
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2008

Practical Strengthening of Preconditions Practical Strengthening of Preconditions

Ashish Kundu

Patrick Eugster
Purdue University, p@cs.purdue.edu

Report Number:
08-029

Kundu, Ashish and Eugster, Patrick, "Practical Strengthening of Preconditions" (2008). Department of
Computer Science Technical Reports. Paper 1716.
https://docs.lib.purdue.edu/cstech/1716

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Practical Strengthening of
Preconditions

Ashish Kundu
Patrick Eugster

CSD TR #08-029
November 2008

Practical Strengthening of Preconditions

Ashish Kundu1 and Patrick Eugster1

Department of Computer Science, Purdue University
[ashishk, peugster]@cs.purdue.edu

Abstract. This paper takes a closer look at behavioral subtyping in the context
of concurrency, by considering an example of subtyping of a concurrent data-
structure taken from sensor networks. Akin to the extension of a state-machine,
this example illustrates conflicts caused by the interference of concurrency and
inheritance. In short, the extension consists in declaring additional fields in a
subclass, thus extending the state space of the super-class. Reminiscent of a fa-
mous illustration case for inheritance anomalies, the extension leads to violating
behavioral subtyping by requiring the strengthening of preconditions in the sub-
class to account for the extended state space. We provide a solution to this bot-
tleneck by characterizing cases in which such a strengthening can safely occur.
To that end, we dissect preconditions according to various criteria, such as their
semantics (wait or “traditional” correctness), or the objects they involve (method
arguments or fields of the receiving object). Using denotational semantics, we
formally prove that such strengthening of preconditions through wait conditions
is safe nd does not break the contract. We implement our relaxation in Eiffel, and
illustrate how it preserves modular reasoning – in particular about deadlocks.

1 Introduction

Application of axiomatic semantics [13] in the context of object-oriented programming
languages with subtype polymorphism has been triggered through the seminal work on
behavioral subtyping by Liskov and Wing [20]. Significant advances for the modu-
lar reasoning about object-oriented programs have been achieved in combination with
explicit language syntax in the context of programming languages such as Spec# [21]
and Eiffel [24], or with annotations in the Java Modeling Language (JML) [4]. Re-
cent refinements to behavioral subtyping including for example investigations around
consistency and ownership [18], or the tracking of null references [10]. With the object-
oriented approach being widely used for the development of industrial-scale software,
it is important to develop reliable trusted components. First steps in direction have
been taken to benefit from the behavioral reasoning beyond the scale of single com-
ponents [1].

However, most industrial-scale software currently being developed is not only con-
siderably large — thus benefiting from modular development, reasoning, and proving
methodologies — but also strongly concurrent. This trend can be expected to even in-
crease given the current proliferation of multi-core architectures. Yet, concurrency still
bears many challenges for modular and behavioral approaches, and has been only con-
sidered late, while quite ironically, a classical example for behavioral subtyping is the

bag [20], which by definition expresses the presence of multithreading. In this paper,
we use buffers - a slight variation of bags for illustration purposes.

Initially, concurrency was dealt with by (1) making strong assumptions, such as the
availability of transactional support to execute methods in a (seemingly) atomic man-
ner, i.e., without interference with any other methods, and by (2) introducing strong con-
straints, for instance allowing the subtype T2 of a type T1 to introduce a new method M
only if that method is expressible with existing methods of T1 [20]. Several methodolo-
gies have appeared to relax constraints of type (1) in the context of axiomatic semantics
(e.g., [29, 16]), i.e., to allow for more parallelism. Similar advances are being made
in object-oriented settings, as illustrated by [15, 32]. Restriction (2) above is still very
compelling, and has been motivated by modular/incremental proving. Together with
the widely accepted constraint that a subtype T2 of a type T1 M of type T1 can neither
strengthen the precondition nor weaken the postcondition of any methodM defined in
T1, one can straightforwardly reason modularly about correctness. That is, no client —
or more generally no program — making use of type T1, when an instance of T1 is
substituted by one of T2 can “behave unexpectedly” by as by blocking or yielding an
un-anticipatable exception. Behavioral subtyping further reduces opportunities for code
reuse.

Given a correct deadlock-free program with clients accessing a shared object of type
T2 (or T1) only through variables of type T1, one can now moreover extend the program
by adding clients accessing the object through variables of type T2 – with only addi-
tional reasoning required for these new clients to prove (further) absence of deadlocks.
In short, if the new method M is correct and is only composed of previously available
methods of T1, which are used in a sequence which describes a possible schedule for
T1, then their respective preconditions, under consideration of the sequence, will yield
a precondition for M which only is true if the sequence can be executed, avoiding the
introduction of a deadlock after partial or complete execution of M. This constraint
provides very strong guarantees, but is also quite restrictive, and leaves the problem of
bootstrapping open: no type with a single method can be used to start incrementally
proving deadlock-freedom. More complex types/programs must be manually proven to
be deadlock-free for bootstrapping.

This paper revisits behavioral subtyping in the context of concurrency, and proposes
a relaxed model. constraints such as the above. We first start from the buffer example
of [20], modeled in Eiffel, and extend it in a way currently impossible according to
the traditional confines of behavioral subtyping, yet relevant in many practical scenar-
ios. More precisely, we take a look at scenarios in which shared data-structures are
extended by augmenting their state space, leading to strengthening preconditions of an-
cestor classes and thus violating behavioral subtyping. These scenarios are typical of
state machine extensions, and similar to one of the scenarios used in [22] to illustrate
inheritance anomalies; the bottleneck observed confirms the claim of [6] that indeed
useful and sensible scenarios are ruled out by the traditional notion of behavioral sub-
typing. More precisely, if we go ahead and try to implement a given, indeed sensible,
buffer subtype through a subclass, we end up violating behavioral subtyping.

To convey our claims, we take a closer look at the notion of precondition under the
perspective of a “contract between client and supplier objects” [23], as well as by con-

sidering its similarity with guarded commands in the context of multithreading, arguing
that in certain cases, it might be useful and safe to strengthen preconditions, which is an
intriguing thought as it goes against any common belief: “... Strengthening the precon-
dition, or weakening the postcondition, would be a case of ”dishonest subcontracting”
and could lead to disaster...” [8]. To that end, we dissect preconditions according to dif-
ferent dimensions, such as the origins of the objects involved (method arguments versus
fields of the receiver object), their mutability (immutable versus mutable objects), and
their evaluation semantics (eventual versus immediate satisfaction), pointing out that
an eventually satisfied condition (a “wait condition”) expressed solely on mutable fields
of the recipient added by the subclass, along with some additional constraints, can be
conjoined with a precondition of the super-type for the same method without yielding
unexpected exceptions and without leading to incorrect behavior. The intuition behind
this is that preconditions have a twofold purpose: (1) they express requirements for
clients with respect to the arguments passed upon calls to respective methods, and (2)
they represent an implicit (potential) synchronization barrier, which may rely on inter-
nal synchronization variables of the receiver. We then demonstrate that, when abiding
to the set of conditions we state, and assuming some minimal runtime support which is
more moderate than the assumptions used by other relaxations of behavioral subtyping
(e.g. [7]), it is still possible to prove deadlock-freedom for programs in the modular
way outlined above, i.e., programs initially making use of an object of type T1 can be
safely changed to make use of an instance of a subtype T2 of T1, and the addition of
clients accessing the object through variables of T2 only requires additional proofs of
deadlock-freedom involving those clients. We prove such safety property through de-
notational semantics. Our extensions make the explicit encoding of sequences in a way
similar to state machines easier for concurrently accessed objects in behavioral subtyp-
ing scenarios.

Roadmap. Section 2 presents the problem scenario outlined above. Section 3 dissects
preconditions according to different criteria. Section 4 outlines rules for subtyping
building on our model of preconditions. Section 5 describes the denotational seman-
tics and proof for safety for strengthening of preconditions using upon preconditions.
Section 6 presents how to retain modular reasoning about deadlocks. Section 7 presents
the implementation in Eiffel. Section 8 discusses the problem and the proposed solu-
tion of strengthening preconditions with wait semantics. Section 9 summarizes related
work. Section 10 draws final conclusions.

2 Problem and Solution Outline

In this section we illustrate a considerable restriction of behavioral subtyping in the
context of multithreading through a simple buffer implemented in the Eiffel language.
The problem is however of a general nature, and applies for instance also to the Java
Modeling Language (JML) [4, 17].

2.1 A Buffer

Consider the buffer outlined in Listing 1 implemented in the Eiffel language [24] (syn-
tax simplified in the following). In a nutshell, Eiffel is a pure object-oriented program-
ming language with multiple inheritance. Types are implicitly defined by classes. Eiffel
furthermore provides genericity, as illustrated by the Buffer class, which introduces
a type parameter G for the type of its elements. The feature (attributes or methods in
Eiffel parlance) count represents the number of elements currently in the buffer, and
max is a constant which acts as upper bound for that number.

The meaning of separate will be detailed later-on. At this point it is sufficient
to know that it is used to denote entities whose use might require synchronization of
concurrently executing threads. Liskov and Wing’s example in [20] assumes get()

and put() to be executed atomically, by means of a transactional mechanism.
Figure 3 outlines the use of two such buffers in the implementation of a sensor

device, inspired by [14]. The medium access control (MAC) layer provides functional-
ities to send and receive messages; the sending component simply attempts to extract
messages from the output buffer, and the receiver component adds any messages to the
input buffer. The application interacts with the network through these buffers. Both the
application as well as the MAC layer are programmed against the BUFFER interface.
For obvious reasons they can not be easily modified.

2.2 Adding Explicit Temporal Constraints

Now consider the case of a global congestion control mechanism being added [14, 30]
in which, when a given nodes’ output buffer fills up, the next message drawn from it will
be appended a corresponding notification. Upon reception of such a notification from
a node previously not known to be congestioned, any node’s input buffer increases a
counter, which, once exceeding a given threshold, to inhibit both the MAC layer as well
as the application in order to avoid further sends by restricting the addition or removal
of elements from the output buffer. Listing 2 represents the extended output buffer.

The trained eye will immediately notice that this example violates behavioral sub-
typing, as the preconditions of both put() and get() are strengthened through the not
congestioned predicate.1

This example is very similar to the lockable buffer used to illustrate inheritance
anomalies [22]. Though these have been shown to be more due to the interplay of
subtyping and inheritance mechanisms rather than concurrency and inheritance mecha-
nisms, the used examples represent valid specialization scenarios.

The lockable buffer is described as a subtype of both BUFFER and LOCKABLE_BUFFER
(see Listing 4). Inheriting from the latter type adds the restriction that any methods

become inaccessible if locked is false. This leads to extending preconditions of all
methods with a corresponding check.

The examples provided here make use of “internal explicit state tracking” within a
buffer subtype. We refrain at this point from using any extraneous “state machine” as

1 To avoid this, Eiffel by default disjoins the precondition of a given method redefined in a
subclass with the precondition in the super-class.

class BUFFER[G]
feature [...]
count: INTEGER -- total number

of elements
max: INTEGER -- maximum size

of buffer

get: separate G is
require
count > 0

do
[...]

ensure
count = old count - 1

end -- get

put(element: separate G) is
require
count < max

do
[...]

ensure
count = old count + 1

end -- put
end -- BUFFER

Fig. 1. Bounded buffer in Eiffel

CONG_CTRL_BUFFER[G] inherit BUFFER[G]
redefine put, get
feature [...]
congestioned: BOOLEAN := False

congestion(new_state: BOOLEAN) is
require
congestioned = not new_state

do
congestioned := new_state

ensure
congestioned = new_state

end -- congestion

redefine get: separate G is
require
count > 0 and not congestioned

do
[...]

ensure
count = old count - 1

end -- get

redefine put(element: separate G) is
require
count < max and not congestioned

do
[...]

ensure
count = old count + 1

end -- put
end -- CONG_CTRL_BUFFER

Fig. 2. Buffer for global congestion control in Eiffel

found for instance in active objects (e.g., [3]) to model temporal ordering of methods, or
from temporal logic-like specifications, as the latter ones can easily lead to prohibitive
complexity (see Section 9.1). The reason is that the basic buffer itself does not use such
mechanisms. Explicit mutual exclusion locks, though possible in the portrayed cases,
make the modeling of more advanced constraints on temporal ordering of methods very
tedious (see Section 8.2).

2.3 Solution Outline

In the following we describe a solution implemented in the context of Eiffel which
allows for such extensions, and in fact much more powerful ones. In short, it relies on (1)
a precise characterization of possible extensions and a corresponding set of restrictions
which are underpinned by a new keyword used in preconditions, and on (2) runtime
support.

Listing 4 presents the solution for the lockable buffer based on this syntax: our new
upon keyword announces a precondition that is conjoined with that of the super-class
for the same method.

Our relaxation of behavioral subtyping roughly consists in allowing a class to extend
the state space of an ancestor class by adding fields, and strengthening preconditions

Fig. 3. Adding global congestion control

LOCKABLE_BUFFER[G]
inherit BUFFER[G], LOCKABLE
redefine put, get

feature redefine get: G is
require
upon not locked

do
Result:= Precursor

end -- get

redefine put(element: separate G) is
require
upon not locked

do
Precursor(element)
end -- put
end

Fig. 4. Lockable buffer in Eiffel

deferred class LOCKABLE
feature locked: BOOLEAN := False
lock is
require
not locked

do
locked:= True
ensure
locked

end -- lock

unlock is
require
locked

do
locked:= False

ensure
not locked

end -- unlock
end -- LOCKABLE

Fig. 5. Super-type for lockable data struc-
tures

by adding conditions with wait semantics expressed on these additional fields. To re-
spect behavioral subtyping, it has to be ensured that these additional wait conditions
do hold at least in the safe state space of such a subtype; this particular state space
represents the state subset of the extended state space which coincides with the origi-
nal state space of the super-class. Though a state space, we refer to it in the following
simply as the safe state. In the CONG_CTRL_BUFFER and LOCKABLE_BUFFER examples
the original state spaces are extended by congestioned and locked respectively, and
the corresponding safe states are characterized by a value of False for the respective
fields.

In short, conditions with wait semantics simply delay clients; extending precondi-
tions by correctness conditions could lead to unexpected exceptions being raised in case
those conditions are violated and thus to broken semantics. Reasoning can be decom-
posed into subsets of clients accessing such a shared data-structure through variables
of the same type respectively. By ensuring that the safe state is eventually reached, the
conditions following the upon clauses are trivially satisfied, boiling down to a disjunc-

tion of the original precondition and a wait condition involving all states in the extended
space allowed by the upon clause modulo the safe state (see Section 8.1).

Similar state machine-like extensions have been described in non-object settings [33],
under simpler assumptions (see Section 9).

3 Basic Notations and Model

3.1 Model

We focus on types, which contain both method and field declarations. Methods involve
pre- and postconditions as part of their specification, but their bodies are not relevant at
this point.

Declarations most commonly consist in tuples, which are denoted by capital letters,
e.g., X . Names of such instances are denoted by corresponding lowercase letters e.g. x,
and sets of such declarations are denoted for example as X .

P ∈ Programs
T ∈ Γ : Types
I ∈ I : Invariants
M ∈M : Method names
F ∈ F : Fields
X ∈ Expr : Expressions
o, oi, oj ∈ Objects
n ∈ N : Numerals
t ∈ TNames : Type names
µ, µi, µj , ν ∈ MNames : Mutable field names
f ∈ INames : Immutable field names
g ∈ Arguments : Arguments to a method
E ∈ E : Boolean eventual conditions in upon context
C ∈ C : Boolean conditions not used in an upon context
B, A ∈ B : Boolean conditions

Fig. 6. Domains

3.2 Dissecting Preconditions

Immediate conditions: An immediate condition, denoted ↓ C, occurring in the precon-
dition of a method M in type T is a predicate C that must evaluate to TRUE imme-
diately upon an invocation of M on an instance of T for successful execution of the
method M. Such a condition corresponds to the “traditional” view of preconditions as
correctness conditions; when used solely for program verification it must be proven
to hold at a given invocation, or, when combined with runtime support, can yield an
exception (which the caller must be prepared for) if not satisfied.

P ::= {T} [{X}]
T ::= (t, {M}, {F}, {I}, [{t}])
M ::= (B, S, A)
S ::= (t, GL)
GL ::= [{(g, t}]
F ::= (f, t) | (µ, t)
I ::= C
A ::= C
B ::= C | U
U ::= upon E
Z ::= f | g | n
C ::= E | f R Z | f R ν | C D C | not C
D ::= and | or
R ::= < | > | == | <= | >=
E ::= µ R Z | µi R µj | not E
X ::= t o | o := new t | oi := oj | o.M(OL) | o.M() | o.setsafe()
(∗ omitted : if − then− else, while ∗)
OL ::= {o}

Fig. 7. Abstract Syntax

Eventual conditions: An eventual condition, denoted �C, appearing in the precondition
of a method M in type T is a predicate C that must evaluate to TRUE eventually for
successful execution of the method M. Such a condition is similar to a guard, and re-
flects the when clause of JML, or the separate keyword in Eiffel (see Section 6.1).

The distinction between eventual and immediate conditions in the context of pre-
conditions allows for increased flexibility, in the sense that eventual conditions can be
strengthened in some contexts that we will characterize shortly. Immediate conditions
can not strengthened, because their runtime monitoring can lead to exceptions being
thrown to callers, which might be catered for these exceptions if they represent addi-
tional constraints, which they were not aware of. These constraints thus correspond to
the original interpretation of preconditions as contracts between consumers and suppli-
ers [23].

3.3 Mutability

Key to the distinction of eventual and correctness conditions is the notion of object
mutability. In short, a predicate expressed solely on immutable objects is naturally in-
terpreted as an immediate condition: if it does not hold immediately upon invocation of
a method it will never hold. Anything else is an eventual precondition. We hence distin-
guish between mutable and immutable objects — more precisely actual arguments —
with respect to a given condition. By safe we assume mutability of objects. The distinc-
tion then depends on several factors, as outlined below and summarized by Figure 8:

Type mutability: An argument of a condition can be immutable by its very type. Ex-
amples, where the type declaration has an effect are for instance primitive types or

their corresponding object types as boolean or Boolean in Java respectively, whose
instances are all invariably immutable. Eiffel proposes similarly value types, which
can also be custom-defined. A type-immutable argument is thus a formal argument
of an immutable type. We assume that a corresponding actual argument can never
become mutable: according to the original definition of behavioral subtyping [20], a
mutable subtype of an immutable type would violate history conditions which can
only be strengthened by subtypes and thus further narrow down the possible states
for objects.

Context mutability: An argument of an a priori mutable type can still become immutable
in a given context. By context we mean the way it is declared. This can occur for in-
stance through additional keywords prefixing a formal argument in a given language,
e.g., const in C++, final in Java. Further, pure in JML can be used to specify if
the associated method does not modify any of the arguments, which means that such
arguments are effectively not mutable in such a context. We do however not consider
the case where one can define an immutable type as subtype of a mutable type (see
Section 9.2). precise). Hence, the dynamic type of an actual argument can not render
a type-mutable argument context-immutable. This is both a reasonable and useful
assumption, which results in that mutability/immutability of a given argument within
a predicate occurring within a precondition is entirely statically determinable.

In the following, a variable ?V denotes a mutable variable if ?=� (e.g. �V), or an
immutable one if ?=∞ (e.g. ∞V). If ? is unknown or irrelevant it will be omitted.

Precondition semantics (∗)

Eventual (�)Immediate (↓)

(a)

Argument mutability (?)

Type-immutable (∞)Type-mutable (�)

Context-immutable (∞)Context-mutable (�)

(b)

Fig. 8. Classification of (a) preconditions and (b) precondition arguments.

4 A Relaxed Notion of Behavioral Subtyping

Based on the above definition of conditions, we are able to define a relaxed notion of
behavioral subtyping, in which preconditions can be strengthened. Figure 10 outlines to
that end two notions of subtyping, the first one of which corresponds to the “traditional”
behavioral subtyping rule (<:T), and the one introduced here (<:S).

In our definition, the precondition of the method of a supertype T1 can be strength-
ened in the subtype T2 through use of a new eventual condition expressed on additional

mutable fields of the subtype. If, modulo the parts retained from the rule of traditional
<:T , all conditions by which preconditions of a supertype are extended hold for some
well-defined safe state, then T2 is a valid subtype of T1 according to <:S . For specifica-
tion purposes, the new eventual condition is annotated with a keyword upon preceding
it and is referred to as upon precondition.

class CONG_CTRL_BUFFER[G] inherit BUFFER[G] redefine put, get

feature
[...]
congestioned: BOOLEAN := False

congestion(new_state: BOOLEAN) is
[...]

redefine get: separate G is
require
upon not congestioned

do
[...]

ensure
[...]

end -- get

redefine put(element: separate G) is
require
upon not congestioned

do
[...]

ensure
[...]

end -- put
end -- CONG_CTRL_BUFFER

Fig. 9. Buffer for global congestion control with upon conditions

4.1 Upon Conditions

An upon condition is an eventual condition that involves one or more elementary con-
ditions and is preceded by a keyword upon in a precondition of a method (Listing 4).
Each such elementary condition involves one or more single mutable variables intro-
duced in the type. It is sufficient to note that besides variables, these can involve literals
and binary operators on these, accesses to fields of variables (which are accessible at
that point), or method invocations on variables, with further variables or expressions
used as parameters. The upon conditions of a method M can only refer to the internal
state of the object. For instance, it must not refer to parameters of M. An upon precon-
dition locally introduced in T for method M is visible to all the subtypes of T, to which
M is also visible.

upon(M, T): Upon precondition of a method M in type T denoted by upon(M, T) is
defined recursively as a conjunction of the upon condition for M introduced locally

in T and the upon condition introduced for the method in each supertype of T that
M redefines. Let local-upon(M, T) refer to the upon precondition of M locally in-
troduced in T. Let uponset(M, T) be the set of upon conditions introduced in each of
the supertypes of T(inclusive of T).

uponset(M̃, T̃) = local-upon(M̃, T̃)
⋃

T=supertype(T̃)

uponset(M, T). (1)

where M̃ ∈M(T̃) redefines M ∈M(T).

upon(M̃, T̃) =
∧

u ∈ uponset(M̃,T̃)

u (2)

If T̃ does not introduce any upon precondition for M̃ locally,

upon(M̃, T̃) = upon(M, T) (3)

For expository purposes, we assume the absence of superfluous variables and ill-
typed conditions in an upon condition and that an upon condition is represented in CNF
(Conjunctive Normal Form). If a (mutable) variable is passed to a method within a pre-
condition, it is actually used, and no bogus conditions (e.g., v == v) appear. Methods
involved in preconditions are considered to be devoid of side-effects (a common as-
sumption not stated explicitly). In CNF representation, the elementary condition in an
upon condition is a clause and thus involves one or more mutable variables.

Upon conditions are closely associated with a notion of safe-state of objects. In the
example related to sensor networks (Figure 3), the sender in the MAC layer is aware
of only the interfaces - get() and put() and the contracts for these methods as de-
fined in BUFFER. However the implementation of these interfaces are provided by the
congestion control buffer (CONG_CTRL_BUFFER in Listing 9). Any strengthening of
preconditions of the get() and put() methods should be safe with respect to the
MAC layer client. In general, such strengthening in a type T should be safe for a client
of any of the supertype of T. In a concurrent setting, an object of T maybe accessed by
multiple clients, each independently assuming it as an object of T or some supertype of
T. In our example, the application layer and the MAC layer are the two clients assum-
ing the buffer to be an object of CONG_CTRL_BUFFER(T) and BUFFER (supertype of T),
respectively. In order to ensure that ”nothing goes bad”, we introduce the notion of safe
state of an object of a type with respect to a given supertype.

4.2 Safe State and Mutable Fields

In order to honor the behavioral subtyping and the associated subtype requirement [20]
the upon conditions satisfy the following requirement: an added eventual condition is
satisfied by some special values of the additional fields. We will henceforth refer to
these values as safe values. For a given field F, it is denoted∇F. These additional fields
are initialized to these safe values during the object construction. In short, such a value
enables a behavioral subtype to function as an instance of the supertype in a ”safe state”
(or safe mode), which is the absence of any (non-terminating) actions defined through

additional methods of the subtype on the additional fields. In the example (Listing 4),
the safe value of the added field locked is FALSE. If this value is adopted, the state
space of a LOCKABLE_BUFFER is reduced to that of a BUFFER, making it behave exactly
as an instance of that latter type.

The additional fields that are of importance to upon conditions are mutable fields,
since evaluation of an eventual condition (upon condition) waits on its mutable fields to
hold values that collectively make the condition TRUE. A collection of such values of
the mutable fields are statically defined and it refers to the safe state. In what follows,
we define the safe state (safe mode) in terms of the mutable fields and their safe values.

Mutable fields: mutable(M, T) denotes the set of the mutable fields used in the upon
precondition of M - upon(M, T).

mutable(M, T) , {�F |F ∈ F(upon(M, T))}. (4)

For each field F ∈ mutable(M, T), safe value ∇F makes each clause in upon(M, T)
involving F, TRUE. Let mutable(T) be defined as the set of all mutable arguments in
a type T used in all its upon preconditions:

mutable(T) ,
⋃

M∈M(T)

mutable(M, T). (5)

In order to ensure that o is in safe state, all the upon conditions (for all methods) in
T2 excluding those defined in T1 and its supertypes must hold. Thus a safe state for
objects of T2 against T1 is defined over the safe values of all the mutable fields used
in all such upon preconditions - all fields in (mutable(T2) \ mutable(T1)).

Safe state: A safe state of an object o of type T2 with respect to its supertype T1 is a
state that makes all the strengthened conditions hold that are introduced by each and
every supertype that is either T1 or a subtype of T1. safestate(T2,T1) denotes such a
state. Let [[C]]s denote the evaluation of C on an object which is in state s.

safestate(T2) , {s|[[
⋃

M2∈M(T2)

upon(M2, T2)]]s = TRUE} (6)

safestate(T2, T1) , {s|[[
⋃

M2∈M(T2)

(local-upon(M2, T2)∧ upon(M̃, T̃))]]s = TRUE}

(7)
where T2 is a subtype of T̃, which in turn is a strict subtype of T1 (T̃ 6= T1), and M̃
∈M(T̃) redefines M2.

∀s ∈ safestate(T2, T1) : s ,
⋃

F∈(mutable(T2)\mutable(T1))

{(F,∇F)} (8)

We will see in the following section in more detail how and where the safe value
comes to play.

[INVARIANTS]
σ, ω ∈ Γ; Γ ` I(ω) ⇒ I(σ)

[FIELDS]
Γ ` ∀Fi = 〈fi, Ti〉 ∈ F(σ) ∃ Fj = 〈fj , Tj〉 ∈ F(ω) 3 (fi = fj) ∧ (Ti = Tj)

[CONTRAVARIANCE OF METHOD ARGUMENTS]
Γ ` ∀Mi = 〈mi, Bi, Si, Ai〉 ∈ M(σ) ∃Mj = 〈mj , Bj , Sj , Aj〉 ∈ M(ω) 3

∀Gi.k ∈ G(Si), Gj.l ∈ G(Sj) (l = k) ⇒ T(Gi.k) <:S T(Gj.l)

[COVARIANCE OF METHOD RETURN]
Γ ` ∀Mi = 〈mi, Bi, Si, Ai〉 ∈ M(σ) ∃Mj = 〈mj , Bj , Sj , Aj〉 ∈ M(ω) 3

T(Sj) <:S T(Si)

[POSTCONDITIONS]
Γ ` ∀Mi = 〈mi, Bi, Si, Ai〉 ∈ M(σ) ∃Mj = 〈mj , Bj , Sj , Aj〉 ∈ M(ω) 3

Ai ⇒ Aj

[PRECONDITIONS]
Γ ` Bj = Bi ∧ �Cj(Fσ\ω ⊆ F(σ)\F(ω)) 3

∀ � F = 〈µ, t〉 ∈ (mutable(σ) \ mutable(ω)), (µ,∇µ) ∈ s ∈ safestate(σ, ω)

[RELAXED BEHAVIORAL SUBTYPE]
Γ

ω <:S σ

Fig. 10. Subtyping rule

4.3 Subyping Rule

The typing rule for the relaxed notion of behavioral subtyping is different than that of
the general notion in the definition of the precondition (Figure 10). Typing rules for
invariants, fields, method arguments and return, and postconditions are same as that
of the general behavioral subtype. For mutable fields, the same rule ([Fields]) applies
(with fj being replaced by µj).

From the structure of the precondition rule, it is not hard to infer if a subtype is a
relaxed behavioral subtype or not.

4.4 Semantic Rules

We distinguish between the clients based on the type through which they are accessing
the object. Let γ is a relaxed behavioral subtype of σ and γ uses a new upon condition
in the precondition of a method M, which is already defined in σ. Let ω be a relaxed
behavioral subtype of γ such that it defines another new upon condition for M. Let an
object o be instantiated from the type ω. A subtype client is one that invokes a method
M on an object through a type such that the method M has one or more upon defined
in that type or its supertype (such as γ or ω). All other clients are supertype clients: one

that invokes a method M on o through a type that does not have any upon condition
defined (locally or in a supertype).

Intuitively, the requirements outlined previously support the safe use of an object
o — despite certain strengthened preconditions — as an instance of any supertypes.
The added precondition being a pure wait condition makes it impossible that a client
accessing such an object o through a variable of a supertype receives an unanticipated
exception. The presence of a safe state with respect to a given supertype in which o
behaves just like an instance of that type provides the possibility for such an object
to be used exactly like an instance of the given supertype. The semantic rules are as
follows:

Construction: A newly constructed object is initialized to a safe state, if supertype
clients may access this object.

Evaluation: The upon condition in a precondition is evaluated first and upon its eval-
uation to TRUE, the immediate condition is evaluated, both these evaluations being
carried out in an atomic manner.

History Constraint: A subtype client always returns the object to a safe state before
relinquishing its mutually exclusive access to the object.

Mutual Exclusion: Supertype clients are never granted mutually exclusive access to an
object, while it is not in a safe state in terms of the supertype.

If the object is (going to be) accessed only by subtype clients, a subtype client need
not return the object to a safe state before relinquishing its mutually exclusive access to
the object. Ensuring that o eventually reaches that state (and/or possibly is initialized in
that state) relies on the application scenario. In principle nothing prevents such objects,
once exiting the original state space, to never return. This leads to defining additional
history invariants in the sense of [20]. In most cases however, it is reasonable to assume
that a relaxed subtype provides additional methods to transit back and forth between
the original (safe) and extended space. In the case of the congestion control buffer, this
possibility is provided by switching from contended to not contended state.

Avoiding deadly blocking in combination with mutual exclusion on such objects
becomes however a concern. In short, runtime support is required to ensure that a su-
pertype client accessing o, does not obtain mutual exclusion on that object while it is
not in the safe state with respect to that type. This is discussed in the following section.

4.5 Informal Reasoning

In this section, we reason about the correctness properties of the relaxed notion of the
behavioral subtype - in the context of the typing and semantic rules.

The concern is: If a supertype client (type: σ) attempts to access an object o of a
subtype (type: ω), will it ever get blocked by invoking a method M, even if it satisfies the
precondition B(M,σ)? The following lemma proves that it will never block, provided
the semantic rules are followed in conjunction with the typing rule. A subtype client
would obviously encounter the upon condition because it is aware of the contracts.

Lemma 1. A supertype client will never block on an object of a relaxed behavioral
subtype (of the supertype).

Proof. Let the supertype and the subtype be σ and ω, respectively. Let o be an object
constructed from ω. Let M be a method defined in σ, which is redefined as M̃ in ω. If
M̃ does not involve any local upon condition in its precondition, the supertype client
will never block. If it involves a local upon condition, then we have the following cases.

Case-I: After its construction, o has not been accessed by any client before the su-
pertype client attempts to access it; thus it is in a safe state with respect to all the super-
types of ω (Construction rule). Thus the supertype client would not block on this access.

Case-II: Only supertype clients are accessing the object. Since only subtype clients are
aware of the upon conditions and only such clients would be able to change the state of
the object from a safe state to an unsafe one with respect to this local upon condition,
the object would never enter any unsafe state. By the Construction rule and the Mutual
Exclusion rule, the supertype clients would never block on this upon condition.

Case-III: A mix of supertype and subtype clients are accessing the object. The super-
type client would not be allowed to access the object if it is in an unsafe state (Mutual
Exclusion rule). A subtype client that has access to the object at a given point of time,
would always return the object to a safe state (History Constraint rule). A supertype
client only waits for a finite amount of time depending on the application scenario be-
fore being able to access the object. Therefore, if a supertype client tries to access o
after a subtype client has already accessed o by invoking M on o, then the supertype
client would not be given mutual exclusion if another client is holding exclusive access
to the object o. As per the history constraint rule, a subtype client would release such
mutual exclusive access in a finite number of execution steps (finite time). Thus the
supertype client would eventually acquire mutual exclusion on the object in a safe state.

Further, a supertype client does not have to carry out any operations to change the
state of the object to a safe state. Thus the lemma is proved. QED

5 Denotational Semantics

In order to simplify the exposition (and given the space limits), we propose the deno-
tational semantics [34] of the language relevant to the relaxed behavioral subtyping
based on the abstract syntax in Figures 6 and 7. Figure 11 specifies the semantic alge-
bra for the denotational semantics of the strengthening of preconditions through upon
conditions. Figure 12 specifies valuation functions for a selected set of domains.

The operation (→ �) behaves as an if-then-else statement [34]. It takes a
boolean value as a first argument and if it is TRUE then the second argument is evalu-
ated, else the third one is evaluated. We introduce a notion of a unit of atomicity, which
is a sequence of execution steps that is never interrupted. A unit of atomicity is denoted
by a bar over the operation under evaluation with a unique identifier (such as α). For
example, E[[M

α
]](o) means M is invoked (evaluated) on o in a mutual exclusive access

guaranteed by the atomic unit αİn Our specific interest lies in analyzing the seman-
tics of method evaluation in the context of upon preconditions. A set of safe objects
(SafeObjects) is defined to highlight that objects from from safe to unsafe and unsafe

to safe sets. setsafe is an operation implemented by types in order to facilitate changing
the state of an object to a safe state with respect to each and every strengthened pre-
condition introduced locally and in its supertypes. A newly constructed object is a safe
object; the valuation function for E[[o := new t]] is meant to simply highlight such
a semantics. (We have precluded use of generators and detailed formal mechanisms
in specifying the construction process in order to keep the exposition simple.) Eval-
uation of an immediate (non-upon) precondition leads to an error if it is evaluated to
FALSE. Evaluation of upon condition is based on wait semantics and thus its evaluation
to FALSE does not lead to an error, rather the uponcondition is re-evaluated again (but
in a different atomic unit of execution). Application of such semantics can be seen in
the valuation function for evaluation of methods.

Booleans: TRUE, FALSE ∈ B.
Operations:
and: B × B → B
or: B × B → B
not: B → B

Objects:
SafeObjects: set of objects that are in safe state with respect to upon conditions.
error: an error state in which all the mutual exclusive accesses to objects are relinquished.
[[M]]o: an application (non-atomic) of M over the object o(evaluation of M in o).
[[M

α
]]o: an atomic application of M over the object o with α as the unit of atomicity.

Operations:
constructor: Γ → SafeObjects
uponset: M × Γ → E
non-upon: M→C
typeOf: Objects → Γ
equalTypes: Γ ×Γ → B
equals: uponset × uponset → B
(→ �): B × DOM × DOM → DOM for a previously defined domain DOM.

Fig. 11. Semantic Algebra

Evaluation of a method on an object has the following semantics: if a supertype
client invokes the method on o, then it proceeds with just the evaluation of the method
unlike when a subtype client invokes such a method. A subtype client changes the state
of the object to an unsafe state (as it encounters an upon condition); in such a state
the method M is evaluated under an atomic unit of execution α. Its evaluation of M is
followed (not necessarily immediately) by changing the state of o to a safestate through
setsafe. The atomic unit under which, such a state change occurs is important to the
context in which the object is supposed to be accessed. If o is accessed by a mix of
subtype and supertype clients, then evaluation of setsafe is carried out under the same

atomic unit (α) as specified in the valuation function. However if o is accessed by only
subtype clients, then the mutual access to the object can be relinquished in an unsafe
state (Section 6); therefore the atomic unit under which o could be different than the
one (α) under which the invoked method is evaluated. For a scenario in which an object
o is accessed only by subtype clients, the valuation function is as follows:

E[[o.M()]] = E[[M]](o)
= equals(uponset(M, typeOf(o)), φ) → E[[M

α
]](o) � (E[[M

α
]](o); E[[setsafe

β
]](o))

E[[o := new t]] = constructor(t) → o.

B[[B]](o) = C[[C]](o)→ TRUE � error.
= U [[U]](o) →TRUE � U [[U]](o).
A[[A]](o) = A[[C]](o)

E[[o.M()]] = E[[M]](o)
= equals(uponset(M, typeOf(o)), φ) → E[[M

α
]](o) � (E[[M

α
]](o); E[[setsafe

α
]](o))

E[[M
α
]](o) = M[[(B, S, A)

α
]](o) = B[[B]](o); S[[S]](o); A[[A]](o)

α

= U [[U]](o) → (C[[C]](o) → (S[[S]](o); A[[A]](o))� error)
α

� M[[(B, S, A)
β
]](o)

=U [[U
α
]](o) → (C[[C

α
]](o)→ (S[[S

α
]](o);A[[A

α
]](o)) � errorα) � M[[(B, S, A)

β
]](o).

Fig. 12. Valuation Functions for selected domains

5.1 Resumptions

Let the supertype and the subtype be σ and ω, respectively. Let o be an object con-
structed from ω. Let M be a method defined in σ, which is redefined as M̃ in ω.

Resumption-I : An invocation of M on o by supertype client through an alias o2:σ is
in concurrence with an invocation of M on o by another supertype client through an
alias o1:σ. ‖ denotes the concurrency (parallelism) among operations/evaluations and
“;” denotes sequential evaluation. Without loss of generality, consider the sequential
execution in which the invocation through o1 precedes that through the o2, which is
denoted as follows:

E[[o1.M()]]‖ E[[o2.M()]] = M[[M
α
]](o1); M[[M

β
]](o2)

Let us expand M[[M
α
]](o1) as follows:

M[[M
α
]](o1)

⇒ o1 ∈ SafeObjects
⇒ o ∈ SafeObjects

o ∈ SafeObjects and o = o2

⇒o2 ∈ SafeObjects
⇒ upon(o2, σ)
⇒ upon condition for M in o2 does not block indefinitely.
⇒ E[[(o2).M()]] = C[[C

β
]](o)→ (S[[S

β
]](o);A[[A

β
]](o)) � errorβ .

A change of the order of the above two operations would proceed with no blocking
and follows from the above semantics.

Resumption-II : An invocation of M on o by supertype client through an alias o2:σ is
concurrently being implemented by an invocation of M on o by a subtype client through
an alias o1:ω. We are specifically interested in the sequential execution in which the in-
vocation of subtype client precedes that of the supertype client, which is specified as
follows:

E[[o1.M()]]‖ E[[o2.M()]] = M[[M
α
]](o1); M[[M

β
]](o2)

= equals(uponset(M, typeOf(o1)), φ)→E[[M
α
]](o1) � (E[[M

α
]](o1); E[[setsafe

α
]](o1));

M[[M
β
]](o2)

In addition,

equalTypes(typeOf(o1), ω)
⇒ not equals(uponset(M, ω), φ)
⇒M[[M

α
]](o1) = E[[M

α
]](o1); E[[setsafe

α
]](o1)

Moreover,

E[[setsafe
α
]](o1)

⇒ o1 ∈ SafeObjects
⇒ o ∈ SafeObjects

o ∈ SafeObjects and o = o2

⇒o2 ∈ SafeObjects
⇒ upon(o2, σ)
⇒ upon condition for M in o2 does not block indefinitely.
⇒ E[[(o2).M()]] = C[[C

β
]](o)→ (S[[S

β
]](o);A[[A

β
]](o)) � errorβ .

Therefore,

M[[M
α
]](o1)

⇒ E[[(o2).M()]] = C[[C
β
]](o)→ (S[[S

β
]](o);A[[A

β
]](o)) � errorβ

⇒M[[M
β
]](o2) does not block indefinitely on the upon condition.

Resumption-III : An invocation of M on o by subtype client through an alias o2:γ is
concurrently being implemented by an invocation of M on o by a subtype client through
an alias o1:ω. such a resumption could be proven to be non-blocking in a line similar to
that in Resumption-II.

We prove Lemma 1 formally using denotational semantics using resumption seman-
tics proposed above as follows.

Lemma 2. A supertype client will never block on an upon condition in an object of a
relaxed behavioral subtype (of the supertype).

Proof. Let o be an object constructed from a type ω involving an upon condition.

Case-I: After its construction, o has not been accessed by any client before the su-
pertype client attempts to access it;
o ∈ SafeObjects⇒ upon condition for a method M in o does not block indefinitely.

Case-II: Only supertype clients are accessing the object. The lemma in this scenario
follows from Resumption-I.

Case-III: A mix of supertype and subtype clients are accessing the object. The lemma
in this scenario follows from Resumptions-II and III. QED

6 Nesting and Deadlocks

This section discusses the relaxed behavioral subtyping model presented in the previ-
ous section in the face of deadlocks, and presents runtime support, implemented in the
context of Eiffel, required to avoid these. The presentation is made in an incremental
manner with respect to the traditional subtyping case <:T , and starts off with back-
ground information on the Eiffel concurrency model.

6.1 Background: Concurrency in Eiffel

Eiffel, just like Spec#, integrate assertions into the language. Eiffel is furthermore in the
process of being extended with inherent support for concurrency, in the aim of providing
concise concepts for safe multi-threaded programming. Currently, these concepts are
put to work with a pre compiler, which generates synchronization code from contracts
(see Section 7.1).

As already mentioned, the basic model [26, 25] for concurrent programming in Eif-
fel, dubbed SCOOP (Simple Concurrent Object Oriented Programming [26, 2]) origi-
nally introduces a single keyword for guiding synchronization explicitly — separate

— which is used to tag variables. Roughly, every object is associated with a (single)

conceptual processor, which is the only one to execute the methods of that object.
An entity which is separate denotes an object which is potentially under control of
another processor. Method calls inherently trigger synchronization, i.e., before the exe-
cution of a method containing separate formal arguments, the current processor has to
acquire exclusive locks on all the separate objects passed as actual parameters, more
precisely on their processors, since these execute a single method at a time. This forms
the basic synchronization scheme. As a consequence, all separate objects used by a
method must be arguments of that method.

Concurrency is increased by allowing methods without return values on separate ob-
jects to perform asynchronously, and only synchronizing upon methods with return val-
ues. Several extensions have been introduced recently, to relax or extend the model [2,
27], or to provide seemingly atomic execution of methods through transactional sup-
port [36, 9], but we focus on the above model in this context.

6.2 Preliminary: Nesting and Inherent Locking

When invoking an object through a method encompassing a correctness condition, the
condition is “passed on” to the client site, i.e., the client performing the invocation is
responsible that the condition is ensured. In a nested invocation scenario, this means
that such correctness conditions can accumulate inversely to the nesting order of invo-
cations.

If wait conditions are used as synchronization barriers for methods, then corre-
sponding conditions can similarly propagate. Take a method m1 with a wait condition
B1 that is invoked within another method m2. The invocation to m2 may be preceded
by an if (B1) ... statement, or possibly m2’s precondition B2 will include B1; in both
cases, if one can infer parts B of B1 (B ⊆ B1) at the moment of the invocation, such
that it is sufficient to verify B1\B (which might even be empty – ∅). Since we adopt
the Eiffel model of concurrency (see Section 7), the if statement (if any is needed)
which represents a guard gets merged with B2. Consider in the following the example
of a buffer invoked through a variable of type BUFFER from an auxiliary class defining
a method for the atomic addition of a set of elements:
feature put_n(objects: ARRAY[G]; buffer: separate BUFFER[G]) is
require
objects.length <= buffer.max - buffer.count

do
[...]

end -- put_n

The precondition of put_n() needs to reflect the cumulated precondition of the
individual put()s if put_n() is to execute atomically on b.

This essentially yields two scenarios for invocations to shared data structures such
as our BUFFER example:

Nested synchronization: If mutual exclusion is desired, method invocations to a con-
current data structure are surrounded by (possibly implicit) lock acquire and release
operations. We will refer to these scenarios as nesting meaning that synchronization
is nested, because the reasoning about mutual exclusion etc. propagates.

Non-nested synchronization: If mutual exclusion is not required, no locks need to be
acquired/released before and after an invocation respectively, at least not explicitly.
We will refer to such cases as non-nesting cases, since locks are not inherited to
encapsulating methods.

Ultimately, any program consists in the execution of blocks containing (nested) syn-
chronization and such containing no synchronization. The difficulties in reasoning arise
at the borders of the two. Reasoning about deadlock-freedom in the presence of indi-
vidual calls without any annotations or syntax whatsoever for synchronization is not
tractable and has not been addressed in literature. We focus in the following on the
former case, and subsequently come back to the latter case in the case of implicit syn-
chronization of such individual calls. The challenge arising in the former case consists
in ensuring that any added wait condition is considered if an object is referred to and
invoked through a variable of a a super-type. To that end, the generation of synchro-
nization barriers and guards must foresee that an objects dynamic type might introduce
additional wait conditions, and thus cater for this case. In the above example, any indi-
vidual call to put() will evaluate the additional wait condition if b refers to an object
of type CONG_CTRL_BUFFER. Section 7 elaborates more on this.

6.3 Separating Clients

In [7], Dhara and Leavens present a model of weak behavioral subtyping (see Section 9),
which founds on the assumption that there is no aliasing across subtypes. In other terms,
all references to a given instance of a buffer subtype e.g. LOCKABLE_BUFFER occur
through variables bi of the exact same type – all bi are either of type BUFFER or of type
CONG_CTRL_BUFFER.

It is easy to see that in such scenarios no deadlocks are introduced in our case of
<:S . If an object of a type T2 <:S T1 is referenced by variables of type T1 (only), it
behaves exactly like an instance of T1 given that the object starts in its safe state and
that this mode can only be switched by methods added by T2. If all variables to such an
object are of type T2, the same reasoning about deadlock applies as for any behavioral
subtyping scenario. thus boils down to the traditional problem.

In the following scenarios where T2 <:S T1, client objects referring to instances of
a type T2 through variables of type T1 are termed original clients, and objects detaining
references of type T2 to objects of type T2 as subtype clients.

6.4 Nested Synchronization

A premise for well-behaving programs is that wait conditions added by subtypes do
become active in the first place with original clients, despite the presence of late bind-
ing and polymorphism. As mentioned above, this is handled by our implementation by
generating synchronization code for each method of each class requiring such synchro-
nization (in the case of Eiffel meaning involving separate objects), and executing that
code on the invokee side (see next section). The interesting case arises now with objects
being accessed by both original and subtype clients. We distinguish in the following two
cases which allow to narrow down the additional required reasoning about concurrency,
and especially, deadlocks.

Reverting to safe states in subtype clients. The first case consists in assuming that all
subtype clients of an object revert the object to the safe state at the end of a series of calls
on that object within mutual exclusion, whether implicitly or explicitly, before releasing
the lock on that object. In this case,no additional deadlocks are trivially introduced:
no (original) client finds an object in an extended state, i.e., a state in which added
fields are of relevance. Thus, no extended wait conditions can be in the way. In other
terms, a client which accesses a same buffer of type LOCKABLE_BUFFER as the client in
Section 6.2 can only make use of congestion() if it subsequently performs an inverse
congestion() before releasing the buffer:
CONG_CTRL_BUFFER[G]) is require not buffer.congestioned do
buffer.congestion(True) wait(1000000) buffer.congestion(False) end -- de_congest

The object referred to by b could not be released without the second call to congestion
(), as no client referring to the same object through a variable of type BUFFER could
use the object. More precisely, such a client can lock the object prior to the intended
usage, and find the extended precondition of congestion() to not hold.

Unlocking in extended states. The above is a strong restriction for many cases. Why
wouldn’t it be possible to split the two calls to congestion()? They could be executed
by different threads on a same buffer referred to by each through respective variables
b1 and b2, as follows, where bi refers to a buffer:

Thread 1 Thread 2 Buffer state

↓ ↓
accessible

b1.congestion(True) ↓
↓ ↓

inaccessible↓ b2.congestion(False)

↓ ↓
accessible↓ ↓

This would lead to a rendez-vous style interaction possibly with an inverse execu-
tion order, with each method being guarded by the respective precondition of CONG_CTRL_BUFFER
. Original clients could be running concurrently, without necessarily introducing dead-
locks.

We discuss in the following how to relax the above restriction such as to allow such
executions, i.e., to allow subtype clients to “release” objects in an extended state in the
presence of original clients.

The idea is rather intuitive. It essentially means that for any client using an object
through a variable of type T in a synchronized setting, one has to ensure that any object
accessed through that variable passing the synchronization point is actually in the safe
state associated with type TṪhis adds no additional requirements for subtype hierar-
chies following traditional behavioral subtype conformance <:T . In the context of <:S ,
this requires the addition of (a) wait condition(s) on the corresponding field(s) which
are enabled only by the safe state, together with the lock acquire. As a consequence, an
original client never gets to execute in an extended state, even if it was possible to per-
form the corresponding methods. Section 7.2 presents different ways of implementing

such a wait condition for the safe state, including automatic and programmer-assisted
schemes.

For the deadlock reasoning, the above way of proceeding retains modularity, by
clearly separating the reasoning into (1) original clients (with respect to the semantics
of the original type) as traditionally the case and (2) confined to subtype clients among
themselves. Intuitively, one can think of such objects being shared by original and sub-
type programs along the lines of weak behavioral subtyping, with transitions occurring
only in states which are safe for either side to execute in.

6.5 Non-nested Synchronization

Suppose an invocation to a shared data structure takes place in mutual exclusion with
respect to other calls to that data structure, but is not within a nested synchronization
block. The solution outlined above in the case of nested synchronization can be applied
to this case as well. That is, the use of mixed clients (original and subtype clients) re-
quires any call to such an object coming from an original client to be inherently guarded
by a wait condition for the corresponding safe state. In the case of nested synchroniza-
tion this wait condition was already executed before-hand, and thus is trivially satisfied.

Note that the less runtime-intrusive but for programmers more restrictive approach
of requiring any subtype client to revert to the original state — given that we are con-
sidering a single invocation in this case — would mean that there would be no means
to even enable an extended state.

7 Implementation

In this section, we illustrate the concept of strengthening preconditions through the
SCOOP model of Eiffel. A background on the SCOOP precompiler relevant to the
context of strengthening of preconditions is presented.

7.1 Background: SCOOP Precompiler

A SCOOP precompiler (scoop2scoopli [35]) transforms a SCOOP program to an Eiffel
program based on calls to a SCOOP library. The SCOOP library (scoopli [35]) handles
the concurrency semantics as specified through the separate keyword. In the trans-
formed code, each object is associated with a processor, which in turn is managed by a
scheduler. The scheduler manages acquiring locks on the receiver of a method call and
all the separate arguments of the method. An object is locked by acquiring a lock on its
processor. For the call to proceed, precondition of the method has to be satisfied, which
in turn requires that the locked receiver and other locked objects are in a state satisfying
all the clauses of the precondition involving them. All these preconditions are propa-
gated up to the caller routine of the method. The scheduler evaluates these clauses until
they hold, before locking the receiver object on behalf of the caller. In other words, the
caller waits for these clauses of the precondition to hold before being able to acquire
the lock.

The transformed program waits until the precondition of the method that accesses
the synchronized (through separate) object holds and then locks the object. Such a
wait semantic is very useful for the implementation of the strengthened preconditions
in SCOOP model. The precompilation process on SCOOP-based programs, transforms
the programs in order to add such semantics whenever the intention of synchronized
access is specified through separate annotation.

The precompilation makes use of the agent mechanism of Eiffel (a substitute for
higher-order functions which is similar to delegates in C#) and the SCOOP library. The
SCOOP precompiler transforms

– Each class that refers to one or more instances as separate instances; such classes
are called as client classes.

– Each class whose instance is referred to as a separate instance in a client class; such
classes are called as server class.

Client classes. Pre-compilation of a client class transforms the class in place, and gen-
erates a proxy class - SS_classname (SS stands for SCOOP_SEPARATE). The proxy class
refers to an instance of the transformed client class as its implementation through the
field implementation_. A client class declares separate instances of server classes as
an argument to a method (separate-by-argument). An example is: send(buf: separate

BUFFER[INTEGER],...) in Sender client (Listing 14). Translation of every such
method leads to generation of two new methods, each one is used to define an agent.
The arguments of the new methods are identical to those of the client method.

One of the new methods - send_sss_er() (sss denotes scoop_separate_sender
, er denotes enclosing_routine) is a wrapper method with almost identical (iden-
tical for our purpose) definition and functionality as that of the client method in trans-
lation - send (Listing 16). The second new method - send_sss_wait_condition
(Listing 17) evaluates those clauses in the precondition of the client method that uses a
separate object and returns the result of the evaluation as a boolean value. The SCOOP
scheduler treats it as a wait condition. The method call on the server object inside the
client method - buf.get() is replaced by an invocation to the SCOOP library rou-
tine separate_execute_routine() with the two agents as parameters (Listing 15).
separate_execute_routine() passes the two agents to the SCOOP scheduler for
execution. Upon acquiring all the locks, the scheduler calls the routine on the agent
implementing the wait condition. If the routine returns true, the processor invokes a
call on the agent of the method. If any of the wait conditions do not hold, all locks are
relinquished, and the method is rescheduled for a later retrial.

Server classes. For the server classes, a proxy class is generated. Any call on a server
object is routed through an instance of its proxy to the SCOOP library and the original
class. The proxy uses agents for each call on a separate object and passes these agents to
the library routines. scoop_asynchronous_execute() and scoop_synchronous_execute
() are the library routines that enqueue the call to the processor of the specific object.
The enqueued calls are scheduled for execution later by the SCOOP scheduler.

Fig. 13. Working of the SCOOP precompiler

class Sender
feature
[...]

send(buf: separate BUFFER [INTEGER]) is
require
buf /= void

do
[...]
... := buf.get
[...]

end
end

Fig. 14. The client Sender for BUFFER

send(buf: SS_BUFFER [INTEGER_32]) is
require
buf /= void

do
[...]

separate_execute_routine(..., agent
send_sss_er(buf), agent

send_sss_wait_condition(buf),...)

[...]
end

Fig. 15. Translated send()

7.2 Handling Strengthened Preconditions

A first extension of the SCOOP precompiler consists in handling these upon clauses.
Handling of upon clauses comprises of (1) its verification and (2) replacement of upon
keyword as the Eiffel compiler is not aware of.

Verification of the Safe State To honor the restrictions outlined in the previous section,
it is important that an object (which is separate) is only locked by a client accessing that
object through a variable of a given type T if the object is in its default state with respect
to type T. Any method locking a set of separate objects is thus added a wait condition
to ensure that all these objects are in their respective default states.

In our implementation such a wait condition contains a call to a method is_safe()
which returns a boolean value and thus represents a predicate. This method is defined
as part of the STRENGTHENABLE class (see Listing 19), which any class making use of
upon clauses implements. Since recursive subclassing with upon clauses is possible,
the is_safe() method takes as argument a type name (given the absence of meta-
classes in Eiffel). Whenever an object of an extended subtype according to the model

send_sss_er (buf: SS_BUFFER [
INTEGER_32]) is

require
buf /= void

do
[...]

... := buf.get(Current, el)

[...]
end

Fig. 16. Generated Wrapper for send

send_sss_wait_condition (buf: SS_BUFFER [
INTEGER_32]) : BOOLEAN is

local def: STRENGTHENABLE
do
def := buf
if (def /= void) then
Result := True and then (def.is_safe(BUFFER))
else
Result := True

end
end

Fig. 17. Generated Wait Condition for send()

presented in this paper appears as argument to a synchronization barrier, the barrier
is added a wait condition involving a call to the above-mentioned method, passing as
argument the name of the static type through which the object is being accessed.

The programmer can easily implement this method herself by means of a switch
-case statement with the cases being superclasses of the considered class in the class
hierarchy. This implementation can easily reuse the implementations of this method in
super-classes. A class that strengthens a precondition through upon inherits STRENGTHENABLE
and redefines the is_safe() method.

In the case of omission of inheritance of STRENGTHENABLE from a class C mak-
ing use of upon clauses, or in the case the programmer does not want to be trou-
bled, STRENGTHENABLE is automatically added by the precompiler to the list of parent
classes of C, and an implementation of is_safe() is automatically generated. In this
case, the method verifies the disjunction of all upon clauses in conjunction with calls
to the is_safe() methods of any super-classes which are using upon clauses.

For CONG_CTRL_BUFFER (Listing 9) that defines upon conditions for each put()

and get(), the precompiler generates SS_CONG_CTRL_BUFFER (Listing 18). Anytime
an upon keyword is found in a method (e.g. put()) in the class to be transformed, the
precompiler checks if the class is a descendant of STRENGTHENABLE. If not, the gen-
erated class is defined to inherit STRENGTHENABLE and the programmer is notified
to implement the is_safe(). The is_safe() is conjoined with the predicate evalu-
ation statement in the method for wait condition generated as part of standard SCOOP
precompilation (Section 7.1). The replacement of the upon precondition is described in
the following section.

Processing of upon Precompilation does not remove the upon preconditions from a
class after the corresponding wait condition is generated as described in the previous
section; but it replaces the upon keyword which is not an Eiffel keyword. It is desirable
to leave the precondition of a method in a class remain as that would facilitate processes
as debugging and program maintenance. Since strengthening of preconditions is not
supported in Eiffel language, the condition specified through upon needs to be passed
in a manner that the compiler would not complain as illegal.

It is well known that a precondition involving a call to a method that evaluates a
predicate can be strengthened (see Section 8.3) in a subclass by redefining the method

class SS_CONG_CTRL_BUFFER[G]
inherit SS_BUFFER[G], STRENGTHENABLE

feature [...]

-- redefine put and get

redefine is_safe (superclass: String) :
Boolean is

do
if (superclass = BUFFER) then
Result := True and then (not

congestioned)
else Result := True

end
end

redefine upon_one: BOOLEAN is -- for put
do
Result := not congestioned

end

redefine upon_two: BOOLEAN is -- for get
do
Result := not congestioned

end
end

Fig. 18. Separate congestion control buffer after
Precompilation

class STRENGTHENABLE
feature [...]

is_safe(superclass: String):
BOOLEAN is

do
Result := True

end

end -- STRENGTHENABLE

Fig. 19. STRENGTHENABLE class

and making it evaluate a stronger predicate. Since this paper characterizes a certain
class of conditions (upon conditions) can be used to safely strengthen preconditions,
the modified SCOOP precompiler processes the upon precondition of a method m() in
class C as follows:

– it identifies the super-class A of C that is the first such class (earliest ancestor of C)
in the hierarchy to define m();

– defines a method upon_x(), where x is a unique ’id’ for the method m() such that
it returns TRUE; the id x is also used for all those methods that redefine m() later
(in this case upon_x()) in A that returns TRUE

– modifies the precondition of m() by conjoining upon_x() with the existing pre-
condition of m()

– redefines method upon_x() in every sub-class of A that locally strengthens the
precondition of m() through an upon condition. The redefinition of upon_x()
involves evaluation of the local upon condition.

Since the upon conditions are defined on only the internal parameters of the class,
no argument needs to be passed to such methods. However using method invocations in
a precondition is an un-safe way of implementing preconditions, unless implemented
carefully. It is unsafe, because it may lead to breaking of contracts at the subclass level.
The method maybe overridden “incorrectly” (as part of the software evolution process),
which might strengthen the precondition in the subclass with conditions that are not
eventual. One correct way of overriding such a method is what we are prescribing in
this paper. In our implementation, we are allowing method invocation to be used to

strengthen preconditions and it is safe, because the method is redefined to strengthen
the precondition through “wait” conditions and no other conditions that would make it
unsafe.

8 Discussion

This section discusses different issues related to the previously introduced concepts,
such as how they relate to locks.

8.1 Strengthening?

One may argue that “strengthening” only occurs seemingly, more precisely, that the
conjunctions we allow for preconditions is implicitly a disjunction: by requiring that
the conditions conjoined in subtypes with preconditions of the respective methods of the
super-type have default values for the involved arguments which satisfy the conjoined
condition for all instances of the super-type, one really has a disjunction with a stronger
condition, which moreover leads to retaining the initial condition.

As an example, a strengthening resulting from a conjunction of the form

↓ C1 ∧ �C2 (9)

where

�C2 = (F ∈ R) (10)

for an added fled F with default value ∇F ∈ R (R range of default value) yields
in fact

(↓ C1 ∧ F ∈ ∇F) ∨ (↓ C1 ∧ F ∈ R\{∇F}) (11)

which can be satisfied trivially by

↓ C1, (12)

assuming this default value is eventually ensured. From the perspective of the subtype
and its specification however, which represents the adequate point of view, the precon-
dition is a priori strengthened. The reasoning steps from Expression 9 to Expression 12
require further specifications and axioms such as the default value introduced by (10).

8.2 Explicit State Variables versus Locks

One can attempt to achieve the same functionality as the features added by LOCKABLE_BUFFER
by applying external locks on a conventional BUFFER – with explicit lock acquire and

release. Reasoning about concurrency through such locks is for instance advocated by

the recent seminal work on JML [32] in the presence of multithreading. Such an ap-
proach would then remove the need for an intrinsic extension of the BUFFER class.

As argued however in Section 2 already, the application of external locks makes
a state machine-like extension of concurrent data structures harder. Moreover, apply-
ing external locks to objects can lead to a coarse grained concurrency control model;
locking an entire data structure can be overkill in many more elaborate scenarios.

8.3 Use of Methods in Strengthening Preconditions

Most frameworks for behavioral subtyping currently implicitly offer a workaround for
the impossibility of strengthening preconditions. By defining a precondition method
for each method, where the former simply implements the precondition of the latter
method and can thus be overridden in a subclass by strengthening it, a similar effect
can be achieved as with our extension. Consider the following case of a class C with a
method m():
class C
feature
m is
require
m_pre

do
...

end -- m

m_pre is ...

Overriding m_pre() in a subclass D of C does the trick. However, this is far from
being safe, and in particular puts more burden on the programmer by concealing the
important details of m_pre(). This illustrates the hardness of taming complexity in be-
havioral subtyping, as a “pure” approach would require m_pre() to be defined with
contracts as well which might contradict then a “strengthening” of m_pre() in a sub-
class D.

In contrast, our approach lays the strengthening of preconditions open, and provides
a disciplined approach to reasoning about such scenarios.

9 Related Work

This section overviews closely related work, positioning it with respect to our present
work.

9.1 Axiomatic Semantics and Concurrency

Axiomatic semantics [13], also referred to as Hoare-logic, were initially introduced
without concurrency in mind.

One of the seminal efforts to tackle concurrency in the context of axiomatic seman-
tics is the well-known Owicki-Gries approach [29], which provides a framework for
determining under what conditions two blocks of code can be executed in parallel with-
out producing data-races. Owicki-Gries basically evaluates for every single instruction

in a first code block whether it conflicts with either of the instructions of the second
block. [29] thus requires O(n + m) single verifications for two code blocks of n and
m elementary instructions respectively (without mentioning the possibility of nested
method calls in the context of object-oriented programming). In this paper, we consider
that methods run in mutual exclusion, but only because it simplifies presentation. If two
methods can be proven to not conflict along the lines of [29], they may also be executed
simultaneously in our case.

Lipton’s [19] early work aims at identifying atomic regions in programs, i.e., regions
which can be considered to execute atomically. Such atomic regions then can typically
reduce complexity in Owicki-Gries. Without going into detail, [19] classifies individual
instructions by the possibility of preceding or succeeding (or both) them by instructions
of other threads. This method is particularly interesting when explicitly using locks
(acquires and releases) inside the code, as those remove many possible interleavings.

The rely-guarantee approach [16] has been introduced as a computationally less
expensive alternative to Owicki-Gries, which is additionally compositional. In the lat-
ter method, any change of one of the components may namely affect the proof of all
components. The approach of [16] consists in augmenting Hoare-triples with rely and
guar predicates. A corresponding code block then is specified as executing as soon as
its precondition holds, with only rely being subsequently required to remain valid, and
guar being ensured, before the end of the code at which only the (full) postcondition
must hold. The resulting slightly more complicated rule for parallel composition how-
ever is compositional, and has lower complexity, the downside being that it potentially
requires more input from the programmer.

The work of [33] has in much inspired the approach presented in this paper. Though
not explicitly targeting a subtyping/inheritance scenario, the incremental nature of pro-
gram development and proving, including addition of state variables, proposed has
much in common with such a subtyping setting. [33] strengthening, as they focuses on
extending finite automata for which the possible orderings of states are implicitly de-
fined by transition functions. tackle the proving of deadlock-freedom in a more general
manner, i.e., by proving pairwise deadlock-freedom between any two state machines.
Without considering nested calls in an object setting, more relaxed semantics are even
possible. In contrast, we consider here a single buffer (type), and focus on the use by
respective clients.

Various other authors have considered stepwise and incremental development of
systems specified with axioms. Gribomont [12] for instance focuses on incremental
development in the sense of refinement, where existing specifications and automata are
modified rather than augmented through an inheritance mechanism and included into
polymorphism.

Discouraged by the hardness of specifying axioms in the presence of multithread-
ing, given the intertwining of application logic and synchronization requirements, many
hopes were put in temporal logic [] to specify synchronization patterns in isolation from
methods. Temporal logic-based approaches tend to suffer from complexity, as poten-
tially infinite histories of events must be tracked.

9.2 Behavioral Subtyping and Concurrency

Alike the seminal work on axiomatic semantics outlined above, most work in behavioral
frameworks for object-oriented programming taking into account multithreading aims
at increasing parallelism by allowing for simultaneous execution of code blocks, or
methods, respectively. The goal consists then in proving non-interference, and a way
to achieve that (seeming) atomic execution of code blocks. The latest work along those
lines is [32], which contains a broad and detailed survey of related approaches. the
following.

[15] extends Spec#, a variant of C#, with specifications, to deal with multithreaded
programs. As in Eiffel, specifications are part of the language. [15] emphasizes two keys
concepts for multithreaded programs, namely (1) aliasing and (2) locking, which are
dealt with through keywords pack/unpack and acquire/release respectively. The authors’
main focus is on the preservation of invariants in the presence of multithreading.

[32], alike [15], models locks which are implementation-related in JML (specifica-
tions). An extensive syntax is added to define locks, describe which objects they relate
to and how, etc. The results described derive from a collection of techniques applied,
inspired, and adapted from various sources including [11, 37, 31]. Among the syntax in-
troduced is also a when clause, which, alike a guard or the eventual conditions described
in this paper, can be used to describe blocking behavior of a method. Their exact rela-
tionship to preconditions is however not described. With respect to [15], the techniques
described in [32] seem more exhaustive, but sill more flexible, as they allow for adapta-
tion of existing Java programs, and do not prescribe strong constraints (e.g., locks can
be shared).

The SCOOP model of concurrency proposed in conjunction with the Eiffel pro-
gramming language has strongly motivated the work presented in this paper, in par-
ticular because preconditions are monitored at runtime in Eiffel, and in SCOOP are
used as synchronization mechanism. [28] dissects both pre- and postconditions in the
presence of multithreading, separating between eventual and immediate preconditions
(“wait semantics” and “correctness semantics” respectively). However, the authors do
not proceed to further distinguish between method arguments and fields of the receiver
object, which is the key to strengthening preconditions.

Though not addressing concurrency (explicitly, see Section 1), the work of [7] is
worth mentioning at this point. The authors introduce a notion of weak behavioral sub-
typing, which allows types with mutable objects (mutable types) to have subtypes with
immutable objects (non-mutable types), unlike any of the original definitions of [20].
The consequence of this, is that objects may not be referenced through variables of
distinct supertypes. To that end, a static program analysis is proposed. As pointed out
by the authors of [7], the collection hierarchy considered in [5] conforms to their weak
notion of subtyping.

10 Conclusions

Behavioral subtyping lays the foundation for modular reasoning about programs, and
thus represents a cornerstone towards provably correct software. It has however often

been argued that the traditional constructs of behavioral subtyping are overly constrain-
ing, and preclude useful scenarios.

In this paper we exhibit such a simple yet representative scenario, where precon-
ditions need to be strengthened, going against the popular confines of behavioral sub-
typing. We discuss the role of multi-threading therein, and introduce precise guidelines
following which such a subtyping does not necessarily hamper safety of programs, and
modular reasoning about correctness as well as deadlock-freedom is still supported. We
present the implementation of this relaxed model in the context of the Eiffel program-
ming language.

Acknowledgment We thank Jean Privat, for his discussions and comments on the
paper.

References

1. S. Ajmani, B. Liskov, and L. Shrira. Modular Software Upgrades for Distributed Systems. In
19th European Conference on Object-Oriented Programming (ECOOP’06), pages 452–476,
2006.

2. V. Arslan, P. Eugster, P. Nienaltowki, and S. Vaucouleur. Dependable Systems: Software,
Computing, Networks, chapter SCOOP – Concurrency Made Easy. Number 4028 in Lecture
Notes in Computer Science. Springer, 2006.

3. J.-P. Briot. Actalk: A Testbed for Classifying and Designing Actor Languages in the
Smalltalk-80 Environment. In 3rd European Conference on Object-Oriented Programming
(ECOOP’89), pages 109–129, 1989.

4. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Rustan, M. Leino, and
E. Poll. An Overview of JML Tools and Applications. Electronic Notes in Theoretical
Computer Science, 80, 2003.

5. W. Cook, W. Hill, and P. Canning. Inheritance Is Not Subtyping. In Proceedings of the 17th
ACM Symposium on Principles of Programming Languages (POPL ’90), pages 125–135,
1990.

6. L. Crnogorac, A. S. Rao, and K. Ramamohanarao. Classifying Inheritance Mechanisms
in Concurrent Object Oriented Programming. In 12th European Conference on Object-
Oriented Programming (ECOOP’98), pages 571–600, 1998.

7. K. Dhara and G. Leavens. Weak Behavioral Subtyping for Types with Mutable Objects.
Electronic Notes on Theoretical Computer Science, 1, 1995.

8. Eiffel Software. Building bug-free O-O software: An introduction to Design by ContractTM

http://archive.eiffel.com/doc/manuals/technology/contract/.
9. P. Eugster and S. Vaucouleur. Composing Atomic Features. Science of Computer Program-

ming, 63:130–146, 2006.
10. M. Fähndrich and K. Leino. Declaring and Checking non-null Types in an Object-Oriented

Language. In Proceedings of the 18th ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ’03), pages 302–312, 2003.

11. C. Flanagan and S. Freund. Atomizer: a Dynamic Atomicity Checker for Multithreaded
Programs. In Proceedings of the 31st ACM Symposium on Principles of Programming Lan-
guages (POPL ’04), pages 256–267, 2004.

12. E. Gribomont. Development of Concurrent Systems by Incremental Transformations. In 3rd
European Symposium on Programming (ESOP ’90), pages 161–176, 1990.

13. C. Hoare. An Axiomatic Basis for Computer Programming. Communications of the ACM,
12(10):576–585, 1969.

14. B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating Congestion in Wireless Sensor Net-
works. In Proceedings of the 2nd ACM International Conference on Embedded Networked
Sensor Systems (SenSys 2004), pages 134–147, 2004.

15. B. Jacobs, K. Leino, and W. Schulte. Verification of Multithreaded Object-Oriented Pro-
grams with Invariants. In ACM Workshop on Specification and Verification of Component
Based Systems, 2004.

16. C. B. Jones. Tentative Steps Toward a Development Method for Interfering Programs. ACM
Transactions on Programming Languages and Systems, 5(4):596–619, 1983.

17. G. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. JML Reference
Manual, 2005.

18. K. Leino and P. Müller. Object Invariants in Dynamic Contexts. In 18th European Confer-
ence on Object-Oriented Programming (ECOOP ’04), 2004.

19. R. Lipton. Reduction: a Method of Proving Properties of Parallel Programs. Communications
of the ACM, 18(12):717–721, 1975.

20. B. Liskov and J. Wing. A Behavioral Notion of Subtyping. ACM Transactions on Program-
ming Languages and Systems, 16(6):1811–1841, 1994.

21. M. Barnett and K.R.M. Leino and Wolfram Schulte. CASSIS 2004, volume 3362 of Lec-
ture Notes in Computer Science, chapter The Spec# Programming System: An Overview.
Springer, 2004.

22. S. Matsuoka and A. Yonezawa. Analysis of Inheritance Anomaly in Object-oriented Con-
current Programming Languages. In Research Directions in Concurrent Object-oriented
Programming, pages 107–150. MIT Press, 1993.

23. B. Meyer. Applying Design by Contract. IEEE Computer, 25(10):40–51, 1992.
24. B. Meyer. Eiffel: The Language. Object-Oriented Series. Prentice Hall, 1992.
25. B. Meyer. Object-Oriented Software Construction, chapter Concurrency, Distribution,

Client-Server and the Internet. Prentice-Hall, 2nd edition, 1998.
26. B. Meyer. Systematic Concurrent Object-Oriented Programming. Communications of the

ACM, 36(9):56–80, 2002.
27. P. Nienaltowski. Flexible Locking in SCOOP. In First International Symposium on Concur-

rency, Real-Time, and Distribution in Eiffel-like Languages (CORDIE), 2006.
28. P. Nienaltowski and B. Meyer. Contracts for Concurrency. In First International Symposium

on Concurrency, Real-Time, and Distribution in Eiffel-like Languages (CORDIE), 2006.
29. S. Owicki and D. Gries. Verifying Properties of Parallel Programs: An Axiomatic Approach.

Communications of the ACM, 19(5):279–285, 1976.
30. S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis. Interference-aware Fair Rate

Control in Wireless Sensor Networks. In Proceedings of the ACM 2006 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communications (SIG-
COMM 2006), pages 63–74, 2006.

31. Robby, E. Rodrı́guez, M. Dwyer, and J. Hatcliff. Checking JML Specifications using an
Extensible Software Model Checking Framework. International Journal on Software Tools
for Technologly Transfer, 8(3):280–299, 2006.

32. E. Rodrı́guez, M. Dwyer, C.Flanagan, J.Hatcliff, G. Leavens, and Robby. Extending JML
for Modular Specification and Verification of Multi-threaded Programs. In 19th European
Conference on Object-Oriented Programming (ECOOP ’05), pages 551–576, 2005.

33. S. Kleuker. Incremental Development of Deadlock-Free Communicating Systems. In 3rd
International Workshop on Tools and Algorithms for Construction and Analysis of Systems
(TACAS ’97), pages 306–321, 1997.

34. D. A. Schmidt. Denotational semantics: a methodology for language development. William
C. Brown Publishers, Dubuque, IA, USA, 1986.

35. SCOOP Precompiler and Library. SCOOP Precompiler and Library
http://se.ethz.ch/research/scoop/index.html.

36. S. Vaucouleur and P. Eugster. Atomic Features. In Synchronization and Concurrency in
Object-Oriented Languages (SCOOL) at the 20th ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA 2005), 2005.

37. L. Wang and S. D. Stoller. Runtime Analysis of Atomicity for Multithreaded Programs.
IEEE Transactions on Software Engineering, 32(2):93–110, 2006.

	Practical Strengthening of Preconditions
	Report Number:
	

	tmp.1307986960.pdf.rIzpb

