
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2009

Supporting Real-world Activities in Database Management Supporting Real-world Activities in Database Management

Systems Systems

Mohamed Eltabakh

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Yasin Laura-Silva

Mourad Ouzzani

Report Number:
09-001

Eltabakh, Mohamed; Aref, Walid G.; Elmagarmid, Ahmed K.; Laura-Silva, Yasin; and Ouzzani, Mourad,
"Supporting Real-world Activities in Database Management Systems" (2009). Department of Computer
Science Technical Reports. Paper 1718.
https://docs.lib.purdue.edu/cstech/1718

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Supporting Real-world
Activities in Database Management

Systems

Mohamed El Tabakh
Walid Aref

Ahmed Elmagarmid
Yasin Silva

Mourad Ouzzani

CSD TR #09-001
March 2009

Supporting Real-world Activities in Database Management
Systems

M.Y. Eltabakh, W.G. Aref, A.K. Elmagarmid, Y. N. Silva, M. Ouzzani
Computer Science Department, Purdue University

{meltabak, aref, ake, ysilva, mourad}@cs.purdue.edu

ABSTRACT
Databases are integral to many application domains in
which the cycle of processing the data is complex and
may involve real-world activities that are external to the
database, e.g., wet-lab experiments, manual measurements,
and collecting instrument readings. As a result, an up-
date operation in the database may render dependent data
items invalid or inconsistent until the real-world activities
involved in deriving these items are re-performed and the
output results are reflected back into the database. These
real-world activities may take time to prepare for and to
perform, and hence introduce inherently long time delays
between the updates. The presence of these long delays
between the updates along with the need for the interme-
diate results to be instantly available for querying makes
integrating these real-world activities within the database
systems a challenging task. In this paper, we address these
challenges and propose techniques that reflect updates im-
mediately into the database while keeping track of the de-
pendent and potentially invalid data items until they are
re-validated and reflecting their status in query results. The
proposed system includes: (1) semantics and syntax for in-
terfaces through which users can register real-world activi-
ties into the database system and express the dependencies
of data items on these activities. (2) introducing new op-
erator semantics that alert users when the returned query
results contain potentially invalid or out-of-date data, and
enable evaluating queries on either valid data only (no false
positives), or both valid and potentially invalid data (includ-
ing false positives), and (3) mechanisms for data invalidation
and revalidation. The paper addresses several design issues
and proposes directions for future work.

1. INTRODUCTION
In many application domains such as scientific experimen-

tation in biology, chemistry, and physics, the cycle of pro-
cessing the data and generating new results is complex and
may involve sequences of human interactions and real-world

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

activities that are external to the database, e.g., wet-lab ex-
periments, manual measurements, and collecting instrument
readings. In traditional derived data, e.g., deriving age from
the date-of-birth attribute, simple procedures internal to the
database system can be coded and executed automatically to
maintain the consistency of the data inside the database. In
contrast, when the derivations among the data items depend
on real-world activities, these derivations cannot be coded
within the database. As a result, updating a database value
will render all the dependent and derived values invalid until
the real-world activity involved in the dependency, e.g., the
wet-lab experiment, is re-executed and its output is propa-
gated back and updated into the database. Because of this
mandated delay in propagating the updates, parts of the
underlying database remain inconsistent while it still needs
to be available for querying. As a consequence, the qual-
ity of the returned query results becomes doubtful, e.g., the
query result may contain potentially invalid data. Our fo-
cus in this paper is on supporting real-world activities inside
the database systems and maintaining the consistency of the
data that depend on these activities.

As a driving example, consider the scenario presented in
Figure 1 from the biology domain. The gene binding site at-
tribute (BindingSite) depends on the gene start position at-
tribute (StartPos) through a lab experiment. Also, the gene
function attribute (GFunction) depends on both the gene
sequence (GSeq) and gene direction (GDirection) attributes
through another lab experiment. Updating the start posi-
tion of the 2nd and 4th genes (underlined values in StartPos)
will invalidate the corresponding binding sites (the dotted
cells) until the required lab experiment is re-conducted to
find the new binding sites in the genome sequence. Simi-
larly, updating the sequence of the 3rd and 5th genes (un-
derlined values in GSeq) will invalidate the corresponding
gene functions (the dotted cells) until they are re-evaluated.
Consider now applying query Q1 (Figure 1(b)) on the cur-
rent instance of the database. Although the query result
seems correct, it is missing crucial information that affects
the quality of the answer as well as any decisions that are
based on the result. For example, (1) the reported value
‘TCCA...’ in the result is potentially invalid because the
start position on which this value depends is modified and
the involved experiment is not yet re-conducted. (2) the re-
ported values ‘JW0015, GTAA...’ are up-to-date, however,
the tuple itself qualifies the query predicates based on the
outdated value ‘F2’ in the third tuple. Hence, the tuple’s
existence in the query answer is questionable, and (3) the
tuple corresponding to gene ‘JW0019’ does not qualify for

GTAA…

AAAT…

CCGG…

GTAA…

TCCA…

AATG…

Binding site

-

+

-

+

+

+

GDirection

17404

1905

31166

21112

10916

5130

StartPos

F7TTCGJW0012

F5TGTG…JW0019

F4CGTT…JW0018

F2GGCT…JW0015

F2GGTT…JW0014

F1TGCT…JW0013

GFunctionGSeqGID

Select GID, BindingSite
From Gene
Where GFunction = “F2”;

GID BindingSite

JW0014 TCCA…
JW0015 GTAA…

(a) GENE table

(b) Annotating query results

Query Q1 Q1 Answer

GeneFunExp

OutdatedUp-to-date

Evaluated based on
Outdated values

Evaluated based on
Up-to-date values

Experiment

Figure 1: Examples of data dependencies

the query, however, the function value of that gene is under
re-evaluation, and it is possible that this gene will satisfy
the query when its function is re-evaluated.

With the current state of the art, users may consider one
of the following two options: (1) postpone the database up-
dates until all dependent processes are executed and their
outputs become consistent, then reflect these updates to the
database at once (may involve unbounded long delays), or
(2) reflect the updates immediately to the database and
(temporarily) compromise the consistency of the derived
data (and may lose track of the outdated data that needs re-
evaluation). The former option is in fact compromising the
consistency as well because users postpone reflecting valid
updates to the database. Both options have serious prob-
lems as they delegate tracking the dependencies and main-
taining the data consistency to the end-users instead of the
database management system. In this paper, we propose
a third, more appealing, option where users can reflect the
updates immediately to the database, i.e., instant availabil-
ity of the data, while the DBMS keeps track of the derived
data by marking them as potentially invalid (outdated) and
reflecting them in the queries’ results until the external ac-
tivities are re-executed and the outdated values are updated.
Hence, the consistency of the data is not compromised.

The proposed system enables users to register real-world
activities into the database and to define dependencies
among data items based on these activities. We catego-
rize dependencies into computable and real-world dependen-
cies. Computable dependencies involve derivation functions
that can be executed by the database system, e.g., user-
defined functions created inside the database. On the other
hand, real-world dependencies, involve real-world activities
and human interactions that cannot be coded within the
database, e.g., the wet-lab experiment that derives the gene
function from its sequence (Figure 1(a)). The main contri-
butions of the proposed system are summarized as follows:
• Defining dependencies based on activities: The pro-
posed system enables users to register activities into the
database system and to express the dependencies among
the data items using these activities. Dependencies can be

column-based, i.e., every cell in the column follows the same
dependency, or cell-based, i.e., different cells in a given col-
umn may follow different dependencies. Once the depen-
dencies are defined in the database, they are automatically
enforced by the DBMS.
• Tracking outdated data: A major benefit for defining
real-world activities and dependencies inside the database is
that the DBMS will keep track of the potentially outdated
data items that are waiting on external activities to be per-
formed. When a database value I (or an activity A) gets
modified, all values that depend on I (or A) are marked as
outdated to indicate that these values are potentially invalid
and need re-evaluation. Outdated data can be reported to
end-users for verification.
• Introducing new query operators: It is important
to alert users of any potentially invalid data in the returned
query results. Moreover, users may want to query only valid
data and avoid building on any potentially invalid attribute
values. In the proposed system, we introduce new query op-
erators to: (a) reflect the status of the values in the query
results as either up-to-date or outdated, (b) evaluate queries
on only valid data and exclude any potentially invalid data
(no false positives), or (c) evaluate queries on both valid
and potentially invalid data (be conservative and include
false positives).
• Defining curation and manipulation mechanisms:
We propose systematic mechanisms for invalidating and re-
validating the data inside the database. Moreover, we intro-
duce new operators, termed curation operators, to manip-
ulate user-defined dependencies among the database items.
For example, the order in which the outdated data are reval-
idated is important because a database item I cannot be
revalidated until all other items on which I depends on are
up-to-date. The curation operators help identify the proper
order of revalidation.

The rest of the paper is organized as follows. Section 2
overviews related work. Section 3 presents the needed def-
initions and axioms. Sections 4 and 5 introduce the new
query operators as well as the invalidation and revalidation
operators, respectively. In Section 6, we present several de-
sign issues. Extensions to the proposed model are discussed
in 7. Section 8 contains concluding remarks and directions
for future work.

2. RELATED WORK
The theory of functional dependencies (FDs), e.g., [11,

15], and its usage in ordinary databases are orthogonal to the
problem highlighted in this paper. Functional dependencies
provide systematic mechanisms for decomposing and nor-
malizing a database schema to achieve a better database de-
sign. However, even with a good schema design and follow-
ing the decomposition and normalization rules, the inconsis-
tency problem of the data derived from real-world activities
still exists. Several extensions to functional dependencies
have been proposed to address other issues such as schema
design in uncertain databases, e.g., [13], view updates and
maintenance of materialized views, e.g., [12], and data clean-
ing and record linkage, e.g., [8]. However, none of this past
work can be applied directly to the problem at hand. Other
works have been proposed to support long-running trans-
actions, e.g., [10], by loosening the ACID properties and
avoiding locks, using optimistic concurrency control tech-
niques, and using compensating transactions in the case of

failures. However, these techniques still expose invalid data
for querying without notification mechanisms or special pro-
cessing and hence do not solve the problems raised in this
paper. Extensions to current DBMSs to process events have
been proposed in [7, 16]. In these event processing systems,
data tuples are viewed as streams of temporal events. The
main functionalities include monitoring the coming events
(tuples) and detecting the occurrences of pre-defined event
sequences. Unlike these systems, the proposed model does
not view the data tuples as events, however, there are ex-
ternal events, e.g., conducting a wet-lab experiment, that
affect the status and consistency of the data.

Another related topic is in the area of active databases,
e.g., [5, 6, 19, 20], where the DBMS supports mechanisms
to respond automatically to events taking place either in-
side or outside the database. The outside events are ul-
timately mapped to operations that the database system
can capture and respond to, e.g., insertion, deletion, up-
date, calling a user-defined function, or a timed operation.
The most common approach used by these systems is the
Event-Condition-Action rules (ECA). Rule processing is in-
tegrated in many database systems, e.g., Postgres [14] and
Starburst [17]. Unlike the active database model, in the
proposed model, a change inside the database may trigger
an execution (or re-execution) of a real-world activity. Until
this activity is performed and its result is reflected back into
the database, the system needs to keep track of the poten-
tially outdated data items and reflect their status over query
results. Active databases do not address these challenges.

Provenance management is a related research challenge
that has been studied extensively in previous works to track
the origin of the data and the process by which the data is
generated, e.g., [1, 2, 3, 4, 18]. The two main approaches for
representing provenance information are inversion-based and
annotation-based. The inversion-based approach computes
the provenance on-the-fly using inverted functions. This
approach is not applicable to the addressed problem since
we deal with external functions that cannot be executed
by the database system in the first place. The annotation-
based approach materializes the provenance information as
annotations and enables users to both propagate the anno-
tation along with the query results and query the data based
on the annotation information. However, annotation-based
techniques do not utilize the provenance information during
data updates and hence they neither keep track of the out-
dated data that needs re-evaluation nor integrate the status
of the data (up-to-date or outdated) in query processing.
Therefore, current provenance management techniques do
not address the challenges raised in this paper.

3. MODELING DEPENDENCIES AND AC-
TIVITIES

In this section, we present the needed definitions and ax-
ioms for activities and dependencies.

3.1 Definitions
Function (F): A function is a general term that refers to

either a real-world activity or a user-defined function in the
database. A function takes one or more input parameters
and produces one output parameter. Each function F has a
set of properties that specify (1) the function name, (2) the
input and output types, and (3) the function type.

Similar to defining functions that are written in SQL, C,
or Java languages, we extend the Create Function command
to support a new type of functions called real-world activity.
The DBMS interprets real-world activity functions as
non-executable functions. Dependencies that involve this
type of functions are interpreted as real-world dependencies.
The following command defines a real-world activity:

Create Function <activity name> (<input types>)

Returns <output type> As real-world activity;

For example, experiment GeneFunExp in Figure 1(a) is
defined in the database using the following command:

Create Function GeneFunExp (text, char)

Returns text As real-world activity;

Dependency Instance (DI): A dependency instance is
a dependency between a set of input parameters (database
cells) and an output parameter (database cell) through a spe-
cific execution of a function. A dependency instance is de-
fined as DI= (F, SP, DP), where:

• F: The function involved in the dependency.

• SP (Source Parameters): An ordered set of
database cells that are the input parameters to F .

• DP (Destination Parameter): A database cell that
is the output parameter from F .

Throughout the paper, we focus on real-world dependen-
cies. However, in order to properly maintain the consistency
of the data, both real-world and computable dependencies
need to be defined in the database. The reason is that when
a database item I is invalidated (marked as outdated), all
items that depend on I either through real-world or com-
putable dependencies need to invalidated as well. The key
difference between the two dependency types is that when I
is re-validated, items that depend on I through computable
dependencies will be automatically validated whereas items
that depend on I through real-world dependencies will re-
main invalid until the involved real-world activities are per-
formed and the items are explicitly validated.

Analog to defining database constraints, we define the de-
pendencies inside the database through extensions to both
the Create Table and Alter Table commands. In the cases
where the source and destination attributes of the depen-
dency belong to the same table (or the source table(s) are
already created in the database), the dependency can be de-
fined as part of the Create Table command of the destination
table. Otherwise, the dependency can be defined indepen-
dently using the Alter Table command over the destination
table of the dependency. To define new dependencies, the
Add Dependency construct is added to the Create Table and
Alter Table commands as follows:

The dependency is defined over table R that contains
the destination attribute of the dependency R.c0. The
source tables, i.e., T1, T2, ..., can be the same as table R or
different. The optional Where clause contains predicates
over the source and destination tables to specify (if needed)
the exact table cells that are linked together. If the Where
clause is omitted, then the source and destination tables
must be the same. In this case the source and destination
cells are assumed to belong to the same tuple. In the case of

Alter Table <R>
Add Dependency Using <func_name>
Source <T1.c1[, T2.c2, ...] >
Destination <R.c0>
[Where <predicates>]
[Invalidate Destination] ;

Create Table <R>
(

<columns_definitions >
….
Add Dependency Using <func_name>
Source <T1.c1[, T2.c2, ...] >
Destination <R.c0>
[Where <predicates>]

);

……………

+

-

+

GDirection

F1GGCT……JW0015

F2GGTT……JW0014

F1TGCT……JW0013

GFunctionGSeq…GID

GENE table

P3MAKQ……JW0013

…

P2

P1

PFunction

………

MNYS……JW0014

MGKI……JW0015

PSeq…GID

PROTEIN table

A-Prediction

B-Prediction

ProteinFun
Exp

Figure 2: Dependencies across relations

Alter Table, the destination table may already contain data.
Therefore, the optional clause Invalidate Destination is
used to specify whether or not to invalidate the destination
cells of the defined dependencies.

Example 1: Refer to the GENE table in Figure 1(a)). The
following extended Create Table command defines the de-
pendency between the gene function and both the gene se-
quence and direction through experiment GeneFuncExp.

Create Table GENE(

GSeq text,

GDirction char,

GFunction text,

...

ADD Dependency Using GeneFunExp

Source GSeq, GDirection

Destination GFucntion);

Example 2: The example in Figure 2 shows dependencies
that involve more than one table. Assume that the protein
sequences corresponding to genes with function ‘F1’ are in-
ferred using prediction tool A-Prediction, while the remain-
ing proteins (corresponding to genes with function other
than ‘F1’) are inferred using prediction tool B-Prediction.
Notice that A-Prediction and B-Prediction have to be pre-
viously defined in the database using the Create Function
command each with its own signature. The following com-
mand creates these dependencies.

Create Table Protein(

GID text,

PSeq text,

GFunction text,

...

ADD Dependency Using A-Prediction

Source Gene.GSeq, Gene.GDirection

Destination Protein.PSeq

Where Protein.GID = Gene.GID

And Gene.GFunction = ‘F1’,

ADD Dependency Using B-Prediction

Source Gene.GSeq

1

2 3

5 6 87

9

4

10

11

12

computable Dependency

real-world Dependency

RecomputableClosure(1) = {2, 5}
OutdatedClosure(1) = {3, 4, 6, 7, 8, 9, 10}

RecomputableClosure(3) = {6}
OutdatedClosure(3) = {7, 9, 10}
ReadClosure(3) = {2}

ReadClosure(1) = {2, 11, 12}

Figure 3: Examples of data closures

Destination Protein.PSeq

Where Protein.GID = Gene.GID

And Gene.GFunction != ‘F1’);

Dependencies can also be added after tables creation (and
possibly after inserting data into the tables) using the Al-
ter Table command. The Add Dependency construct may
implicitly define one or more dependency instances. For ex-
ample, the command in Example 1 implicitly defines one
dependency instance for each tuple in table GENE. Whether
or not each of these dependency instances will be created
(materialized) inside the database is a design issue that we
address in Section 6.

3.2 Axiomatization of Dependencies
In this section, we introduce axioms for user-defined de-

pendencies.

3.2.1 The Cascading Property
Definition: Dependency instance DI1 is cascaded by de-

pendency instance DI2 (DI1 → DI2) if the destination pa-
rameter of DI1 belongs to the source parameters of DI2

(DI1.DP ⊆ DI2.SP).
The cascading property is used to form a composition of

two or more dependencies where the output of the prede-
cessor is the input to the successor. Based on this property,
cycles are detected (Section 3.2.2) and closures of attributes
are computed (Section 3.2.3).

3.2.2 The Cyclic Property
Definition: Dependency instances DI1, DI2, ..., DIn

form a cycle if DIi → DIi+1, for 1 ≤ i < n, and DIn →
DI1.

In the proposed model, cyclic dependency instances are
not allowed. That is, there cannot be a sequence of deriva-
tions that leads to a cycle. If dependency DIj is to be
defined in the database and will form a cycle with existing
dependencies, then the DBMS will reject DIj .

Since cycles are not allowed in the database, the following
property holds.

Property 1: The user-defined dependency instances cre-
ate a set of acyclic dependency graphs (DAGs) among the
database items.

3.2.3 The Closure of Attributes and Functions
For a given database cell C, we define

InputParameters(C) to be the set of database cells
that are read to re-compute C. If C is an output of an
executable function F, then InputParameters(C) is the set
of input parameters to F. Otherwise, InputParameters(C)
is empty. Given a set of user-defined dependency instances,
we define three types of closures for C as follows (See
Figure 3 for an example):

RecomputableClosure(C): is the set of database cells
{C′} that are re-computed when C is modified. The set
{C} can be reached from C using the cascading property of
dependency instances that involve only executable functions.

OutdatedClosure(C): is the set of database cells {C′}
that are marked as outdated when C is modified. The set
{C′} can be reached from C using the cascading property
of dependency instances that involve at least one real-world
activity function.

ReadClosure(C): is the set of database cells that are
read to re-compute the RecomputableClosure(C) when C

is modified. The ReadClosure(C) is the union of the
InputParameters(C′), ∀ C′ ∈ RecomputableClosure(C).

The same types of closures are defined for functions.
Function closures are useful in tracking the data items
that need to be re-computed or invalidated when users, for
example, upgrade or replace an existing function by another
one or a newer version. Lemma 1 and Lemma 2 state the
function closures in terms of the attributes closures for
real-world and executable functions, respectively.

Lemma 1: For a real-world activity function F:
RecomputableClosure(F):= φ,

ReadClosure(F):= φ,

OutdatedClosure(F):= C ∪ OutdatedClosure(C) ∪

RecomputableClosure(C), ∀ output cell C from F.

Lemma 2: For an executable function F:
RecomputableClosure(F):= C ∪ RecomputableClosure(C),

∀ output cell C from F,

ReadClosure(F):= ∪ InputParameters(C′),

∀ C′ ∈ RecomputableClosure(F),

OutdatedClosure(F):= OutdatedClosure(C),

∀ output cell C from F.

3.2.4 The Overriding Property
Definition: Dependency instance DI1 is said to override

dependency instance DI2 (DI1 ; DI2) if both instances
have the same destination parameter (DI1.DP = DI2.DP)
and DI1 is defined after DI2.

Dependency instances capture the way the data are de-
rived. As time passes, the derivation mechanisms among the
data items may change, and hence the dependencies need
to change. The proposed model allows newly defined de-
pendencies to override existing dependencies to indicate a
change in the derivation of the underlying data.

Example 3: Continuing with Example 1, assume that a
biologist uses a new experiment, called GeneFunExpNew, to
infer the function of genes JW0013 and JW0014 (The first
two rows in table GENE presented in Figure 1(a)). Unlike the
old experiment, the new experiment depends only on the
gene sequence as input to infer the gene function. In this
case, the derivations of these gene functions no longer follow
the dependencies defined in Example 1. We need to define
the GeneFunExpNew experiment in the database, and then
create the new dependencies as follows:

Alter Table Gene

ADD Dependency Using GeneFunExpNew

Source GSeq

Destination GFucntion

Where GID In (‘JW0013’, ‘JW0014’)

Invalidate Destination;

(a) GENE table

FF

Predicate 2Predicate 1

F-ve

FF

+ve+ve

-veT

FF

GFunction = “F2”

AND
BindingSite=
“GTAA…”

GFunction =
“F2”

FF

Predicate 2Predicate 1

F-ve

FF

+ve+ve

-veT

FF

GFunction = “F2”

AND
BindingSite=
“GTAA…”

GFunction =
“F2”

(b) Predicate Evaluation

GTAA…

AAAT…

CCGG…

GTAA…

TCCA…

AATG…

Binding site

-

+

-

+

+

+

GDirection

17404

1905

31166

21112

10916

5130

StartPos

F7TTCGJW0012

F5TGTG…JW0019

F4CGTT…JW0018

F2GGCT…JW0015

F2GGTT…JW0014

F1TGCT…JW0013

GFunctionGSeqGID

GTAA…

AAAT…

CCGG…

GTAA…

TCCA…

AATG…

Binding site

-

+

-

+

+

+

GDirection

17404

1905

31166

21112

10916

5130

StartPos

F7TTCGJW0012

F5TGTG…JW0019

F4CGTT…JW0018

F2GGCT…JW0015

F2GGTT…JW0014

F1TGCT…JW0013

GFunctionGSeqGID

GeneFunExpExperiment

Figure 4: Examples of predicate evaluation

Notice that the newly defined dependencies override the
existing dependencies only for the two genes JW0013 and
JW0014. All the other gene functions still follow the depen-
dencies defined in Example 1. The Invalidate Destination
clause causes the gene functions of the specified genes to be
marked as outdated until their new values are reflected into
the database.

4. DATA QUERYING
In the proposed model, parts of the underlying database

are marked as valid (up-to-date), while other parts are
marked as potentially invalid (outdated). Therefore, it is
important that the querying system reports back, as part
of the query results, the status information of the values in
the results, e.g., whether each value is up-to-date or out-
dated. Moreover, some users may prefer to avoid query-
ing any suspicious (outdated) data until being revalidated
even if these data satisfy the query, i.e., avoid getting false
positive results. Other users may prefer conservative an-
swers and prefer getting even suspicious data that have the
potential to satisfy their queries, i.e., include false nega-
tive results. In this section, we introduce new operators
to support these data querying capabilities. Conceptually,
every table cell in the database has a status flag (0 =
up-to-date, 1 = outdated) in addition to the cell value.
That is, Relation R with n attributes is represented as:
R = {r =< (C1.value, C1.status), ..., (Cn.value, Cn.status) >}.

4.1 Predicate Evaluation
The evaluation of a predicate over a tuple typically results

in a boolean value True or False. With the status of each
value in the database as up-to-date or outdated, we extend
the predicate evaluation to return one of four possible val-
ues: True (T), False (F), Potentially false positive (+ve),
and Potentially false negative (-ve) (See the example in Fig-
ure 4). The True value indicates that the tuple qualifies the
predicates based on only up-to-date values, and hence, it is
certainly part of the answer. The False value indicates that
the tuple disqualifies the predicates based on only up-to-date
values, and hence, it is certainly not part of the answer. The
Potentially false positive value indicates that the tuple qual-
ifies the predicates but based on outdated values, and hence,
it is potentially false positive. The Potentially false nega-
tive value indicates that the tuple disqualifies the predicates
based on outdated values, and hence, it is potentially false
negative. Figure 4 illustrates two examples of evaluating
predicates over the GENE table. Since the rules for evalu-

T +ve -ve F

T T +ve -ve F

+ve +ve -ve F

-ve -ve F

F F

T +ve -ve F

T T T T T

+ve +ve +ve +ve

-ve -ve -ve

F F

T +ve -ve F

F -ve +ve T

Conjunction Disjunction

Negation

T if P(Ci.value, Ck.value) = True & (Ci.status = 0 & Ck.status = 0)
F if P(Ci.value, Ck.value) = False & (Ci.status = 0 & Ck.status = 0)

P() = +ve if P(Ci.value, Ck.value) = True & (Ci.status = 1 || Ck.status = 1)
-ve if P(Ci.value, Ck.value) = False & (Ci.status = 1 || Ck.status = 1)

(a) Binary predicate P over columns Ci and Ck

(b) Truth tables for multiple predicates

*Up-to-date � Status = 0
*Outdated � Status = 1

Figure 5: Predicate evaluation rules

ating unary predicates (column <op> constant) are trivial,
we present the rules for evaluating only binary predicates
(column <op> column) in Figures 5(a). The truth tables
for evaluating multiple predicates with conjunction, disjunc-
tion, and negation are presented in Figure 5(b). For exam-
ple, consider the second tuple in the GENE table against Pred-
icate2 (Figure 4). The tuple satisfies the predicate (GFunc-
tion = ‘F2’) with up-to-date value, and hence that part
evaluates to T. However, the tuple disqualifies the predicate
(BindingSite = ‘GTAA...’) with an outdated value, and
hence that part evaluates to -ve in contrast to false F. The
conjunction of these two sub-predicates evaluates the entire
tuple to -ve according to Figure 5(b).

4.2 New Query Operators
• Selection: With the extended semantics of predicate

evaluation, the selection operator is extended to return the
tuples of interest. Tuples that evaluate to T, +ve, or -ve are
of interest since they either satisfy or have the potential to
satisfy the query. However, it is clear that returning these
tuples altogether from one operator can be very misleading
and hard to interpret. In the proposed model, we define
three separate types of selection operators, namely, True
Selection (σT), False-positive Selection (σ+), and False-
negative Selection (σ−), that return tuples that evaluate
to each of the values T, +ve, or -ve, respectively. The
algebraic expressions of the selection operators are as follow.

True Selection(σT,P): Selects tuples that evaluate
predicate P to T.
σT,P (R) = {r =< (C1.value, C1.status), ..., (Cn.value, Cn.status),

|P (r) = T}

False-positive Selection(σ+,P): Selects tuples that
evaluate predicate P to +ve.
σ+,P (R) = {r =< (C1.value, C1.status), ..., (Cn.value, Cn.status),

|P (r) = +ve}

False-negative Selection(σ−,P): Selects tuples that
evaluate predicate P to -ve.
σ−,P (R) = {r =< (C1.value, C1.status), ..., (Cn.value, Cn.status),

|P (r) = −ve}

Query plans may involve one or more types of selection op-
erators to return the desired tuples. For example, referring

to Figure 4, the expression σT,P (GENE) ∪ σ+,P (GENE),
where predicate P is (GFunction = ‘F2’), will return the
second and third tuples from the GENE table. Notice that
the standard selection operator (σP) is equivalent to the
union of the two operators σT,P and σ+,P .

• Inner Join: The evaluation of a join predicate over a
pair of tuples r and s results in one of four possible values,
i.e., T, +ve, -ve, or F. Join predicates are binary predicates
and hence they follow the evaluation rules presented in
Figure 5(a). We define three types of join operators,
namely, True Join, False-positive Join, and False-negative
Join, that return tuples that evaluate to each of the values
T, +ve, -ve, respectively. The algebraic expression of the
True Join operator is as follows.

True Join(R ⊲⊳T,P S): Returns the joined tuples r

and s that evaluate predicate P to T.
R ⊲⊳T,P S = {z =< (r1.value, r1.status), ...,

(s1.value, s1.status), ..., (sm.value, sm.status) > |P (z) = T}

The algebraic expressions of the False-positive (⊲⊳+,P)
and False-negative (⊲⊳−,P) join operators are similar to
that of the True join operator with the exception of having
the join predicate P(z) evaluates to +ve and -ve, respec-
tively. Notice that the standard inner join operator (⊲⊳P) is
equivalent to the union of the two operators ⊲⊳T,P and ⊲⊳+,P .

• Duplicate Elimination and Set Union: The key
difference between these extended operators and their
standard counterparts is in identifying the identical tuples.
In the extended semantics, two tuples are considered
identical iff they share the same value and status for all
their attributes. More formally, two tuples r and s are
considered identical w.r.t columns c1, c2, ..., cn iff:
(r.ci.value = s.ci.value and r.ci.status = s.ci.status) ∀ i ∈
{1, 2, ..., n}.

• Set Difference (R − S): We define three types of
set difference operators namely, True Difference (−T),
False-positive Difference (−+), and False-negative Differ-
ence (−−). The algebraic expressions of the set difference
operators are as follow:

True Difference: Reports tuples in R that are guaran-
teed not to exist in S even after re-evaluating the outdated
values in both relations, i.e., the unmatching depends on
up-to-date values.
R −T S = {r ∈ R | ∄ s ∈ S where r.c.value = s.c.value ∀ c

in which r.c.status = s.c.status = 0}

False-positive Difference: Reports tuples in R that
currently do not exist in S but may exist after re-evaluating
the outdated values in both relations, i.e., the unmatch-
ing depends on outdated values that may match when
re-evaluated.
R −+ S = {r ∈ R | ∃ s ∈ S where r.c.value = s.c.value ∀ c

in which r.c.status = s.c.status = 0, and ∃ c′ where r.c′.value

6= s.c′.value and (s.c′.status = 1 or r.c′.status = 1)}

False-negative Difference: Reports tuples in R that
currently exist in S but may not exist after re-evaluating
the outdated values in both relations, i.e., the matching

depends on outdated values that may not match when
re-evaluated.
R −− S = {r ∈ R | ∃ s ∈ S where r.c.value = s.c.value ∀ c,

and ∃ c′ where (s.c′.status = 1 or r.c′.status = 1)}

Like the standard set difference operator, the extended
set difference operators are not commutative.

• Set Intersection (R ∩ S): We define three types
of set intersection operators namely, True Intersection
(∩T), False-positive Intersection (∩+), and False-negative
Intersection (∩−). The algebraic expressions of the set
intersection operators are as follow:

True Intersection: Reports tuples that are guaranteed
to be in both relations independent of the re-evaluation of
the outdated values, i.e., tuples that exist in both relations
with all their values up-to-date.
R ∩T S = {r ∈ R | ∃ s ∈ S where r.c.value = s.c.value

and r.c.status = s.c.status = 0 ∀ c }

False-positive Intersection: Reports tuples in R that
currently exist in both relations but may not exist in either
of R or S when the outdated values are re-evaluation, i.e.,
the matching of the two tuples depend on outdated values.
R ∩+ S = {r ∈ R | ∃ s ∈ S where r.c.value = s.c.value ∀ c,

and ∃ c′ where (r.c′.status = 1 or s.c′.status = 1), and

r /∈ R ∩T S}

False-negative Intersection: Reports tuples in R that
do not exist in S but may exist in S when the outdated
values are re-evaluation, i.e., the unmatching depends on
outdated values.
R ∩− S = {r ∈ R | ∃ s ∈ S where r.c.value = s.c.value ∀ c

in which r.c.status = s.c.status = 0, and ∃ c′ where r.c′.value

6= s.c′.value and (r.c′.status = 1 or s.c′.status = 1), and

r /∈ R ∩T S and r /∈ R ∩+ S}

The extended True Intersection operator is commutative,
i.e., R ∩T S = S ∩T R. In contrast, the False-positive and
False-negative intersection operators are not commutative,
i.e., R ∩+ S 6= S ∩+ R, and R ∩− S 6= S ∩− R.

• Outer Join: We consider the left outer join between
relations R and S on join attributes R.a and S.b and join
predicate P. We define three types of outer join operators
namely, True Outer Join, False-positive Outer Join, and
False-negative Outer Join. Each of the True, False-positive,
and False-negative outer join operators reports the joined
pairs of tuples that are in the corresponding inner join
results plus additional sets OT , O+, and O−, respectively.
OT contains tuples r in R that do not join with any tuples
in S and have r.a up-to-date. O+ contains tuples r in R
that do not join with any tuples in S and have r.a outdated.
O− contains tuples r in R that join with tuples in S and
have r.a outdated. More formally, OT , O+, and O− are
defined as follows:

OT = {< r, Null >, r ∈ R | r.a.status = 0 and P (r.a.value,

s.b.value) = False ∀ s ∈ S}

O+ = {< r, Null >, r ∈ R | r.a.status = 1 and P (r.a.value,

s.b.value) = False ∀ s ∈ S}

4αb

5βb

2βb

1αa

3βa

2βa

ZYX

3b

1a

2a

COUNT(Z)Grouping(X)

4αb

β

α

β

7b

1a

5a

SUM(Z)Grouping(X,Y)

Data table

(a) Single-column Grouping

Outdated value

(b) Multiple-column Grouping

Figure 6: Grouping operators

O− = {< r, Null >, r ∈ R | r.a.status = 1 and ∃ s ∈ S

where P (r.a.value, s.b.value) = True}

• Grouping (γ(R)): Tuples that are identical in all the
grouping columns, according to the extended semantics
of the identical tuples, are added to a single group. In
Figure 6, we depict two examples of grouping operations.
Notice that value ‘a’ in Figure 6(a) is represented by two
groups; one group represents the up-to-date values while the
other group represents the outdated values. Since the query
results are annotated with the validity status information,
i.e., whether values are up-to-date or outdated, users can
estimate the effect of the outdated groups (if any) on the
other groups. For example, the second reported group in
Figure 6(a) may affect either of the first or third groups in
the result if the outdated value is re-evaluated to value ‘a’
or ‘b’, respectively. In contrast, the second reported group
in Figure 6(b) may only affect the fourth group in the result
if the outdated value is re-evaluated to ‘b’. The other two
groups will not be affected by the outdated group because
they are guaranteed not to match in column Y.

• Aggregation(η(R)): An aggregation function, e.g.,
SUM, AVG, COUNT, aggregates a set of up-to-date and
outdated values and returns a single value. The question
is: What will the status of the returned value be? We
categorize the aggregation functions into two categories,
value-insensitive and value-sensitive aggregators. The
value-insensitive aggregators such as COUNT return a
value with an up-to-date status (status = 0). Whereas,
the value-sensitive aggregators such as SUM, AVG, MIN,
and MAX return a value with up-to-date status only if
all the values in the group are up-to-date, otherwise the
returned value will have an outdated status. The reason
is that if a single value is suspicious then the outcome of
the value-sensitive aggregator will be also suspicious. For
example, consider the third and fourth groups in Figures 6
(a) and (b), respectively. The COUNT() aggregator returns
an up-to-date value because the number of tuples in the
group (three in our example) is independent of the outdated
value 5. On the other hand, the SUM() aggregator returns
an outdated value 7 because the sum of the values depends
on the outdated value 5.

• Projection (π): The projection operator selects the
projected attributes along with the status, up-to-date or
outdated, of each database cell in these attributes.
πC1,...,Cx

(R) = {r =< (C1.value, C1.status), ..., (Cx.value,

Cx.status)}

σ?,P (R) = σ?,P (σP (R)), where ? ∈ {T, +} (1)
σ?,P1

(σ?′,P2
(R)) = σ?′,P2

(σ?,P1
(R)), (2)

where ?, ?′ ∈ {T, +,−}

σ?,P (R ⊲⊳P S) = R ⊲⊳?,P S, where ? ∈ {T, +} (3)
σ−,P (R) = σ+,¬P (R) (4)
σ−,P1∧...∧Pi...∧Pk

(R) = σ−,P1∧...∧Pi−1
(σT,Pi∧...Pk

(R)), (5)

If C is zero-outdated column ∀ C ∈ attributes

in Pj , j ∈ [i...k]

σ?,P (R) = φ, where ? ∈ {+,−}, (6)
If C is zero-outdated column ∀ C ∈ attributes in P

σT,P (σP (R)) = σP (R) (7)
If C is zero-outdated column ∀ C ∈ attributes in P

Table 1: Equivalence rules (Short list)

We extend the standard SQL Select statement to include
the newly proposed operators. A comparison operator may
be suffixed with ‘+’ or ‘-’ to indicate a false-positive or false-
negative evaluation, respectively.

Example 4 : Consider the following extended SQL select
statement:

Select GSeq, PSeq

From GENE G, PROTEIN P

Where G.GID =+ P.GID And

And GFunction =- ‘F2’;

where the equality operators =, =+, and =- cor-
respond to σT , σ+, and σ−, respectively. The se-
lect statement is equivalent to the algebraic expres-
sion πGSeq,PSeq(σ−,GF unction=′F2′ (GENE ⊲⊳+,G.GID=P.GID

PROTEIN)) .

4.3 Equivalences in the Extended Algebra
Equivalent expressions in the extended algebra are impor-

tant for query optimization. The query optimizer typically
maintains information about the data inside the database
such as the number of tuples in a relation, the distribu-
tion of the data, and the distinct values in a given col-
umn. In the proposed model, the query optimizer main-
tains additional information about the status of the values
in the database. For example, the optimizer keeps track
of the number of outdated values in each column. Hence,
the optimizer can decide whether a given column is zero-
outdated (all the values are up-to-date), all-outdated (all the
values are outdated), sparse-outdated (most of the values
are up-to-date), or dense-outdated (most of the values are
outdated). These statistics are useful in estimating the cost
of the new operators and in choosing the optimum (near
optimum) query plan.

In Table 1, we present a short list of equivalence rules in
the extended algebra. The following examples demonstrate
several optimization scenarios.

Example 5 : The logical expression
σT,GF unction=‘F2′(GENE) selects tuples that evaluate

the given predicate to True (2nd tuple in Figure 4).
Based on Rule 1, this expression is equivalent to
σT,GF unction=‘F2′(σGF unction=‘F2′(GENE)). The lat-
ter expression applies the standard selection operator over
table GENE, which returns the 2nd and 3rd tuples, and then

applies the True Selection operator over these two tuples,
which returns the 2nd tuple only. The cost of these two
expressions can be significantly different depending on
the storage scheme and the selectivity of the predicates.
For example, assume that the status information is stored
in a separate table, i.e., not inside the data tables, and
the predicate selectivity is high (few tuples have the gene
function ‘F2’). In this case, the latter expression can
be much cheaper since the standard select will return
few tuples (possibly using an index), and then the True
selection operator is executed over the returned tuples by
joining them with the status information and returning the
tuples that evaluate the predicate to True. In contrast, if
the GFunction column is a dense-outdated column, then the
optimizer may prefer the former expression and executes
the True selection operator directly by first retreiving the
tuples having up-to-date values in the GFunction column
(few tuples), and then joining them with the data table
and returning the tuples that evaluate the predicate to True.

Example 6 : The logical expression
σ−,BindingSite=′TTAA...′ And GDirection=′−′(GENE) se-
lects the tuples that evaluate the given predicate to -ve
(4th tuple in Figure 4). One query plan is to execute
the potentially false-negative selection operator either
by directly scanning the GENE table (if the status in-
formation is stored inside the table) or by first joining
the GENE table with the status information, and then
scanning the produced table (if the status information
is stored in a separate table). A more efficient plan can
be generated using Rule 5 that transforms the expression
to σ−,BindingSite=′TTAA...′ (σT,GDirection=′−′(GENE)).
Rule 5 makes use of the fact that zero-outdated
columns in the predicate have to satisfy the condi-
tions on them, otherwise the tuple cannot evaluate to
-ve. Applying Rule 1 on the latter expression results
in expression σ−,BindingSite=′TTAA...′ (σT,GDirection=′−′

(σGDirection=′−′(GENE))). According to Rule 7, the
True Selection operator can be dropped because it has the
same predicate as the inner selection and the GDirection
column is zero-outdated. We end up with expression
σ−,BindingSite=′TTAA...′ (σGDirection=′−′(GENE)). As a
result, we can first apply the standard selection operator
(possibly using an index) over the GENE table to select the
tuples satisfying the predicate on GDirection, which are
the 4th and 6th tuples in Figure 4. Then, we apply the
potentially false-negative selection operator over these two
tuples, which returns the 4th tuple only.

5. INVALIDATION AND REVALIDATION
OPERATORS

When a database item is updated, all items that depend
on it through real-world activities need to be temporarly in-
validated, i.e., marked as outdated, until the involved activi-
ties are performed and the results are reflected back into the
database. On the other hand, when an outdated item is re-
evaluated, it needs to revalidated, i.e., marked as up-to-date,
as well as all items that depend on it through computable
dependencies. The invalidation and revalidation operations
are applied recursively over the dependent data items.

In Figure 7, we present three data invalidation and revali-
dation operators. The Invalidate() and Validate() operators

IF (C+.status = 0) THEN
- C.status = 0

- Update (C~)

IF (C+.status = 0) THEN
- C.status = 0
- Validate (C~)

----------C.Status = 1
(Outdated)

C.Status = 0
- Update (C~)
- Invalidate (C$)

--------C.Status = 1

Invalidate (C*)

C.Status = 0
(Up-to-date)

Update(C)Validate(C)Invalidate(C)

C~
� RecomputableClosure(C) C$

� OutdatedClosure(C) C* � C~ U C$

C+
� InputParameters(C)

Figure 7: Data invalidation/revalidation operations

1

2 3

5 6 87

9

4

10

x x

xx

x
x

x

1

2 3

5 6 87

9

4

10

x x

xx

x
x

x

1

2 3

5 6 87

9

4

10

x x

xx

x
x

x

x

x

x

1

2 3

5 6 87

9

4

10

x x

xx

x
x

x

x

x

x

1

2 3

5 6 87

9

4

10

x

x

x
x

x

1

2 3

5 6 87

9

4

10

x

x

x
x

x

Step1: Invalidating Node 1 results
in invalidating all nodes in
the RecomputableClosure()
and OutdatedClosure() of
Node 1.

Step2: Validating Node 1 results
in validating Nodes 2 and 5
w h i c h b e l o n g t o t h e
RecomputableClosure() of
Node 1.

Step3: Updating Node 3 results
in validating Node 3 and Node
6 wh ich be longs to the
RecomputableClosure() of
Node 3.

Computable Dependency

Real-world Dependency

Up-to-date node

outdated nodex
RecomputableClosure(1) = {2, 5}
OutdatedClosure(1) = {3, 4, 6, 7, 8, 9, 10}

RecomputableClosure(3) = {6}
OutdatedClosure(3) = {7, 9, 10}

Figure 8: Example of data (in)validation

modify the status of the data without modifying the value,
whereas the Update() operator modifies both the value and
status of the data. The functionality of the operators is ex-
pressed using the Closure() properties given in Section 3.2.3.
The Invalidate(C) operator invalidates C as well as all items
that belong to both the RecomputableClosure(C) and Out-
datedClosure(C). Figure 8 depicts a set of database items
(referred to as Nodes 1 - 10) along with a set of user-defined
dependencies. Step 1 in Figure 8 gives an example of inval-
idating Node 1 in the dependency graph. The Validate(C)
operator validates C only if the parents of C in the depen-
dency graph, i.e., InputParameters(C) as defined in Sec-
tion 3.2.3, are all valid. If C is validated, then the Validate()
operator is recursively applied over the RecomputableClo-
sure(C) set. Step 2 in Figure 8 gives an example of validating
Node 1 in the dependency graph. The Update(C) operator
changes the value of C and may change its status as well.
If C is already up-to-date, then C remains up-to-date. The
RecomputableClosure(C) is recursively recomputed and up-
dated while the OutdatedClosure(C) is recursively invali-
dated. If C is already an invalid cell, then C is validated
only if the parents of C are all valid, otherwise C remains
invalid. The RecomputableClosure(C) is recursively recom-
puted and updated. Notice that since C was already invalid,
then all items in the OutdatedClosure(C) set are also invalid
and they will remain invalid until explicitly validated. Step
3 in Figure 8 gives an example of updating Node 3 in the
dependency graph.

1 src_list = the set of all source cells involved in the dependency other than that in Ti.Ci;

2 dest_cell = the destination cell of the dependency (cell in column R.C)

3 IF ((dest_cell != null) and (Ci.old != Ci.new)) THEN
4 IF (Ci_Status.old = Ci_Status.new = “up-to-date”) THEN
5 IF (status of all cells in src_list is “up-to-date”) THEN
6 -- Insert a record into PendingActivity to log a request

for executing function F with src_list as input;
7 END IF
8 -- Update the status of dest_cell to “outdated”;

9 ELSE IF (Ci_Status.old = “outdated” and Ci_Status.new = “up-to-date”) THEN
10 IF (status of all cells in src_list is “up-to-date”) THEN
11 -- Insert a record into PendingActivity to log a request

for executing function F using src_list as input;
12 END IF
13 END IF
14 ELSE IF ((dest_cell != null) and (Ci_Status.old != Ci_Status.new)) THEN
15 IF (Ci_Status.old = “up-to-date” and Ci_Status.new = “outdated”) THEN
16 -- Delete from PendingActivity any request records for

executing function F with src_list as input;

17 -- Update the status of dest_cell to “outdated”;
18 ELSE IF (Ci_Status.old = “outdated” and Ci_Status.new = “up-to-date”) THEN
19 IF (status of all cells in src_list is “up-to-date”) THEN
20 -- Insert a record into PendingActivity to log a request

for executing function F using src_list as input;
21 END IF
22 END IF
23 END IF (a) Template for real-world activity functions

1 src_list = the set of all source cells involved in the dependency other than that in Ti.Ci;

2 dest_cell = the destination cell of the dependency (cell in column R.C)

3 IF ((dest_cell != null) and (Ci.old != Ci.new)) THEN
4 IF (Ci_Status.old = “outdated” and Ci_Status.new = “up-to-date”) THEN
5 IF (status of all cells in src_list is “up-to-date”) THEN
6 -- Update the status of dest_cell to “up-to-date”;
7 END IF
8 END IF
9 ELSE IF ((dest_cell != null) and (Ci_Status.old != Ci_Status.new)) THEN

10 IF (Ci_Status.old = “up-to-date” and Ci_Status.new = “outdated”) THEN
11 -- Update the status of dest_cell to “outdated”;
12 ELSE IF (Ci_Status.old = “outdated” and Ci_Status.new = “up-to-date”) THEN
13 IF (status of all cells in src_list is “up-to-date”) THEN
14 -- Update the status of dest_cell to “up-to-date”;

15 END IF
16 END IF
17 END IF (b) Template for c omputable functions

Figure 9: Templates for Add Dependency construct
referencing source columns T1.C1, T2.C2, ..., Tn.Cn,
destination column R.C, and function F.

6. DESIGN ISSUES
One of the DBMS tasks is to decide which dependencies

to activate due to a modification in the database, i.e., when
the value or status of a database cell is updated, the DBMS
needs to trigger specific dependencies to update the value (or
status) of other database cells. Moreover, the user-defined
dependencies create dependency graphs among the database
items. A key challenge is how to maintain and manipu-
late these dependency graphs. One approach is to materi-
alize the dependency graphs inside the database. Another
approach is to execute and track the dependencies using
database triggers. The proposed system adopts the latter
approach because of its scalability. In the following we dis-
cuss both alternatives and highlight their pros and cons.

6.1 Materialization of Dependencies
One approach for maintaining the user-defined dependen-

cies is to store these dependencies inside the database using
tables separate from the data tables. That is, for every de-
pendency instance, we store the source cells, the destination
cell, and the function involved in the dependency in some
relational schema. A database cell is uniquely identified by
the triplet table name, column name, and tuple id. Since
the Add Dependency construct may implicitly define multi-
ple dependency instances at once (Refer to Section 3.1), we
need to store each of these instances independently in the
database. Then, when the value or status of a database cell
is modified, we need to query the stored dependencies to find
the dependent cells that need to be invalidated. Each query
retrieves only the immediate descendants in the dependency
graph. Therefore, we need to repeatedly query the depen-
dencies until all descendants are reached. This repetitive
querying corresponds to computing the RecomputableClo-
sure() and OutdatedClosure() of the initially modified cell
(Refer to Figure 7 for expressing the (in)validation opera-
tions in terms of the Closure() sets). The main disadvan-
tages of this approach are that (1) the number and size of
the stored dependencies can be significantly large especially
because we store each individual dependency instance in the
database, and (2) the repetitive querying over the stored de-
pendencies can be expensive.

6.2 Realization of Dependencies using Trig-
gers

In this approach, we utilize the fact that users express the
dependencies among the data items using predicates. There-
fore, by parsing the Add Dependency constructs, the DBMS
can automatically generate code snippets over the source
and destination tables to enforce the defined dependencies
in the database. For each Add Dependency construct, one
code snippet is generated in the After Update trigger over
each of the source columns referenced in the dependency.
The purpose of this code snippet is to propagate any modi-
fication in the value or status of the source cells to the status
of the destination cell. Another code snippet is generated
in the Before Insert trigger over the destination table of the
dependency. The purpose of this code snippet is to check
the status of the source cells, and if any is outdated, then the
newly inserted destination cell will also be outdated. Recall
that we establish the link between the source cells and the
destination cell using the predicates supplied by the user in
the Add Dependency construct. In this section, we focus on
the After Update code snippets since they are more complex
compared to the Before Insert code snippets.

In Figure 9, we present the After Update code templates.
If the involved function is of type real-world activity, then
the template in Figure 9(a) is used, otherwise the template
in Figure 9(b) is used. These templates generate code snip-
pets over each source column Ti.Ci as part of the After Up-
date trigger on table Ti. Since we are processing a specific
tuple in Ti inside the trigger body, then the code snippet
references a specific dependency instance in each execution.

Before discussing the details of the code templates, we
need to present a storage scheme for the data model. Each
cell in the database maintains, in addition to the cell value,
a status flag which indicates whether the cell is up-to-date
or outdated. Several storage schemes and optimizations
are possible depending on whether the status information
is stored inside the data tables or in separate tables. For
simplicity, we assume that the status information is stored

inside the data tables. That is, every column C in table
R will have an additional column C Status that stores the
status of C. The status attributes are system-maintained at-
tributes that will be updated only by the database system.
Initially, the status field of each cell in the database is set to
zero, i.e., is up-to-date.

Consider the template in Figure 9(a). Line 1 retrieves
all source cells involved in the dependency other than the
current cell in column Ci. Line 2 retrieves the destination
cell of the dependency. These two steps are performed by
forming select statements according to the predicates sup-
plied in the Add Dependency construct as well as the current
value of Ci. If the value of Ci is updated while its status
remains up-to-date and all other source cells in the depen-
dency are also up-to-date, then a request record is inserted
into the PendingActivity log (See Section 6.3) for performing
the involved real-world activity (Line 6). If any source cell is
outdated, then the request records is not created because the
real-world function can be performed only when all its input
parameters are up-to-date. Processing the request records
in the PendingActivity log is discussed in Section 6.3. In ei-
ther case, the destination cell of the dependency is marked
outdated (Line 8). If the value of Ci is updated while its
status remains outdated, then nothing needs to be done be-
cause the destination cell of the dependency should be al-
ready outdated. If the value of Ci is updated and its status
is also updated from outdated to up-to-date, then a request
record for performing the real-world activity is created only
if all other source cells are up-to-date (Line 11). Notice here
that the destination cell of the dependency should be al-
ready outdated because Ci was outdated. The destination
cell remains outdated until the real-world activity is per-
formed. The scenario in which the value of Ci is updated
while the status is modified up-to-date to outdated is not a
valid scenario. The reason is that the status attributes are
system-maintained attributes, and hence there are scenarios
for updating both the value and status that cannot occur.

The second part of the template (Lines 14-23) handles a
change in the status of Ci without changing its value. If the
status of Ci is modified from up-to-date to outdated, then any
request record in PendingActivity for executing the involved
function over Ci is deleted (Line 16). This is because the
function can no longer be performed until Ci is revalidated.
Moreover, the destination cell of the dependency is marked
outdated (Line 17). If the status of Ci is modified from
outdated to up-to-date, then a request record for performing
the real-world activity is inserted into PendingActivity only
if all other source cells are up-to-date (Line 20).

The template in Figure 9(b) is a simplified version of
that in Figure 9(a). It is important to highlight that
the template of the computable functions does not call
(execute) the function involved in the dependency. We
assume that the function call is handled by the database
developer in the typical way. For example, if the value of a
source cell in the dependency is updated, then we assume
that there is a code written by the database developer
that calls the involved function and updates the value of
the destination cell of the dependency. The template only
modifies the status of the destination cell according to the
changes in the value or status of the source cells.

Example 7: Repeating the dependency from Example
2, where the protein sequences corresponding to genes with

function ‘F1’ are inferred using prediction tool A-Prediction.
The Add Dependency construct is:

ADD Dependency Using A-Prediction

Source Gene.GSeq, Gene.GDirection

Destination Protein.PSeq

Where Protein.GID = Gene.GID

And Gene.GFunction = ‘F1’

The above construct creates a code snippets over each of
the Gene.GSeq and Gene.GDirection columns. Considering
the code snippet over the GSeq column (GSeq replaces Ci in
the template in Figure 9(a)), the main lines to be replaced
in the template are presented below.

Src_list = {New.GDirection:New.GDirection_Status} (Template Line 1)

Dest_cell = Select Pseq From PROTEIN (Template Line 2)

Where Protein.GID = New.GID
AND New.GFunction = ‘F1’;

Update statement = Update PROTEIN (Template Lines 8, 17)
Set PSeq_Status = 1
Where Protein.GID = New.GID
AND New.GFunction = ‘F1’;

Since the GDirection and GFunction columns are in the
same table as Gseq, their values are selected using the NEW

variable inside the trigger. Src list contains attribute GDi-
rection and its status GDirection Status. Dest cell is set to
the output of the depicted select statement. The predicates
of the select statement are the same as the predicates sup-
plied in the construct with the exception of replacing ref-
erences to table GENE with the NEW variable to refer to the
tuple at hand. The same concept applies when we update
the status of the destination cell. Notice that if the tuple at
hand corresponds to a gene with function different from ‘F1’,
then the destination cell will be empty and the code snippet
will be skipped. This is an expected behavior because in
this case the tuple is irrelevant to the dependency.

The advantages of realizing dependencies using triggers
are that (1) we do not need to explicitly store the user-
defined dependency instances inside the database, (2) the
recursive search to reach all dependent data items, i.e., com-
puting the closures, is implemented as update propagation
using the triggering mechanism, and (3) the code snippets
are generated per source column in the Add Dependency con-
struct independent of the number of dependency instances
that are implicitly defined by the construct, i.e., the number
of tuples that satisfy the construct predicates. One scala-
bility issue is that in some application domains, the number
of automatically generated triggers over a single table in
the database can be very large depending on the number of
user-defined dependencies. Several advanced activation and
indexing techniques for firing triggers have been proposed to
address this scalability issue and to efficiently select which
triggers to fire. Examples of these techniques include the
indexing and memory-caching mechanisms proposed in [9]
and the marking scheme adopted in the POSTGRES rule
system [14]. One of the disadvantages of realizing dependen-
cies using triggers is that manipulating the individual depen-
dency instances is no longer straightforward. For example,
overriding one dependency instance by a new instance due
to a change in the data derivations (Refer to Section 3.2.4)
means that the existing code snippet that corresponds to
the old dependency needs to be disabled over specific data

…

1

LogId

………

Update PROTEIN
Set PSeq = A-Prediction(‘TTCT…’, ‘+’),

PSeq_Status = 0
Where PROTEIN.GID = (Select P.GID

From PROTEIN P, GENE G

Where P.GID = G.GID
AND G.GFunction = ‘F1’
AND G.GID = ‘JW0013’);

A-Predictiont1

PendingUpdateFunctionNameTimestamp

Replaced with
the function result
at execution time

Figure 10: Structure of the PendingActivity log

items. In Section 7.1, we present simple extensions to the
proposed model to overcome this challenge.

6.3 Logging and Resuming Pending Activities
When a function F of type real-world activity has all its

source parameters up-to-date but its destination parameter
is outdated, then a request record is created for F and in-
serted into PendingActivity (Refer to Lines 6, 11, and 20
in Figure 9(a)). If any of the source parameters of F is
outdated, then F is no longer ready for execution and its
record is deleted from PendingActivity (Refer to Line 16
in Figure 9(a)). The structure of a request record is illus-
trated in Figure 10. PendingUpdate is an update statement
that will be executed when the involved real-world activity
is performed and its result is supplied back to the system.
Continuing with the dependeny defined in Example 7, if the
sequence of gene ‘JW0013’is updated to be ‘TTCT...’, then
the code snippet over column GENE.GSeq will create the
record shown in Figure 10. The PendingUpdate statement
updates the destination table of the dependency by setting
the destination column to the result of the function involved
in the dependency. Moreover, the status of the destination
column will become up-to-date. The function call contains
the arguments that should be passed to the real-world ac-
tivity when performed. This function call will be replaced
with the function result at execution time.

When the real-world activity involved in the dependency
is performed and its output result is available, the result is
passed to the database system using the following command:

Resume Function <func name>

Value <func output>

References <logId>;

where logId references the LogId column in PendingActiv-
ity (1st column in Figure 10). This command executes the
update statement in the PendingUpdate column (4th column
in Figure 10) after replacing the function call with the func-
tion output value <func output>. Then, the request record
is deleted from PendingActivity. The execution of the up-
date statement may cause more records to be inserted into
the PendingActivity log.

There are considerations that need to be taken into ac-
count when processing the PendingActivity log. Since real-
world activities may take long time to perform, a request
record may be deleted from PendingActivity while its func-
tion is being conducted externally. The record may be
deleted either because one of the source parameters of the
involved function is outdated (Line 16 in Figure 9(a)) or
because multiple updates took place over the source param-
eters and hence the request record of the most recent up-
date operation overwrites (deletes) the previous one (The
overwriting operation is implicitly performed in Line 6 in

Figure 9(a)). In either case, when the Resume Function
command is executed, it will not find the request record
referenced by logId. This behavior is acceptable because in
both cases it is too late to pass the output result of the
pending execution to the database.

7. MODEL EXTENSIONS

7.1 Dependencies Overriding
New dependency instances may override existing ones due

to changes in the derivations of the underlying data (Refer
to Section 3.2.4 for an example). In the case of materializ-
ing the dependency graphs inside the database (Section 6.1),
overriding one dependency instance, say DI1, by another in-
stance, say DI2, is a matter of deleting DI1 and inserting
DI2. In contrast, the overriding mechanism in the case of
realizing the dependencies using triggers (Section 6.2) is not
straightforward because dependencies are enforced by code
snippets generated automatically inside the database. We
need a mechanism by which we can disable the execution
of the code snippet corresponding to the overridden depen-
dency over specific destination cells. Using the Alter Table
command to disable a trigger is not applicable because we
need to disable the execution over specific destination cells.

The proposed system enables or disables the code snip-
pet execution by explicitly adding predicates in the trigger
body that depend on version numbers assigned automati-
cally to the user-defined dependencies. More specifically, we
extend the Add Dependency construct, the data model, and
the code snippet templates in the following way. Each Add
Dependency construct is automatically assigned a version
number that is always increasing, e.g., a sequence number.
This version number defines precedence among the depen-
dencies, i.e., a dependency with a larger version number
(defined more recently) overrides other dependencies that
share the same destination parameter and have lower ver-
sion numbers. The data model is extended such that each
database cell maintains, in addition to the cell value and
status, a version number that corresponds to the most re-
cent dependency that has this cell as the destination pa-
rameter. In the storage scheme, this extension maps to an
additional column C Version that resides in the data ta-
bles for each user column C. The last extension concerns
the code snippet templates presented in Figure 9. Line 2 in
both templates retrieves, in addition to the destination cell,
the version number attached to the destination cell. Then,
the remaining segment of each template (Lines 3-23 in Fig-
ure 9(a) or Lines 3-17 in Figure 9(b)) is encapsulated inside
the following IF condition:

IF (dest cell version = vn) THEN

...

END IF

where vn is the version number assigned to the Add De-
pendency construct. The IF statement above simply dis-
ables the execution of the code snippet if the version of the
destination cell does not match the version number of the
dependency that generated the code snippet. If the version
numbers match, then the dependency that generated the
code snippet is not overridden by more recent dependencies
with respect to the given destination cell, and hence the
code snippet will be executed. The same IF condition will
encapsulate the Before Insert code snippets that are gen-
erated over the destination table of the dependency. This

Replaced with an instance value at execution time

vn

Depend_
version

…

A-Prediction

Function_
Name

…………

Select GSeq, GSeq_Status,
GDirection, GDirection_Status

From Protein, Gene

Where Protein.GID = Gene.GID
And Gene.GFunction = ‘F1’;

PSeqProteinAdd Dependency Using A-Prediction
Source Gene.GSeq, Gene.GDirection

Destination Protein.PSeq

Where Protein.GID = Gene.GID
And Gene.GFunction = ‘F1’;

Dest-to-Src QueryDest_
Column

Dest_
Table

Add Dependency Construct

vn

Depend_
version

…

A-Prediction

Function_
Name

…………

Select GSeq, GSeq_Status,
GDirection, GDirection_Status

From Protein, Gene

Where Protein.GID = Gene.GID
And Gene.GFunction = ‘F1’;

PSeqProteinAdd Dependency Using A-Prediction
Source Gene.GSeq, Gene.GDirection

Destination Protein.PSeq

Where Protein.GID = Gene.GID
And Gene.GFunction = ‘F1’;

Dest-to-Src QueryDest_
Column

Dest_
Table

Add Dependency Construct

Figure 11: Structure of BackwardTraversal table

ensures that for a given destination cell, the correct source
cells will be retrieved.

7.2 Curation Operators
The PendingActivity log presented in Section 6.3 en-

ables users to systematically revalidate the data inside the
database. However, it does not directly support rich opera-
tions over the outdated data. Examples of these operations
include: (1) Given a query result that contains both up-
to-date and outdated data, what are the outdated values in
the result that can be instantly revalidated (outdated values
that do not depend on any other outdated values)? and(2)
Given an outdated database cell that is of interest to be
revalidated, what are the steps to follow in order to revali-
date the given cell (the sequence of the outdated ancestors
of the given cell to be revalidated first)? In this section, we
propose two curation operators that support the functional-
ities described above.

• OutdatedRoots() [OutdatedRoots(R)]: The Outdat-
edRoots() operator reports the set of outdated database cells
that do not have any outdated ancestors in the dependency
graph, i.e., database cells that can be instantly revalidated.
The OutdatedRoots(R) operator takes a relation R as an in-
put and reports the outdated roots in R. Relation R can
be an output of SPJ select statement. The OutdatedRoots()
operator is implemented by a direct extension to the Pendin-
gActivity log. Since PendingActivity stores records only for
functions whose source parameters are all valid, then the tar-
get database cells of the PendingUpdate statements are the
outdated roots (one outdated root for each update state-
ment). To explicitly keep track of the outdated roots, we
extend the structure of PendingActivity to store the unique
identifier of each outdated root by adding three additional
attributes that store the table name, column name, and tu-
ple id of each outdated-root cell. These attributes are filled
automatically when a new tuple is inserted into PendingAc-
tivity. The OutdatedRoots(R) operator is implemented by
searching the PendingActivity log for each outdated cell in
R. If a cell is found, then it is reported as an outdated root
and the corresponding record identifies the function that
should be performed in order to revalidate the cell. The
only limitation on R is that we need to keep track of the tu-
ple ids and column names of the cells in R, which is feasible
since R is a product of a simple SPJ select statement.

• PreValidation(c) [PreValidation(R)]: The
PreV alidation(c) operator takes a database cell c as
an input and reports the minimal set of outdated database
cells that need to be validated before validating c. The
reported set consists of the outdated ancestors of c in the

dependency graph. The PreValidation(R) operator takes a
relation R as input and reports the PreV alidation(c) set
for each outdated cell c in R. The PreValidation operator
requires a backward traversal in the dependency graph, i.e.,
given a destination parameter of a dependency, retrieve
the source parameters. In order to support the backward
traversal, we generate for each Add Dependency construct,
a query that retrieves the source parameters of the de-
pendency given its destination parameter. When an Add
Dependency construct is executed, the DBMS parses the
construct and creates a record in the BackwardTraversal
table presented in Figure 11. For example, the record
in Figure 11 corresponds to the dependency defined in
Example 7. The queries stored in the Dest-to-Src column
(Last column in Figure 11) reference the destination table
of the dependency. At execution time, these references are
replaced by specific values from a given tuple instance in
the destination table.

The procedure for executing PreV alidation(c), where c is
defined by table T , column C, and tuple r, is as follows. We
search the BackwardTraversal table for a dependency with
version number that matches the version number attached
to c, i.e., the value of C V ersion of tuple r. The input cell c

is the destination parameter of the returned dependency D.
The Dest-to-Src query of D is executed after replacing any
columns that belong to T with the corresponding value from
r. If the status of any of the returned source parameters is
outdated, then the outdated source parameters are stacked
along with the function name referenced in D. Then, the
search is repeated over each of the outdated cells. The search
stops when no more outdated source parameters are reached.
Retrieving the stacked records in a LIFO order will report
the outdated ancestors of c in a proper revalidation order
along with the function names that should be externally
performed to revalidate the outdated values.

8. CONCLUSION AND FUTURE WORK
In this paper, we proposed constructs to support real-

world activities in database systems while maintaining the
consistency of the data that depend on these activities. The
proposed system enables users to register real-world activ-
ities into the database system and to express the depen-
dencies (induced by these real-world activities) among the
data items. The system keeps track of potentially-invalid
data items that await the completion of real-world activities
to propagate and update their output results back into the
database. We introduced new query operator semantics that
alert users when the users’ query results contain potentially-
invalid or out-of-date data (due to pending real-world ac-
tivities). The new operators enable query execution either
on valid data only, or on both valid and potentially-invalid
data. We proposed new mechanisms for data invalidation,
revalidation, and curation that enable users to manipulate
and operate on potentially-invalid (outdated) data. As part
of the future work, we plan to investigate further the query
optimization and costing issues highlighted in Section 4.3.
We plan to study the tradeoffs between storage overhead
and execution times during update and query times while
maintaining and activating the user-defined dependencies.
The optimization issues include determining which statis-
tics to collect, estimating the cost of the new operators, and
picking the optimal (near optimal) query plans.

9. REFERENCES
[1] D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya.

An annotation management system for relational
databases. In VLDB, pages 900–911, 2004.

[2] P. Buneman, A. P. Chapman, and J. Cheney. Provenance
management in curated databases. In SIGMOD, 2006.

[3] P. Buneman, S. Khanna, and W.-C. Tan. Why and where:
A characterization of data provenance. Lecture Notes in
Computer Science, 1973:316–333, 2001.

[4] Y. Cui and J. Widom. Lineage tracing for general data
warehouse transformations. In VLDB, pages 471–480, 2001.

[5] U. Dayal. Active database management systems. SIGMOD
Rec., 18(3):150–169, 1989.

[6] U. Dayal, M. Hsu, and R. Ladin. Organizing long-running
activities with triggers and transactions. SIGMOD Rec.,
19(2):204–214, 1990.

[7] A. Demers, J. Gehrke, B. Panda, M. Riedewald,
V. Sharma, and W. White. Cayuga: A general purpose
event monitoring system. In In CIDR, pages 412–422, 2007.

[8] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing data
inconsistencies. ACM Trans. Database Syst., 33(2):1–48,
2008.

[9] E. N. Hanson, C. Carnes, L. Huang, M. Konyala,
L. Noronha, S. Parthasarathy, J. B. Park, and A. Vernon.
Scalable trigger processing. In ICDE, pages 266–275, 1999.

[10] C. L. L. Bocchi and G. Zavattaro. A calculus for
long-running transactions. Lecture Notes in Computer
Science, 2884:124–138, 2003.

[11] D. Maier. Theory of relational databases. In Computer
Science Press, 1983.

[12] M. K. Mohania, P. R. Krishna, K. V. P. Kumar,
K. Karlapalem, and M. W. Vincent. Functional dependency
driven auxiliary relation selection for materialized views
maintenance. In COMAD, pages 37–45, 2005.

[13] A. D. Sarma, J. Ullman, and J. Widom. Functional
dependencies for uncertain relations. Technical Report
Technical Report, Stanford University, 2007.

[14] M. Stonebraker, L. A. Rowe, and M. Hirohama. The
implementation of POSTGRES. TKDE, 2(1):125–142,
1990.

[15] J. Ullman. Principles of database and knowledge-base
systems. volume 1, 1988.

[16] W. White, M. Riedewald, J. Gehrke, and A. Demers. What
is ”next” in event processing? In PODS, pages 263–272,
2007.

[17] J. Widom. The starburst rule system: Language design,
implementation, and applications. IEEE Data Engineering
Bulletin, Special Issue on Active Databases, 15:1–4, 1992.

[18] J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. CIDR, pages 262–276, 2005.

[19] J. Widom and S. Ceri, editors. Active Database Systems:
Triggers and Rules For Advanced Database Processing.
Morgan Kaufmann, 1996.

[20] J. Widom and S. J. Finkelstein. Set-oriented production
rules in relational database systems. SIGMOD Rec.,
19(2):259–270, 1990.

	Supporting Real-world Activities in Database Management Systems
	Report Number:
	

	tmp.1307986960.pdf.NOHrK

