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Abstract Eigenvalue problems arise in many application areas ranging from compu-

tational fluid dynamics to information retrieval. In these fields we are often interested

in only a few eigenvalues and corresponding eigenvectors of a sparse matrix. In this pa-

per, we comment on the modifications of the eigenvalue problem that can simplify the

computation of those eigenpairs. These transformations allow us to avoid difficulties

associated with non-Hermitian eigenvalue problems, such as the lack of reliable non-

Hermitian eigenvalue solvers, by mapping them into generalized Hermitian eigenvalue

problems. Also, they allow us to expose and explore parallelism. They require knowl-

edge of a selected eigenvalue and preserve its eigenspace. The positive definiteness of

the Hermitian part is inherited by the matrices in the generalized Hermitian eigenvalue

problem. The position of the selected eigenspace in the ordering of the eigenvalues is

also preserved under certain conditions. The effect of using approximate eigenvalues in

the transformation is analyzed and numerical experiments are presented.

Keywords Modification of the Eigenvalue Problem · non-Hermitian matrix ·
Hermitian matrix

Mathematics Subject Classification (2000) 65F15 · 65F50 · 65F99

1 Introduction

The solution of eigenvalue problems is of interest in many fields of computational

science and engineering. In these fields we are often interested in obtaining only a few

of the eigenpairs of a sparse matrix. Several authors have worked on developing methods

for this problem, resulting in methods such as subspace iteration [16], Davidson [5],

trace minimization [13], implicitly restarted Arnoldi [15], Jacobi-Davidson [14] and

LOBPCG [11]. The search for faster algorithms and acceleration of existing ones is the

subject of many papers.

In this paper we do not attempt to create a novel scheme, instead we propose a

general technique that could be used to modify any eigenvalue problem so that its

Department of Computer Science, Purdue University - West Lafayette,
305 N. University Street, West Lafayette, IN, 47907-2107, United States.



2

eigenspace of interest is easier to compute. For example, there are several well known

modifications of the generalized eigenvalue problem described in Theorem 4.8 [17].

These result from the combination of the matrices A and B already present in the

pencil (A, B). Their effect is a simple shift applied to all the eigenvalues that leaves

the structure of the spectrum the same.

We consider a modification of the eigenvalue problem that could be considered

an extension of the above. We do not insist that the structure of the spectrum re-

mains fixed, but keep invariant the subspace corresponding to a selected eigenvalue.

Thus, the proposed technique is applicable to problems, where the eigenvalue, or an

approximation of it, is already known, but its eigenspace remains to be computed.

It is well know that eigenvalues converge faster than eigenvectors, hence our ap-

proach can be used when the eigenvalue has already been obtained, but the eigenvector

has not yet been found with sufficient accuracy. Also, it is ideally suited for applications

where the eigenvalue is known beforehand, for example in the computation of Page-

Rank [10,3] in the field of information retrieval. The use of approximate eigenvalues in

the proposed transformation is also studied in the next section.

The modification creates a different eigenvalue problem that has an eigenvalue 1

with the corresponding eigenspace being identical to the eigenspace of the selected

eigenvalue of the original problem. It results from the observation, that for Hermitian

matrices with simple eigenvalues, the eigenvector u corresponding to the eigenvalue λ

in the standard eigenvalue problem

Au = λu (1)

is also the eigenvector corresponding to the eigenvalue 1 of the generalized eigenvalue

problem

(A + S)u = µ(λI + S)u (2)

for some matrix S. Although we used a Hermitian matrix A in (2), such transformation

also applies to non-Hermitian matrices.

There are two main contributions of this paper. First, is to show that the modifica-

tion we propose can be used to transform a non-Hermitian into a generalized Hermitian

eigenvalue problem. It is true that if the eigenvalue is known this can also be achieved

by formulating the eigenvalue problem as a homogeneous linear system, that can be

changed into a Hermitian form by using normal equations, and further reformulated

as an eigenvalue problem in which we are interested in the eigenvector corresponding

to the eigenvalue zero

(A− λI)T (A− λI)u = 0u (3)

However, such approach would not only square the condition number of the matrix at

hand, require the knowledge of the matrix transpose (not necessarily available), but also

would always be working with the original matrix. In our modification we introduce a

new matrix S into the equation, which does not square the condition number or require

explicit knowledge of the matrix transpose and can be chosen in many different ways,

which will be discussed in the next sections. Moreover, we show that if the Hermitian

or (premultiplied by i) skew-Hermitian part of the non-Hermitian eigenvalue problem

is positive definite, one of the matrices in the generalized Hermitian eigenvalue problem

will also be positive definite.

This transformation is very important, because although we could use inverse it-

eration or Jacobi-Davidson methods to find the smallest eigenpairs of the the non-

Hermitian eigenvalue problem directly, both require solution of non-Hermitian systems
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of linear equations. If the direct solution of these systems is not feasible, iterative meth-

ods such as restarted GMRES or BiCGstab are the remaining alternative. However,

even with more advanced preconditioners such as those in ILUPACK [2], these schemes

are often very slow to converge, hence preventing us from obtaining the eigenpairs of

interest. On the other hand, if we transform the original eigenvalue problem into a gen-

eralized Hermitian problem, a variety of other eigenvalue solvers with a well-developed

theory of convergence, applicable only to Hermitian problems, also becomes available,

e.g. [8,13,11].

Second, is to show that our approach can be used to improve the parallelism avail-

able in the eigenvalue problem. For instance suppose that we are interested in the

smallest eigenvalue and to obtain it apply subspace iteration on

A−1u =
1

λ
u (4)

Notice that we can write matrices

A =

(
A11 A12

A21 A22

)
and S =

( −A12

−A21

)
(5)

and assume that diagonal blocks A11 and A22 are nonsingular. Then, using (2) we can

write the modified eigenvalue problem as

(
A11

A22

)−1 (
λI −A12

−A21 λI

)
u =

1

µ
u (6)

If 1
µ is its largest eigenvalue we can also obtain it using subspace iteration. However,

instead of making solves with the original matrix, we will only need to make two

independent solves with diagonal blocks and a matrix-vector multiplication with off-

diagonal blocks. It will be shown that for Hermitian matrices, under some additional

conditions, the ordering of the eigenspace in the original and modified eigenvalue prob-

lem is the same. Hence, if λ is the smallest eigenvalue of (1), then µ is the smallest

eigenvalue of (2) and the above approach can significantly reduce the computational

costs.

Thus, the modification we are about to describe may simplify difficulties associated

with solving non-Hermitian eigenvalue problems and allow us to expose and explore

available parallelism. It can also be used to isolate a Gershgorin disk of the modified

problem and enables other interesting scalings.

2 Modification of the Eigenvalue Problem

Let us first restate a very convenient definition of Jordan decomposition, see Theorem

1.22 [17].

Lemma 1 Let the matrix A ∈ Cn×n have k distinct eigenvalues λ1, . . . , λk of algebraic

multiplicities m1, . . . , mk. Then there are unique integers mij for i = 1, . . . , k and

j = 1, . . . , li satisfying

mi =

li∑

j=1

mij (7)
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and a nonsingular matrix X such that

X−1AX = diag(J1, . . . , Jk) (8)

where Ji = diag(Jmi1 , . . . , Jmili
) ∈ Cmi×mi and Jmij are Jordan blocks of order mij .

Once again following [17], we partition X = (X1, . . . , Xk), Xi = (Xi1, . . . , Xili)

and Xij = (x
(ij)
1 , . . . ,x

(ij)
mij ).

Suppose that we are interested in finding an eigenvalue λi with multiplicity li and

corresponding eigenvectors x
(ij)
1 , in other words, we must solve the standard eigenvalue

problem

AUi = λiUi (9)

where Ui = (x
(i1)
1 , . . . ,x

(ili)
1 ) ∈ Cn×li .

Let us consider the following generalized eigenvalue problem

(A + S)Vi = µi(αI + S)Vi (10)

where Vi ∈ Cn×li , µi, α ∈ C and S ∈ Cn×n.

Theorem 1 If α = λi then the eigenspace corresponding to the eigenvalue µi = 1 of

the pencil (A+S, αI+S) is equivalent to the eigenspace corresponding to the eigenvalue

λi of the matrix A, in other words,

span(Vi) ≡ span(Ui) (11)

Proof Let Yi ∈ Cn×li . If Yi satisfies (9), then by adding SYi to both sides of (9) we

obtain

(A + S)Yi = (λiI + S)Yi (12)

thus Yi is the eigenspace corresponding to the eigenvalue µi = 1 of the pencil

(A + S, αI + S) in (10), where α = λi. Hence, span(Ui) ⊆ span(Vi).

On the other hand, if Yi satisfies (10) with µi = 1 and α = λi, then upon subtracting

SYi and simplifying we obtain

AYi = αYi (13)

thus (λi, Yi) is an eigenpair of A in (9). Hence, span(Vi) ⊆ span(Ui).

Combining both results we obtain that

span(Vi) ≡ span(Ui) (14)

ut
Notice that in (10) we are modifying the eigenvalue problem (9) with an arbitrary

matrix S, and we are keeping only a selected eigenspace the same, all other eigenvalues

and their corresponding eigenspaces can change. Clearly, to use (10) in practice we must

already know a particular eigenvalue of (9) and be interested only in its eigenspace.

Although in this paper we are focused on general matrices, we point out the fol-

lowing result concerning the ordering of the eigenvalues after the modification, which

applies only to Hermitian matrices.
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Theorem 2 Suppose that A is Hermitian and that αI + S is Hermitian positive defi-

nite. Let the eigenvalues of (9) in increasing order be denoted by

λ1 ≤ λ2 ≤ . . . ≤ λn (15)

and those of (10) by

µ1 ≤ µ2 ≤ . . . ≤ µn (16)

If we choose α = λk then µk = 1. Hence, the eigenspace corresponding to the k-th

eigenvalue of the original eigenvalue problem (9) is identical to the eigenspace corre-

sponding to the k-th eigenvalue of the modified eigenvalue problem (10).

Proof Let λ̂i = λi − λk and the triplet (ν, ζ, π) denote the i-th eigenvalue and inertia

(see Definition 2.4 in [17]), respectively, of the matrix Â = A − λkI. Consider the

eigenvalue problem (10) with α = λk and eigenvalues shifted by −1 that is given by

(A− λkI)Vi = (µi − 1)(λkI + S)Vi (17)

Let P = (λkI + S)−1 and µ̂i = (µi − 1), then we can rewrite (17) as the standard

eigenvalue problem

PÂVi = µ̂iVi (18)

Using Theorem 3 in [12] we conclude that

µ̂i = θλ̂i (19)

where θ is between the smallest and the largest eigenvalue of P . Since θ > 0, the inertia

of Â and PÂ are identical. Thus, the number of eigenvalues µi < 1 is the same as that

for which λi < λk. Similarly for µi = 1 & λi = λk and µi > 1 & λi > λk. Hence, the

position of the selected eigenspace in the ordering of the eigenvalues is preserved. ut
Let us now consider what happens when an approximation to the exact eigenvalue

is used in the modified problem (10). For simplicity, in the theorem below, we assume

that li = 1, in other words, we work with a simple eigenpair (λi,ui).

Theorem 3 Suppose that λiI + S is Hermitian positive definite. Let λ̃i = λi + ε, with

ε sufficiently small, be an approximation to a simple eigenvalue λi. Then using α = λ̃i,

we obtain the approximation (λ̃i, ṽi) to the eigenpair (λi, vi) of (9). The residual of

this approximate eigenpair satisfies

||r̃i||2 ≤ ϕ(ε)||S + λiI||2||vi||2 (20)

where ϕ(ε) is a second degree polynomial in ε.

Proof For clarity we will omit subscripts in this proof. Assume that we know an ap-

proximate eigenvalue λ̃ = λ + ε of the original eigenvalue problem (9). Also, suppose

that ε is sufficiently small so that a simple eigenpair (µ̃, ṽ) exists and that we have

solved the perturbed modified eigenvalue problem

(A + S)ṽ = µ̃(λ̃I + S)ṽ (21)

First, let us treat ε as a perturbation and use the first-order perturbation analysis

outlined for standard eigenvalue problems in [17] to understand how (λ̃, ṽ) is related
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to (λ,v). Denote Ā = A + S, B̄ = λI + S and let n × n nonsingular matrices (v, W )

and (y, Z)H be such that they satisfy

(
yH

ZH

)
Ā (v, W ) =

(
µ 0

0 M

)
(22)

and (
yH

ZH

)
B̄ (v, W ) =

(
1 0

0 I

)
(23)

Then, let us write µ̃ = µ + φ and ṽ = v + Wp. Substituting these expressions into

(21) , simplifying the equation using the fact that Āv = µB̄v and ignoring second- and

higher-order terms in ε, φ, p or combinations of those we obtain

ĀWp ≈ µB̄Wp + µεv + φB̄v (24)

Premultiplying by yH and using (22) and (23) we obtain

φ ≈ −εµθ where θ = yHv (25)

Similarly, premultiplying by ZH and once again using (22) and (23) we obtain

p ≈ εµ(M − µI)−1ZHv (26)

Notice that we are only interested in the eigenspace corresponding to eigenvalue µ = 1.

Thus, when computing the expression for the residual we will simply omit µ from the

formulas (25), (26) and let µ̃ = 1 + φ in (21).

Finally, let us obtain the expression for the residual of the original eigenvalue prob-

lem (9). Using (21),

r̃ = Aṽ− λ̃ṽ = (A + S)ṽ− (λ̃I + S)ṽ = φ((λ + ε)I + S)(v + Wp) (27)

Once again, regrouping second-order terms in ε, φ, p and their combinations, and using

(25), (26) we obtain

||r̃||2 ≤ |ε||θ|||S + λI||2||v||2 + O(|ε|2 + |ε|||p||2) (28)

Unless M − µI or Z in (26) is extremely ill-conditioned, ||p||2 ∼ O(ε). Then,

||r̃||2 ≤ ϕ(ε)||S + λI||2||v||2 (29)

for some second degree polynomial ϕ(ε). ut
Hence, the residual of the eigenvalue problem (9) mainly depends on the absolute

value of the error ε in the approximate eigenvalue, the norm of the eigenvector v, and

the norm of the matrix S + λI. We should point out that, by using the perturbation

theory for the generalized eigenvalue problems in [17], a similar bound on ||r̃||2 can be

obtained even when λiI + S is not Hermitian positive definite, as long as the pencil

(Ā, B̄) is regular.

So far we have introduced the modification of an eigenvalue problem that preserves

an eigenspace. We have studied some of its properties, such as the ordering of the

eigenspace in the modified eigenvalue problem and the effect of using an approximation

to the exact eigenvalue in the transformation. Let us now focus on three particular

choices for modification matrix S that can be useful in practice.
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3 Particular Choices of S

3.1 Diagonal

Let S = D, where D = diag(d1, . . . , dn) is a diagonal matrix. Notice that if D̃ = D+αI

is nonsingular, then from (10) we can write the modified eigenvalue problem as

D̃−1(A + D)Vi = µiVi (30)

Hence, we are scaling the rows of matrix A and augmenting the resulting diagonal.

Such scaling may be useful for very ill-conditioned matrices or can be used to enhance

the dominance of certain rows. Notice that this is different from the diagonal similarity

transformation D that can be applied directly to (9), yielding

D−1ADṼi = µiṼi (31)

where Ṽi = D−1Vi. There are situations where one of these might be preferred over

the other. For example, if we have a row diagonally dominant matrix and know the

particular eigenvalue we seek, the modification (30) can be used to preserve the diagonal

dominance and obtain a better conditioned eigenvalue problem. It can also be used to

isolate the Gershgorin disk of a particular eigenvalue.

3.2 Rank-k Perturbation

Let rank(S) = k, hence we can express S = ZY H , where Z, Y ∈ Cn×k are tall matrices.

Then, the modified eigenvalue problem (10) can be rewritten as

(A + ZY H)Vi = µi(αI + ZY H)Vi (32)

Assume for simplicity that αI + ZY H is nonsingular. Notice that if we know the

eigenvalue of interest we can compute its eigenspace by solving a rank-k modification

(32) of the original eigenvalue problem.

This approach, for example, could potentially contribute to the computation of

PageRank [10,3] in the field of information retrieval. Using the notation of [3], recall

that in this problem we are interested in finding the eigenvector corresponding to the

eigenvalue 1 of an irreducible stochastic matrix

Pc = cP̃ + (1− c)evT (33)

where P̃ is a reducible stochastic matrix, v is the personalization vector, e = (1, . . . , 1)T

and constant c ∈ (0, 1).

Once again, it is worth noticing that it is completely different from the rank-one

perturbation approach described in [7,4,1] where the knowledge of the entire spectrum

is used to give an expression for the eigenpairs of the modified eigenvalue problem.
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3.3 Hermitian or skew-Hermitian part

Let us rewrite matrix A in terms of its Hermitian AH = 1
2 (A+AH) and skew-Hermitian

ASH = 1
2 (A−AH) parts, so that

A = AH + ASH (34)

Then, choosing S = −AH in (10) we obtain

ASHVi = µi(αI −AH)Vi (35)

Using the fact that AHH = iASH is Hermitian, premultiplying both sides by i and

letting µ̃i = iµi we obtain the Hermitian generalized eigenvalue problem

AHHVi = µ̃i(αI −AH)Vi (36)

It is clear for this particular choice of S that if the (premultiplied by i) skew-Hermitian

part of the non-Hermitian eigenvalue problem is positive definite or if the spectrum

σ(AH) ⊆ (−∞, α), one of the matrices in the generalized Hermitian eigenvalue problem

inherits positive definiteness. In this case a variety of Hermitian eigenvalue solvers [8,

13,11] can be applied to solve the modified eigenvalue problem (36) and obtain the

eigenspace of interest.

4 Numerical Experiments

To illustrate the proposed modifications of the eigenvalue problem let us focus on three

particular choices of S discussed earlier: first S = D second S = ZY H and finally

S = −AH . For clarity for the first and second choices we will work with real 5 × 5

and 7 × 7 matrices, respectively, while in the third case general sparse nonsymmetric

matrices will be used. Matlab is used for numerical computations.

4.1 Experiment 1 - Diagonal Dominance

Consider the matrix

A =




2 − 3
2

− 5
2 2 − 3

2
− 5

2 2 − 3
2

− 5
2 2 − 3

2
− 5

2 2




(37)

Notice that it is not diagonally dominant and its eigenvalues are

−1.35, 0.06, 2.00, 3.94, 5.35 (38)

Let us consider the diagonal modification D = diag(0, 0, 18, 0, 0) with α = 2.0. Then

the matrix in the modified eigenvalue problem (30) is written as

D̃−1(A + D) =




1 − 3
4

− 5
4 1 − 3

4
− 5

40 1 − 3
40

− 5
4 1 − 3

4
− 5

4 1




(39)
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It has a selected diagonally dominant row and its eigenvalues are

−0.06, 0.03, 1.00, 1.97, 2.10 (40)

with eigenvector corresponding to eigenvalue 1.0 in (39) being the same as eigenvector

corresponding to eigenvalue 2.0 in (37).

4.2 Experiment 2 - Gershgorin Disk

Consider the matrix

A =




10 −3

−6 20 −3

−6 30 −3

−6 40 −3

−6 50




(41)

It has eigenvalues

8.34, 19.87, 30.00, 40.13, 51.66 (42)

Once again, let us consider the diagonal modification D = diag(0, 0, 270, 0, 0) with

α = 30.0. Then the matrix in the modified eigenvalue problem (30) is

D̃−1(A + D) =




1
3 −0.1

−0.2 2
3 −0.1

−0.02 1 −0.01

−0.2 4
3 −0.1

−0.2 5
3




(43)

Notice that the third row in (43) has Gershgorin disk that is isolated from the rest, see

Fig. 1. For completeness we mention that the matrix above has eigenvalues

0.28, 0.71, 1.00, 1.29, 1.72 (44)

and that the eigenvector corresponding to eigenvalue 1.0 of the modified and eigenvalue

30.0 of the original problem match.

-
6

µ´
¶³

&%

'$
f

&%

'$

ÁÀ

Â¿

1
3

p
2
3

p
1

p
4
3

p
5
3

p

Fig. 1 Plot of Gershgorin disks of the matrix in (43)
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4.3 Experiment 3 - Rank-k Update

Consider the tridiagonal matrix resulting from the standard second-order space central

discretization of the one dimensional laplace operator with seven points given below

A =




2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2




(45)

Its eigenvalues, rounded up to two digits of accuracy, are

0.20, 0.75, 1.55, 2.45, 3.25, 3.80 (46)

Suppose we are interested in its smallest eigenvalue α = 0.20. Then, the modified

eigenvalue problem (32) can be written as

1

µ1
v1 =




2 −1

−1 2 −1

−1 2

2 −1

−1 2 −1

−1 2




−1 


0.20I +




0 0

0 0

1 0

0 1

0 0

0 0




(
0 0 0 1 0 0

0 0 1 0 0 0

)




v1 (47)

Notice that using Theorem 2 we conclude that µ1 ≡ 1 is the smallest eigenvalue of the

modified eigenvalue problem (32) and consequently 1
µ1

is the largest eigenvalue of (47).

Hence, we can use a subspace iteration method, which only requires two independent

solves, that can be performed in parallel, and a vector scaling to find the eigenvalue of

interest. Notice that if we use subspace iteration on the original eigenvalue problem

1

λ1
u1 = A−1u1 (48)

we would need to make solves with the entire matrix A in (45), which is more computa-

tionally expensive. It is well known that eigenvalues converge faster than eigenvectors,

so as mentioned earlier this approach can be used when the eigenvalue has already

been obtained, but eigenvector has not yet been found with sufficient accuracy.

4.4 Experiment 4 - Non-Hermitian to Hermitian

Finally, consider the two randomly chosen nonsymmetric matrices N1 and N2 from

The University of Florida Matrix Collection [6], with some of their properties and the

pattern of nonzero elements shown in Tab. 1 and Fig. 2-3, respectively.

Table 1 Matrices

Matrix Size Nonzeros ||.||2 Application
N1: Graham/graham1 9,035 335,472 8.2e+04 Comp. Fluid Dynamics
N2: Hollinger/mark3jac020sc 9,129 52,883 2.3e+06 Economics
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0 2000 4000 6000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

nz = 335472

Fig. 2 Matrix N1

0 2000 4000 6000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

nz = 52883

Fig. 3 Matrix N2

The eigenvalues of N1 and N2 are extremely clustered with the five smallest in

absolute value shown in arrays E
(5)
1 and E

(5)
2 of (49), respectively:

E
(5)
1 =




6.75

6.76

16.7

16.7

20.8



· 10−10 and E

(5)
2 =




1.84

1.86

1.86− 0.00469i

1.86 + 0.00469i

3.68



· 10−6 (49)

Let us suppose that we are interested in the second
(
6.76 · 10−10,u

(N1)
2

)
and third(

(1.86− 0.00469i) · 10−6,u
(N2)
3

)
eigenpairs of the nonsymmetric matrices N1 and N2,

respectively. Then computing the eigenpairs
(
i,v

(N1)
2

)
and

(
i,v

(N2)
3

)
of the general-

ized Hermitian eigenvalue problem (36) we obtain

||u(N1)
2 − v

(N1)
2 ||2 = 1.65 · 10−6 (50)

||u(N2)
3 − v

(N2)
3 ||2 = 2.24 · 10−3 (51)

The accuracy is lower in (51), because clustering of the eigenvalues of the original

matrix leads to clustering of the eigenvalues of the modified eigenvalue problem. In fact

in the modified eigenvalue problem resulting from N2 the three eigenvalues closest to

i are
0.000000000000074 + 0.999999999999974i

−0.000000000002871 + 0.999999999996976i

−0.000000000010112 + 1.000000000003275i

(52)

Suppose that in the process of looking for the eigenvector associated with i, we have

computed the eigenvectors Z =
(
v

(N2)
3 ,v

(N2)
4 ,v

(N2)
5

)
associated with these three

eigenvalues. Then, we may use them to construct a better approximation to u
(N2)
3

by solving the linear least squares problem

Zζ = u
(N2)
3 (53)

with new approximation to the eigenvector u
(N2)
3 being v̄

(N2)
3 = Zζ. The accuracy of

the resulting approximation is

||u(N2)
3 − v̄

(N2)
3 ||2 = 6.14 · 10−6 (54)
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which is sufficient for most of the applications. Notice that in all of the above examples

we were indeed able to reduce the solution of a non-Hermitian eigenvalue problem to

the solution of a more simple generalized Hermitian eigenvalue problem.

5 Conclusion

In this paper, we explored the modification (A+S)Vi = µi(αI +S)Vi of the eigenvalue

problem AUi = λiUi. Using α = λi we noticed that it preserves a selected eigenspace

and explored some of the choices for S. The main results described the modification

that allows us to transform a non-Hermitian into a generalized Hermitian eigenvalue

problem as well as the rank-k update, making possible the application of algorithms

available only for Hermitian problems and exposing available parallelism, respectively.

We have analyzed the effects of using approximate eigenvalues in the transformation

and shown when the ordering of the eigenspace is preserved. Finally, numerical exper-

iments validating the theoretical results were also presented.
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