Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

2008

Chameleon: Context-Awareness inside DBMSs

Hicham G. Elmongui

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Mohamed F. Mokbel

Report Number:
08-028

Elmongui, Hicham G.; Aref, Walid G.; and Mokbel, Mohamed F., "Chameleon: Context-Awareness inside
DBMSs" (2008). Department of Computer Science Technical Reports. Paper 1715.
https://docs.lib.purdue.edu/cstech/1715

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Chameleon: Context-Awareness
inside DBMSs

Hicham Elmongui
Walid Aref
Mohamed Mokbel

CSD TR #08-028
October 2008

Chameleon: Context-Awareness inside DBMSs

Hicham G. Elmongui*, Walid .G. Aref*, Mohamed F. Mokbel**
*Department of Computer Science, Purdue University
{elmongui, aref}@cs.purdue.edu
**Department of Computer Science and Engineering, University of Minnesota
mokbel@cs.umn.edu

October 17, 2008

Abstract

Context is any information that can be used to characterize the sit-
uation of an entity. Examples of contexts include, but are not limited
to, time, location, identity, and activity of a user. This paper proposes a
general context-aware DBMS, named Chameleon, that will eliminate the
need for having specialized database engines, e.g., spatial DBMS, tem-
poral DBMS, and Hippocratic DBMS, since space, time, and identity
can be treated as contexts in the general context-aware DBMS. More-
over, in Chameleon, we will be able to combine multiple contexts into
more complex ones using the proposed context composition, e.g., a Hip-
pocratic DBMS that also provides spatiotemporal and location contextual
services. As a proof of concept, we construct two case studies using the
same context-aware DBMS platform within Chameleon. One case study
treats identity as a context to realize a privacy-aware (Hippocratic) data-
base server while the other case study treats space as context to realize a
spatial database server using the same proposed constructs and interfaces
of Chameleon. To enable context-awareness and to be able to combine
contexts, we need to realize various context-aware operators. We intro-
duce a skyline operator as a necessary and important operator for efficient
combination of contexts within a context-aware query processing engine.
We study and address the performance bottlenecks that result from the
interaction between the skyline operator and other query operators, e.g.,
joins. Although there is still a long way to go, the two case studies and
the proposed skyline operators demonstrate that context-aware DBMSs
are a viable and scalable approach.

1 Introduction

According to the Merriam-Webster Online Dictionary, the term “context” is
defined as the interrelated conditions in which something exists or occurs [1].
Many researchers have tried to define context. However, their definitions are

often by using examples of context (e.g. [41]) or by using synonyms [3, 40]. In
the Ubiquitous Computing community, context is defined by Dey and Abowd
as “any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the inter-
action between a user and an application, including the user and applications
themselves” [14]. Examples of contexts include, but are not limited to, time,
location, identity, and activity of a user.

Context-aware computing (introduced in [41]) describes a system to be
context-aware if “it uses context to provide relevant information and/or services
to the user, where relevancy depends on the users task” [14]. Context-aware per-
sonalization is about tailoring services to better adapt to user preferences with
knowledge about the user and his/her environment.

In this paper, we introduce context-awareness inside DBMSs. In contrast
to all existing work about context aware Systems that are built on top of an
infrastructure that provides just the data (e.g., database or data stream), we
propose to incorporate the context awareness inside the DBMS. Several spe-
cialized DBMSs already exist that manage data and answer queries related to
one context type. For instance, a spatial DBMS is optimized to manage and
query objects in space. A temporal DBMS has a built-in temporal data model.
Tailoring such database engines is not an easy task. Moreover, supporting and
combining multiple contexts in one tailored database engine is not within reach.
By including the concept of contexts inside the DBMS, we will not need to tailor
specialized engines towards a certain context (let alone multiple contexts), but
rather we will be able to have systems that support user-defined complex and
composite contexts.

This paper presents the design and implementation of Chameleon, a Context-
Aware DBMS. Chameleon! supports multiple contexts as well as user prefer-
ences and has a generic interface to define and process the context information.
Contexts in Chameleon are classified according to their properties. As a proof
of concept, Chameleon is used to support basic contexts, such as location and
identity and show how to compose complex contexts from basic contexts.

The composition of multiple contexts may involve imposing a certain order
on the retrieved data. There are many possibilities to produce the desired or-
der for the resulting multi-dimensional data. It may be as simple as ordering
the data based on one dimension, and in case of ties using the other dimen-
sions. Another possibility is to use ranking algorithms, where all dimensions
are comparable and can be reduced to one-dimensional value using a scoring
function (e.g., weighted average). In the case that the dimensions cannot be
aggregated (e.g., price and distance), skyline queries give good insights on the
data. Incorporating the first two options inside DBMSs is already underway.
However, there is no previous work in integrating skyline queries at the core of
query operators or database systems. We introduce and study the performance
of a new SkylineJoin pipelined query operator that is built inside Chameleon

IThe real Chameleons also change their color and appearance based on the context they
are in.

to produce the skyline of data whose dimensions are stored in different tables.
SkylineJoin is essential for efficient query processing when combining multiple
contexts.

The contributions of this paper are as follows:

e We introduce new SQL constructs to define general contexts within data-
base management systems. This generic context definition is suitable not
just for expressing user preferences, but also for other contexts such as
identity, location, and time.

e We demonstrate how the proposed SQL constructs can be combined to
form complex and composite contexts, e.g., how to instantiate a database
management system that is aware of both the user location, its identity,
as well as its preferences.

e We give the conceptual evaluation of the proposed context-aware DBMS.
This conceptual evaluation shows how queries will be evaluated according
to the user/data context.

o We realize all the proposed techniques within Chameleon, a new prototype
context-aware database management system based on PostgreSQL. We
report on the experimental evaluation of this realized system.

e We present two case studies, Hippocratic databases and spatial data-
bases, to show ease and feasibility of instantiating tailored systems us-
ing Chameleon. The added value is in the ease of realization of contexts,
the ability to combine multiple contexts within the same system, and in
processing context-aware queries efficiently.

e We introduce a new SkylineJoin operation as a necessary and important
operation for the efficient composition of contexts, and hence, for the real-
ization of context-aware query processing engines. We design a pipelined
query operator to realize this operation. The experimental results show
that SkylineJoin outperforms the traditional skyline algorithms by at least
300%.

This rest of the paper is organized as follows. In Section 2, we present a
classification of contexts. Section 3 illustrates the different constructs needed to
realize a context-aware DBMS. Section 4 presents the conceptual evaluation of
SQL queries that use the new context constructs. Two case studies for realizing
privacy-aware (Hippocratic) databases and spatial databases using Chameleon
are presented in Section 5. In Section 6, we present the new SkylineJoin operator
and its logic. Section 7 provides experimental evaluation. Section 8 presents
the related work, and we conclude the paper with Section 9.

1.1 Running Example

In this section, we describe a running example that we use to demonstrate
Chameleon’s proposed syntax and semantics. This example is a simplistic
preference-based system for ease of presentation. Still, we apply sophisticated

row | title year | category cover | stock
1 | book01 | 2004 | Science Fiction | HC Vv
2 | book02 | 2002 | Travel PB Vv
3 | book03 | 2001 | Medicine HC X
4 | book04 | 2000 | Cooking PB Vv
5 | book05 | 1997 | Science Fiction | PB V4
6 | book06 | 2001 | Medicine HC Vv
7 | book07 | 1995 | Cooking PB X
8 | book08 | 1996 | Travel PB N4
9 | book09 | 2000 | Science Fiction | PB N4
10 | bookl10 | 2003 | Medicine PB Vv
11 | bookll | 2005 | Travel HC Vv
12 | bookl2 | 2006 | Cooking HC X
13 | book13 | 2004 | Medicine PB Vv
14 | bookl4 | 2006 | Science Fiction | HC N4
15 | bookl5 | 2005 | Travel HC N4
16 | bookl6 | 2006 | Cooking HC Vv
17 | bookl7 | 1976 | Medicine PB N4
18 | bookl8 | 2001 | Travel PB N4
19 | book19 | 2007 | Science Fiction | HC Vv
20 | book20 | 1988 | Cooking PB X
21 | book21 | 1993 | Science Fiction | PB Vv
22 | book22 | 2006 | Medicine HC X
23 | book23 | 1999 | Cooking PB X
24 | book24 | 2006 | Medicine HC Vv
25 | book25 | 2006 | Travel PB Vv
26 | book26 | 1988 | Cooking HC Vv
27 | book27 | 2004 | Science Fiction | PB Vv
28 | book28 | 2001 | Travel HC Vv
29 | book29 | 2004 | Medicine PB X
Table 1: The books table

case studies to realize a spatial DBMS and a Privacy-aware DBMS using the
same context definition constructs in Section 5. Table 1 gives a projection on
the table “books” that contains information about books in a certain book-
store. Among other pieces of information included in this table, we can find the
name of a book, the years of its publishing, the category under which this book
falls, the type of the cover (HC for hardcover or PB for paperback), as well as
whether or not the book is in stock. The scenario in consideration consists of a
user asking about the books available in a certain bookstore. According to her

preferences, she gets different results.

2 Classification of Contexts

Two main entities are involved in a context-aware database system. The first
entity is the query issuer; the user. The second entity is the data being queried.
Both these entities may have their own contexts.

object context

Context type user context

2.1 Object Context

The object context is the context of an entity. Considering houses, the context
might be the location of a house, its price, its color or the list of those who
are interested in buying it. Reflecting on books, the book context might be the
library in which one may find it. It might also be the number of its copies in
stock in a certain bookstore.

The object context might be an attribute, or a set of attributes, already
existing along with the other attributes of the object. Nevertheless, the object
context might not be included with the object’s other attributes in the same
relation, or even one might not have enough privileges to alter the entity’s
relation to include it. In such cases, the object context will need to be defined,
and instantiated, as we show in the constructs that are needed to enable context
awareness.

2.2 User Context

User context refers to the context of the query issuer. It can be its location, its
identity, or its preferences. In fact, the user context may be any information
relevant to the user. When an object context conforms with the user context,
this object is returned when its table is queried.

We classify user contexts according to three dimensions. These dimensions
will be used when the application developer defines a context in Chameleon.
These dimensions will reflect in the access method selection of any query on the
tables that are affected by that context.

Dimension 1: Context Sign

The sign of a user context is either “positive” or “negative”. Positive context
defines what the context is. For instance, if the context is location, an instance
of a positive context is the preferred locations by the user, e.g., specified as a
range. On the other hand, a negative context defines what the context is not.
An instance of a negative location context is the locations or regions not desired
by or prohibited to the user.

In the running example, an instance of a positive context is the willingness
to buy hardcover books only. However, trying to avoid science fiction books is
a case for a negative context.

) [S] positive
Context sign { [G] negative

Dimension 2: Contextual Relation

The contextual relation is the relation among the contextual data. This relation
mainly shows the order of relevance of the contextual data. The contextual
relation can be an equivalence relation. In this case, data that comply with all
contextual values are reported with no special ordering. Besides, the contextual
relation can also be a total ordering relation. This relation would reflect on
the data being reported to the user. The data will be sorted on the rank of
the contextual values with which the data conform. Moreover, the contextual
relation can be a partial ordering relation. In contrast to the previous relation,
the rank of the contextual values here will follow a partial order rather than a
linear order.

Referring to the books table, an example of an equivalence relation is the
equal willingness to buy a science fiction book or a travel book. However, if
the user is interested in new books, a total ordering relation would be much
appropriate to retrieve the latest books first. If the user prefers cooking books
over science fiction books, and travel books over medicine books, with no specific
preference among the other combinations, she would need to specify her context
to contain partially ordered contextual values. Partially ordered values may be
transformed into linear ordered values using an appropriate (possibly online)
topological sort algorithm. This is out of the scope of this paper, but we add
the modeling part here for completeness.

[Q] equivalence relation

Contextual relation ¢ [T] total ordering relation

[P] partial ordering relation

Dimension 3: Listing of Data

By listing of data we refer to how the data should be listed. Specifically, should
the data that does not conform to the user context be excluded from the listed
data? Or, should those data be included but come last? The former case is
termed “unlisted excluded”, whereas the latter is termed “unlisted included”.

Consider the bookstore example, if the user context is the willingness to buy
travel books only, the user context gets the unlisted (other book categories)
excluded. Nevertheless, an unlisted included context can be illustrated by the
preference to buy hardcover books but still get the paperback books down in
the list — after retrieving all hardcover books).

In the location context example, if the user context is the willingness to
buy houses that lie within a certain geometric region, say r, then “unlisted
excluded” means that houses outside r are not reported to the user, whereas
“unlisted included” lists the houses outside r after listing the houses inside r.

I [X] unlisted excluded
Listing of Data { [N] unlisted included

2.3 User Context as a 3D Point

Each user context is looked upon as a point in the 3D space defined above. For
instance, in the bookstore example, one might be willing to buy only science
fiction or travel books with no particular preference between these two types.
This is an example of a positive user context having an equivalence contextual
relation with the unlisted contextual values excluded. Whenever a user with the
aforementioned context selects all tuples from the table books, only rows 1, 2,
5,8,9, 11, 14, 15, 18, 19, 21, 25, 27, and 28 are retrieved. If the user defines the
same context to have a total ordering relation instead of an equivalence relation
such that science fiction have higher rank than travel books, the retrieved rows
will be: 1, 5, 9, 14, 19, 21, 27, 2, 8, 11, 15, 18, 25, and 28.

All points in this 3D space are valid when the user context is positive. How-
ever, when the user context is negative, only contextual values with the unlisted
included are valid. This restriction is due to the definition of a negative user
context; user is specifying what context values are not current, and hence all the
others should be current (or nothing will be ever returned). Moreover, for a neg-
ative user context, since the user only describes the complement of her positive
context, no rank is explicitly specified for that actual positive context. There-
fore, the equivalence relation would be implicitly understood for the contextual
values.

3 SQL Constructs for Context Awareness

In this section, we describe the different constructs that are needed to enable
context awareness inside a DBMS. Chameleon provides support for all these
constructs.

Creating Object Contexts

Chameleon uses the CREATE 0BJECT CONTEXT statement to define an object con-
text. Note that when the object context is part of the object relation, one does
not need to define it explicitly.

CREATE OBJECT CONTEXT contextname (
{col_spec | table_constraint} [, ...]
, table_binding
)i
Contextual values will be stored inside relations to be easily incorporated
within the query processor. The CREATE OBJECT CONTEXT statement has similar
constructs to those in CREATE TABLE statement. For instance, col_spec refers to
the specification of a column such as name, data type, default values, and so
on. On a similar vein, table_constraint refers to any constraints on the whole
context table such as check constraints.
The construct table_binding is the main construct that connects the object
with its context. Specifically, table_binding has the format below.

BINDING KEY ([colname [, ...]])
REFERENCES ref_table [(refcol [, ...])]
WITH bool_expr

The first part of the BINDING KEY is similar to the FOREIGN KEY. There are
three main differences between these two types of keys. The first difference
is that a foreign key in a table has to reference to a primary key in another
table. This constraint does not exist for the binding key. A binding key binds
the contextual value to possibly more than one object, since more than one
object may exist in the same context. The second difference is that the decision
to bind a contextual value with an object does not have to be an equality
with a column value in the referenced table. The WITH construct defines a
Boolean expression that helps as the binder in case the expression evaluates
to true. The third difference is that the binding key might not contain any
context attribute referencing an attribute in the base table, but rather only the
Boolean expression that might also contain attributes from any object context
to the referenced table. Examples will be shown in the case studies section to
illustrate this further.

Creating User Contexts

Similar to object contexts, each user context will materialize to a relation.
Chameleon uses the following syntax to define a user context.

CREATE [context_sign] CONTEXT contextname (
{col_spec | table_constraint} [, ...]
, table_binding [, ...]
, substituting key [, ...]

) [AS contextual relation_clause]

[WITH UNLISTED unlisted_status];

context_sign: positive
| negative
contextual relation: equivalence
| total order [USING ordering func]
| partial order
unlisted_status: excluded
| included

For each table affected by a user context, a binding key is used to show
how the context reflects on the table. Therefore, there might be more than one
binding key in a user context.

Upon the creation of a user context, an implicit column is created to hold the
user_name of the current user. Therefore, each contextual value is associated
with a certain user. Also, if an ordering relation is used for the contextual rela-
tion, then another implicit column is created to hold the rank of that contextual
value. This rank can be either input by the application while acquiring contex-

tual data, or it can be computed using an ordering function ordering_func. In
the latter case, the rank column does not need to exist.

Chameleon builds default indexes for context relations. Object contexts get
non-clustered indexes on the context keys. User contexts are clustered in a B-
tree index using the clustering key (user-name, context_key) if the contextual
relation is equivalence. If the contextual relation is a total ordering relation,
then the user context is clustered on (user_name, context_key) if the unlisted
are to be included and on (user_name, rank) if the unlisted are to be excluded.

The substituting _key will be discussed in details in the next construct. Pop-
ulating the contextual relations will be made using standard SQL INSERT state-
ments. Also, other data manipulation statements will still work on the contex-
tual relations.

Global Substitution Construct

Some attributes need to be modified for presentation purposes if we want to
enable context awareness. For instance, if the context is the location of a user,
and the user is currently in France, then we might want all prices, in all tables,
to be converted to Euro. This conversion is called global substitution, since
the substitution occurs for all tables according to the current context. The
substituting key defines such conversion, and is defined while defining the user
context as follows.

SUBSTITUTE table_name(col_name)
BY expression;

The expression that substitutes the attribute can be any expression in which
attributes from table_name, its object contexts, as well as the user context may
appear.

Setting Active Contexts

The application user may have many contexts, not all of them need to be current
all the time. Therefore, we introduce the construct SET ACTIVE CONTEXT to
define the current contexts to be taken into account for that user. The user_name
has the CURRENT_USER as a default.

SET ACTIVE CONTEXT [FOR USER user_name]
AS context_name [, ...]J;
{ [WITH RANKING ORDER context_name [, ...]]
| [WITH RANKING EXPRESSION expression
| [WITH SKYLINE OF expression {MAX|MIN} [,...]] };

The SET ACTIVE CONTEXT context provides for composing complex contexts
from basic ones. If all the basic contexts, which are used to compose a bigger
context, have equivalence contextual relations only, then the order of executing
the contexts is given by the order the contexts are listed in the AS clause.

We provide three mechanisms for ordering in case we have more than one
context that is trying to impose an ordering on the data. The first mechanism

is to sort the column based on a context, and then use the following context in
the case of ties, and so on. The WITH RANKING ORDER clause is used to provide
such order of contexts.

On the other hand, for some applications, this type of sorting does not
have a clear physical meaning. Some applications need the data to be sorted
based on a ranking function that combines all ranks of individual contexts. The
WITH RANKING EXPRESSION clause is used to provide such ranking expression or
function. Our previous work [23] presents an adaptive execution of RankJoin,
which provides for retrieving the data sorted based on a ranking function. The
ranking function includes ranks coming from different relations that are also
joined as in our case.

Nevertheless, such a ranking function does not always exist or such function
might not have a reasonable meaning. This occurs especially when the ranks
of different contexts are inversely correlated. As a result, we provide for the
third context composition mechanism that retrieves the tuples that form the
skyline of the data. The skyline operator [2] might be used for that purpose.
In section 6, we introduce a new operator SkylineJoin, which not only provides
the skyline of the data but also seizes the opportunity that the ranks come from
different tables to produce the results fast. The WITH SKYLINE clause is used to
specify to the skyline operation which expressions to use as the input ranks in
the computation.

4 Conceptual Evaluation

In this section, we show why the above constructs enable context-aware query
processing. We continue with our running example where someone is accessing
the database of a bookstore. Only the books in stock that are relevant to the
user’s context are retrieved. Examples of contexts are given, their definition
using the above constructs are provided, and then we show how they are evalu-
ated to give the desired results. First, we start by simple contexts, and later we
show how these contexts are combined together to compose complex contexts.
In all the scenarios below, the user is executing the query in Table 2, and the
results are the relevant tuples.

SELECT =*
FROM books
WHERE books.stock;

Table 2: Query @, issued by the user at the bookstore
Context 1 The user has a preference for only books of a certain category (e.g.,
Science fiction).

This context may be defined as:

10

CREATE POSITIVE CONTEXT ctxt_category_SQX (
category varchar(20),
BINDING KEY (category)
REFERENCES books(category)
) AS EQUIVALENCE WITH UNLISTED EXCLUDED;

SET ACTIVE CONTEXT AS ctxt_category_SQX;

We give the suffix SQX to the context name above to emphasize that it is
a positive [S] context with an equivalence [Q] contextual relation and that
the unlisted categories in the context are to be excluded [X]. For the above
example, when the user issues @), above, the actual query that is executed is
given below. Typically, the binding key is used to join the books table with the
context table, and only the books whose category exists in the context are to
be returned.

SELECT T.*
FROM books T
INNER JOIN ctx_category_SQX C1
ON(T.category = Cl.category
AND C1.user_name = CURRENT_USER)
WHERE T.stock;

Context 2 The user’s preference is for books published in 2005, and then those
published in 2006 before all other books.

This context may be defined as:

CREATE POSITIVE CONTEXT ctxt_year_STI (

year integer,

BINDING KEY (year) REFERENCES books(year)
) AS TOTAL ORDER WITH UNLISTED INCLUDED;

SET ACTIVE CONTEXT AS ctxt_year_STT,;

Again, the suffix STI of the current context emphasizes that it is a positive
[S] context with a total order [T] contextual relation and that the unlisted
years in the context are to be included [N]. For the above example, in response
to Q,, the actual query that is executed is given below. Typically, the binding
key is used to join the books table with the context table. In this case, the type
of join is a left outer join, and therefore, all books will be returned at the end.
The output rows are to be sorted based on the year rank, which is specified
implicitly in the context as it is an ordering context. Rows with NULL context
rank appear later in the list.

SELECT T.x*
FROM books T
LEFT OUTER JOIN ctx_year_STI C1
ON(T.year = Cl.year

11

AND C1.user_name = CURRENT_USER)
WHERE T.stock
ORDER BY C1l.rank;

Context 3 The user prefers hardcover books over paperback ones.

This context may be defined as:

CREATE POSITIVE CONTEXT ctxt_cover-STX (

cover integer,

BINDING KEY (cover) REFERENCES books(cover)
) AS TOTAL ORDER WITH UNLISTED EXCLUDED;

SET ACTIVE CONTEXT AS ctxt_cover_STX;

For the above example, in response to @, the actual query that is executed
is given below. Typically, the binding key is used to join the books table with
the context table. The output rows are to be sorted based on the cover rank,
which is specified implicitly in the context as it is an ordering context.

SELECT T.x*
FROM books T
INNER JOIN ctx_cover_STX C1
ON(T.cover = Cl.cover
AND C1.user_name = CURRENT_USER)
WHERE T.stock
ORDER BY C1.rank;

Context 4 The user does not prefer (wants to avoid) any science fiction books.

This context may be defined as:

CREATE NEGATIVE CONTEXT ctxt_category GQI (
category integer,
BINDING KEY (category)
REFERENCES books(category)
) AS EQUIVALENCE WITH UNLISTED INCLUDED;

SET ACTIVE CONTEXT AS ctxt_category_GQI;

In response to @,, the actual query that is executed is given below. Rows
in books, whose category exists as any of the contextual values of this context,
are eliminated from the answer set.

SELECT T.x*

FROM books T

WHERE T.category NOT IN (
SELECT Cl.category
FROM ctxt_category_GQI C1)

12

WHERE T.stock;

The basic contexts, which are not composed from other contexts, reflect in
the actual executed query according to table 3. This table shows whether an
ORDER BY clause is necessary, and which type of join we need according to the
context properties. We use the same symbols of the context classification in
Section ([G] for negative context, [S] for positive context, and so on).

Context Class | ORDER BY | Join Operation

GQN X NOT IN

SQN X LEFT OUTER JOIN
SQX X INNER JOIN

STN vV LEFT OUTER JOIN
STX Vv INNER JOIN

SPN vV LEFT OUTER JOIN
SPX vV INNER JOIN

Table 3: Effect of basic contexts in queries

Next, we compose complex contexts from the above basic contexts. We start
with the following context.

Context 5 The user prefers books published in 2005, and then those published
in 2006 before all other books. For the books that are similarly ranked, the user
prefers hardcover books over books with paperback cover.

This context may be viewed as the composition of ctxt_year_STT and ctxt_cover STX.
Therefore, we do not need to define a new context. Conversely, we just need to
set the active context appropriately to reflect to the desired context.

SET ACTIVE CONTEXT FOR userl
AS ctxt_year STI, ctxt_cover STX
WITH RANKING ORDER ctxt_year_STI, ctxt_cover STX;

As a result of this combined context, queries to select tuples from books will
work as if the query below was executed. First, the books in stock will be sorted
based on the rank of the years, and then in case of ties, the cover type will be
taken into consideration.

SELECT T.x*
FROM books T
LEFT OUTER JOIN ctx_year_STI C1
ON(T.year = Cl.year
AND C1.user_name = CURRENT_USER)
INNER JOIN ctx_cover_STX C2
ON(T.cover = C2.cover
AND C2.user_name = CURRENT_USER)

13

pid | name age | address phone

1 | Alice Adams 10 | 1 April Ave. 111-1111

2 | Bob Blaney 20 | 2 Brooks Blvd. | 222-2222

3 | Carl Carson 30 | 3 Cricket Ct. 333-3333

4 | David Daniels | 40 | 4 Dogwood Dr. | 444-4444

Table 4: The patient table

recipient purpose pid | pid_pref | name_pref | age_pref | address_pref | phone_pref
charity solicitation | 1 vV Vv 4 Vv V4
nurse treatment 1 N4 Vv V4 X Vv
account clerk | billing 1 Vv V4 X V4 V4
charity solicitation 2 X X X X X
nurse treatment 2 N4 N4 V4 X N4
account clerk | billing 2 Vv V4 X V4 4
charity solicitation | 3 vV X X Vv V4
nurse treatment 3 Vv V4 4 X V4
account clerk | billing 3 Vv Vv X Vv V4
charity solicitation | 4 Vv Vv X X X
nurse treatment 4 Vv Vv v X Vv
account clerk | billing 4 N4 V4 X V4 V4

Table 5: The patient_privacy_pref object context

WHERE T.stock
ORDER BY Cl.rank, C2.rank;

5 Proof-of-Concept - Realizing Privacy-aware Data-

bases and Spatial Databases Using Chameleon

In this section, as a proof of concept, we illustrate how one may realize spe-
cialized database systems using Chameleon. We begin with the first case study:
privacy-aware databases. Then, we present Spatial databases as our second case
study.

5.1 Privacy-Aware Databases

In this section, we show how we can limit disclosure, as what happens in Hip-
pocratic Databases, using context awareness in Chameleon. In Table 4, we use
the same patient table used in the limiting disclosure work aforementioned [30].
This table contains patient personal information.

Consider a healthcare facility that owns this data. Whenever a patient is
admitted to the facility, he/she has to sign a privacy policy. The privacy policy

14

specifies which information is to be released to which recipient. Moreover, the
policy also specifies for which purposes the information is to be released. On
an opt-in basis, the healthcare facility also allows patients to choose if they
want any of their personal information to be released to other recipients. For
instance, a nurse who is treating a patient is allowed to see the patient’s name,
age, and phone, but is not allowed to see his/her address for any reason. The
patient may opt-in and choose that only his/her age is to be released to charity
for solicitation.

Beside limited disclosure, limited retention is also modeled using context
awareness. For simplicity, and without loss of generality, we assume that patient
data is to be retained for 90 days only. By the end of this period, the patient
data should have fulfilled the purposes for which the data has been collected.
After this period, different recipients cannot retrieve the data.

It is important to make it clear that the patients in this context are the
objects. Object contexts are the contexts of the patients. Moreover, users
are those that use an application at the healthcare facility to retrieve patients’
data. To model the above example of limiting the disclosure and retention of
patients’ data in Chameleon, we define the object contexts patient_privacy_pref
and patient_policy_signature as follows.

CREATE OBJECT CONTEXT patient_privacy_pref (

recipient varchar(30),

purpose varchar(30),

pid integer,

pid_pref boolean,

name_pref boolean,

age_pref boolean,

address_pref boolean,

phone_pref boolean,

BINDING KEY(pid) REFERENCES patient(pid)
)i
CREATE OBJECT CONTEXT policy_signature (

pid integer,

sign_date date,

BINDING KEY(pid) REFERENCES patient(pid)
)i

Let the object context patient_privacy_pref contain the contextual data in

Table 5. The following user context enforces the limited disclosure and limited
retention of patients’ data. Table 6 gives the context of three users. If the
three users execute the query "SELECT * FROM patient;", they will retrieve
the data shown in Table 7.

CREATE POSITIVE CONTEXT identity_activity (
job varchar(30),
activity varchar(30),
BINDING KEY(job, activity) REFERENCES

15

patient_privacy_pref(recipient, purpose)
SUBSTITUTE patient(pid)

WITH (CASE WHEN patient_privacy_pref.pid_pref
AND today() <= policy_signature.sign_date + 90

THEN patient.pid ELSE NULL)

SUBSTITUTE patient(name)
WITH (CASE WHEN patient_privacy_pref.name_pref
AND today() <= policy_signature.sign_date + 90
THEN patient.name ELSE NULL)

) AS EQUIVALENCE WITH UNLISTED EXCLUDED;

user_name | job activity
userl charity solicitation
user2 nurse treatment
user3 account clerk billing

Table 6: identity_activity contextual values

pid | name age | address phone

1 | Alice Adams 10 1 April Ave. 111-1111
ul 3 3 Cricket Ct. 333-3333

4 | David Daniels

1 | Alice Adams 10 111-1111

2 | Bob Blaney 20 222-2222
u2 3 | Carl Carson 30 333-3333

4 | David Daniels | 40 444-4444

1 | Alice Adams 1 April Ave. 111-1111

2 | Bob Blaney 2 Brooks Blvd. | 222-2222
u3 3 | Carl Carson 3 Cricket Ct. 333-3333

4 | David Daniels 4 Dogwood Dr. | 444-4444

Table 7:

5.2 Spatial Databases

Spatial databases are optimized to store and query data related to objects in
space. This type of databases has more complex geometrical data types, e.g.,

points, lines, and rectangles.

Consider a real-estate database containing information about houses. The
houses table has the following schema: houses(id, bedrooms, price, city). An

16

Result of ”SELECT * FROM patient;” for all users ul, u2, and u3

application developer is interested in providing some spatial queries to this data-
base, but has no privileges to add the location of the house to this table. An
object context is created to add the location of houses.

Range Queries

Let the user context be the willingness to buy a house in certain regions. As a
result, a user context is created in the CA-DBMS to declare that only houses
contained in relevant regions are to be returned.

Below is the definition of both contexts; house_loc and houses_in_region. The
function contained retrieves any house with location (x, y) that exist with the
rectangular region (x1, y1, x2, y2).

CREATE OBJECT CONTEXT house_loc (
id integer,
x integer,
y integer,
PRIMARY KEY(id),
BINDING KEY id REFERENCES houses(id)

);

CREATE POSITIVE CONTEXT houses_in_region (
x1 integer,
y1 integer,
x2 integer,
y2 integer,
BINDING KEY() REFERENCES house_loc
WITH contained(house_loc.x, house loc.y
x1, y1, x2, y2)
) AS EQUIVALENCE WITH UNLISTED EXCLUDED;

Nearest Neighbor Queries

Another class of queries in spatial databases is the nearest neighbor query. In
this class, the user want to retrieve the object that is nearest to a pivot location.
An extension to this class of queries is the k nearest-neighbors query. The answer
of this query is the k objects that are nearest to the pivot location. In the real
estate database, a user willing to retrieve the houses listed by proximity to a
point may declare her context as follows:

CREATE POSITIVE CONTEXT nearby_houses (
X integer,
y integer,
BINDING KEY() REFERENCES house_loc
WITH true
) AS TOTAL ORDER USING dist(x, y, house_loc.x, house_loc.y)
WITH UNLISTED EXCLUDED;

17

The equivalent SQL query with the awareness of this context would be:

SELECT T.x*
FROM houses T
INNER JOIN house_loc 0C1
ON(T.id = 0C1.id),
nearby_houses C2
ORDER BY dist(C2.x, C2.y, 0Cl.x, OCl.y)

Skyline Queries

Skyline queries emerge in spatial databases. Assume that user2 wants to buy
a house that is close to his work downtown and that is also cheap (or at least
reasonable) in price. Since it is not easy to combine such preferences in a ranking
expression, user2 decides to select from the skyline houses.

Such context can be defined as the composition of several contexts, namely
houses_in_region, nearby_houses, and the context price already incorporated in
the houses table. The first context will include a bounding box representing
downtown. The second and third contexts will be used to compute the skyline.
This composition is instantiated by setting the active context as follows:

SET ACTIVE CONTEXT FOR user2
AS houses_in_region, nearby_houses
WITH SKYLINE OF nearby_houses.rank MIN, houses.price MIN;

6 Context Composition

As pointed out in the previous sections, a complex context may be composed
from basic ones. Such composition may involve compiling more than one context
whose contextual relation is an ordering relation. We provide three mechanisms
to resolve the conflict among the different orders of object imposed by these
contexts. The first mechanism is already implemented in existing database
systems; using the ORDER BY clause. The second mechanism entails the use of
ranking algorithms. top-k queries have been well studied in various fields. Also,
there have been numerous algorithms for embedding top-k queries into database
operators.

We investigate the third mechanism, which outputs the skyline of the objects.
We begin with the definition of a skyline. Furthermore, we discuss the type of
data for which the skyline is computed in the case of the context-aware queries
being generated by Chameleon. We explain why computing the skyline using
existing algorithms is not efficient in our situation. The proposition of a new
query operator is given next to make the computation more efficient. At the
end of this section, we provide the results of some experiments performed to
evaluate the new operator.

Skyline queries occur when the multiple parameters are independent and
their ranks cannot be aggregated together. Skyline queries are defined as follows.

18

StopAfter StopAfter

Skyline FilterMark
[>|<1 SkylineJoin
Dim ylineJoin - pim
/\ 3 3
> Dim, ol Dim,
VN / N\
Fact Dimy Fact Dim,

(a) (b)

Figure 1: (a) Dimension tables are joined with the fact table before the skyline
operation is performed. (b) The operators Skylinejoin and FilterMark inside a
query pipeline.

Let P = {p1,p2,...,Pn} be a set of points in a d-dimensional space S. Let p;s
denote the §*" dimension of a point p;. For each dimension &, we assume that
we have a total ordering relation on its domain values, denoted by >;s. Based
on the user preference, -5 can be either of {>, <}.

Definition 1 A point p; is said to dominate another point p; on S if and only
if V dimension 6 € S, pjs = pis and Iy € S such that pjy = Dy

Definition 2 A point p; is a skyline point on S if and only if there does not
exist any other point p; dominating it.

The input of the skyline operation is a set of objects, each of which has d
ranks. Therefore, each object can be viewed as a d-dimensional point. In our
case, we have a main table, and all its ranks come from different relations (the
user preferences from the various ordering context relations). Consequently,
these relations have to be joined before a traditional skyline algorithm can be
applied on them. Figure 1(a) shows a possible query execution plan of this
star-join when we have three dimensional space. The fact table is our object
table, and the dimensions of the star-join are the different ordering contexts.

The skyline operator needs all object tuples be joined with all dimensions
before it outputs the first skyline object. The reason for this behavior is that
for an object to be considered a skyline, it needs to be compared with all other
objects to make sure none of them dominates it.

In addition to that, we want to point out the fact that with higher dimen-
sional data, the probability that an object dominates another object becomes
lower. As a result, the number of skyline points become too numerous to pro-
duce insightful results. Consequently, many users prefer to limit the result size
to k objects. Yet, they will have to pay the price of joining all the tables together
completely.

19

6.1 SkylineJoin Pipelined Query Operator

We propose SkylineJoin, a join operator that not only performs the join operator
between two relations, but also marks tuples to be part of the skyline based on
the dimensions joined so far. The operator is a pipelined operator. It can be
integrated with the existing query engines. It adheres to the open-next-close
protocol. SkylineJoin will substitute the join operators shown in Figure 1(a).
On top of the pipeline, and instead of a Skyline operator, we will use a new
FilterMark operator that outputs only any marked tuple that is input to it.
Unmarked tuples will be discarded by FilterMark.

For the same example of a fact table (object table) and three dimension
tables representing the ranking contexts, the new query pipeline containing the
new operators will look like Figure 2.

In the following, and for the sake of presentation, we assume that we want
to compute the skyline of d dimensions. We denote the i*" dimension by dim;.
The query optimization of queries involving skyline queries is out of the scope
of this document. We present the query execution phase, and thus, we take an
arbitrary join order for presentation purposes.

The query pipeline is built as follows. The first dimension is joined with
the fact table. We include in the required physical properties of the selected
join operator that we want its output tuple to be sorted based on the ranks
of the dim;. Notice that there is a clustering index on the ordering contexts.
Consequently, this property may be enforced upon the selection of the physical
operators either by using that index as the outer input of the join operator and
using an order-preserving join operator, or by building a sort operator on top of
other join realizations. The query evaluation tree is left deep and will contain
all the other dimensions as the inner input of the SkylineJoin operators. On top
of the last SkylineJoin, a FilterMark operator is created to produce the skyline
results.

Skyline Join works in two phases. The first phase is the join phase, where
any order-preserving join may be used (e.g., nested loop join, indexed nested
loop join, hash join). The second phase is the phase in which SkylineJoin decides
whether or not to mark a tuple to be part of the answer set. To clearly present
SkylineJoin, we omit the details of the first phase and include only the second
phase. Actually, the second phase can be put as an extension to the existing
order-preserving join. The second phase is modeled as a finite state machine
(FSM) given in Table 8. When the FSM calls the GetNext() function, it receives
the next tuple available from Phase 1.

The Skyline operator has an accompanying state. Its state contains not only
a tuple store that stores intermediate results, but also a set of skyline tuples
found so far (skylineSet). When a tuple is retrieved from the tuple store, it no
longer belongs to the tuple store. The operator also keeps track of whether it
has exhausted all the tuples from its input, which is the output of Phase 1.

The finite state machine has five states. The starting state is SKJ_INIT.
In this state, the operator gets the first tuple, puts it in the tuple store, and
changes its state to SKJ_.GROWING. If there is no such tuple, it declares it

20

Figure 2: Finite state machine representing Phase 2 of Skylinejoin.GetNext()

ran out of input tuples and goes to a final state SKJ_DONE. This final state
just returns NULL to indicate that no tuples will be output further from this
operator.

The FSM transitions from a growing state, where it acquires more tuple
from Phase 1, to a sorting state and then to a shrinking state, where it produces
output tuples. The shrinking state may go back to the growing state, and so
on. The machine goes to the final state (SKJ_.DONE), when it discovers, during
the shrinking state, that there is one tuple only in the tuple store and that it
has exhausted its input.

When the FSM is at the growing state, SKJ_GROWING, it gets tuples from
its input and puts them in the tuple store. This behavior is interrupted either
when it runs out of input or if the input tuple is marked as a skyline. Conversely,
the FSM behaves during the shrinking phase as follows. First, it gets a tuple
from the tuple store. Second, it checks whether it needs to mark the tuple
as a skyline. Last it returns the tuple. The tuple is marked as a skyline in
two situations. The first situation occurs where this tuple is the first tuple
retrieved from the tuple store after the sorting state. The second situation is
when isskyline evaluates to true. The function isskyline compares this tuple
against the set of skyline tuples found so far. It returns true if this tuple is not
dominated by any existing skyline tuples.

The sorting state is visited whenever the finite state machine transits from
the growing state to the shrinking state. During this visit, the tuple store is
sorted according to >1, >3, ..., >=;; assuming that this SkylineJoin operator
receives dim; as its inner input.

A detailed example and sample step-by-step execution of the algorithm are
omitted for space considerations. The reader is referred to [15] for further detail.

21

7 Experimental Evaluation

We evaluate the performance using a Sun Blade 2000 machine. This machine
has two processors, each of them is a 1.2GHz UltraSPARC-III+ with 8MB cache.
Solaris 8 operating system in 64-bit mode runs on this 2GB memory computer.
The hard disk on which the data is stored runs at 10K rpm.

We implement all context-aware constructs and all the proposed extensions
to SQL to support contexts inside the extensible PostgreSQL code base. In the
resulting context-aware DBMS, named Chameleon, we also implement several
operators to combine multiple contexts, mainy, the SkylineJoin and FilterMark
operators introduced in the previous section. The fact table has the schema
fact(fact-id, fact_desc, d1, d2, d3, ..., d15). We have 15 dimension tables. The
schema of the dimension tables is the same. For instance, dim_1 has the schema
dim1(dim.id, dim_desc, rank). The fact table hss 1,000,000 tuples.

In the set of experimental results presented in the paper, we focus on how
contexts are combined. We compare the SkylineJoin algorithm to a naive skyline
algorithm (referred to thereafter as Skyline) that computes the skyline tuples
after joining the tables. The Skyline algorithm compares each tuple in the joined
data with all other tuples output from the last join operator. There is no other
alternative to compare with since there were no indexes on the output of the
join. Also, we could not sort the output of the join as it requires getting all the
data and then materializing it, which would not be feasible with big tables and
high dimensionality. That is why we opt to use the Skyline algorithm as a base
line for comparison.

The first experiment compares the performance of both SkylineJoin and
Skyline algorithms. We investigate the scalability of both algorithms with the
increasing number of dimension tables.

1400

Ojoin

[
)
=]
o
!
1

DOskyline
1000 H H

DO skylinejoin

800

600 -

400

200 -

Execution Time (sec)

6 8 10 12 14

Dimension

Figure 3: Scalability with respect to the number of dimensions.

Figure 3 gives the execution time of retrieving the first & skyline tuples using
both algorithms. The output size is limited to 100 tuples. It is intuitive and clear
from the figure that with the higher dimensionality we have, the more it takes to

22

join these tables. We can also notice that it takes more time to retrieve the first
100 skyline tuples when the number of dimensions is low. When the number
of dimensions increases, the number of available skyline points increases as we
point out before. The reason is that the probability for a tuple to be dominated
by another tuple decreases. A significant consequence of this phenomenon is that
the execution time needed to find the first k skyline tuples saturates eventually
with the increase in the dimensionality. From this experiment, we realize that
the proposed algorithm outperforms the available traditional skyline algorithm
by at least 300%.

The following experiment is to inspect the performance and scalability of
both algorithms when the output size, k, changes. Figure 4 gives the results of
this experiment when 10 context dimension tables join with the fact table. We
change the output size, number of reported skyline tuples, from 100, 200, ...,
500.

3500

g 3000 4—{Bjoin g
0 DOskyline
~~ 2500 Lo M 1
(] O skylinejoin
g 2000 F— 1
=
c
o 1500 +
=
2 1000 =i
%
o 500 A uj

0

100 200 300 400 500
k

Figure 4: Scalability with respect to the output size.

Since the number of dimensions is fixed to 10, we can see that the time it
takes to join the data is independent from the output size. This trend occurs
as Skyline needs to join all tables completely before it outputs the first skyline
tuple. The time it takes to output the first k& skylines increases with both
algorithms. This direct increase is due to more iterations happening in the case
of Skyline to produce more skyline points. On the other hand, the increase in
the case of SkylineJoin is not steep. Because of the behavior of SkylineJoin, the
join operation occurs as long as we are in the growing states. Once we reach a
shrinking state, we may produce several skyline tuples without the need to do
any join or sort operations. The cost of these operations is amortized among
several output skyline tuples. This is why we see the execution time increases in
steps. In all instances of this experiment, SkylineJoin really surpasses Skyline.

23

8 Related Work

There have been several definitions of context and context-awareness (e.g.,
see [4, 14, 22, 37]). Most of these definitions define the context in terms of
examples with special emphasis on the location context. Similarly, there have
been several definitions of context-aware applications that include various syn-
onyms, e.g., adaptive applications [41], reactive applications [13], responsive ap-
plications [16], situated applications [22], contented-sensitive applications [39],
and environment directed applications [18]. In this paper, we adhere with the
most formal definitions given in [14].

Recently, there has been interest in adding the context-awareness to rela-
tional database systems and query processors (e.g., see [27, 43]). However, the
main focus is either on the modeling of the context information and how to
integrate it into the query definition, or on very specific examples that consider
only one type of context. None of the previous work have discussed or proposed
a full-fledge realization of context-awareness inside a DBMS.

There has been several work for presenting preferences in terms of relational
calculus, first order logic, and query languages (e.g., see [11, 25, 47, 29]). In
terms of query processing, there are two extremes for preference-aware queries,
namely, top-k and skyline queries. Top-k queries have been well studied in var-
ious fields (e.g., [6, 9, 17, 35]). Also, there have been numerous algorithms for
embedding top-k queries into database operators (e.g., see [5, 10, 19, 23, 31]).
On the other hand, the term skyline queries has been coined in the database
literature [2] to refer to the secondary storage version of the maximal vector
set problem [28, 33]. Due to its practicality, various versions of skyline queries
have been studied in the literature, e.g., sorted data [12], partially-ordered do-
mains [7], high-dimensional data (e.g., [8, 38, 46, 49, 50]), progressive and on-
line computations (e.g., [26, 36, 44]), sliding window [32, 45], continuous skyline
computations [21, 34, 48], mobile ad-hoc networks [20], spatial skylines [42], and
data mining [24]. Unlike the case for top-k queries, there is no previous work in
integrating skyline queries at the core of query operators or database systems.

9 Conclusion

In this paper, we proposed incorporating context awareness inside database
management systems. Enabling such incorporation not only removes the need to
tailor specialized systems towards a certain context, but also allows for combin-
ing several contexts together to form a complex one. We introduced Chameleon,
a prototype context-aware database management system built by extending
PostgreSQL. We provided SQL constructs to enable context awareness, and we
gave the conceptual evaluation of this system to show how to use the system to
define contexts. We gave two case studies: Hippocratic databases and Spatial
databases as a proof of concept in using Chameleon to instantiate specialized
systems. A key operation in the composition of contexts is the skyline oper-
ation. We designed a pipelined query operator SkylineJoin in Chameleon to

24

benefit from the fact that several tables are joined together prior to the compu-
tation of the skyline. This operator led to up to 300% gain in performance.

Chameleon serves as a proof-of-concept general platform for expressing and
realizing contexts within a DBMS. We need to show that the performance of
systems instantiated by Chameleon is comparable to that of tailored systems,
e.g., Chameleon-instantiated spatial DBMS vs. a tailored spatial DBMS server,
and a Chameleon-instantiated privacy-aware DBMS vs. a tailored Hippocratic
DBMS. Addressing these performance issues will be the target for future re-
search.

References

[1] Merriam-Webster Online Dictionary. http://www.m-w.com/.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker. The Skyline Operator. In
ICDFE, 2001.

[3] P. Brown. The Stick-e document: a framework for creating context-aware
applications. Flectronic Publishing, 8(2&3), 1996.

[4] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware Applications: From
the laboratory to the marketplace. IEEE Personal Communications, 4(5),
1997.

[5] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k Selection Queries over
Relational Databases: Mapping Strategies and Performance Evaluation.
TODS, 27(2), 2002.

[6] N. Bruno, L. Gravano, and A. Marian. Evaluating Top-k Queries over
Web-Accessible Databases. In ICDE, 2002.

[7] C.Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified Computation of Skylines
with Partially-Ordered Domains. In SIGMOD, 2005.

[8] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang.
Finding k-Dominant Skylines in High Dimensional Space. In SIGMOD,
2006.

[9] K. C.-C. Chang and S. won Hwang. Minimal Probing: Supporting Expen-
sive Predicates for Top-k Queries. In SIGMOD, 2002.

[10] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R.
Smith. The Onion Technique: Indexing for Linear Optimization Queries.
In SIGMOD, 2000.

[11] J. Chomicki. Preference Formulas in Relational Queries. TODS, 28(4),
2003.

25

[12]

[13]

[14]

[25]

[26]

J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with Presorting.
In ICDE, 2003.

J. R. Cooperstock, K. Tanikoshi, G. Beirne, T. Narine, and W. Buxton.
Evolution of a Reactive Environment. In Proceeding of the International
Conference on Human Factors in Computing Systems, CHI, 1995.

A. K. Dey and G. D. Abowd. Towards a better understanding of context
and context-awareness. In Workshop on the What, Who, Where, When,
and How of Context-Awareness, CHI, 2000.

H. G. Elmongui and W. G. Aref. Skyline-Aware Join Operator. Technical
Report CSD TR 08-007, Purdue University, 2008.

S. Elrod, G. Hall, R. Costanza, M. Dixon, and J. des Rivieres. Responsive
Office Environments. Communications of ACM, 36(7), 1993.

R. Fagin, R. Kumar, and D. Sivakumar. Comparing Top k Lists. SIAM
Journal on Discrete Mathematics, 17(1), 2003.

S. Fickas, G. Kortuem, and Z. Segall. Software Organization for Dynamic
and Adaptable Wearable Systems. In International Symposium on Wear-
able Computers, 1997.

V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A System for
the Efficient Execution of Multi-parametric Ranked Queries. In SIGMOD,
2001.

Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline Queries Against
Mobile Lightweight Devices in MANETs. In ICDE, 2006.

Z. Huang, H. Lu, B. C. Ooi, and A. K. Tung. Continuous Skyline Queries
for Moving Objects. TKDE, 18(12), 2006.

R. Hull, P. Neaves, and J. Bedford-Roberts. Towards Situated Computing.
In International Symposium on Wearable Computers, 1997.

I. F. Ilyas, W. G. Aref, A. K. Elmagarmid, H. G. Elmongui, R. Shah,
and J. S. Vitter. Adaptive Rank-Aware Query Optimization in Relational
Databases. TODS, 31(4), 2006.

W. Jin, J. Han, and M. Ester. Mining Thick Skylines over Large Databases.
In PKDD, 2004.

W. Kieflling. Foundations of Preferences in Database Systems. In VLDB,
2002.

D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky: An
Online Algorithm for Skyline Queries. In VLDB, 2002.

26

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

G. Koutrika and Y. E. Ioannidis. Personalized Queries under a Generalized
Preference Model. In ICDE, 2005.

H. T. Kung, F. Luccio, and F. P. Preparata. On Finding the Maxima of a
Set of Vectors. Journal of ACM, 22(4), 1975.

M. Lacroix and P. Lavency. Preferences: Putting More Knowledge into
Queries. In VLDB, 1987.

K. LeFevrey, R. Agrawaly, V. Ercegovac, R. Ramakrishnan, Y. Xuy, and
D. DeWitt. Limiting disclosure in Hippocratic databases. In VLDB, 2004.

C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. RankSQL: Query Algebra
and Optimization for Relational Top-k Queries. In SIGMOD, 2005.

X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the Sky: Efficient Skyline
Computation over Sliding Windows. In ICDE, 2005.

J. Matousek. Computing Dominances in E™. Information Processing Let-
ters, 38(5), 1991.

M. D. Morse, J. M. Patel, and W. I. Grosky. Efficient Continuous Skyline
Computation. In ICDFE, 2006.

A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter. Supporting
Incremental Join Queries on Ranked Inputs. In VLDB, 2001.

D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation
in database systems. TODS, 30(1), 2005.

J. Pascoe. Adding Generic Contextual Capabilities to Wearable Computers.
In International Symposium on Wearable Computers, 1998.

J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the Best Views of Skyline:
A Semantic Approach Based on Decisive Subspaces. In VLDB, 2005.

J. Rekimoto, Y. Ayatsuka, and K. Hayashi. Augment-able Reality: Situ-
ated Communication Through Physical and Digital Spaces. In International
Symposium on Wearable Computers, 1998.

T. Rodden, K. Chervest, N. Davies, and A. Dix. Exploiting Context in
HCI design for Mobile Systems. In HCI, 1998.

B. N. Schilit and M. M. Theimer. Disseminating Active Map Information
to Mobile Hosts. IEEE Network, 8(5), 1994.

M. Sharifzadeh and C. Shahabi. The Spatial Skyline Queries. In VLDB,
2006.

K. Stefanidis, E. Pitoura, and P. Vassiliadis. Adding Context to Prefer-
ences. In ICDE, 2007.

27

[44] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient Progressive Skyline Com-
putation. In VLDB, 2001.

[45] Y. Tao and D. Papadias. Maintaining Sliding Window Skylines on Data
Streams. TKDE, 18(2), 2006.

[46] Y. Tao, X. Xiao, and J. Pei. SUBSKY: Efficient Computation of Skylines
in Subspaces. In ICDE, 2006.

[47] G. K. Werner KieBling. Preference SQL - Design, Implementation, Expe-
riences. In VLDB, 2002.

[48] T. Xia and D. Zhang. Refreshing the Sky: The Compressed Skycube with
Efficient Support for Frequent Updates. In SIGMOD, 2006.

[49] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang. Efficient
Computation of the Skyline Cube. In VLDB, 2005.

[50] Z.Zhang, X. Guo, H. Lu, A. K. H. Tung, and N. Wang. Discovering Strong
Skyline Points in High Dimensional Spaces. In CIKM, 2005.

28

SkylineJoin[i]. FSM.GetNext()
//The subscript i corresponds to the operator whose
//inner input is dim;, according to Figure 2.

Initialization:
this—state = SKJ_INIT;
this—inputExhausted = false;
this—skylineSet = {};

LOOP
state: SKJ INIT:
this—state = SKJ_.GROWING;
slot = GetNext();
IF slot is NULL
this—state = SKJ_DONE;
this—inputExhausted = true;
continue;
put slot in a tuple store;
continue;
state: SKJ GROWING:
slot = GetNext();
IF slot is NULL
this—state = SKJ_SORTING;
this—inputExhausted = true;
continue;
put slot in a tuple store;
IF slot is marked
this—state = SKJ_SORTING;
continue;
continue;
state: SKJ SORTING:
this—state = SKJ_SHRINKING;
sort tuple store according to >1, >2, ..., >;
continue;
state: SKJ_SHRINKING:
IF tuple store contains only one tuple
IF this—inputExhausted == false
this—state = SKJ_.GROWING;
continue;
ELSE
this—state = SKJ_DONE;
slot = get tuple from tuple store
IF this is the first tuple after the sorting OR
isskyline(this, slot)
slot—mark = a skyline tuple;
include slot in this—skylineSet;

ELSE
slot—mark = nothing;
return slot; 29

state: SKJ_.DONE:
return NULL;
ENDLOOP

Table 8: Finite state machine representing the logic of Phase 2 of Skyline-
Join.GetNext()

	Chameleon: Context-Awareness inside DBMSs
	Report Number:
	

	tmp.1307986960.pdf.3XL9g

