
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2009

Non-Pinhole Imposters Non-Pinhole Imposters

Voicu Popescu
Purdue University, popescu@cs.purdue.edu

Kyle Hayward

Paul Rosen

Chris Wyman

Report Number:
09-006

Popescu, Voicu; Hayward, Kyle; Rosen, Paul; and Wyman, Chris, "Non-Pinhole Imposters" (2009).
Department of Computer Science Technical Reports. Paper 1721.
https://docs.lib.purdue.edu/cstech/1721

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Non-Pinhole Impostors

Voicu Popescu
Kyle Hayward

Paul Rosen
Chris Wyman

CSD TR #09-006

August 2009

Non-Pinhole Impostors

Voicu Popescu, Kyle Hayward, Paul Rosen, Chris Wyman

Figure 1: Single-pole occlusion camera (SPOC) impostor of teapot (top left), and reflections rendered using it, 30fps.

Figure 2: Dynamic reflector (left) and dynamic diffuse object (right), 30fps.

Figure 3: Inter-reflecting teapots (left) and refractions (right), all rendered using SPOC impostors, 30fps.

Figure 4: Graph camera impostor (left) captures entire 3-D maze (right).

Figure 5: Reflections rendered with graph camera impostor in a dynamic scene, 20fps.

 Non-Pinhole Impostors

2

Abstract

Impostors are approximations of scene geometry with multiple applications in computer graphics. In previous work

impostors are constructed with orthographic or perspective projections which limit the approximation quality to what is

visible along a single view direction or from a single viewpoint. In this paper we show that impostors constructed with non-

pinhole cameras improve the approximation quality at little additional cost if the non-pinhole camera provides fast

projection. For such a camera, the fundamental operation of ray-impostor intersection proceeds efficiently by searching

along the one-dimensional projection of the ray on the impostor image. In the context of two-camera configurations, our

work extends epipolar geometry constraints, well known for pinholes, to non-pinholes. We demonstrate the advantages of

non-pinhole impostors in the context of interactive reflection and refraction rendering.

Categories and Subject Descriptors (ACM CCS): I.3.3. [Computer Graphics]—Three-Dimensional Graphics and Realism.

1. Introduction

In the quest for higher-quality and higher-performance

rendering, researchers have developed impostors, a general

technique of substituting scene geometry with more

efficient representations. The three main desirable

properties of impostors are high-fidelity geometry

approximation, efficient construction, and efficient

rendering. An impostor should describe the geometry it

replaces sufficiently well such that the output image

rendered with the impostor is virtually indistinguishable

from an output image rendered with the original geometry.

To support fully dynamic scenes, impostors have to be

created on the fly, which requires fast construction.

Lastly, impostors have to deliver the desired performance

boost to the application that employs them. We distinguish

between applications where the impostor is seen directly, as

for example when the impostor replaces distant geometry

for scene complexity management purposes, and

applications where the impostor is seen indirectly, as for

example in reflection and refraction rendering. Whereas in

the first type of applications the impostor can be rendered

directly, with the conventional feed-forward approach of

projection followed by rasterization, rendering reflected or

refracted impostors efficiently requires a fast ray-impostor

intersection operation. The coherence of the desired view

rays is perturbed by the reflector or refractor and no closed

form projection exists that takes impostor 3-D points

directly to the output image. The lack of projection

operation precludes conventional rendering and requires

that the reflector or refractor be rendered by intersecting the

ray at each fragment with the scene impostors.

Several types of impostors have been developed, which

we review in the next section. An important basic type of

impostor is the depth image, which stores a depth value for

each pixel. A depth image is constructed efficiently by

rendering the geometry it replaces. Fast ray / depth image

intersection is enabled by the fact that the ray projects on

the depth image to a segment, which reduces the

dimensionality of the intersection search space from two to

one. Graphics hardware has reached a sufficient level of

performance to allow stepping along the ray projection, per

pixel, at interactive rates. However, depth images are

acquired from a single viewpoint—with a planar pinhole

camera, or along a single view direction—with an

orthographic camera, which limits their geometry modeling

power. Such a depth image misses surfaces that become

visible when the impostor is rendered by the application,

which lowers the quality of the result (Figure 6).

In this paper we propose to construct impostors using

non-pinhole cameras. Such non-pinhole impostors offer a

high-fidelity approximation of scene geometry while

construction and rendering costs remain low. Once the

restriction that all rays pass through one point is removed,

the rays of non-pinhole camera can be designed such as to

sample all surfaces that are exposed by the application

during the use of the impostor. To ensure construction and

rendering efficiency, the non-pinhole camera model is

designed to provide a fast projection operation. This

enables constructing the impostor in feed-forward fashion,

with the help of graphics hardware, by projection followed

by rasterization. The closed-form, unambiguous projection

of the non-pinhole camera is leveraged a second time,

during rendering, to compute the projection of the ray on

the non-pinhole image. Like in the case of planar pinhole

camera impostors, the ray / non-pinhole camera impostor

intersection is found by walking on the one-dimensional

projection of the ray. Unlike in the case of planar pinhole

camera impostors, the ray projection is not a straight line,

which, however, does not raise the cost of intersection

computation significantly.

We construct impostors with two recently introduced

non-pinhole camera models: the single-pole occlusion

camera (SPOC) [MPS05], and the graph camera [RPA08].

The SPOC has rays that reach around an object’s silhouette

to gather samples that are not visible from the reference

viewpoint but that are close to the silhouette. Such ―barely‖

occluded samples are needed to provide adequate

reconstruction of the geometry when the impostor is

sampled during the application by rays from nearby

viewpoints. The graph camera is a non-pinhole camera

constructed starting from a planar pinhole camera which

Figure 6: Reflections rendered with a conventional planar

pinhole camera depth image impostor, which does not

capture the lid and bottom of the teapot.

Non-Pinhole Impostors 3

undergoes a series of bending, splitting, and merging

operations. The result is literally a graph of planar pinhole

cameras. The graph camera circumvents occluders to

sample an entire 3-D scene in a single-layer image.

The SPOC is used for constructing impostors of single

objects, whereas the graph camera is suitable for replacing

an entire scene. The advantages of the two non-pinhole

camera impostors are demonstrated in the context of

interactive rendering of specular reflections and of

refractions (Figures 1 through 5 and accompanying video).

Figure 1 shows that an SPOC impostor captures the lid and

the bottom of the teapot which were missing in Figure 6.

Both types of non-pinhole camera impostors provide

sufficient coverage of the geometry they replace to provide

all samples seen by reflected or refracted rays; both types

are constructed at interactive rates supporting fully

dynamic scenes; finally, both types provide efficient ray /

impostor intersection operations, which translate in

interactive frame rates.

The remainder of this paper is organized as follows. Prior

work is reviewed next. Section 3 discusses the construction

and ray intersection operations for impostors constructed

with a generic non-pinhole camera. Sections 4 and 5

describe the specialization to SPOC and graph camera

impostors. Sections 6 and 7 present results, conclusions,

and possible directions for future work.

2. Prior work

We review prior research on impostors, on non-pinhole

camera models, and on reflection and refraction rendering.

2.1. Impostors

The term impostor was introduced by Maciel and Shirley

[MS95] and is now widely adopted to denote an image-

based simplified representation of geometry for the purpose

of efficiency. The simplest impostor is a billboard, a quad

texture mapped with the image of the original geometry,

with transparent background pixels. Billboards are rendered

efficiently, intersecting a billboard with a ray is trivial, and

billboards provide good approximations of geometry seen

orthogonally from a distance. When the impostor is close to

the viewer or close to a reflector surface, the drastic

approximation of geometry is unacceptable.

Billboard clouds [DDS*03] use several quads to improve

modeling quality. The quads and the assignment to original

geometry are optimized for maximum modeling fidelity.

The number of quads is sufficiently small to enable the

intersection of a reflected or refracted ray with each quad.

However, the optimization makes construction of the

billboard cloud a lengthy process that precludes dynamic

scenes. Moreover, the approximation quality is still not

sufficient for close-up viewing. In the case of reflection for

example, if a complex diffuse objects intersects the

reflector surface, the intersection line will be poorly

approximated by the billboard cloud.

Depth images [MB95] greatly improve over the modeling

power of billboards. Constructing a depth image is just as

inexpensive as constructing a billboard, but the cost of

intersection with a ray is not constant anymore, but rather

linear in the depth image width. Searching for the

intersection in the entire image is avoided by leveraging

epipolar-like constraints: the intersection belongs to the

image plane projection of the ray. Since the depth image is

constructed with a planar pinhole camera, the depth image

only captures samples visible from the reference viewpoint.

When surfaces not captured by the impostor become visible

during the application, objectionable disocclusion error

artifacts occur.

The simplest method for alleviating disocclusion errors is

the use of additional depth images [MMB97], which is

expensive and only palliative. A breakthrough came with

the introduction of layered representations such as the

multi-layered z-buffer [MO95] and the layered depth image

(LDI) [Sha98], which allow for more than one sample

along a ray and control disocclusion errors effectively.

However, expensive construction restricts layered

representations to static scenes. Moreover, the lack of a

connected representation makes ray intersection difficult,

precluding applications such as reflections and refractions.

Another solution to the occlusions problem is relief

texture-mapping [POC05], a hybrid geometry / depth image

representation. True geometric detail is added to a coarse

triangle mesh by texturing each triangle with a height (i.e.

relief) map. Occlusions are avoided since the coarse mesh

is view independent and since the geometric detail has one

sample for each triangle point. The eye ray is projected

onto the relief map and the intersection is computed along

the projection, as it is for depth maps. A similar method is

procedural or sample-based geometry generation through

tessellation, leveraging the programmability at primitive

level exposed by recent graphics hardware. Neither method

can easily intersect a ray with an entire object—the ray

needs to be intersected with the coarse triangle mesh first,

which makes the methods ill-suited for applications such as

reflections and refractions.

2.2. Non-pinhole cameras

Non-pinholes have been studied relatively little in

computer graphics. The light field [LH96] and the

lumigraph [GGS*96] can be seen as the color samples

acquired by a 2D array of planar pinhole cameras. Their

strengths lie in the acquisition of small-scale complex real-

world scenes. Although possible in principle, using light

fields as impostors is precluded by their large memory

footprint and construction time. Multiple-center of

projection cameras [RB98] sample the scene with a vertical

slit along a user chosen path and thus avoid the redundancy

of the light fields and offer good modeling power.

However, construction requires rendering the scene for

each position along the path, which is inefficient. Camera

models developed for multiperspective rendering [Woo97,

YM04] simulate camera motion through a 3-D scene but do

not support viewing from novel views, nor dynamic scenes.

Occlusion cameras have been recently introduced to

address disocclusion errors. Given a reference view and a

3-D scene, an occlusion camera builds a single-layer image

that stores not only samples visible from the reference

viewpoint, but also samples visible from nearby points. In

addition to the single-pole occlusion camera (SPOC)

 Non-Pinhole Impostors

4

discussed earlier, other occlusion cameras include the depth

discontinuity occlusion camera (DDOC) [PA06] and the

epipolar occlusion camera (EOC) [RP08]. Whereas the

SPOC specifies the 3-D distortion of the reference view

rays analytically, the DDOC specifies the distortion

through a map. The added flexibility comes at the cost of

increased construction times. The EOC captures all samples

visible as the viewpoint translates between two given

points. The EOC effectively generalizes the viewpoint of a

planar pinhole camera to a viewsegment. However, the

EOC only supports translation along a single direction.

In our context of devising an impostor that represents

scene geometry well from a wide range of viewpoints and

that is efficient, the SPOC offers a good balance between

modeling power and efficiency, and we have adopted it to

construct object non-pinhole impostors. In order to

construct environment impostors we chose the graph

camera [RPA08], leveraging the malleability of its rays.

2.3. Reflection and refraction rendering

Reflection and refraction have been studied extensively

in interactive rendering, yet no complete solution exists.

We assign reflection and refraction rendering techniques to

four groups: ray tracing [Whi80], image-based rendering

(e.g. light fields [LH96, GGS*96] and view dependent

texture mapping [DYB98]), projection [OR98], and

reflected/refracted scene approximation. We only discuss

the latter, since most relevant to this work.

Environment mapping [BN76] is currently the approach

preferred by applications due to its efficiency, robustness,

and good results when the reflected/refracted scene is not

close to the reflector/refractor. Environment mapping

performs poorly close to the reflector/refractor. Improved

results are obtained by approximating the scene with a

sphere [Bjo04], but few environments are spherical so the

fidelity is still quite limited. The reflected/refracted scene

approximation can be improved by resorting to depth image

impostors [SALP05, PDSM06]. Quality reflections are

produced for simple objects or for select viewpoints, but

the insufficient coverage is an important limitation for non-

trivial scenes or wide viewpoint translations (Figure 6).

Compared to reflection, refraction rays require additional

work since most rays interact with the refractor at least

twice—once entering and once leaving the object. Several

techniques have been developed for computing the second

refraction at interactive rates, including pre-computed

distance fields [CW05], GPU ray tracing techniques

[RAH07], and image-space approximations [Wym05]. In

order to illustrate non-pinhole impostors, we use an image-

space approximation to compute the emerging refracted

rays [Wym05], which are then intersected with the

impostor. The key idea behind this approximation is to use

a first rendering pass to store depth and surface normals for

back-facing surfaces, which are then used by a second pass

to compute the emerging ray after a second refraction.

3. Non-pinhole camera impostors

Once the pinhole restriction is removed, there is great

flexibility in devising a camera model that best suits a

given application and a particular dataset. Therefore we

first discuss the construction and ray intersection for non-

pinhole impostors in general.

3.1. Construction

Given a non-pinhole camera with a fast projection

operation that maps a 3-D point (x, y, z) to (u, v, gd) where

(u, v) are image coordinates and gd is a measure of depth

linear in image space, a non-pinhole impostor is

constructed efficiently by projecting the vertices of the

geometry it replaces and by rasterizing the projected

triangle conventionally. The unconventional projection can

be executed by a vertex program which essentially

implements the non-pinhole camera model. Since lines do

not project to lines and since rasterization parameters do

not vary linearly (before the perspective divide) anymore,

the triangles have to be sufficiently small to provide an

adequate approximation. Complex objects are typically

modeled with small triangles to provide a good

approximation of their shape, so additional tessellation is

usually not needed. Meshes of objects with large triangles

can be subdivided on-the-fly by taking advantage of

primitive-level GPU programmability.

3.2. Intersection

Like a regular depth image impostor, a non-pinhole

impostor is defined by an image with color and depth per

pixel and a camera model which allows projection. The

intersection of a ray (a, b) with a non-pinhole impostor NPI

is computed with the following steps:

1. Clip the segment (a, b) with the bounding volume of NPI

to obtain the segment (c, d).

2. Project (c, d) to ((uc, vc, gdc), (ud, vd, gdd)).

3. Interpolate (c, d) in 3-D, from near to far (i.e. from c to

d) to create n sub-segments. For each sub-segment (sk, sk+1)

 3.1. Project (sk, sk+1) to ((uk,vk), (uk+1,vk+1))

 3.2. Intersect ((uk,vk, GD(uk , vk)), (uk+1,vk+1, GD(uk+1,

vk+1)) with ((uc, vc, gdc), (ud, vd, gdd)), where GD(u, v) is the

depth stored by the impostor at image location (u, v). If an

intersection is found, break, else continue.

The ray has to be interpolated in 3-D since its projection

is not a straight line, and one cannot simply rasterize the

segment that connects the projection of its two endpoints.

Each intermediate point is projected with the non-pinhole

camera of the impostor which traces the curved projection

correctly. Since the depth gd stored by the impostor varies

linearly in the image, the intersection can be computed

efficiently in a 2D space (t, gd), where t is the parameter

locating the intersection along segment ((uk,vk), (uk+1,vk+1)).

For applications such as reflections or refractions, the ray

that has to be intersected with the impostor is computed for

each reflector or refractor pixel, which requires sending the

non-pinhole camera parameters to the pixel shader as well.

The generic construction and ray intersection algorithms

are specialized for SPOC and graph camera impostors as

follows.

Non-Pinhole Impostors 5

4. Single-pole occlusion camera impostors

The SPOC projection consists of a conventional planar

pinhole camera projection followed by a distortion which

moves the projected sample away from a pole [MPS05].

The pole is the projection of the center of the object. The

distortion magnitude increases with depth, so deeper

samples move more, escaping the occluding front surface.

For the SPOC impostor in Figure 1 the distortion pushes

the silhouette back, revealing the lid and the bottom. Figure

7 shows that the SPOC impostor captures about half of the

teapot, which is sufficient to intercept all reflected rays that

would intersect the original teapot geometry.

SPOC construction and intersection closely follow the

algorithms described in the previous section. The number

of sub-segments n is chosen as the Euclidian distance

between the projection of the endpoints of the clipped ray.

This provides a good approximation of the actual number

of pixels covered by the curved projection of the ray. The

projection is visualized in Figure 8.

5. Graph camera impostors

The graph camera is constructed recursively starting from

a planar pinhole camera through a succession of bending,

splitting, and merging operations [RPA08]. The result is a

graph of planar pinhole camera frusta. The concept of

camera ray is generalized to the set of points projecting at a

given image location, which allows for rays that are not

straight lines. The rays of the graph camera are piecewise

linear. A ray changes direction as it crosses the shared face

separating a parent from a child frustum, but it remains

continuous. This makes the graph camera image

continuous. The rays are disjoint, which makes that a point

projects to a single image location, avoiding redundancy.

The graph camera constructed for the maze in Figure 4 is

shown in Figure 9. Here the construction followed a

breadth first traversal of the maze graph starting from the

entrance at the bottom of the maze.

Projecting a point with the graph camera implies two

steps. The frustum containing the given 3-D point is found

in a first step, followed by projection directly to the output

image with a 4-D matrix that concatenates the projections

of all the cameras on the path to the root. The frustum

containing the point can be found with an octree or another

hierarchical space subdivision [RPA08], but, for efficiency,

we use a texture map of the floor of the maze that stores

frustum ids.

With this projection operation the graph camera impostor

construction proceeds according to the algorithm described

in Section 3, with the only notable difference of clipping

and rendering a triangle with each frustum it intersects.

We have developed two algorithms for intersecting a

graph camera impostor with a ray. The difference is in how

the ray is interpolated to model its non-linear projection.

The first algorithm follows the generic algorithm closely:

the ray is interpolated uniformly in 3-D space, and each

new point is projected onto the graph camera image. This

approach has the disadvantage that it does not know about

the points where the ray intersects a frustum. The ray

projection changes direction at these points and finding

quality intersections requires using a fine interpolation step.

Figure 10 shows how a ray is broken into pieces by graph

camera projection.

The second algorithm models the piecewise linear

projection of the ray well. The algorithm takes the

Figure 7: Samples stored by a planar pinhole camera (left)

and an SPOC (right) impostor. The SPOC impostor covers

considerably more of the diffuse teapot.

Figure 8: Visualization of the curved SPOC projection of a

ray and of its intersection with the impostor (left), and

visualization of the ray intersecting the teapot (right).

Figure 9: Graph camera model visualization. The frusta

are shown in red and a few rays are shown in white.

Figure 10: Visualization of a ray intersecting the maze

(top) and visualization of the piecewise linear graph

camera projection of a ray and of its intersection with the

impostor (bottom).

 Non-Pinhole Impostors

6

following steps for each graph camera frustum Fi:

1. Intersect ray r with Fi to produce sub-segment (si, ei).

2. Project segment (si, ei) to graph camera image segment

(pi, qi).

3. Interpolate (pi, qi) to search for intersection with graph

camera depth map.

The algorithm determines the intermediate points on the

ray by intersecting it with all the frusta, resulting in a set of

sub-segments (si, ei). Each frustum is a planar pinhole

camera, which implies that each sub-segment projects to a

straight line segment (pi, qi) in the output graph camera

image. The sub-segment is interpolated to search for the

intersection step by step, similarly to the generic algorithm.

The first algorithm has the advantage that it only works

with the frusta intersected by the ray, whereas the second

algorithm considers all frusta. For the graph camera used in

this paper (Figure 9), which comprises 15 planar pinhole

camera frusta, the second algorithm has superior

performance.

6. Results

We have tested SPOC and graph camera impostors in the

context of specular reflection and refraction rendering.

Using the impostors is straight forward: once the reflected

or refracted ray is computed in the pixel shader, the ray is

intersected with the impostors. For the images rendered

with an SPOC reflector the reflection of the grid is modeled

with a billboard impostor, which captures it perfectly. The

floor of the maze is part of the graph camera impostor.

For refractions, the superior modeling power of non-

pinhole impostors is particularly evident over thin parts of

the refractor where the refracted object, and any missing

surface, can be clearly noticed (Figure 11Figure 12).

Second order reflections are supported by storing normals

instead of color (Figure 3). Once the intersection is found, a

second order ray is computed and the impostors are

intersected again. Non-pinhole impostors enable reflection

and refraction rendering with good quality and good

performance.

6.1. Quality

Our method produces good results as attested by the

images in the paper and by the accompanying video. In

Figure 1 the complex bunny geometry exposes a

considerable fraction of the teapot geometry, which is

sampled by the SPOC impostor. The complex normals on

the bunny lead to extreme reflection magnification and

minification, which are handled well. The reflector and

reflected objects can intersect, and the images show the

expected reflection continuity (Figure 2). A graph camera

captures a complex environment producing more accurate

reflections than environment mapping.

Like all sample-based methods, the quality of the results

obtained with non-pinhole impostors is contingent upon

adequate sampling. The SPOC approximates only a single

object so sampling rate is higher than for the graph camera.

The graph camera sampling resolution is not uniform: it is

higher closer to the initial frustum and is lower for the

distant frusta. The graph camera impostor used here was

constructed to capture the entrance at a higher resolution,

where reflections are of highest quality (Figure 5). Deeper

in the maze the resolution decreases leading to aliasing

artifacts (Figure 12). Whenever the edge of the impostor is

visible, the silhouette of the reflection is jagged.

6.2. Performance

The timing information reported in this paper was

collected on a 3.4GHz 2GB Intel Xeon workstation with an

NVIDIA 8800 Ultra 768MB card. We used NVIDIA’s Cg

2.0 shading language with gp4 profiles. Performance

depends on output image resolution as shown in Table 1.

 640x480 800x600 1024x768 1280x1024

Avg 52.4 42.78 36.1 23.9

Min 36 28 24 10

Max 70 56 58 44

Table 1: Frame rates along a typical path in the 2 teapot

scene (Figure 1, top) with 8x multi-sampling antialiasing.

Figure 11: Refraction rendered with regular depth image

(top) and SPOC impostor (bottom).

Figure 12: The graph camera impostors samples distant

parts of the maze at a lower resolution creating the

aliasing artifacts for the floor.

Non-Pinhole Impostors 7

Performance also depends on the impostor resolution.

Higher resolutions lengthen the projections of the rays and

increase the number of steps taken along each ray to find

the projection, as shown in table 2 (output image resolution

is 640x480).

For the graph camera non-pinhole impostor scene

(Figures 4 and 5), the minimum, maximum, and average

performance along the path shown in the video is 20, 42,

and 26.8 frames per second, with 8x multi-sampling

antialiasing, with a 640x480 output resolution, and with a

1920x1175 impostor resolution. The graph camera

impostor for the maze with 4 bunnies (66Ktris total) is

constructed at over 100 frames per second, which enables

updating the impostor in real time.

6.3. Discussion

Our method renders high-quality specular reflections on

complex, dynamic reflectors, with complex, dynamic

reflected objects. Compared to projection techniques such

as explosion maps [OR98], our method has the advantage

of producing multiple projections of the same object at no

extra cost and of handling complex reflectors. Compared to

image-based rendering techniques, our method has the

advantage of supporting dynamic scenes and of reduced

memory requirements. Image-based rendering techniques

excel at capturing the appearance of complex real-world

materials that are glossy, but not specular. Compared to

environment mapping, our method produces better results

close to the reflector, at a higher per-pixel cost. Compared

to ray tracing, our method more easily minifies and

magnifies reflections by working in the color map at

different levels of resolution, and achieves fast ray /

geometry intersection. Ray tracing has a quality advantage

since the reflected geometry is not approximated.

7. Conclusions and future work

The fundamental reason for the efficiency of the

construction and rendering of these non-pinhole impostors,

is the fact that the underlying non-pinhole camera model

provides fast projection. This enables fast feed-forward

construction of the non-pinhole color and depth maps, as

well as a one dimensional search for the intersection of a

ray with the impostor.

There are several promising directions for future work.

One is developing a robust mip-mapping technique for non-

pinhole camera images. Under-sampling should not lead to

aliasing but rather to blurriness. Subsequent research could

target porting to non-pinholes other solutions to the under-

sampling problem such as geometry enhanced textures.

Such an approach will also improve the quality of the

silhouettes. Whereas this work has dealt exclusively with

specular materials, more complex reflective materials are

possible leveraging the known distance from the reflector

surface to the reflected object.

Our work argues for the practicality and benefits of

abandoning the pinhole constraint. Non-pinhole camera

models can be designed to optimally serve the application

and data set at hand through powerful yet inexpensive

impostors.

8. Acknowledgments

<withheld for double-blind review>

References

[Bjo04] BJORKE K. Image-based lighting. GPU Gems,

Fernando R., (Ed.). NVidia, (2004), pp. 307–322.

[BN76] BLIN J.F., NEWELL M. E. Texture and Reflection in

Computer Generated Images. CACM 19:10, 542-547, 1976.

[CW05] CHAN B. AND WANG W. Geocube—GPU

accelerated real-time rendering of transparency and

translucency. The Visual Computer, vol 21, 2005, pp 579-

590.

[DYB98] DEBEVEC P., YU Y., BORSHUKOV G. Efficient

view-dependent image-based rendering with projective

texture-mapping. In EG Workshop on Rendering, 105–116.

[DDS*03] DECORET X., DURAND F., SILLION F., AND DORSEY J.

Billboard Clouds for Extreme Model Simplification.

Proceedings of SIGGRAPH 2003, pp 689-696.

[GGS*96] GORTLER S., GRZESZCZUK R., SZELISKI R.,

COHEN M. The Lumigraph. In Proceedings of SIGGRAPH

96, pp 43-54.

[LH96] M. Levoy, and P. Hanrahan. Light Field Rendering.

Proc. of SIGGRAPH 96, pp 31-42 (1996).

[MS96] MACIEL P., AND SHIRLEY P. Visual Navigation of

Large Environments Using Textured Clusters, Symposium

on Interactive 3D Graphics (1995) pp 95-102.

[MMB97] MARK W., MCMILLAN L., AND BISHOP G.. Post-

Rendering 3D Warping. Proceedings of Symposium on

Interactive 3D Graphics, 1997.

[MO95] MAX N. AND OHSAKI K.. Rendering trees from

precomputed z-buffer views. In Rendering Techniques ’95:

Proceedings of the Eurographics Rendering Workshop

1995, 45–54, Dublin, June 1995.

[MB95] MCMILLAN L. AND BISHOP G. Plenoptic modeling:

An image-based rendering system. In Proc. SIGGRAPH

'95, pages 39-46, 1995.

[MPS05] MEI C., POPESCU V., AND SACKS E. The Occlusion

Camera, Computer Graphics Forum, volume 24, issue 3,

Eurographics 2005, pp 335-342.

Impostor resolution

[pix]
128 256 512 1024

Average frame rate

[fps]
103.3 83.4 42.78 28.9

Maximum ray

projection length

[pix]

72 164 346 640

Table 2: Performance dependence on impostor resolution

for 2 teapot scene (Figure 1, top), with 8x MSAA.

 Non-Pinhole Impostors

8

[OR98] OFEK E., RAPPOPORT A. Interactive reflections on

curved objects. In Proc. of SIGGRAPH ’98, ACM Press,

333-342.

[POC05] POLICARPO F., OLIVEIRA M., AND COMBA J. Real-

Time Relief Mapping on Arbitrary Polygonal Surfaces.

[PMDS06] Popescu V., Mei C., Dauble J., and Sacks E.

Reflected-Scene Impostors for Realistic Reflections at

Interactive Rates. Computer Grpahics Forum, volume 25,

issue 3 (EG 2006).

[PA06] POPESCU, V. AND D. ALIAGA. Depth Discontinuity

Occlusion Camera, In Proc. of ACM Symp.I3D and

Gaming, 2006.

[RB98] RADEMACHER P, AND BISHOP, G. 1998: Multiple-

center-of-Projection Images. Proc. ACM SIGGRAPH ’98

(1998)199–206.

[RAH07] ROGER D., ASSARSSON U., AND HOLZSCHUCH N.

Whitted Ray-Tracing for Dynamic Scenes Using a Ray-

Space Hierarchy on the GPU. In Proceedings of

Eurographics Symposium on Rendering, 2007, pp 99-110.

[RPA08] ROSEN P., POPESCU V., AND ADAMO-VILLANI N.

The Graph Camera. Purdue University Technical Report

TR-08-005.

[RP08] ROSEN P., POPESCU V. The Epipolar Occlusion

Camera, In Proceedings of ACM Symposium on Interactive

3-D Graphics and Gaming, 2008.

[SALP05] SZIRMAY-KALOS L. ET AL.: Approximate Ray-

Tracing on the GPU with Distance Impostors. Computer

Graphics Forum, 24(3), 2005. pp. 171-176.

[Sha98] SHADE J. ET AL. Layered Depth Images. In

Proceedings of SIGGRAPH 98, 231-242.

[Whi80] WHITTED T.: An improved illumination model for

shaded display. Comm. Of the ACM (1980), 23, 6, pp. 343-349.

[Woo97] WOOD D.N. ET AL. Multiperspective Panoramas

for Cel Animation. In Proceedings of ACM SIGGRAPH ’97

(1997) pp 243-250.

[Wym05] Wyman C. An Approximate Image-Space

Approach for Interactive Refraction. In ACM Transactions

on Graphics, volume 24, number 3, pp 1050-1053.

[YM04] YU J. AND MCMILLAN L. A Framework for

Multiperspective Rendering. In Proceedings of

Eurographics Symposium on Rendering (EGSR), 2004.

	Non-Pinhole Imposters
	Report Number:
	

	tmp.1307986960.pdf.3flNn

