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Figure 1: Single-pole occlusion camera (SPOC) impostor of teapot (top left), and reflections rendered using it, 30fps. 

    

Figure 2: Dynamic reflector (left) and dynamic diffuse object (right), 30fps. 

    
Figure 3: Inter-reflecting teapots (left) and refractions (right), all rendered using SPOC impostors, 30fps. 

  
Figure 4: Graph camera impostor (left) captures entire 3-D maze (right). 

    
Figure 5: Reflections rendered with graph camera impostor in a dynamic scene, 20fps. 
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Abstract 

Impostors are approximations of scene geometry with multiple applications in computer graphics. In previous work 

impostors are constructed with orthographic or perspective projections which limit the approximation quality to what is 

visible along a single view direction or from a single viewpoint. In this paper we show that impostors constructed with non-

pinhole cameras improve the approximation quality at little additional cost if the non-pinhole camera provides fast 

projection. For such a camera, the fundamental operation of ray-impostor intersection proceeds efficiently by searching 

along the one-dimensional projection of the ray on the impostor image. In the context of two-camera configurations, our 

work extends epipolar geometry constraints, well known for pinholes, to non-pinholes. We demonstrate the advantages of 

non-pinhole impostors in the context of interactive reflection and refraction rendering. 

Categories and Subject Descriptors (ACM CCS): I.3.3. [Computer Graphics]—Three-Dimensional Graphics and Realism. 

 

1. Introduction 

In the quest for higher-quality and higher-performance 

rendering, researchers have developed impostors, a general 

technique of substituting scene geometry with more 

efficient representations. The three main desirable 

properties of impostors are high-fidelity geometry 

approximation, efficient construction, and efficient 

rendering. An impostor should describe the geometry it 

replaces sufficiently well such that the output image 

rendered with the impostor is virtually indistinguishable 

from an output image rendered with the original geometry. 

To support fully dynamic scenes, impostors have to be 

created on the fly, which requires fast construction.  

Lastly, impostors have to deliver the desired performance 

boost to the application that employs them. We distinguish 

between applications where the impostor is seen directly, as 

for example when the impostor replaces distant geometry 

for scene complexity management purposes, and 

applications where the impostor is seen indirectly, as for 

example in reflection and refraction rendering. Whereas in 

the first type of applications the impostor can be rendered 

directly, with the conventional feed-forward approach of 

projection followed by rasterization, rendering reflected or 

refracted impostors efficiently requires a fast ray-impostor 

intersection operation. The coherence of the desired view 

rays is perturbed by the reflector or refractor and no closed 

form projection exists that takes impostor 3-D points 

directly to the output image. The lack of projection 

operation precludes conventional rendering and requires 

that the reflector or refractor be rendered by intersecting the 

ray at each fragment with the scene impostors. 

Several types of impostors have been developed, which 

we review in the next section. An important basic type of 

impostor is the depth image, which stores a depth value for 

each pixel. A depth image is constructed efficiently by 

rendering the geometry it replaces. Fast ray / depth image 

intersection is enabled by the fact that the ray projects on 

the depth image to a segment, which reduces the 

dimensionality of the intersection search space from two to 

one. Graphics hardware has reached a sufficient level of 

performance to allow stepping along the ray projection, per 

pixel, at interactive rates. However, depth images are 

acquired from a single viewpoint—with a planar pinhole 

camera, or along a single view direction—with an 

orthographic camera, which limits their geometry modeling 

power. Such a depth image misses surfaces that become 

visible when the impostor is rendered by the application, 

which lowers the quality of the result (Figure 6). 

In this paper we propose to construct impostors using 

non-pinhole cameras. Such non-pinhole impostors offer a 

high-fidelity approximation of scene geometry while 

construction and rendering costs remain low. Once the 

restriction that all rays pass through one point is removed, 

the rays of non-pinhole camera can be designed such as to 

sample all surfaces that are exposed by the application 

during the use of the impostor. To ensure construction and 

rendering efficiency, the non-pinhole camera model is 

designed to provide a fast projection operation. This 

enables constructing the impostor in feed-forward fashion, 

with the help of graphics hardware, by projection followed 

by rasterization. The closed-form, unambiguous projection 

of the non-pinhole camera is leveraged a second time, 

during rendering, to compute the projection of the ray on 

the non-pinhole image. Like in the case of planar pinhole 

camera impostors, the ray / non-pinhole camera impostor 

intersection is found by walking on the one-dimensional 

projection of the ray. Unlike in the case of planar pinhole 

camera impostors, the ray projection is not a straight line, 

which, however, does not raise the cost of intersection 

computation significantly. 

We construct impostors with two recently introduced 

non-pinhole camera models: the single-pole occlusion 

camera (SPOC) [MPS05], and the graph camera [RPA08]. 

The SPOC has rays that reach around an object’s silhouette 

to gather samples that are not visible from the reference 

viewpoint but that are close to the silhouette. Such ―barely‖ 

occluded samples are needed to provide adequate 

reconstruction of the geometry when the impostor is 

sampled during the application by rays from nearby 

viewpoints. The graph camera is a non-pinhole camera 

constructed starting from a planar pinhole camera which 

   

Figure 6: Reflections rendered with a conventional planar 

pinhole camera depth image impostor, which does not 

capture the lid and bottom of the teapot. 
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undergoes a series of bending, splitting, and merging 

operations. The result is literally a graph of planar pinhole 

cameras. The graph camera circumvents occluders to 

sample an entire 3-D scene in a single-layer image.  

The SPOC is used for constructing impostors of single 

objects, whereas the graph camera is suitable for replacing 

an entire scene. The advantages of the two non-pinhole 

camera impostors are demonstrated in the context of 

interactive rendering of specular reflections and of 

refractions (Figures 1 through 5 and accompanying video). 

Figure 1 shows that an SPOC impostor captures the lid and 

the bottom of the teapot which were missing in Figure 6. 

Both types of non-pinhole camera impostors provide 

sufficient coverage of the geometry they replace to provide 

all samples seen by reflected or refracted rays; both types 

are constructed at interactive rates supporting fully 

dynamic scenes; finally, both types provide efficient ray / 

impostor intersection operations, which translate in 

interactive frame rates. 

The remainder of this paper is organized as follows. Prior 

work is reviewed next. Section 3 discusses the construction 

and ray intersection operations for impostors constructed 

with a generic non-pinhole camera. Sections 4 and 5 

describe the specialization to SPOC and graph camera 

impostors. Sections 6 and 7 present results, conclusions, 

and possible directions for future work. 

2. Prior work 

We review prior research on impostors, on non-pinhole 

camera models, and on reflection and refraction rendering. 

2.1.  Impostors 

The term impostor was introduced by Maciel and Shirley 

[MS95] and is now widely adopted to denote an image-

based simplified representation of geometry for the purpose 

of efficiency. The simplest impostor is a billboard, a quad 

texture mapped with the image of the original geometry, 

with transparent background pixels. Billboards are rendered 

efficiently, intersecting a billboard with a ray is trivial, and 

billboards provide good approximations of geometry seen 

orthogonally from a distance. When the impostor is close to 

the viewer or close to a reflector surface, the drastic 

approximation of geometry is unacceptable. 

Billboard clouds [DDS*03] use several quads to improve 

modeling quality. The quads and the assignment to original 

geometry are optimized for maximum modeling fidelity. 

The number of quads is sufficiently small to enable the 

intersection of a reflected or refracted ray with each quad. 

However, the optimization makes construction of the 

billboard cloud a lengthy process that precludes dynamic 

scenes. Moreover, the approximation quality is still not 

sufficient for close-up viewing. In the case of reflection for 

example, if a complex diffuse objects intersects the 

reflector surface, the intersection line will be poorly 

approximated by the billboard cloud. 

Depth images [MB95] greatly improve over the modeling 

power of billboards. Constructing a depth image is just as 

inexpensive as constructing a billboard, but the cost of 

intersection with a ray is not constant anymore, but rather 

linear in the depth image width. Searching for the 

intersection in the entire image is avoided by leveraging 

epipolar-like constraints: the intersection belongs to the 

image plane projection of the ray.  Since the depth image is 

constructed with a planar pinhole camera, the depth image 

only captures samples visible from the reference viewpoint. 

When surfaces not captured by the impostor become visible 

during the application, objectionable disocclusion error 

artifacts occur. 

The simplest method for alleviating disocclusion errors is 

the use of additional depth images [MMB97], which is 

expensive and only palliative. A breakthrough came with 

the introduction of layered representations such as the 

multi-layered z-buffer [MO95] and the layered depth image 

(LDI) [Sha98], which allow for more than one sample 

along a ray and control disocclusion errors effectively. 

However, expensive construction restricts layered 

representations to static scenes. Moreover, the lack of a 

connected representation makes ray intersection difficult, 

precluding applications such as reflections and refractions. 

Another solution to the occlusions problem is relief 

texture-mapping [POC05], a hybrid geometry / depth image 

representation. True geometric detail is added to a coarse 

triangle mesh by texturing each triangle with a height (i.e. 

relief) map. Occlusions are avoided since the coarse mesh 

is view independent and since the geometric detail has one 

sample for each triangle point. The eye ray is projected 

onto the relief map and the intersection is computed along 

the projection, as it is for depth maps. A similar method is 

procedural or sample-based geometry generation through 

tessellation, leveraging the programmability at primitive 

level exposed by recent graphics hardware. Neither method 

can easily intersect a ray with an entire object—the ray 

needs to be intersected with the coarse triangle mesh first, 

which makes the methods ill-suited for applications such as 

reflections and refractions. 

2.2.  Non-pinhole cameras 

Non-pinholes have been studied relatively little in 

computer graphics. The light field [LH96] and the 

lumigraph [GGS*96] can be seen as the color samples 

acquired by a 2D array of planar pinhole cameras. Their 

strengths lie in the acquisition of small-scale complex real-

world scenes. Although possible in principle, using light 

fields as impostors is precluded by their large memory 

footprint and construction time. Multiple-center of 

projection cameras [RB98] sample the scene with a vertical 

slit along a user chosen path and thus avoid the redundancy 

of the light fields and offer good modeling power. 

However, construction requires rendering the scene for 

each position along the path, which is inefficient. Camera 

models developed for multiperspective rendering [Woo97, 

YM04] simulate camera motion through a 3-D scene but do 

not support viewing from novel views, nor dynamic scenes. 

Occlusion cameras have been recently introduced to 

address disocclusion errors. Given a reference view and a 

3-D scene, an occlusion camera builds a single-layer image 

that stores not only samples visible from the reference 

viewpoint, but also samples visible from nearby points. In 

addition to the single-pole occlusion camera (SPOC) 
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discussed earlier, other occlusion cameras include the depth 

discontinuity occlusion camera (DDOC) [PA06] and the 

epipolar occlusion camera (EOC) [RP08]. Whereas the 

SPOC specifies the 3-D distortion of the reference view 

rays analytically, the DDOC specifies the distortion 

through a map. The added flexibility comes at the cost of 

increased construction times. The EOC captures all samples 

visible as the viewpoint translates between two given 

points. The EOC effectively generalizes the viewpoint of a 

planar pinhole camera to a viewsegment. However, the 

EOC only supports translation along a single direction. 

In our context of devising an impostor that represents 

scene geometry well from a wide range of viewpoints and 

that is efficient, the SPOC offers a good balance between 

modeling power and efficiency, and we have adopted it to 

construct object non-pinhole impostors. In order to 

construct environment impostors we chose the graph 

camera [RPA08], leveraging the malleability of its rays. 

2.3.  Reflection and refraction rendering 

Reflection and refraction have been studied extensively 

in interactive rendering, yet no complete solution exists. 

We assign reflection and refraction rendering techniques to 

four groups: ray tracing [Whi80], image-based rendering 

(e.g. light fields [LH96, GGS*96] and view dependent 

texture mapping [DYB98]), projection [OR98], and 

reflected/refracted scene approximation. We only discuss 

the latter, since most relevant to this work. 

Environment mapping [BN76] is currently the approach 

preferred by applications due to its efficiency, robustness, 

and good results when the reflected/refracted scene is not 

close to the reflector/refractor. Environment mapping 

performs poorly close to the reflector/refractor. Improved 

results are obtained by approximating the scene with a 

sphere [Bjo04], but few environments are spherical so the 

fidelity is still quite limited. The reflected/refracted scene 

approximation can be improved by resorting to depth image 

impostors [SALP05, PDSM06]. Quality reflections are 

produced for simple objects or for select viewpoints, but 

the insufficient coverage is an important limitation for non-

trivial scenes or wide viewpoint translations (Figure 6). 

Compared to reflection, refraction rays require additional 

work since most rays interact with the refractor at least 

twice—once entering and once leaving the object. Several 

techniques have been developed for computing the second 

refraction at interactive rates, including pre-computed 

distance fields [CW05], GPU ray tracing techniques 

[RAH07], and image-space approximations [Wym05]. In 

order to illustrate non-pinhole impostors, we use an image-

space approximation to compute the emerging refracted 

rays [Wym05], which are then intersected with the 

impostor. The key idea behind this approximation is to use 

a first rendering pass to store depth and surface normals for 

back-facing surfaces, which are then used by a second pass 

to compute the emerging ray after a second refraction. 

3. Non-pinhole camera impostors 

Once the pinhole restriction is removed, there is great 

flexibility in devising a camera model that best suits a 

given application and a particular dataset. Therefore we 

first discuss the construction and ray intersection for non-

pinhole impostors in general. 

3.1.  Construction 

Given a non-pinhole camera with a fast projection 

operation that maps a 3-D point (x, y, z) to (u, v, gd) where 

(u, v) are image coordinates and gd is a measure of depth 

linear in image space, a non-pinhole impostor is 

constructed efficiently by projecting the vertices of the 

geometry it replaces and by rasterizing the projected 

triangle conventionally. The unconventional projection can 

be executed by a vertex program which essentially 

implements the non-pinhole camera model. Since lines do 

not project to lines and since rasterization parameters do 

not vary linearly (before the perspective divide) anymore, 

the triangles have to be sufficiently small to provide an 

adequate approximation. Complex objects are typically 

modeled with small triangles to provide a good 

approximation of their shape, so additional tessellation is 

usually not needed. Meshes of objects with large triangles 

can be subdivided on-the-fly by taking advantage of 

primitive-level GPU programmability. 

3.2.  Intersection 

Like a regular depth image impostor, a non-pinhole 

impostor is defined by an image with color and depth per 

pixel and a camera model which allows projection. The 

intersection of a ray (a, b) with a non-pinhole impostor NPI 

is computed with the following steps: 

1. Clip the segment (a, b) with the bounding volume of NPI 

to obtain the segment (c, d). 

2. Project (c, d) to ((uc, vc, gdc), (ud, vd, gdd)). 

3. Interpolate (c, d) in 3-D, from near to far (i.e. from c to 

d) to create n sub-segments. For each sub-segment (sk, sk+1) 

      3.1. Project (sk, sk+1) to ((uk,vk), (uk+1,vk+1)) 

      3.2. Intersect ((uk,vk, GD(uk , vk)), (uk+1,vk+1, GD(uk+1, 

vk+1)) with ((uc, vc, gdc), (ud, vd, gdd)), where GD(u, v) is the 

depth stored by the impostor at image location (u, v). If an 

intersection is found, break, else continue. 

The ray has to be interpolated in 3-D since its projection 

is not a straight line, and one cannot simply rasterize the 

segment that connects the projection of its two endpoints. 

Each intermediate point is projected with the non-pinhole 

camera of the impostor which traces the curved projection 

correctly. Since the depth gd stored by the impostor varies 

linearly in the image, the intersection can be computed 

efficiently in a 2D space (t, gd), where t is the parameter 

locating the intersection along segment ((uk,vk), (uk+1,vk+1)). 

For applications such as reflections or refractions, the ray 

that has to be intersected with the impostor is computed for 

each reflector or refractor pixel, which requires sending the 

non-pinhole camera parameters to the pixel shader as well. 

The generic construction and ray intersection algorithms 

are specialized for SPOC and graph camera impostors as 

follows. 
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4. Single-pole occlusion camera impostors 

The SPOC projection consists of a conventional planar 

pinhole camera projection followed by a distortion which 

moves the projected sample away from a pole [MPS05]. 

The pole is the projection of the center of the object. The 

distortion magnitude increases with depth, so deeper 

samples move more, escaping the occluding front surface. 

For the SPOC impostor in Figure 1 the distortion pushes 

the silhouette back, revealing the lid and the bottom. Figure 

7 shows that the SPOC impostor captures about half of the 

teapot, which is sufficient to intercept all reflected rays that 

would intersect the original teapot geometry. 

SPOC construction and intersection closely follow the 

algorithms described in the previous section. The number 

of sub-segments n is chosen as the Euclidian distance 

between the projection of the endpoints of the clipped ray. 

This provides a good approximation of the actual number 

of pixels covered by the curved projection of the ray. The 

projection is visualized in Figure 8. 

5. Graph camera impostors 

The graph camera is constructed recursively starting from 

a planar pinhole camera through a succession of bending, 

splitting, and merging operations [RPA08]. The result is a 

graph of planar pinhole camera frusta. The concept of 

camera ray is generalized to the set of points projecting at a 

given image location, which allows for rays that are not 

straight lines. The rays of the graph camera are piecewise 

linear. A ray changes direction as it crosses the shared face 

separating a parent from a child frustum, but it remains 

continuous. This makes the graph camera image 

continuous. The rays are disjoint, which makes that a point 

projects to a single image location, avoiding redundancy. 

The graph camera constructed for the maze in Figure 4 is 

shown in Figure 9. Here the construction followed a 

breadth first traversal of the maze graph starting from the 

entrance at the bottom of the maze. 

Projecting a point with the graph camera implies two 

steps. The frustum containing the given 3-D point is found 

in a first step, followed by projection directly to the output 

image with a 4-D matrix that concatenates the projections 

of all the cameras on the path to the root. The frustum 

containing the point can be found with an octree or another 

hierarchical space subdivision [RPA08], but, for efficiency, 

we use a texture map of the floor of the maze that stores 

frustum ids. 

With this projection operation the graph camera impostor 

construction proceeds according to the algorithm described 

in Section 3, with the only notable difference of clipping 

and rendering a triangle with each frustum it intersects. 

We have developed two algorithms for intersecting a 

graph camera impostor with a ray. The difference is in how 

the ray is interpolated to model its non-linear projection. 

The first algorithm follows the generic algorithm closely: 

the ray is interpolated uniformly in 3-D space, and each 

new point is projected onto the graph camera image. This 

approach has the disadvantage that it does not know about 

the points where the ray intersects a frustum. The ray 

projection changes direction at these points and finding 

quality intersections requires using a fine interpolation step. 

Figure 10 shows how a ray is broken into pieces by graph 

camera projection.  

The second algorithm models the piecewise linear 

projection of the ray well. The algorithm takes the  

   

Figure 7: Samples stored by a planar pinhole camera (left) 

and an SPOC (right) impostor. The SPOC impostor covers 

considerably more of the diffuse teapot. 

  
Figure 8: Visualization of the curved SPOC projection of a 

ray and of its intersection with the impostor (left), and 

visualization of the ray intersecting the teapot (right). 

  

Figure 9: Graph camera model visualization. The frusta 

are shown in red and a few rays are shown in white. 

   

 
Figure 10: Visualization of a ray intersecting the maze 

(top) and visualization of the piecewise linear graph 

camera projection of a ray and of its intersection with the 

impostor (bottom). 
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following steps for each graph camera frustum Fi: 

1. Intersect ray r with Fi to produce sub-segment (si, ei). 

2. Project segment (si, ei) to graph camera image segment 

(pi, qi). 

3. Interpolate (pi, qi) to search for intersection with graph 

camera depth map. 

The algorithm determines the intermediate points on the 

ray by intersecting it with all the frusta, resulting in a set of 

sub-segments (si, ei). Each frustum is a planar pinhole 

camera, which implies that each sub-segment projects to a 

straight line segment (pi, qi) in the output graph camera 

image. The sub-segment is interpolated to search for the 

intersection step by step, similarly to the generic algorithm. 

The first algorithm has the advantage that it only works 

with the frusta intersected by the ray, whereas the second 

algorithm considers all frusta. For the graph camera used in 

this paper (Figure 9), which comprises 15 planar pinhole 

camera frusta, the second algorithm has superior 

performance. 

6. Results 

We have tested SPOC and graph camera impostors in the 

context of specular reflection and refraction rendering. 

Using the impostors is straight forward: once the reflected 

or refracted ray is computed in the pixel shader, the ray is 

intersected with the impostors. For the images rendered 

with an SPOC reflector the reflection of the grid is modeled 

with a billboard impostor, which captures it perfectly. The 

floor of the maze is part of the graph camera impostor.  

For refractions, the superior modeling power of non-

pinhole impostors is particularly evident over thin parts of 

the refractor where the refracted object, and any missing 

surface, can be clearly noticed (Figure 11Figure 12). 

Second order reflections are supported by storing normals 

instead of color (Figure 3). Once the intersection is found, a 

second order ray is computed and the impostors are 

intersected again. Non-pinhole impostors enable reflection 

and refraction rendering with good quality and good 

performance. 

6.1.  Quality 

Our method produces good results as attested by the 

images in the paper and by the accompanying video. In 

Figure 1 the complex bunny geometry exposes a 

considerable fraction of the teapot geometry, which is 

sampled by the SPOC impostor. The complex normals on 

the bunny lead to extreme reflection magnification and 

minification, which are handled well. The reflector and 

reflected objects can intersect, and the images show the 

expected reflection continuity (Figure 2). A graph camera 

captures a complex environment producing more accurate 

reflections than environment mapping. 

Like all sample-based methods, the quality of the results 

obtained with non-pinhole impostors is contingent upon 

adequate sampling. The SPOC approximates only a single 

object so sampling rate is higher than for the graph camera. 

The graph camera sampling resolution is not uniform: it is 

higher closer to the initial frustum and is lower for the 

distant frusta. The graph camera impostor used here was 

constructed to capture the entrance at a higher resolution, 

where reflections are of highest quality (Figure 5). Deeper 

in the maze the resolution decreases leading to aliasing 

artifacts (Figure 12). Whenever the edge of the impostor is 

visible, the silhouette of the reflection is jagged. 

6.2.  Performance 

The timing information reported in this paper was 

collected on a 3.4GHz 2GB Intel Xeon workstation with an 

NVIDIA 8800 Ultra 768MB card. We used NVIDIA’s Cg 

2.0 shading language with gp4 profiles. Performance 

depends on output image resolution as shown in Table 1. 

 640x480 800x600 1024x768 1280x1024 

Avg 52.4 42.78 36.1 23.9 

Min 36 28 24 10 

Max 70 56 58 44 

Table 1: Frame rates along a typical path in the 2 teapot 

scene (Figure 1, top) with 8x multi-sampling antialiasing. 

 

 

Figure 11: Refraction rendered with regular depth image 

(top) and SPOC impostor (bottom). 

 

Figure 12: The graph camera impostors samples distant 

parts of the maze at a lower resolution creating the 

aliasing artifacts for the floor. 
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Performance also depends on the impostor resolution. 

Higher resolutions lengthen the projections of the rays and 

increase the number of steps taken along each ray to find 

the projection, as shown in table 2 (output image resolution 

is 640x480). 

For the graph camera non-pinhole impostor scene 

(Figures 4 and 5), the minimum, maximum, and average 

performance along the path shown in the video is 20, 42, 

and 26.8 frames per second, with 8x multi-sampling 

antialiasing, with a 640x480 output resolution, and with a 

1920x1175 impostor resolution. The graph camera 

impostor for the maze with 4 bunnies (66Ktris total) is 

constructed at over 100 frames per second, which enables 

updating the impostor in real time. 

6.3.  Discussion 

Our method renders high-quality specular reflections on 

complex, dynamic reflectors, with complex, dynamic 

reflected objects. Compared to projection techniques such 

as explosion maps [OR98], our method has the advantage 

of producing multiple projections of the same object at no 

extra cost and of handling complex reflectors. Compared to 

image-based rendering techniques, our method has the 

advantage of supporting dynamic scenes and of reduced 

memory requirements. Image-based rendering techniques 

excel at capturing the appearance of complex real-world 

materials that are glossy, but not specular. Compared to 

environment mapping, our method produces better results 

close to the reflector, at a higher per-pixel cost. Compared 

to ray tracing, our method more easily minifies and 

magnifies reflections by working in the color map at 

different levels of resolution, and achieves fast ray / 

geometry intersection. Ray tracing has a quality advantage 

since the reflected geometry is not approximated. 

7. Conclusions and future work 

The fundamental reason for the efficiency of the 

construction and rendering of these non-pinhole impostors, 

is the fact that the underlying non-pinhole camera model 

provides fast projection. This enables fast feed-forward 

construction of the non-pinhole color and depth maps, as 

well as a one dimensional search for the intersection of a 

ray with the impostor. 

There are several promising directions for future work. 

One is developing a robust mip-mapping technique for non-

pinhole camera images. Under-sampling should not lead to 

aliasing but rather to blurriness. Subsequent research could 

target porting to non-pinholes other solutions to the under-

sampling problem such as geometry enhanced textures. 

Such an approach will also improve the quality of the 

silhouettes. Whereas this work has dealt exclusively with 

specular materials, more complex reflective materials are 

possible leveraging the known distance from the reflector 

surface to the reflected object. 

Our work argues for the practicality and benefits of 

abandoning the pinhole constraint. Non-pinhole camera 

models can be designed to optimally serve the application 

and data set at hand through powerful yet inexpensive 

impostors. 
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