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Abstract— To counteract current trends in network malware,
distributed solutions have been developed that harness the power
of collaborative end-host sensors. While these systems greatly
increase the ability to defend against attack, this comes at
the cost of complexity due to the coordination of distributed
hosts across the dynamic network. Many previous solutions for
distributed membership maintenance are agnostic to network
conditions and have high overhead, making them less than ideal
in the dynamic enterprise environment. In this work, we propose
a network-aware, distributed membership protocol, CLUSTER,
which improves the performance of the overlay system by biasing
neighbor selection towards beneficial nodes based on multiple
system metrics and network social patterns (of devices and their
users). We provide an extensible method for aggregating and
comparing multiple, possibly unrelated metrics. We demonstrate
the effectiveness and utility of our protocol through simulation
using real-world data and topologies. As part of our results, we
highlight our analysis of node churn statistics, offering a new
distribution to accurately model enterprise churn.

I. INTRODUCTION

Network defense is an elusive art. The arsenal to defend
our devices from attack is constantly lagging behind the latest
methods used by attackers to break into them and subsequently
into our networks [1]. Self-propagating malware, such as
worms, is one of the most challenging security issues of
today’s Internet [2]–[5], potentially costing businesses multi-
millions of dollars in lost revenue and time [6], [7].

As a worm spreads, its virility depends greatly on its ability
to identify and infect vulnerable hosts. Early worms relied
on large numbers of random connection attempts to identify
vulnerable hosts. Due to their aggressive nature, early worms
were easy to detect by singling out hosts with abnormally
high connection rates. To avoid detection, newer worms have
employed increasingly sophisticated techniques to identify
vulnerable hosts [2], [8]. Such techniques result in fewer,
more targeted connection attempts, leading to more successful
worm propagation and obfuscated worm detection. Also, as
the impetus behind worm creation has shifted from fun to
profit [9], [10], researchers have seen increasing sophistication
in the replication techniques employed by worms, including
the use of code randomization and encryption designed to
thwart signature-based detection schemes. In essence, the
combination of these techniques has rendered once-identifiable
malware into new, zero-day attacks, allowing worms to spread
through once-defended networks.

To counteract these trends, recent research has developed
distributed collaborative detection systems, which have been
quite successful in detecting malware, while maintaining low

system-wide false positive rates [11]–[13]. These systems are
based on the hypothesis that if detectors are embedded in
end nodes across the network, each node will be capable of
assessing whether or not it is being attacked by malware based
upon local information and can communicate this assessment
to a dynamic but random subset of peer nodes. By aggre-
gating the assessments of other peer nodes along with local
information, individual nodes are able to infer the approximate
overall health of the network with greater accuracy than when
they to act alone, converting weak local hypotheses into
strong global evidence. In previous work, Dash et al. [11]
presented an approach referred to as Distributed Detection
and Inference (DDI). DDI is capable of effectively detect-
ing worms with connection rates that are several orders of
magnitude lower than those of worms observed to date [11],
[12], [14]. While individual host detectors may offer weak
and inaccurate infection evidence, DDI’s system-wide alarms,
based on corroborated evidence, are highly accurate.

DDI’s detection accuracy, however, comes at the cost of
complexity due to the coordination of distributed hosts across
the network. Thus, one of the most challenging aspects of
implementing dynamic distributed systems such as DDI is
providing an accurate membership protocol, that is, one that
is able to maintain an up-to-date overlay of available nodes.
In addition, a membership protocol should be designed to
be scalable, benign fault-tolerant, network-aware and have
low overhead. In particular, if the membership fails to take
realistic network social patterns, such as churn, into account at
design time, the performance of the deployed system can suffer
severely [15]. Centralized solutions for managing membership
are ineffective as they restrict the scalability of the system and
create a single point of failure. Thus, we focus on creating an
effective, distributed membership protocol.

Previous research has developed distributed membership
protocols for structured overlays [16], [17], where the overlay
topology has tight topological and organizational invariants,
constraining the set of nodes eligible to become peers of
a given node [18]. While these protocols provide valuable
insights, they are not appropriate for our environment where
such constraints do not exist. Other research has looked at
membership protocols designed for unstructured networks,
including SCAMP [19], HiSCAMP [20], Localiser [21],
SwapLinks [22], [23], and HyParView [24]. While each of the
previous protocols has attractive points, the majority have high
overhead costs associated with them and are notably network-
unaware, selecting peers at random rather than informed by



network measurement data or observed patterns.
In this paper, we make the following contributions:
1) We propose a network-aware distributed membership

protocol, CLUSTER, which is both scalable and adap-
tive. CLUSTER is designed to improve the performance
of DDI’s collaborative defense through the use of mul-
tiple system metrics based on the social patterns of the
collaborative devices and of their users. The metrics are
used to bias messaging decisions towards nodes with
desirable attributes, improving the ability of the DDI
system to quickly and accurately correlate reports from
multiple nodes.

2) We design an extensible method for aggregating multi-
ple, possibly unrelated metrics into a single Proximity
function. The individual metrics are discretized based on
distributions known a priori or calculated during runtime
if not already known and the results are subsequently
aggregated. Our method allows CLUSTER to be easily
extended in the future to include other metrics defining
node desirability.

3) We demonstrate the effectiveness of our solution through
simulation using real-world enterprise traffic data,
topologies, and churn rates in mitigating the effects
of distributed system dynamics and maintaining high
reachability with low overhead.

4) We highlight unexpected results from the analysis of
the node churn statistics; we offer a new distribution
to model enterprise churn to more accurately simulate
traffic patterns when actual data is not available.

This paper is organized as follows: We present an overview
of the DDI system in Section II. Section III focuses on
enhancing the efficiency and effectiveness of the DDI system
as a whole by incorporating a lightweight, metric-driven
distributed membership protocol. We present our experimental
methodology in Section IV and evaluate our new, network-
aware membership protocol through simulations based on real-
world data sets in Section V. We discuss related work in Sec-
tion VI. Finally, in Section VII, we conclude by summarizing
the results and highlight possible future research directions.

II. DDI SYSTEM MODEL

In this section, we provide an overview the current DDI
architecture and its components.

A. The Distributed Detection and Inference System

A simplified depiction of DDI is shown in Figure 1. Hosts
participating in the DDI system are embued with anomaly-
detecting sensors producing measurement data known as local
detectors and aggregating sensors that consume this data to
supply inference across time, sensors, and/or machines known
as global detectors. Along with these two types of detectors,
the DDI end-node architecture also includes a back-end agent
that supplies membership tracking of available DDI nodes,
a messaging library to support gossip-style communication
between nodes, and the capability to track the performance
of components in the system.

Fig. 1. A simplified depiction of Distributed Detection and Inference. On each
of the hosts resides one or more local detectors and global detectors. Nodes
communicate through periodic sending of messages to subsets of neighbors
provided by the system membership.

B. Local Detectors (LDs)

A host may run one or more local anomaly detectors, with
each detector issuing binary local infection reports (LRs). A
LR indicates whether the host on which the local detector
resides is believed to be infected. Local detectors issue their
LRs based on the host’s operational state, such as network
traffic and processor/memory characteristics. While a number
of sophisticated heuristics may be used to issue LRs, the most
commonly used is based on the host’s connection count. A
local detector monitors the number of outgoing connections
within its reporting period and if this number exceeds a
particular connection threshold, it issues a positive report (i.e.,
an infection has been detected). Otherwise, it issues a negative
report (i.e., a infection has not been detected).

C. Local Report Dissemination

Local detectors disseminate their LRs to one or more global
detectors using a gossip dissemination scheme parameterized
by a fanout fL ∈ N+ and a scope sL ∈ N+. The gossip
scheme is closely linked to the membership provided by the
back-end of DDI as the membership supplies the potential
gossip receivers. Upon generating a LR, a local detector sends
the LR message to fL random nodes with global detectors
provided by the membership component. The LR messages
contain the local detector’s binary infection status, a timestamp
corresponding to the time at which the report was issued, and
the scope sL of the report. Without a correctly functioning
membership protocol, LR messages will not propagate through
the system and the performance will be severely degraded.

D. Global Detectors (GDs)

Global detectors issue global infection reports based on
the set of recently received LRs. Each detector maintains
a cache Cg of all of the LRs received within a particular
time window of Wg ∈ R≥0 seconds. Let Ag to denote the
size of this cache and A+

g and A−g to denote the number of
positive and negative LRs in Cg , where Ag = A+

g + A−g . In
DDI, global detectors issue global infection reports using the
PosCount inference algorithm. Thus, a global detector g issues
a positive global report when A+

g > dg , where dg ∈ N+ is the
detector’s PosCount threshold. Any positive global infection
report constitutes a system-wide infection alarm. For more
details, see [11], [12]



E. Current DDI Membership

As mentioned earlier, the DDI membership component is
critical to the proper functioning of DDI. Without an accurate
membership, the LRs will not reach the global detectors,
minimizing the data received during a particular time window
and decreasing the probability of making correct inferences
on the state of the system. The DDI system currently has two
methods of providing accurate membership at each node: a
centralized scheme that provides each node with entire view
of the network or a decentralized scheme which provides each
node with a partial view of the network.

1) Centralized Membership: The most basic implementa-
tion of DDI utilizes a membership scheme in which a pre-
defined rendezvous node stores and disseminate membership
information to all network participants. Whenever a node
joins or leaves the network, the rendezvous node is contacted
with the updated information which then disseminates the
information to the rest of the network. This simple membership
management scheme provides a consistent, global view of
the membership. It is helpful for small networks and testing
new DDI functionality since it provides a baseline of system
performance and eliminates a source of randomness inherent
to most decentralized membership schemes. However, this
approach does not scale.

2) Decentralized Membership: For larger systems, the DDI
system currently uses the decentralized, gossip-based mem-
bership management protocol SCAMP [19] because it offers
a self-organizing subscription mechanism that is well suited
to the dynamic nature of the membership. SCAMP provides
each node in a system of size N with a membership view of
size O(logN). As shown in [19], SCAMP is able to maintain
high messaging reliability similar to that of a centralized
global-knowledge scheme. Our implementation of SCAMP
uses several of the enhancements suggested in [19], including
message indirection to help randomize new node subscriptions
and a leasing mechanism to help re-balance view sizes. The
major drawback of SCAMP is that it is agnostic to any
underlying metrics or topology and thus unable to leverage
the knowledge available in the network to improve the system
performance. Secondly, SCAMP has a high overhead cost
associated with maintaining the membership.

III. CLUSTER: NETWORK-AWARE MEMBERSHIP

In this section, we formulate an improved membership
protocol, CLUSTER, which offers a network-aware approach
to decentralized membership management. In general, many
distributed membership algorithms provide a node with a
random subset of the nodes in the entire network, known
as a partial view. We build on the ideas proposed by Chee-
tancheri et al. [12] and Li et al. [14]. In CLUSTER, instead
of relying on a partial view chosen completely at random,
a system-defined percentage of choices for a node’s view
are biased based on additional Proximity metrics towards
nodes with desirable attributes. The impetus for our protocol
design lies in the fact that, by influencing the construction
and maintenance of the partial view of membership, we can

significantly improve the performance of the collaborative
defense provided by DDI.

In this paper, we use the terms Proximity and Proximity
metrics to represent one or more metrics used to bias the
neighbor selection of the membership protocol. For example,
consider node selection biased by network latency. Each
node’s view of the membership becomes biased towards local
information, allowing it to draw more accurate conclusions
of what is occurring locally, as well as decreasing the need
to propagate information to distant nodes. As a result, the
overhead incurred by maintaining distributed membership can
be greatly reduced, making the system more scalable.

In this paper, we use the Proximity metrics of network
latency and node connectivity (duration of a node’s time
connected to the network), but could easily augment the
selection with other metrics such as resource availability
(power, bandwidth, cpu, memory, network interfaces), resource
consumption (power, storage), social trends (usage patterns,
time of day/week), node believability (to generate low false
alarms), or persistence (level of continued social interactions
between pairs of nodes). As the DDI framework continues to
mature, we fully expect metrics representing additional social
patterns and reputations (of devices and their users) to be
incorporated into the system.

A. Algorithm Overview

CLUSTER is a light-weight distributed membership proto-
col that provides each node in the system with a partial view
of the global membership. This view is maintained at each
node in the form of two lists, a SendList of neighbors a node
is responsible for sending messages to and a ReceiveList of
neighbors from which the the node receives messages. The
protocol consists of three main components: node join, node
leave, and a node maintenance algorithm.

1) Join: When a node n initially joins the system, it
contacts a well-known rendezvous node from which it receives
a list of potential neighbors. The node n will then contact
a random subset of the potential neighbors, which reply
with further potential neighbors. Piggy-backed on all of the
membership messages are the network metrics used (e.g.,
latency and connectivity) and a freshness period denoting how
long the node information is valid (discussed in Section III-
A.2). Once a node n has received a set of potential neighbors,
it chooses a subset of these nodes as neighbors. During this
selection process, a system-defined percentage of nodes is
chosen based on Proximity and the remaining are chosen
at random. For each selected neighbor node, n will send a
request to receive information from the node. Once a positive
acknowledgement is received at n, the neighbor node will be
added to n’s ReceiveList and inversely n will be added to the
neighbor’s SendList. The node n will select neighbors until it
has reached the system prescribed minimum ReceiveList size.

2) Maintenance: During normal system operation, each
node will periodically check the freshness period for each node
on its ReceiveList. The freshness period represents the duration
of time for which the information on the ReceiveList is valid. If



the freshness period of a ReceiveList neighbor elapses without
being renewed, the neighbor is removed and a replacement
neighbor is found using a technique similar to that used during
node join. To renew the freshness of the ReceiveList, the node
maintaining the ReceiveList will explicitly poll the nodes on
it, updating the period when a response is received. In order to
decrease the overhead associated with maintaining fresh views,
any message received between the nodes (not just membership
messages) acts as a poll message and is used to update the
freshness of the nodes. This allows the majority of CLUSTER
nodes to remain quiescent during the periodic checks and
greatly reduces the overhead seen in the system.

Along with periodically checking the neighbor freshness,
each node checks the percentage of nodes in its ReceiveList
selected based on Proximity. If this percentage is less than the
desired system-defined percentage, the node probes its peers
for possible additional neighbors and replaces a neighbor that
was chosen at random with a one based on Proximity. This
mechanism allows the node to optimize its ReceiveList over
time to contain the desired fraction of nodes selected based
on Proximity even as the system undergoes churn.

3) Leave: As with any dynamic system, nodes will even-
tually leave the system due to many factors such as laptop
movement or shutting down at the end of the work day. When
a node n leaves the system it sends a leave message to all
nodes in its ReceiveList, informing the neighbors data no
longer needs to be sent to n. No messages are required to
be sent to the SendList as the node will be removed once its
freshness period has elapsed. In order to handle ungraceful
leaves, a node will also periodically check the freshness of its
SendList (with less frequency than its ReceiveList), to avoid
sending messages to nodes that have left the network.

B. Multi-Metric Proximity Weighting

In order to make our technique extensible and allow for the
inclusion of multiple, possibly non-correlated metrics (e.g.,
latency and node connectivity), we discretize each of the
metrics into a series of values (bins) based on its distribution.
Using Equation 1, where B stands for the discretization
function, mn stands for the nth metric, and wn stands for the
weight associated with the nth metric, the discretized values
are aggregated to form a singular Proximity value which can
easily be compared between nodes.

B(m1)× w1 +B(m2)× w2 + · · ·+B(mn)× wn (1)

For metrics which have a definable distribution such as the
node connectivity (see Section IV-B), the discretization bins
can be formed a priori based on the known distribution. For
metrics such as latency, which are more variable due to their
dependency on the network and network conditions, we use
an adaptive scheme in which the estimated metric mean and
standard deviation are used to determine the width of the bins.
The width of the bins is set to the standard deviation while the
initial starting bin is set to the estimated mean. In this manner,
the metric comparison process adapts based on current system
performance without the need for user input.

C. Protocol Benefits

Our protocol has several desirable features to highlight.
First, it is straightforward to understand, making it easy to
implement and extend. While the DDI framework is currently
used for intrusion detection, the inclusion of other sensors and
system components (such as a reputation service) necessitate
a network-aware membership component that is easily adapt-
able. It should be noted that CLUSTER utilizes the “social”
interaction patterns between devices to bias membership and
this facet of our protocol will become all the more important
as the system is extended to utilize ideas such as reputation
between infrequently communicating nodes. Not only is our
protocol extensible, it is easy to configure, only requiring a
desired minimum ReceiveList size and percentage of nodes
selected based on Proximity. In future work, we intend to
have these parameters determined autonomically by the system
(i.e.,derived through measurement and historical observation).
Secondly, as we show in Section V, our protocol is lightweight,
imposing very little control overhead. Finally, the CLUSTER
protocol does not need extra infrastructure, such as landmarks
for locality, maintaining a fully decentralized membership.

IV. EXPERIMENTAL METHODOLOGY

In this section, we present our methodology for the DDI
simulations. We employ the ns2 simulator [25] to test the
performance of the DDI system with different membership
components. We discuss real background traffic patterns, churn
statistics, and topologies, all derived from a large-scale cor-
porate enterprise network. We describe the malware that is
synthetically deployed. Finally, we present the experimental
configuration of the DDI system, the configuration of the
membership components, and the metrics we use to evaluate
the effectiveness of the membership protocols.

A. Background Traffic Patterns

Our simulations are driven with real background traces col-
lected from over 400 end-hosts in the Intel corporate enterprise
network spanning 5 weeks of time. During the simulations,
each node chooses a random trace file from which to replay
outbound traffic. The destination addresses of the packets in
the traces are mapped to nodes in the simulated topology and
the packets are sent to them. To preserve realism, the starting
points of the trace files are aligned (e.g., an experiment may
begin at 9am on a Monday in all trace files), to preserve the
diurnal patterns found in the enterprise.

B. Modeling Enterprise Node Churn

Along with realistic traffic patterns, node joins and leaves
are based on the real connectivity patterns of the users par-
ticipating in the network traces. As DDI is designed to be a
persistent system in the distributed environment, we analyzed
the traffic patterns for periods of 1 week and greater. The node
connectivity patterns form heavy-tailed distributions, with the
average amount of time a node is connected to the network
being just under 6 hours, but with a median connection time
of only 117 minutes. This causes a moderate amount of churn



in the system, with an average of ten nodes per minute joining
or leaving the network.

Similar to other research, we find that the join pattern of
enterprise end-host nodes can be accurately modeled as a
Poisson process with a µ = 6, irrespective of the length of
time. However, contrary to popular assumptions, we find that
the Pareto distribution that is often used to model node connec-
tivity [26] does not accurately fit our enterprise data. We find,
irrespective of the number of weeks, that node connectivity
can be accurately represented by a Weibull distribution, seen
in Figure 2, with the scale parameter η = 12900, the shape
parameter β = 0.56, and the location parameter γ = 0.
This implies other simulations can accurately model the social
patterns of end-nodes in a large enterprise network by using a
Weibull distribution instead of the Pareto distribution for node
connectivity.

Fig. 2. Distribution of Actual Node Connectivity

C. Topology

For the majority of our experiments, we use a “star”
topology incorporating 100 nodes that communicate with each
other through a central router. In order to determine the effects
of real-world latencies on the membership protocols, the
roundtrip time (RTT) between nodes is modeled on latencies
seen in the high performance network of the NLANR Active
Measurement Project [27]. Every node is infectable when it
is connected to the network. This simplified topology helps
to isolate the differences between memberships and provides
comparable baseline numbers.

Fig. 3. Example of an enterprise campus network.

We also utilize the enterprise topology shown in Figure 3,
which is based on the construction of a typical Intel enterprise
campus network. Inside the enterprise network, there are one
or more buildings linked by a networking device (e.g., switch).
Inside each of the buildings are multiple networked floors, with
each floor containing several subnetworks. These subnetworks
consist of a set of end-user nodes, each running the DDI
system. Our simulation topology consists of 3 buildings with
2 floors per building. Each of the floors contain 3 subnetworks

with 6 end-user nodes for a total of 108 DDI nodes and 56
networking devices (e.g. routers or switches) in the network.

D. Worm Model

We presume the background traffic is “clean” and introduce
worm traffic by superimposing an actual (albeit synthetic)
worm whose propagation follows a discrete SI epidemic
model [28]. At a random point in time, a randomly selected
node is infected with a worm instance. Thereafter, every 10
seconds each infected node attempts to infect other nodes by
randomly generating a target address. The success of finding
another infectable node in the network is determined by an
address density parameter. For our simulations, we use an
address density of 1/10000; thus, 1 in 10000 addresses is a
valid infectable node.

E. DDI Configuration

In all of our simulations, each node is instrumented with a
local detector and global detector. Each local detector issues
local reports based on its background and worm traffic. In
particular, each local detector inspects outgoing packets and
keeps a count of the number of outgoing connections within a
50 second sliding window. Every 10 seconds, the local detector
issues a local report by inspecting the number of outgoing
connections. When the node is not infected, the local detector
issues a positive local report when the number of outgoing
connections is greater than 4; otherwise, it issues a negative
local report. Thus, a node issues a false positive local report
when the number of connections in the background traffic
exceeds this connection threshold. Once the node becomes
infected, the local detector always issues positive local reports,
irrespective of the number of connections. In our simulations,
we use a scope sL = 1 and fanout fL = 1 to disseminate re-
ports to neighboring nodes provided by the DDI membership.

Global detectors cache the local reports received within a
sliding time-based observation window of WG = 20 seconds.
Every 10 seconds, each global detector inspects its cached
local reports. Instead of running one simulation for each
PosCount threshold dg , we instrument global detectors to
report the fraction of positive to total local reports within their
cache. Thus, post-simulation, we can determine the time-to-
detection and the infection level at detection for any threshold
dg chosen a posteriori. We obtain the empirical global false
positive rate (GFPR) for a threshold dg by running a very long
simulation without a worm; we estimate the system FPR as
the ratio of the number of system alarms to total number of
global detector periods simulated.

For each experimental configuration, we run 20 simulations.
Each simulation is 4 weeks in length, with the worm beginning
prorogation during the 3rd week. In one of the simulations, the
worm is disabled in order to obtain an empirical system FPR.
The remaining 19 simulations have identical configurations,
but their results differ due to the variability in the formation
of the membership, variability in how the infection spreads,
and the randomness inherent in the local report dissemination.



F. Membership Configuration

We configure all of the membership protocols to use a
freshness period of 10 seconds to allow for fair comparison
between the membership types. CLUSTER is configured to
use a desired minimum ReceiveList size of 10 and we vary the
percentage of nodes chosen based on Proximity as described
in the results below. As discussed in Section III-B, we use the
equation B(l)× 1.0 +B(nc)× 1.0 to compute the Proximity
value of a node, where latency (l) and the node connectivity
(nc) are each weighted by a factor of 1.0.

G. Performance Metrics

In order to quantitatively compare the performance of the
DDI system and its respective membership components, we
use the following metrics:
• Infection Level is the average percentage of nodes that

is infected by the worm at the time-of-detection.
• Global False Positive Rate (GFPR) is the average

number of times per week a system-wide infection alarm
is issued when the system is not infected.

• System Overhead is the average amount (in Mb) of
membership control data sent and received at each DDI
node per second.

• Reachability is the percentage of nodes that can be
contacted (possibly through more than one hop) from
a randomly chosen DDI node. Ideally, the membership
protocol should have a reachability of 100.

V. EXPERIMENTAL RESULTS

A. DDI System Performance Using CLUSTER

The CLUSTER protocol can use multiple metrics to deter-
mine node Proximity. We begin by using only latency and vary
the percentage of node selected based on Proximity. We can
see from Figure 4(a), that while the infection level is low for
all of the CLUSTER percentages, the results are indiscriminate
and do not show any percentage of CLUSTER to be superior.
This is due to the churn inherent in the environment which
causes the views of the nodes to be in constant flux, making
it harder for the nodes to accurately correlate local reports.
Based on this assessment, we incorporate node connectivity
into the Proximity calculation.

(a) Proximity Using Latency Only (b) Proximity Using Latency and
Node Connectivity

Fig. 4. DDI system performance on a star network using different percentages
of nodes chosen by different Proximity measures.

As seen from Figure 4(b), using CLUSTER with the
inclusion of node connectivity in the neighbor Proximity
calculations significantly improves the system performance.
The inclusion of the extra network knowledge is able to im-
prove DDI system performance compared to random neighbor
selection (i.e., CLUSTER 0%). As the percentage of neighbors
chosen based on Proximity increases, the DDI system is able to
detect the worm at lower infection levels while maintaining a
low GFPR. Intuitively, as the percentage increases, nodes have
a greater focus on their local area while keeping a modicum
of random connections farther out in the network to maintain
global perspective. There are diminishing returns for higher
percentages (75% and 90%) of Proximity nodes, in which
nodes focus almost exclusively on local information, missing
global context and incurring higher GFPR and infection levels
than the median value of CLUSTER.

B. Comparison of CLUSTER and other Membership Protocols

We now look at the system performance of DDI using each
of the different membership protocols and their associated
overhead. Based on the results presented in Section V-A, we
compare the existing protocols versus CLUSTER 50%, where
half of the nodes are chosen based on Proximity, since this
setting exhibited up to 3 times fewer nodes infected at the time
of detection and an order of magnitude fewer false alarms.

Fig. 5. DDI System performance on a star network comparing CLUSTER
to other membership types.

We can see from Figure 5 that the CLUSTER-based system
has the lowest infection level while maintaining a GFPR of
less than one false alarm per week. By taking advantage of
both latency and node connectivity to bias the node selection,
the system is able to accurately correlate the local reports,
detecting the malware at a lower infection than the DDI system
using the other membership types.

TABLE I
DDI MEMBERSHIP OVERHEAD

Membership Type Overhead (Mb/sec) Reachability (%)
Centralized 1.2 100
SCAMP 4.1 100
CLUSTER .05 100

Next, we analyze the overhead required to maintain the
different membership schemes for the DDI system. From
Table I, we can see that each scheme is able to maintain a
reachability of 100%. In order to achieve this high level of



connectivity, both SCAMP and the centralized membership
protocol require a significant amount of network bandwidth.
The overhead in SCAMP comes from the constant need to
renew the partial views at each node while the overhead for the
centralized scheme results from the aggregation of information
at the centralized server and the subsequent dissemination of
it to all the nodes for each membership change. As CLUSTER
is designed for dynamic systems, it requires just over 50Kb
of membership overhead due to its ability to minimize the
need for liveness messages and to take advantage of locality
to minimize the number of hops messages traverse.

C. Effect of Network Topologies on DDI System Performance

We have shown that CLUSTER is able to improve the
performance of the DDI system on an artificial network
topology. To more accurately simulate the deployment of DDI
in an enterprise environment, we study the impact of real-
world inspired enterprise network topologies, such as that
depicted in Figure 3, on the performance of the DDI system
using different membership mechanisms.

Fig. 6. DDI system performance on a realistic enterprise network.

We can see from Figure 6 that network topology has a
large impact in the function of the DDI system. The non-
uniform topology makes it easier for the malware to spread
through the network while avoiding detection, which can be
seen as a general increase in infection level regardless of the
membership type utilized. With this in mind, we note the
CLUSTER-based system is able to outperform both of the
other membership schemes, resulting in 24% and 46% fewer
nodes infected and 67% and 58% lower GFPR when compared
with SCAMP and Centralized, respectively.

Not only is the CLUSTER-based system able to provide the
lowest infection level, it is able to maintain 100% reachability
using 0.053 Mb/s membership overhead, which is only a .7%
increase when compared to the star topology overhead. This
is not the case for the SCAMP-based system, which is only
able to maintain reachability to 90% of the network. When
the scope of the messaging and the frequency of updates
for SCAMP were updated to better match the enterprise
environment as opposed to the star, the SCAMP-based system
was able to maintain full reachability. However, the infection
level did not improve and the membership overhead was over
8Mb/s, two order of magnitude greater than CLUSTER.

By using a membership that is network-aware and takes into
account the effects of node connectivity when selecting poten-

tial neighbors, the DDI system is able to accurately correlate
the information from local peers and identify the malicious
activity. This is especially evident in the more realistic setting
of the enterprise network where multiple subnetworks and
longer paths are present.

D. Churn in the DDI System
As we noted earlier, taking into account node connectivity

when designing and testing systems is critical to successful
real-world deployment [15]. As we have been working with
the DDI system, one of the most interesting conclusions we
draw, similar to that of Varun et al. [29], is that when design
for, churn can actually improve the performance and reliability
of the system. In DDI, churn acts as a randomization factor,
allowing nodes to slowly discover new, potentially better
neighbors as nodes re-join the network. As nodes join and
establish peer connections, the messages exchanged in the
network between nodes act to update the freshness of the
partial views of the network, avoiding the need for explicit
polling for liveness to be performed. In this manner, the
system performance can be improved while much of the
overhead associated with churn is converted into useful work.
Secondly, in the context of malware and worm propagation,
churn actually makes the network more robust to attack. This
is due to the intuitive fact that nodes which are not currently
connected to the network are not vulnerable to attack. While
tangential to this research, this finding has implications for
enterprise computer management. For example, if an employee
is not needing remote access to a computing resource, its is in
their best interest to remove the machine from the network.

VI. RELATED WORK

In this section, we provide an overview of the previous re-
search in two areas related to our work: membership protocols
and modeling node behavior in distributed systems.

A. Distributed Membership Protocols

Recently, there has been increasing interest in membership
protocols for unstructured distributed systems. SCAMP is a
self-organizing peer-to-peer membership service which pro-
vides each node in a system of size N with a membership
view of the network with a size O(logN). SwapLinks [22],
[23] is a membership service that uses random walks to build
unstructured overlays designed to balance the load experienced
at each node. While both systems are able to create reliable
distributed memberships, they differ from our system since
they are agnostic to network-locality information. The authors
of SCAMP have also proposed HiSCAMP [20], a hierarchi-
cal membership protocol in which close nodes are grouped
into clusters and clusters are themselves recursively grouped
into clusters, with each cluster running SCAMP. HiSCAMP
has high overhead-costs stemming from the organization and
synchronization of clusters. Localiser [21] is a maintenance
protocol which uses the Metropolis-style algorithm to achieve
node balance and localization on unstructured membership
overlays. Localiser is only applicable to existing overlays and
has high overhead due to adjustment operations performed to



optimize the overlay. Also, our work differs from the previous
works as it is easily extensible to accommodate multiple
network metrics in the selection of nodes.

B. Modeling Node Behavior in a Distributed System

As the number and variety of distributed systems continues
to grow, research has been conducted in developing methods of
accurately simulating the environments in which these systems
appear. Multiple empirical studies have been conducted for
peer-to-peer systems [30]–[34], confirming that these systems
are highly dynamic. However, the results of each study vary
widely and none are representative of a large enterprise system.
Other work has generalized the join and leave patterns seen in
peer-to-peer systems as statistical models such as the Poisson
process [35] or on the Pareto distribution [26]. Our work
differs in the fact it is able to use real-world enterprise data as
well provide a generalization of the empirical data to suggest
a more accurate model of node connectivity.

VII. CONCLUSIONS

In this paper, we present a network-aware distributed mem-
bership protocol, CLUSTER, that offers significant perfor-
mance improvements over other state-of-the-art membership
management schemes. Moreover, CLUSTER improves the
performance of collaborative defense algorithms, such as DDI,
which depend on robust, scalable membership tracking in a
dynamic operational setting. CLUSTER biases membership
decisions toward nodes with desirable attributes as a con-
sequence of using the data gained from observing multiple
system metrics and network social patterns (of devices and
their users). Additionally, we design an extensible method
for aggregating multiple, possibly unrelated metrics into a
single Proximity function and show its utility in simulation.
Using real-world traffic patterns, topologies, and churn rates,
we demonstrate through simulations that our protocol, at
minimum, is able to decrease the infection rate of the system
by 24% and the false positive rate by 58%, while reducing
the overhead by 2 orders of magnitude. Finally, our analysis
of node churn in the enterprise network unexpectedly reveals
that a Weibull distribution can be used to accurately simulate
enterprise traffic patterns when actual data is not available.
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