRF), a lineage-linked database of records submitted to
FamilySearch.org. This data set was originally designed for
research on record linkage techniques for genealogical data,
for which this work is complementary. Overall, about 68% of
individuals have a birth year, 33% have a death year, and only
27% have both. The unsurprising trend is that older ancestors
are more likely to be missing information.

The PRF data set has several additional properties which
make it particularly interesting for testing our algorithms. For
one, it is real data compiled from thousands of independent
submissions over the past few decades. As a result it imposes
many of the standard challenges in data integration, namely
cleaning erroneous attribute values and repairing structural
inconsistencies. It also contains duplicate records for some
individuals, which further complicates the integrity of Markov
blankets in the case of the baseline approach.

B. Methodology

Recall that the results from either inference process are
marginal distributions for the missing birth and death years.
The basic idea of our experiments is to clear-out a subset
of known values (i.e. set them to NULL), run the inference
algorithms, and compare the results with the original values.

1) Evaluation Measures: We are primarily interested in two
measures for evaluating the approaches we have presented
in this paper. First, we measure how accurate the resulting
marginals are with respect to the real (i.e. original) values by
computing the mean absolute error: 1

N

∑N
i=1 |ei − ai| where

ei is the expected value of the marginal and ai is the actual
value of the original data. This measure captures the average
bias of the inference algorithm, if we interpret the expected
value as a predictor of the unknown data.

2We wish to thank Randy Wilson for providing us with this data set, and
for several insightful discussions about genealogical data management.



Secondly, we report the average standard deviation of the
resulting posterior distributions. This measure essentially cap-
tures the quality of the results. Distributions with higher levels
of uncertainty are less useful in practice, even if the overall
average bias is relatively low. Of course the ideal result would
be to maximize both accuracy and quality, but this is non-
trivial because of the bias-variance trade-off.

A common alternative to finding representative values for
probability distributions is to compute the most probable
explanation (MPE) for each Markov blanket. The MPE is
a joint assignment of missing birth and death years that
results in maximum likelihood globally, in contrast to our
approach of computing the expected value of each marginal
locally. However, because the underlying inference models
are highly skewed (e.g. relatively high infant mortality rates
in life expectancy), we found the results for exact inference
using MPE are generally worse than simply using the expected
value. In addition, we are more interested in storing the entire
range of possible birth years for future use, rather than the
single most likely value.

2) Experimental Setup: For each experiment we generate
a new database by copying and altering one of the aforemen-
tioned data sets. We then introduce missing and erroneous
information randomly throughout the database, and proceed
to discover the Markov blankets for all missing data values.

Recall that related unobserved items end up in the same
blanket. By nature of the underlying graphical model, many
of the Markov blankets are trivial to solve, e.g. an individ-
ual with a known birth year but missing death year. We
therefore constrain our experiments to blankets with five or
more unobserved values. In addition, we filter out blankets
with observed values outside of the interquartile range of the
domain (i.e. 1650 to 1850), to minimize any bias introduced
by boundary cases (i.e. windowing effects).

The next step is to generate the models for each inference
algorithm, based on the modified data set. This involves
the “count group by” queries for exact inference and the
“histogram scan” queries for our framework. Because of
this data-driven approach, we re-run this step for each new
database rather than construct them once from the original
(uncorrupted) data.

For fairness in our experiments over corrupted databases,
we applied a coarse level of data cleaning when constructing
the models for both algorithms. Specifically, we restricted our
CPDs and histograms to include only those instances that fell
within a lower and upper bound, e.g. MinDA ≤ I.d− I.b ≤
MaxDA. For death ages we used 0 to 94, and for parent
ages the range 18 to 50. Note that exact inference applies this
domain knowledge indirectly by requiring the CPDs to span
a limited range of domain values, whereas our approximate
inference framework is not based on the actual values.

We then ran both implementations over one hundred non-
trivial Markov blankets at each level of missing or corrupt
data, and averaged the results. Most Markov blankets in
this set ranged in size from 10 to 30 nodes, but some had
as many as 150. Because of the high number of variables
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Fig. 7. Accuracy at varying amounts of missing data
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Fig. 8. Quality at varying amounts of missing data

and relatively large CPD sizes, the exact inference often
underflowed or ran out of memory. We therefore designed
our test driver to keep running experiments until we gathered
results successfully from one hundred Markov blankets for
each level of missing/corrupt data.

C. Results

1) Missing Data: Our first experiment considers the ef-
fectiveness of the inference algorithms at varying levels of
missing data. We begin by deleting the birth and death
years (i.e. setting them to NULL) for a random one-third of
individuals in the synthetic data set. This results in a variety of
Markov blankets, for which we ran both inference algorithms.

To our surprise, the Bayes net model (as described in section
II) experienced more than twice the error of our approach. This
is mainly due to the effects of shrinkage and the sparsity of
the (I.b,M.b, F.b) values for estimating the Bayes net CPDs.
To fairly evaluate the accuracy of our approximate inference
algorithm compared to exact inference, we implemented a
shrinkage technique for the Bayes net model that attempts
to emulate the age-based convolution in our approach. For
each cell in the Bayes nets CPDs (see section II-B), instead
of estimating probabilities from counts of specific birth/death
years (e.g., P (I.d = 1975|I.b = 1942) = |I.d = 1975∧I.b =
1942|/|I.b = 1942|), we use the counts from all records with
the same age difference (e.g., P (I.d = 1975|I.b = 1942) =
|I.d− I.b = 33|/N ).

Figures 7 and 8 show the accuracy and quality for the



0 5 10 15 20 25

0
5

10
15

20

Percent Corrupt (per blanket)

M
ea

n 
A

bs
ol

ut
e 

E
rr

or

●

●

●

●
●

●

●

Exact
Approx

Fig. 9. Accuracy at varying amounts of corrupted data
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Fig. 10. Quality at varying amounts of corrupted data

two inference algorithms, using this shrinkage extension for
the baseline approach. Both methods are able to infer the
missing data within four to eight years of the actual values. Our
framework is slightly more accurate, but the Bayesian network
approach is more consistent in terms of quality. This is because
it infers the posterior distributions jointly. As the amount of
missing data increases, our framework must apply convolution
additional times as the data propagates across generations.
Consequently, the internal distributions increase in size which
results in higher standard deviations.

2) Corrupted Data: Our next experiment builds on the
previous by introducing random errors into the synthetic
database. We first select a random 15% of individual records
to corrupt, in addition to the one third deleted previously. In
practice, mistakes can be anything from swapped or missing
digits (e.g. 1480 or 840 instead of 1840) to completely random
values (e.g. -74). Although our convolution-based framework
can handle any numerical value, the exact inference algorithm
requires values within the discrete domain. We therefore
corrupt data by replacing it with random values in the domain.

Figures 9 and 10 show the accuracy and quality for the
two inference algorithms, respectively. We found that the exact
inference algorithm is somewhat resistant to corrupted data
values, because of the way it makes inferences throughout
each Markov blanket jointly. However, the resulting inferences
have slightly higher variance. In other words, the uncertainty
of the results is higher because of the contradictory evidence.

Our framework performed as well as exact inference at
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Fig. 11. Comparable accuracy using real data from PRF
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Fig. 12. Comparable quality using real data from PRF

lower levels of corrupt data, but was more sensitive to errors
overall. This is to be expected because each marginal is
inferred independently, and relies on majority vote to identify
errors. When the majority of related data is erroneous, then
errors will propagate throughout the Markov blanket. However,
this performance is sufficient for many applications where the
majority of information is correct.

The reason why our approximation framework continues to
outperform joint inference in Bayesian networks is the built-
in data cleaning. When running this same experiment without
suspect identification (i.e., lines 2–12 in figure 5), the accuracy
of approximate inference quickly deteriorates, often resulting
in errors more than twice as those for exact inference. We
have omitted this curve from figure 9 for clarity.

3) Real Data: The experimental setup for the PRF data
is a bit more involved because we do not know for certain
where the mistakes in the dataset are (i.e. we didn’t inject
them ourselves). Instead, we ran our data cleaning algorithm to
completion over the entire dataset, and identified the individu-
als having both a birth and death year that were not flagged as
errors after five rounds. We then generated the test database
as before, but introduced the applicable alterations within a
random subset of these seemingly reliable data values.

Our experiments with the PRF data were particularly in-
sightful because the data set already contained a significant
amount of missing and erroneous information, in addition to
what we introduced synthetically. Figures 11 and 12 show the
accuracy and quality for the two inference algorithms, respec-
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tively. Overall, our approximate framework outperformed the
exact inference algorithm, but resulting in a slightly higher
level of uncertainty.

4) Data Cleaning: Our last set of experiments study the
effectiveness of the data cleaning in terms of how many errors
we were able to identify in our synthetic dataset. The following
table summarizes the results for the previously discussed
experiments over corrupted data.

True Positives: 1171 Corrupt: 23.3 %
True Negatives: 4813 Accuracy: 94.8 %
False Positives: 28 Precision: 97.7 %

False Negatives: 298 Recall: 79.7 %

The 600 random Markov blankets selected for those ex-
periments consisted of 6,310 individuals, of which 1,469 had
corrupted (i.e. randomized) birth years. The true positives
where the erroneous values that our framework successfully
identified, and the false positives were correct values that we
mistakenly cleansed as outliers. Overall however, we achieved
a high accuracy of 95% in our identification of erroneous
values (compared to the baseline of 77% if we had simply
identified no errors).

Our framework was highly accurate in the assessment of
incorrect data but somewhat less effective at identifying all
the errors. Figures 13 and 14 show the precision and recall
at varying levels of missing and corrupted data. The system
achieved high precision for the errors it identified, but the
recall began to drop at lower levels of quality in the underlying
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c1. CPD matrices
c2. BN structure
c3. Bind evidence
c4. Run inference
c5. Extract results

1. For each test blanket:
    a. Query/topsort BN
    b. Query/refine CPDs
    c. Run Matlab (BNT)
    d. Store results in DB

SQL frontend (UDFs)

C library for algorithms
and PDF data types

Java
App

1. Call UDFs:
    a. Apply
    b. Combine
    c. Evaluate
2. Until converge

Fig. 15. Comparison of system architectures: Exact inference with Bayesian
networks (top) versus approximate inference with data cleaning (bottom).

dataset. This is to be expected for two reasons. For one, the
absence of good evidence diminishes the effect of the elections
and outlier detection subroutines. Secondly, our experimental
design which was necessary for the Bayesian network imple-
mentation produced some errors that are nearly impossible
to detect. In fact, a significant number of the randomized
values fell within 25–50 years of the actual values, which often
satisfied the dependencies.

D. Performance

At a high level, our experiments took several hours on
average to run exact inference in Matlab, but only several
minutes for our database-centric approach in PostgreSQL.
In addition, our framework used only a minimal amount of
RAM on the order of several megabytes. The naive approach
in Matlab required anywhere from 30 to 3000 MB, often
exceeding the memory of our test server. For the Markov
blankets that didn’t crash Matlab, average memory utilization
was about 550 MB.

We do not extensively compare the actual running times
between the two approaches because of their fundamental
differences in implementation. Figure 15 highlights the key
components and flow of each system. The main difference
between the two is the role of the database. Our frame-
work is implemented with user defined functions (UDFs)
in PostgreSQL, with most of our key algorithms written in
C. This greatly simplifies the query processing and allows
us to piggyback the inference and cleaning operations in
the actual table scans for each phase. In contrast, the BNT
implementation requires us to discover the Markov blankets,
and then move the data out of the database (blanket by blanket)
into Matlab for inference.

Another fundamental difference is that our framework com-
putes the posterior distribution of all nodes, not just those for
missing values. This enables us to perform data cleaning on



the fly, with little additional overhead. Adding data cleaning to
the Bayesian network approach would be much more difficult
because joint inference would have to be performed over the
entire database and we would lose the ability to decompose
inference into a set of small Markov blankets.

V. RELATED WORK

Data cleaning is a well studied problem, but is far from
solved in many application domains and there is certainly no
catch-all solution. Two surveys of common techniques and
general challenges in this research area are [2] and [12].
More recently, there has been a surge of interest in leveraging
integrity constraints not only for enforcing data quality but
automatically improving it [1]. We have taken this approach
in our work as well.

The work most closely related to ours is [13], which
extends belief propagation (aka the sum-product algorithm)
for inference in graphical models to perform data cleaning.
Their method models dependencies in sensor networks using
(undirected) Markov random fields, whereas our approach
models correlations using (directed) Bayesian networks. Both
methods use approximate inference methods to simultaneously
fill in missing values and clean corrupted data. However, the
model in [13] requires multiple observations on each node
(e.g., sensor readings) for estimation. In contrast, our method
uses relational modeling techniques to tie parameters across
attributes of related tuples and thus only requires a single
observation for each tuple (e.g., individual). In addition, we
apply shrinkage techniques to further improve estimation by
exploiting higher-level dependencies in the data.

Another related project that reasons about integrity con-
straints probabilistically is [14], which focuses primarily on
duplicate detection and key repairs in relational databases. Our
task is not to repair keys (e.g., by deleting tuples), but focuses
instead on inferring other attributes using a different class of
functional dependencies.

In our framework, we manage intermediate evidence during
the inference and cleansing process with probability distri-
butions. There are many parallels with recent advancements
in probabilistic database management systems such as Orion
[15], MayBMS [16], Trio [17], BayesStore [18], and MystiQ
[19]. This line of work has shown the great benefit of manag-
ing uncertainty of data inside database engines, enabling query
optimizers and storage managers to exploit the uncertainty for
increased performance. A particularly promising area of appli-
cation development using these systems is statistical inference
and data cleaning over extended periods of time, where the
intermediate results persist and improve incrementally as new
evidence arrives.

The uncertain data community has also demonstrated other
approaches to data cleaning. [20] proposes new metrics for
information quality based on entropy and possible worlds
semantics, and shows how to reduce uncertainty by maximiz-
ing these values within a specified budget. [21] reduces the
problem of conditioning probabilistic data (i.e. adding new
evidence) to computing tuple confidence values.

VI. CONCLUSION

We have presented two statistical, data-driven methods for
inferring missing data values in relational databases: a baseline
exact method using Bayesian networks, and a novel ap-
proximation framework using shrinkage and convolution. Our
system not only achieves results comparable to the baseline,
it also performs data cleaning on the non-missing values, is
significantly more efficient and scalable, requires a minimal
amount of domain knowledge, and provides additional flexi-
bility for exploiting the underlying dependencies.
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