
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2008

Preserving Privacy and Fairness in Peer Data Management Preserving Privacy and Fairness in Peer Data Management

Systems Systems

Hazen Elmeleegy

Ahmed Abusalah

Mourad Ouzzani

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Report Number:
08-025

Elmeleegy, Hazen; Abusalah, Ahmed; Ouzzani, Mourad; and Elmagarmid, Ahmed K., "Preserving Privacy
and Fairness in Peer Data Management Systems" (2008). Department of Computer Science Technical
Reports. Paper 1712.
https://docs.lib.purdue.edu/cstech/1712

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Preserving Privacy and Fairness
in Peer Data Management

Systems

Hazem Elmeleegy
Ahmed Abusalah
Mourad Ouzzani

Ahmed Elmagarmid

CSD TR #08-025
October 2008

Preserving Privacy and Fairness in Peer Data
Management Systems

Hazem Elmeleegy
#
, Ahmed Abusalah

#
, Mourad Ouzzani

*
, Ahmed Elmagarmid

#*

#
Department of Computer Science, Purdue University

*
Cyber Center, Purdue University

West Lafayette, IN, USA

{hazem,aabusala,mourad,ake}@cs.purdue.edu

Abstract— Peer Data Management Systems (PDMSs) promise to
extend the classical data integration approach to the Internet
scale. Unfortunately, some challenges remain before realizing
this promise. One of the biggest challenges is preserving the
privacy of the exchanged data while passing through several
intermediate peers. Another challenge is protecting the mappings
used for data translation. Achieving privacy preservation
without being unfair to any of the peers is yet a third challenge.
This paper presents a novel query answering protocol in PDMSs
to address these challenges. The protocol employs a technique
based on noise selection and insertion to protect the query
results, and a commutative encryption-based technique to
protect the mappings and ensure fairness among peers. An
extensive security analysis of the protocol shows that it is
resilient to seven possible types of attacks, assuming a malicious
model. We implemented the protocol within an established
PDMS: the Hyperion system. We conducted an experimental
study using real data from the healthcare domain. The results
show that our protocol introduces a moderate communication
overhead compared to its non-privacy preserving counterpart
and manages to achieve fairness among the peers.

I. INTRODUCTION

Peer Data Management Systems (PDMSs) were introduced
in recent years as an extension to the classical data integration
paradigm, where a number of heterogeneous databases are
accessible through a central mediator. In contrast to traditional
data integration systems, the scale of a PDMS can be as large
as the Internet. A key design principle is that the functions
initially offered by the central mediator are performed in a
decentralized fashion, so that the PDMS can scale with the
large number of peer databases. Most of the work in the
PDMS literature has focused on this problem; the provision of
decentralized autonomous mechanisms for the peer databases
to be able to share data seamlessly despite their heterogeneous
schemas. Enabling this sharing involves having peers
maintain mappings that capture the differences between their
schemas and schemas of their “acquainted” peers in the
PDMS. In this sense, peers may be needed to act as translators
of queries and answers if they happen to occur on the path
from a requesting client peer to some target server peer.

In this paper, we address an equally important challenge in
PDMSs, namely privacy management. When two peers in a
PDMS decide to share data, all their queries and related
answers might need to be exposed to one or more intermediate
peers acting as translators. Needless to say, in many cases this
information can be highly sensitive and should not be publicly
revealed. Consider the following cases:

1- In healthcare, two hospitals may need to exchange the
medical records of patients for the purpose of consultancy
or patient transfer.

2- In law enforcement, officers may need to access crime
databases under different jurisdictions or even countries to
be able to track down suspects.
3- In supply chain, a manufacturer needs to exchange parts
data with new suppliers.
While there are naïve methods to preserve privacy in a

PDMS, these methods are very inefficient and unfair to some
of the peers. For instance, to answer a query, we can require
all intermediate peers between the client and the server to ship
all their mappings to the client, such that translation occurs at
the client-side. Besides inefficiency, this approach is unfair to
the intermediate peers, who are requested to give up all their
mappings for no return. On the other extreme, the
intermediate peers may charge the client for all the mappings
they provide. However, this is unfair to the client, who only
needs a very small subset of these mappings to translate the
query and the result. Thus, there is a need to maintain fairness
among peers. Peers acting as translators should not
unnecessarily overcharge clients, and similarly clients should
not be able to underpay translators.

Our proposed protocol achieves the privacy and fairness
goals, while maintaining a moderate overhead, in the
following way. When a server answers a query, the real result
values are mixed with noise values before they are exposed to
the translators. The percentage of noise depends on the
privacy requirements set by the client. The noise values are
selected such that a malicious translator cannot filter them out.
The protocol also employs a technique based on commutative
encryption, which ensures that clients only learn (and pay for)
the value mappings needed to translate the query result,
without getting the result’s real values exposed to the
translators. Although our protocol preserves privacy in
addition to maintaining fairness, for simplicity, we will just
refer to it as a privacy-preserving protocol. We summarize our
contributions in this paper as follows:

1- We propose a privacy-preserving query answering
protocol based on noise insertion and commutative
encryption methods. It preserves the privacy of the query
results and mappings, while maintaining fairness.
2- We formally show that the protocol satisfies the privacy
requirements if a semi-honest model was assumed. We also
discuss the protocol’s resilience to seven possible types of
attacks if a malicious model was assumed.
3- We implemented the protocol on top of an established
PDMS, namely Hyperion.
4- We conducted an extensive experimental study using real
data sets from a healthcare scenario. The results show that
our protocol introduces a moderate processing and

communication overhead, which is outweighed by the high
levels of privacy and fairness it offers.
The rest of the paper is organized as follows. Section II

gives an overview of the Hyperion system, which our protocol
is based upon. Section III first discusses the privacy
requirements for the query results and mappings in addition to
the fairness considerations, and then presents the details of the
privacy-preserving protocol. Section IV explains the noise
selection technique. In Section V, we perform security and
cost analyses of the protocol, while in Section VI we report
the results of our experimental study. We discuss related work
in Section VII. Finally, Section VIII concludes the paper.

II. SYSTEM OVERVIEW

We consider a PDMS, in which each peer can play three
different roles: a client, a server, and a translator. A peer is
considered a client if it issues queries. It is considered a server
if it processes queries and returns results from its local
database. Finally, it is considered a translator if it maintains
schema and data mappings with other peers, and is capable of
translating data and queries to and from these peers. Since the
work presented in this paper builds upon the Hyperion system,
we will briefly describe the architecture of a Hyperion system
and the different types of queries the system can answer.

A. System Architecture

Figure 1 (adapted from [17]) shows the Hyperion peer
architecture. Our privacy-preserving protocol was
implemented within what is called the privacy-preserving
query service. For a detailed discussion about the architecture
of a Hyperion peer, please refer to [10,17].

User Interface

Peer Manager

Acquaintance
Service

Query
Service

ECA Rules
Service

Privacy-Preserving
Query Service

RDBMS

Local

Resources

Mapping
Tables +

ECA Rules

Path Finder

Local DB
Layer

P2P Layer

A Hyperion PeerA Hyperion P2P Network

A Hyperion Peer

Acquaintance Link

Figure 1. Hyperion Architecture

In Hyperion, as in other similar PDMSs like Piazza [20], the
complete network graph is available and accessible to all the
peers. Hyperion stores such graph locally in each peer. A node
in the graph represents a peer and an edge represents an
acquaintance link between two peers, which implies that
mapping tables are available to translate data and queries
between these two peers. Weights can be assigned to edges to
reflect one or several factors about the acquaintance link such
as reliability, latency, usage cost, or a combination of these
factors. The mapping tables are typically replicated in both
acquainted peers. Thus, any two peers having a common
acquaintance (common neighboring peer) can communicate
directly using the schema of their common acquaintance. It
follows that the original graph can be augmented by adding
shortcut edges between any two nodes that are two links apart.
Figure 2 shows how the example graph shown in Figure 1 is

augmented. The weight of a shortcut edge can either be
dependant on the weights of its two “shortcutted” edges or not
(e.g. the sum of usage costs, the product of reliability values,
or just the latency between the peers at both ends of the
shortcut edge).

A Hyperion Peer Original Edge Added Shortcut Edge

Augmentation

Original Graph Augmented Graph

Figure 2. Graph Augmentation

B. Query Answering

There are two types of queries that can be answered in a
PDMS: broadcast queries and targeted queries. For broadcast
queries, the client sends the query to its acquaintances which
in turn forward it to their own acquaintances and so on, thus
propagating the query to the whole network. Before a peer
forwards the query, it is translated first to conform to the
schema of the following peer. Each peer receiving the query
and having a local database executes it locally. Finally, all the
peers that could find relevant local results send those results
back to the client; each through the same path that was used to
deliver the query to it, but in the reverse direction. The results
get translated by the intermediate peers on their way back to
the client. For targeted queries, the client specifies a target
peer from where to get the results. The shortest path to the
target peer is first computed on the augmented graph. The
query is then sent (and translated) along the discovered path,
and the corresponding result is also sent (and translated) along
the same path, but in the reverse direction. For the rest of the
discussion, we will focus on targeted queries rather than
broadcast queries. A broadcast query can be viewed as a
collection of targeted queries in terms of delivering results
from different servers back to the client. Each result will
travel back through a certain path, similar to targeted queries.

In Hyperion, mappings used for query translation depend on
mapping tables, which are value-to-value mappings. More
generally, in other PDMSs and data integration systems,
mappings can either be Local-As-View (LAV), Global-As-
View (GAV), or Local-and-Global-As-View (GLAV). We
emphasize that our work is independent from the way queries
are translated. It is also worth mentioning that the version of
Hyperion we used is an extension to the one presented in [17].
We have added support for targeted queries as well as result
translation on the path back to the client.

III. PRIVACY AND FAIRNESS IN QUERY ANSWERING

A. Privacy and Fairness Requirements

1) Privacy of the Query Result: The result R of a query Q
consists of l columns (R1, R2,…, Rl) representing the attributes
(a1, a2,…, al). Dj denotes the domain of attribute aj, and URj

denotes the unique values in Rj, j∈[1,l]. If Q, R, Rj, URj, aj,
and Dj follow the schema of some peer X, then we refer to

them as Q
X
, R

X
, Rj

X
, URj

X
, aj

X
, and Dj

X
 respectively, j∈[1,l].

The main role of any PDMS’s query answering protocol can
be stated as follows. Consider a client peer C issuing a query
Q

C
 to be executed on a target server peer S, such that the path

PCS from C to S is (C,T1,T2,…,Tn,S), where (T1,T2,…,Tn) are n
intermediate translator peers. A PDMS query answering

protocol ℘ should be able to translate Q
C
 into Q

S
, execute Q

S

on S to obtain R
S
, translate R

S
 to R

C
, and finally return R

C
 to C.

The knowledge leaked through ℘ to any peer Th during the

execution of ℘ is denoted by ℜ(℘,Th), h∈[1,n]. In what
follows, we introduce the notion of K-protection, which
allows the client to specify the privacy requirements for the
query result.

Definition 3.1 K-protection Given a vector K=(k1,k2,…,kl),

where kj is an integer, a protocol ℘ for returning R
C
 given

Q
C
, S and PCS is said to provide K-protection to R

C
 if

Pr(v∈Rj
X
|ℜ(℘,X))≤max(1/kj,|URj

S
|/|Dj

S
|), ∀ v∈Dj

X
, where X

is neither C nor S, j∈[1,l].

The above definition states that for a protocol ℘ to satisfy
the K-protection requirement, whatever information it passes
to a peer X (other than C and S) should not increase the
certainty of X about the result beyond a certain limit. In
particular, X should not be able to determine, with a
probability above a certain threshold, that any given value v
belongs to R

X
 (the translation of R

C
 to X’s schema). This

threshold is determined by the maximum of two values: (1) a
user-specified value; and (2) the probability that v belongs to
R

X
 knowing the number of values in v’s domain and the

number of unique values in the result from that domain (since
these numbers are not considered sensitive under the K-

protection model). The following example illustrates how to
check if a protocol satisfies the K-protection requirement. We
will also be referring to it throughout the discussion.

Example 3.1
We consider a scenario from the healthcare domain, where

peers represent hospital databases storing information about
their patients and the medications they were given. Figure 3a
depicts part of the P2P network, including a client peer C, a
server peer S, and the path PCS between them (C,T1,T2,S).
Along PCS, two intermediate translator peers exist: T1 and T2.
Data and queries exchanged between C and T1 conform to the
schema of their common acquaintance, X. Similarly, data and
queries exchanged between T1 and T2, and between T2 and S
conform to Y’s and Z’s schemas respectively.

Figures 3b and 3c show the tables in the databases of C and
S, while Figures 3d and 3e show the mapping tables of both
translators. Note that the mapping tables for patient IDs map

every value to itself as denoted by the variable X. We assume

that all peers use similar patient IDs (e.g. SSN). The schemas
of all peers are shown to be similar for ease of exposition.

C issues a query Q
C
 to request the medication information

stored in S for patient p35. Q
C
 is shown in Figure 4a. The

PATH clause specifies PCS, while the K-PROTECTION clause
specifies the K vector, which was specified as (2), i.e., k1=2.

Q
S
 (Figure 4b) represents the query Q

C
 after being

translated to follow S’s schema. R
S
, the result corresponding

C X T1 Y T2 Z S PCS : (C,T1,T2,S)

(a) Part of the peer network and path from client to server

m4p37

m6p15

m1p15

CMIDCPID

m4p37

m6p15

m1p15

CMIDCPID

m9

m3

m4

m5

m6

m7

m8

m10

m2

m1

CMID

m9

m3

m4

m5

m6

m7

m8

m10

m2

m1

CMID

p22

p35

p37

p15

p10

CPID

p22

p35

p37

p15

p10

CPID

CTreatmentsCMedicationsCPatients

m4’m4

m5’m5

m6’m6

m7’m7

m8’m8

m9’m9

m3’m3

m10’m10

m2’m2

m1’m1

XMIDCMID

m4’m4

m5’m5

m6’m6

m7’m7

m8’m8

m9’m9

m3’m3

m10’m10

m2’m2

m1’m1

XMIDCMID

XX

XPIDCPID

XX

XPIDCPID

CPID_2_XPID CMID_2_XMID

mip51

mep19

mdp19

mfp35

map19

mhp35

mcp17

mcp51

mjp51

mep5

mbp5

SMIDSPID

mip51

mep19

mdp19

mfp35

map19

mhp35

mcp17

mcp51

mjp51

mep5

mbp5

SMIDSPID

p19

p35

p51

p17

p5

SPID

p19

p35

p51

p17

p5

SPID

STreatmentsSPatients

mj

mc

md

me

mf

mg

mh

mi

mb

ma

SMID

mj

mc

md

me

mf

mg

mh

mi

mb

ma

SMID

SMedications

mcmc’

mdmd’

meme’

mfmf’

mgmg’

mhmh’

mimi’

mjmj’

mbmb’

mama’

SMIDZMID

mcmc’

mdmd’

meme’

mfmf’

mgmg’

mhmh’

mimi’

mjmj’

mbmb’

mama’

SMIDZMID

XX

SPIDZPID

XX

SPIDZPID

ZPID_2_SPID ZMID_2_SMID

(b) Client local tables and mapping tables

(c) Server local tables and mapping tables

m4’’m4’

m5’’m5’

m6’’m6’

m7’’m7’

m8’’m8’

m9’’m9’

m3’’m3’

m10’’m10’

m2’’m2’

m1’’m1’

T1MIDXMID

m4’’m4’

m5’’m5’

m6’’m6’

m7’’m7’

m8’’m8’

m9’’m9’

m3’’m3’

m10’’m10’

m2’’m2’

m1’’m1’

T1MIDXMID

XX

T1PIDXPID

XX

T1PIDXPID

XPID_2_T1PID XMID_2_T1MID

mδm4’’

mεm5’’

mφm6’’

mγm7’’

mηm8’’

mιm9’’

mχm3’’

mϕm10’’

mβm2’’

mαm1’’

YMIDT1MID

mδm4’’

mεm5’’

mφm6’’

mγm7’’

mηm8’’

mιm9’’

mχm3’’

mϕm10’’

mβm2’’

mαm1’’

YMIDT1MID

XX

YPIDT1PID

XX

YPIDT1PID

T1PID_2_YPID T1MID_2_YMID

mc’’mχ

md’’mδ

me’’mε

mf’’mφ

mg’’mγ

mh’’mη

mi’’mι

mj’’mϕ

mb’’mβ

ma’’mα

T2MIDYMID

mc’’mχ

md’’mδ

me’’mε

mf’’mφ

mg’’mγ

mh’’mη

mi’’mι

mj’’mϕ

mb’’mβ

ma’’mα

T2MIDYMID

XX

T2PIDYPID

XX

T2PIDYPID

YPID_2_T2PID YMID_2_T2MID

mc’mc’’

md’md’’

me’me’’

mf’mf’’

mg’mg’’

mh’mh’’

mi’mi’’

mj’mj’’

mb’mb’’

ma’ma’’

ZMIDT2MID

mc’mc’’

md’md’’

me’me’’

mf’mf’’

mg’mg’’

mh’mh’’

mi’mi’’

mj’mj’’

mb’mb’’

ma’ma’’

ZMIDT2MID

XX

YPIDT2PID

XX

YPIDT2PID

T2PID_2_ZPID T2MID_2_ZMID

(d) Translator T1 mapping tables

 (e) Translator T2 mapping tables

Figure 3. Peer network and peer tables in Example 3.1

to Q
S
 is shown in Figure 4c, and finally the translation of R

S

back to C’s schema, R
C
 is shown in Figure 4d.

If T2 knows that the number of unique values of SMID in R
S

is 2 (|UR1
S
|=2), and knows that the domain of SMID in S has

10 unique values (|D1
S
|=10), then given no additional

information, T2 can only conclude that Pr(v∈R1
T

2)=2/10=0.2,

for every v∈D1
T

2. The same applies to T1. Thus, with k1

specified as 2, the threshold value is given by max
(1/2,2/10)=0.5.

Q

C
: SELECT CMID

 FROM CTreatments
 WHERE CPID = ‘P35’
 PATH C,T1,T2,S
 K-PROTECTION CMID 2

Q

S
: SELECT SMID

 FROM STreatments
 WHERE SPID = ‘P35’
 PATH C,T1,T2,S
 K-PROTECTION SMID 2

(a) Query QC on client

(b) Query QS on server

mh

mf

SMID

mh

mf

SMID

RS

 m8

m6

CMID

m8

m6

CMID

RC

(c) Query result RS on server

(d) Query result RC on client

Figure 4. Queries and query results in Example 3.1

 To check if a certain protocol provides K-protection to R
C
,

consider the two protocols℘1 and℘2. ℘1 represents the
standard non-privacy-preserving protocol, where the result

has to pass through T1 and T2. With ℘1, T2 learns precisely

the two values in R
T

2, i.e. Pr(mf”∈R1
T

2|ℜ(℘1,T2))=1, which is

larger than the threshold. Clearly, ℘1 does not preserve the
privacy of R

C
 based on the K-protection model.

℘2 requires T1 and T2 to send all their mapping tables to S
where all the result translation occurs from R

S
 all the way to

R
X
, which is finally sent to C to be translated locally to R

C
.

With℘2, neither T1 nor T2 learns any additional information
about R

T
1 or R

T
2 respectively. Thus,

Pr(v1∈R1
T

1|ℜ(℘2,T1))=Pr(v2∈R1
T

2|ℜ(℘2,T2))=0.2, for every

v1∈D1
T

1 and v2∈D1
T

2 (using the knowledge about unique

values of SMID and its domain). This value is below the

threshold. Thus, ℘2 preserves R
C
’s privacy based on the K-

protection model. However, ℘2 is very inefficient since the

mapping tables of T1 and T2 may be quite large. Also,℘2
violates the mapping tables’ privacy, as will be shown next. ⁪

2) Privacy of the Mapping Tables and Fairness
Considerations: Usually, peers in a PDMS will act as
translators for other peers based on some incentives. For
instance, peers can provide their translation services for a
service fee that is based on the number of mapping entries
requested by the client. One issue with this model is that after
purchasing a mapping entry from some translator, a client can
then distribute that entry to other peers. These peers will not
have to pay any fees to the original owner of the entry. This is
considered unfair to the translator. Conversely, if a translator
forces a client to purchase more entries than what the client
actually needs, the situation is reversed, and it becomes unfair
to the client. Therefore, it is desirable to achieve fairness
between clients and translators, especially when some peers
mostly act as clients, while others mostly act as translators.

We will define the fairness of a protocol with respect to
translators and clients. We model the protocol’s fairness based
on the total revenue realized by every translator in a PDMS.

Definition 3.2 protocol fairness. A protocol is considered to
be fair if the revenue of any translator T at any point in time

t=τ is bounded by:
a) (Upper bound) the sum of costs of every request made by

every client before t=τ to obtain one of T’s mapping entries.
b) (Lower bound) the sum of costs of every “unique” request

made by every client before t=τ to obtain one of T’s mapping
entries. Uniqueness is considered independently for every
client.

The rationale behind the above definition is as follows. On
one hand, if T’s revenue is less than the specified lower
bound, then some clients have obtained some of T’s mapping
entries to translate their query results from sources other than
T, for example through some sort of a “black market”. This is
clearly unfair to T. On the other hand, if T’s revenue is greater
than the specified upper bound, then at least one client C has
paid T more than the total cost of all its requested mapping
entries. This time it is unfair to C.

In other words, according to this definition of fairness, a
client is allowed to cache some of the mapping entries it has
previously purchased from a translator T, and then re-use
them in translating newer query results. However, neither
should the client get involved in any sort of black market
activity, nor should the translator charge clients more than the
cost of what they actually need. A stricter definition of
fairness may be also considered, such as a definition that does
not allow clients to cache and re-use any of their purchased
mapping entries. However, for the rest of the discussion, we
will only consider Definition 3.2 for protocol fairness.

B. Privacy Preserving Protocol

Our proposed privacy preserving protocol relies on two key
ideas. The first idea is to insert selected noise values in the
query result before requesting mapping entries from the
translators. This is geared towards preserving the privacy of
the query result. The second idea is concerned with preserving
the privacy of the mapping tables while maximizing fairness
between clients and translators. In this case, we use a
technique based on commutative encryption [16] to ensure
that the client only knows the mapping entries necessary to
translate the result of its query, while the translator still cannot
distinguish between the real values that actually exist in the
query result and the noise values inserted into it.

Before discussing the details of the protocol, we recall that
the input of the protocol is a query Q

C
 that conforms to C’s

schema, a path PCS (C,T1,T2,…,Tn,S) that connects C to S, and
the K vector, which defines the query result privacy
requirements; while the output is the query result R

C
 which is

the translation of R
S
. For ease of exposition, we assign the

alias names T0 and T(n+1) to the client and the server in
addition to their original names C and S respectively. We will
use these aliases interchangeably with the original names. We
assume that data and queries sent between peers Th and T(h+1)

follow the schema of some peer T’h, h∈[0,n+1]. T’h can either
be Th, T(h+1), or a common acquaintance of both Th and T(h+1)
in case they are not directly connected.

The protocol has three phases: the query delivery phase
(phase I), the result and mappings collection phase (phase II),
and the mappings decryption and result translation phase
(phase III). The protocol uses message passing between the

participating peers, where six types of messages are involved.
Table 1 lists the six message types along with the
senders/receivers for each type, and the protocol phase in
which messages from each type are used. In general, before
peers communicate, they first authenticate each other to guard
against impersonation attacks. We now discuss how the
protocol operates in the three phases.

TABLE 1. PROTOCOL MESSAGE TYPES

Message Type Phase Sender(s) Receiver(s)

Query_Msg (QM) I
Client and
Translators

Server and
Translators

Mapping_Req_Msg
(MRqM)

II
Server and
Translators

Translators

Mapping_Resp_Msg
(MRsM)

II Translators Client

Result_Msg (RM) II Server Client

Decryption_Req_Msg
(DRqM)

III Client Translators

Decryption_Resp_Msg
(DRsM)

III Translators Client

Phase I: Query Delivery
The main goal of this phase is to deliver the client’s query to

the target server peer after translating it to a form that
conforms to the server’s schema. Since, based on our problem
definition, this phase does not involve privacy preservation;
the protocol operates in the same way as the non-privacy-
preserving protocol. The Query_Msg is forwarded from C to S
passing through T1 to Tn. Lines 1.1-1.3 in Algorithm 1 show
how translator peers handle an incoming Query_Msg. Later,
in Section V, we will show that a modification needs to be
applied to this phase to guard against a certain type of attacks.

Phase II: Result and Mappings Collection
This phase begins when S receives a Query_Message. The

way S handles the Query_Message is also outlined in
Algorithm 1 (lines 1.4-1.16). S first translates the incoming
query to get Q

S
, which is executed to obtain the result R

S

(lines 1.5,1.6). Then, the unique values in R
S
 are extracted to

form UR
S
 (line 1.7). To ensure K-protection of the result, for

every unique value in Rj
S
, a list of kj-1 noise values are

selected from Dj
S
 (the domain of aj

S
). The noise values are

then merged with the values of URj
S
 to form NURj

S
 (lines 1.8-

1.9). The technique used to select the noise values is
explained in details in Section IV. The values in NURj

S
 are

shuffled (line 1.10) to make sure that real values cannot be
isolated from noise values. After NUR

S
 is created, S translates

R
S
 and NUR

S
 to R

T’
n and NUR

T’
n respectively, where the

former is sent to C in a Result_Msg, while the latter is sent to
Tn in a Mapping_Req_Msg (lines 1.11-1.14).

The way Tn (as well as any other translator) handles the
Mapping_Req_Message is shown in Algorithm 2. Tn creates a
mapping from the received values of NUR

T’
n to their

corresponding values in T’(n-1) (lines 2.1,2.2). However, the
values in T’(n-1) are encrypted using the key of Tn. We refer to
such mapping from the plaintext values in T’n to the encrypted
values in T’(n-1) by En(Mn). When the mapping is from the
plaintext values in T’n to the plaintext values in T’(n-1), we
simply refer to it as Mn. To construct En(Mn) efficiently, Tn
keeps the values in its mapping tables both in plaintext and
encrypted formats. This way, it does not have to perform
encryption each time it receives a Mapping_Req_Msg. After
constructing En(Mn), Tn sends it to C in a Mapping_Resp_Msg

(line 2.3). Tn also translates NUR
T’

n to NUR
T’

(n-1), shuffles

NUR
T’

(n-1), and sends it in a new Mapping_Req_Msg to the

preceding translator on the path, T(n-1) (lines 2.5-2.7).
Shuffling guarantees that NUR

T’
(n-1) cannot be correlated with

NUR
T’

n, which can result in the decryption of En(Mn). This is

important to prevent certain attacks, as will be discussed in
Subsection V-A. On receiving the new
Mapping_Req_Message, T(n-1) handles it in a similar way, and
Mapping_Req_Msg’s keep on propagating backwards until T1
is reached (line 2.4).

When C receives a Result_Msg from S, or a

Mapping_Resp_Msg from Th, h∈[1,n], it stores the incoming
result and mappings locally, until all of them have arrived. At
this point, phase II ends. The handling of both messages is
described in Algorithms 3 and 4 respectively.

Phase III: Mappings Decryption and Result Translation
This phase begins when C receives the result (R

T’
n) from S

and the mappings (Eh(Mh), h∈[1,n]) from all the translators.
Lines 3.2-3.6 in Algorithm 3 and lines 4.2-4.6 in Algorithm 4
are similar and they both describe the beginning of phase III.
The lines in Algorithm 3 are executed if C receives the result
after it has received all the translators’ mappings. Otherwise,
the lines in Algorithm 4 are executed instead.

At first, C extracts the unique values from R
T’

n to generate

UR
T’

n and translates UR
T’

n using En(Mn) (lines 3.3,3.4 or

4.3,4.4). The translation gives the corresponding values in T’(n-

1) encrypted with Tn’s key. We refer to the generated values by
En(UR

T’
(n-1)). C then re-encrypts each value in En(UR

T’
(n-1)) with

its own key to generate E0(En(UR
T’

(n-1))), and sends such

doubly-encrypted values to Tn in a Decryption_Req_Msg
(lines 3.5,3.6 or 4.5,4.6).

Tn handles the Decryption_Req_Msg as shown in Algorithm
5. It decrypts the incoming values (E0(En(UR

T’
(n-1)))) from C

with Tn’s key. Since commutative encryption is used, this step
removes the prior encryption with Tn’s key, thus generating
E0(UR

T’
(n-1)) (line 5.1). Tn then sends E0(UR

T’
(n-1)) back to C in a

Decryption_Resp_Msg (line 5.2).
Algorithm 6 shows the behavior of C once it receives the

Decryption_Resp_Msg. C re-decrypts the incoming values
(E0(UR

T’
(n-1))) with its own key, which generates the plaintext

values in T’(n-1), or UR
T’

(n-1) (line 6.1). C also extracts the unique

values from R
T’

n to get UR
T’

n (line 6.2), and creates a mapping

Mn from the values of UR
T’

n to the values of UR
T’

(n-1) (line 6.3).

C uses Mn to translate R
T’

n into R
T’

(n-1), and stores it in place of

R
T’

n (lines 6.4,6.5). C then repeats the same process with every

translator preceding Tn until R
T’

0 is obtained (lines 6.6-6.9). At

this point, C translates R
T’

0 to R
C
 using its own mapping tables

(lines 6.11,6.12).

Algorithm 1: Handle_Query_Msg (QT’
(h-1), PCS, K)

Th : the current peer
1.1- if (Th is not S)
1.2- Translate QT’

(h-1) to QT’
h

1.3- Send a new Query_Msg(QT’
h, PCS,K) to T(h+1) (if h<l) or

to S (if h=n)
1.4- else //Th is S; i.e. h-1=n
1.5- Translate QT’

n to QS

1.6- Execute QS to get RS
1.7- Extract unique values from RS to get URS

1.8- for each attribute aj
S in RS

1.9- Construct NURj
S as the union of URj

S and min((kj-

1)×|URj
S|,|Dj

S
|-|URj

S|) additional noise values
1.10- Shuffle NURj

S
1.11- Translate NURS to NURT’

n

1.12- Translate RS to RT’
n

1.13- Send a new Mapping_Req_Msg(NURT’
n, PCS) to Tn

1.14- Send a new Result_Msg(RT’
n) to C

1.15- return

Algorithm 2: Handle_Mapping_Req_Msg (NURT’
h, PCS)

Th : the current peer
2.1- Translate NURT’

h using T’(h-1) values encrypted with the key

of Th to get Eh(NURT’
(h-1))

2.2- Join each value in NURT’
h with its corresponding value in

Eh(NURT’
(h-1)) to get the encrypted mapping Eh(Mh)

2.3- Send a new Mapping_Resp_Msg(Eh(Mh)) to C
2.4- if (T(h-1) is not C)
2.5- Translate NURT’

h to NURT’
(h-1)

2.6- Shuffle NURT’
(h-1)

2.7- Send a new Mapping_Req_Msg(NURT’
(h-1), PCS) to T(h-1)

2.8- return

Algorithm 3: Handle_Result_Msg (RT’
n)

// the current peer must be C
3.1- Store RT’

n

3.2- if (all translators’ mappings and RT’
n are received)

3.3- Extract unique values from RT’
n to get URT’

n

3.4- Translate URT’
n using En(Mn) to get En(URT’

(n-1))

3.5- Encrypt En(URT’
(n-1)) with C’s key to get E0(En(URT’

(n-1)))

3.6- Send a new Decryption_Req_Msg(E0(En(URT’
(n-1)))) to Tn

3.7- return

Algorithm 4: Handle_Mapping_Resp_Msg (Eh(Mh))

// the current peer must be C
4.1- Store Eh(Mh)
4.2- if (all translators’ mappings and RT’

n are received)

4.3- Extract unique values from RT’
n to get URT’

n

4.4- Translate URT’
n using En(Mn) to get En(URT’

(n-1))

4.5- Encrypt En(URT’
(n-1)) with C’s key to get E0(En(URT’

(n-1)))

4.6- Send a new Decryption_Req_Msg(E0(En(URT’
(n-1)))) to Tn

4.7- return

Algorithm 5: Handle_Decryption_Req_Msg (E0(Eh(URT’
(h-1))))

Th : the current peer
5.1- Decrypt E0(Eh(URT’

(h-1))) with the key of Th to get E0(URT’
(h-

1)) //uses the commutative encryption property

5.2- Send a new Decryption_Resp_Msg(E0(URT’
(h-1))) to C

5.3- return

Algorithm 6: Handle_Decryption_Resp_Msg (E0(URT’
(h-1)))

// the current peer must be C
6.1- Decrypt E0(URT’

(h-1)) with the key of C to get URT’
(h-1)

6.2- Extract unique values from each attribute in RT’
h to get URT’

h

6.3- Join each value of URT’
h with its corresponding value from

URT’
(h-1) to get the non-encrypted mapping Mh

6.4- Translate RT’
h with Mh to get RT’

(h-1)

6.5- Store RT’
(h-1) in place of RT’

h

6.6- if (h>1) // RT
(h-1) is not RC

6.7- Translate URT’
(h-1) using E(h-1)(M(h-1)) to get E(h-1)(URT’

(h-2))

6.8- Encrypt E(h-1)(URT’
(h-2)) with C’s key to get E0(E(h-1)(URT’

(h-2)))

6.9- Send a Decryption_Req_Msg(E0(E(h-1)(URT’
(h-2))))) to T(h-1)

6.10- else

6.11- Translate RT’
(h-1) to RC

6.12- Report RC to user
6.13- return

Example 3.2
Continuing on Example 3.1, Figure 5 shows how the query

in Figure 4a is executed when the privacy-preserving protocol
is used. The figure shows the contents of the 12 messages
exchanged between the peers during query processing. If we

refer to the privacy-preserving protocol by ℘3, then the only

information ℘3 passes to T2 about R
T

2 is that it contains two

values, which belong to {mc”,mf”,mh”,mi”}. Therefore,

Pr(v∈R1
T

2|ℜ(℘3,T2)) = 2/4 = 0.5, which is equal to the

threshold given by max(1/2,2/10)=0.5. Similarly, we can find

that Pr(v∈R1
T

2|ℜ(℘3,T2))≤0.5, for every v∈D1
T

2. The same

applies to T1. Thus, unlike ℘1, ℘3 does preserve the privacy

of R
C
 based on the K-protection model. Moreover, unlike ℘2,

℘3 does not require the transfer of the complete mapping

tables of T1 and T2. Thus, ℘3 is more efficient and more fair

to T1 and T2 than ℘2. ⁪

C T1 T2 S

1-QM: QX 2-QM: QY 3-QM: QZ

4-MRqM: [mc’,mf ’,mh’,mi’]6-MRqM: [mφ,mχ,mη,mι]

7-MRpM: [(mc’,E2(mχ)),(mf ’,E2(mφ)),
(mh’,E2(mη)),(mi’,E2(mι))]

5-RM: [mf’,mh’]

8-MRpM: [(mφ,E2(m6’),(mχ,E2(m3’))),

(mη,E2(m8’)),(mι,E2(m9’))]

12-DRpM:
[E0(m6’),E0(m8’)]

11-DRqM: [E0(E1(m6’)),E0(E1(m8’))]

9-DRqM: [E0(E2(mχ)),E0(E2(mφ))]

10-DRpM: [E0(mχ),E0(mφ)]
* Noise values are underlined
for illustration purposes

Figure 5. Privacy-preserving protocol operation for Example 3.2

IV. NOISE SELECTION

Careful selection of noise values to be mixed with real
values in the result is crucial to the protocol’s effectiveness.
For example, if the selected noise values were purely random,
then they can be easily filtered out By issuing the same query
multiple times and comparing multiple instances of the result,
the real values will remain unchanged, while the noise values
may be different, and hence they can be eliminated.

A good scheme for noise selection should guarantee that the
reported result for the same query (including real and noise
values) should remain the same every time the query is issued.
Moreover, if the query result is changed, then the newly
reported result for the query should be a superset of the
previously reported results for the same query.

Before presenting our proposed scheme for noise selection,
we first discuss two requirements concerning the peers’
databases. First, database records need to be time-stamped.
This is not an expensive requirement, especially with the
decreasing cost of storage. Moreover, a peer whose existing
database has no timestamps can still timestamp all its records
with the current time before joining the PDMS. Second, the

domains for the values appearing in a query result (i.e. Dj
S
,

j∈[1,l]) should not be shrunken over time. This is also an easy
requirement, because even if there was a need to remove
certain domain values, they can just be marked as removed
instead of physically removing them.

Given the result R
S
, our goal is to select (kj-1) noise values

for every unique value in Rj
S
 to generate NURj

S
, j∈[1,l], such

that the selected noise values remain consistent every time the
query is executed. The proposed scheme works as follows.
1. Extract the unique values from Rj

S
 to get URj

S
, and

associate each unique value with the earliest timestamp
among the timestamps of all the records of R

S
 containing

that value for Rj
S
. This implies that a value would not

have appeared in the query result before the time
indicated by its associated timestamp.

2. Sort the values in URj
S
 based on their associated

timestamps.
3. Create |URj

S
| pseudo-random number generators

(PRNGs), where the seed of the i
th

 PRNG is a function of
the hash value of the concatenation of the first i values in

URj
S
, i∈[1,|URj

S
|].

4. Use the i
th

 PRNG to generate the (kj-1) noise values for
the i

th
 real value in URj

S
 and insert those noise values

along with the real value into NURj
S
. This step is

repeated for every i∈[1,|URj
S
|] in an ascending order of i,

and is performed as follows.
a. Let D’j

S
 be Dj

S
 after removing all values already in

NURj
S
 and all values whose timestamp in Dj

S
 is

newer than the timestamp of the i
th

 real value in URj
S
.

b. Generate |D’j
S
| random numbers, and associate each

one of them with a value in D’j
S
.

c. Sort D’j
S
 according to the associated random

numbers (to get a random permutation).
d. Return the top (kj-1) values.

Example 4.1
For the query Q

S
 (Figure 3b), the corresponding result, R

S
,

or similarly UR1
S
, is {mf,mh} (Figure 3d). Assuming that the

timestamp of mf is earlier than that of mh, then the scheme first
inserts mf into NUR1

S
. Then, a single noise value is selected

corresponding to mf (recall that k1=2) using the following
query (follows the MySQL syntax).

Q
1
: select SMID from SMedications

 where SMID not in (‘m
f
’)

 and TS < ts_m
f

 order by rand(seed1) limit 1

The variable seed1 is an integer representing the leftmost
four bytes of the hash value of the string “mf”. It is passed as
the seed of a PRNG used to order the SMID values randomly.
TS is the timestamp column in SMedications and ts_m

f
 is the

timestamp of mf. With the TS predicate, we ensure that the
noise value corresonding to mf only depends on SMID values
which existed at a time when URj

S
 did not include mf. This

way, if Q
1
 was re-issued at a later time, newly added SMID

values will not change the noise selection for mf. Assume that
the random value generated by this query is mc, then after
inserting mc into NUR1

S
, NUR1

S
 now becomes {mf,mc}. We

then insert the next value in UR1
S
 (mh) into NUR1

S
, such that

NUR1
S
={mf,mc,mh}. Similar to Q1, the following query is used

to get the noise value corresponding to mh.

Q
2
: select SMID from SMedications

 where SMID not in (‘m
f
’,‘m

c
’,‘m

h
’)

 and TS < ts_m
h

 order by rand(seed2) limit 1

The variable seed2 is computed similar to seed1 except
that the string “mf” is replaced with “mf:mh”. If the above
query returns the value mi, then NUR1

S
 becomes

{mf,mc,mh,mi}, corresponding to UR1
S
={mf,mh}.

When a new record (p35,mc) is added to STreatments, UR1
S

becomes {mf,mh,mc}. Thus, constructing the new NUR1
S
 will

start by following exactly the same steps resulting in NUR1
S

becoming {mf,mc,mh.mi}. Next, the third value in UR1
S
 (mc)

should be inserted into NUR1
S
 with another noise value.

However, since mc already exists in NUR1
S
 (as a noise value

from the previous steps), therefore we insert two random
values to guarantee that the final NUR1

S
 will contain three

real values and three noise values. This is achieved using the
following query.

Q
3
: select SMID from SMedications

 where SMID not in (‘m
f
’,‘ m

c
’,‘ m

h
’,‘ m

i
’)

 and TS < ts_m
c

 order by rand(seed3) limit 2

Assuming that the query returns {mg,md}, then the final
NUR1

S
 becomes {mf,mc,mh,mi,mg,md}, which is a superset of

the previous version of NUR1
S
. ⁪

Our noise selection scheme works well if the results for the
same query stay unchanged or expand over time. However, if
values can disappear from the result over time (because of the
dynamic nature of data), then the scheme may not always be
able to generate consistent noise values every time the query
is issued. Thus, if (1) the same translator T is used for the
same query before and after its result has shrunken, and (2) T
happened to be storing the old values it received for that
query; then T might be able to eliminate some of the noise
values, and hence the privacy of the query result can be at
risk. Although, typically, this event will not occur frequently,
it would be interesting to investigate the extension of our
scheme to handle this situation. The particular challenge is
that solving this problem may require the server to keep track
of all queries and results it has served in the past, which is not
always practical.

Fortunately, there is a wide class of applications where
records are mostly appended rather than deleted or updated.
Consider healthcare records, maintenance records, crime
databases, retail transactions, and financial transactions to
name just a few. Our protocol enables peers running any of
such applications to exchange queries and results in a
completely privacy-preserving manner. For other types of
applications, where data is more likely to be updated or
deleted, our protocol can still provide a fair degree of privacy,
but with a small probability that certain query results may get
disclosed over time. This can be useful for applications with
data that is not highly sensitive. For example, we can think of
a PDMS, where every peer is running a social network
application, and through the PDMS it can allow its users to
access their friends’ lists on the other social networks.

V. PROTOCOL ANALYSIS

A. Security Analysis

In this subsection, we investigate the security of the protocol

according to two models: (1) the semi-honest model, where all

peers follow the protocol properly, but will try to gain

additional information than they need if the protocol allows

them to, and (2) the malicious model, where peers may

deviate from the protocol to launch attacks against other

peers. We will first present a theorem showing that in the

semi-honest model, our protocol complies with the K-

protection requirement. Then we will consider several

possible attacks, assuming a malicious model, and discuss

how our protocol is resilient to them.

Theorem 5.1. Assuming a semi-honest model, the proposed

privacy-preserving protocol complies with the K-protection

requirement.

Proof. During a single run of the protocol (call it ℘) to

answer a query, each intermediate translator Th, h∈[1,n] only

receives three messages: a Query_Msg, a Mapping_Req_Msg,

and a Decryption_Req_Msg. These three messages represent

the information leaked by the protocol to Th., or ℜ(℘,Th).

First, it is clear that Th cannot infer any information about the

query result from the Query_Msg. Second, since all the values

in the Decryption_Req_Msg are encrypted using the client’s

key, then Th cannot infer any of these values. Third, for each

attribute aj in the query result, the number of aj values

received in the Mapping_Req_Msg is equal to the minimum

of kj×|URj
S| and |Dj

S
| (Algorithm 1, line 1.19). Thus, since the

number of unique values of aj in the query result is |URj
S|, then

Th can be confident that a received aj value belongs to the

query answer with probability: max(1/kj,|URj
S
|/|Dj

S
|). This

shows that the proposed protocol complies with the K-

protection requirement (see Definition 3.1). ⁪

We now discuss seven possible attacks against the protocol
in the malicious model. The first four attacks are related to the
privacy of the query result, while the following three attacks
are related to the privacy of the mapping tables.

1) Query Replay Attack : During the query delivery phase of
the protocol, a translator T will learn the client’s query
according to its own schema, Q

T
. In a query replay attack, T

will re-issue the same query, Q
T
, several times, hoping that

each time it may learn more information about the result.
However, the discussion in Section IV has shown that for the
same result, the selected noise values are always the same.
Also, for a new result that is a superset of a previously
encountered result, the set of real values in that new result
along with the noise values will also form a superset of the
real and noise values from the previously encountered result.
Thus, the replay attack cannot be launched.

2) Known Result Attack: In this attack, a translator T may
send queries to S whose results are already known to T, in an
attempt to learn how S selects noise values. In particular, T
can attempt to build a lookup table for every attribute a. Given
a certain instance of URa

T
 and an instance value for ka, the

table gives the corresponding noise values that T would
receive mixed with URa

T
. By URa

T
, we refer to the unique

values of a in the query result based on T’s schema, and by ka,
we refer to the value corresponding to a in the query’s K
vector. T can populate a cell in this table by (1) sending a
query to S whose result is known to have a URa

T
 instance

identical to the URa
T
 instance corresponding to the cell being

populated, and (2) specifying a value for ka equal to that cell’s
corresponding ka value. The cell will then be populated by the
noise values returned by S, which can be easily isolated since
the real values are already known. Consider that the number
of cells T manages to populate in this way is Npopulated_cells. If
Da

T
 is a’s domain in T, then a URa

T
 instance can be any

ordered subset of Da
T
. Order matters because the selected

noise values depend on the timestamp ordering of the values
in URa

T
. Thus, knowing that ka can take any value from 1 to

|Da
T
|, the total number of cells in the lookup table is given by

)1(
)!|(|

|)!(|
||

||

1

_ ∑
= −

=

T
aD

i
T

a

T

aT

acellsall
iD

D
DN

Clearly, this number can be very large as the size of Da
T

increases. Consequently, assuming a uniform distribution for
cell population, the probability that any given cell is
populated, which is given by (Npopulated_cells/Nall_cells), will be
very small. We now explain how T can use the lookup table to
isolate the noise values when the real values are not
previously known. During phase II of the protocol, T receives
a Mapping_Req_Msg whose corresponding NURa

T
 (list of

unique noise and real values of a) contains ka×|URa
T
| values.

Thus, for every possible instance of URa
T
 within NURa

T
, T can

initially assume that the remaining (ka-1)×|URa
T
| values are

noise values. Then, T can verify if this assumption holds by
checking the cell in the lookup table, which corresponds to the
URa

T
 instance at hand and the specified value for ka. For T to

succeed in identifying the noise values, this assumption must
hold for only one instance of URa

T
 within NURa

T
, and fails for

all the other instances. The total number of possible instances
of URa

T
 within NURa

T
, or equivalently, the number of cells

that must be checked, and hence must be populated is given
by

)2(
|)!|||(

|)!|(
_ T

a

T

aa

T

aa

cellsrequired
URURk

URk
N

−×

×
=

It follows that the probability of success for this attack is
given by

)3()_Pr(

_

_

_

cellsrequiredN

cellsall

cellspopulated

N

N
successattack














=

This probability is typically extremely small since Nall_cells is
much larger than Npopulated_cells, and Nrequired_cells is also a very
large number. However, only when |URa

T
| is very small, and

ka is also small, Nrequired_cells may not be large enough. For
example, if |URa

T
|=1, and ka=2, then Nrequired_cells=2. However,

to address this problem, when a client C sends a query to S, in
addition to specifying ka within the K vector, it can also
specify a minimum bound on Nrequired_cells, or Nmin_required_cells.
This way, if after executing the query, S discovers that
Nrequired_cells<Nmin_required_cells, then S should increase ka
appropriately, such that Nrequired_cells≥Nmin_required_cells. This
guarantees that the probability of success for this attack will
always be negligibly small.

3) Privacy Relaxation Attack: Based on the protocol

description given in Subsection III-B, a translator Th, h∈[1,n]
may attempt to reduce the values in K before forwarding the
query to T(h+1), This way, Th can illegitimately relax the
privacy requirement set by C. To guard against this attack,
phase I of the protocol should be modified as follows. C
should send the K vector directly to S and not to any

translator, along with the names of the attributes requested in
Q

C
 (which conform to C’s schema). Moreover, every

translator Th, h∈[1,n], should send to S the attribute name
mappings it used for translating the query. At the end of phase
I, S will be able to translate the attribute names it received
from C to the attribute names of its own schema, using the
mappings sent by the translators. Now, S can associate each
attribute with its corresponding value in K without giving any
opportunity for Th to change such values.

4) Translators Collusion Attack: In this attack, several
translators may collude together in an attempt to gain
additional knowledge about the result. However, by analyzing
the protocol, we find that the only inputs a translator gets
related to the result are the Mapping_Req_Msg it receives
from the server and the Decryption_Req_Msg it receives from
the client. The Decryption_Req_Msg’s are encrypted by the
client’s key, so no information can be inferred from them by
the translators. Furthermore, the different
Mapping_Req_Msg’s contain different translations for the
same set of real and noise values originally sent by the server.
Therefore, if the translators collect all their received
Mapping_Req_Msg’s in a central location, this will still not
allow them to identify any of the noise or real values, and
hence their knowledge about the result will remain the same.
In other words, this attack cannot be launched.

5) Mappings Correlation Attack: In this attack, the client
may attempt to correlate the mappings E(h+1)(M(h+1)) and
Eh(Mh) sent by T(h+1) and Th respectively (recall that these
mappings map plaintext values to encrypted values) to find

Mh, h∈[2,n-1]. The key idea is to try to match each plaintext
T’h value from the first mapping to its corresponding plaintext
T’(h-1) value from the second mapping. This should result in
obtaining Mh. However, the two mappings have different
orderings, since they both have been randomly shuffled
(Algorithm 2, line 2.6). Therefore, it is not possible to match
corresponding values based on their positions in the
mappings. Thus, launching this attack will not succeed.

6) Rich Client Attack: In this attack, a rich client C may
decide to purchase all the mapping entries from a certain
translator T. This way, it can clone T and provide the same
translation services, which T previously offered. Thus, T can
be deprived from potential future revenues. To see how such
attack can be stopped, we first draw an analogy between the
revenue model of T and the revenue model of carfax [22], a
real company specialized in providing vehicle history reports
to its customers. Similar to T, carfax would like to protect its
database of vehicle history reports from getting largely
disclosed to a single customer or even to a small group of
customers. To address this type of attacks, carfax’s customer
agreement include the following statement: “Any commercial
use of carfax vehicle history reports is strictly prohibited and
any suspected commercial use will lead to the suspension of
your account”. The term “suspected commercial use” implies
requesting reports at a rate that is higher than a certain
threshold, or that matches more sophisticated patterns
indicating misbehavior. The details of such patterns are
beyond the scope of this paper. However, we emphasize that
this type of attacks can be detected and stopped using methods
that are already applied by established real-world businesses.

7) Black Market Attack: We refer by this attack to the
situation where clients choose to form a black market to
exchange mapping entries and thus negatively impact the
revenues of the translators. Since it is not possible to
completely stop this attack, we will experimentally show in
Subsection VI-C how our protocol manages to limit the effect
of this attack compared to other possible protocols.

B. Cost Analysis

If ce is the cost of encryption/decryption, ch is the cost of
evaluating the hash function, and if we consider that the costs
of performing these operations dominate other computation
costs, then the overall computation cost for executing one
query is given as follows

)4(||3||
11

e

l

j

S

jh

l

j

S

jcomp cURncURc ×××+×= ∑∑
==

The first term in (4) corresponds to the hashing operations
performed by S to obtain the seeds used to generate the noise
values. From Section IV, S performs a hashing operation for
every unique real value in R

S
, whose count represents the

summation in the first term. The second term corresponds to
the series of encryption, decryption, and re-decryption
operations performed by C, Th, and C respectively for every

unique real value in R
S
, and for every h∈[1,n]. Note that the

initial encryption step that resulted in the encrypted values
sent in the Mapping_Resp_Msg of each translator Th have
been performed offline by Th, rather than at query processing
time. Thus, its cost is not accounted for in (4).

If bq is the number of bytes in the query, bp is the number of
bytes in plaintext value, bc is the number of bytes in a singly-
encrypted value, and bcc is the number of bytes in a doubly-
encrypted value, then the overall communication cost for
executing one query is given as follows

)5(||

||

)(||

||

||

)1(

1

1

1

1

1

c

l

j

S

j

cc

l

j

S

j

cpj

l

j

S

j

pj

l

j

S

j

l

j

p

S

j

qcomm

bURn

bURn

bbkURn

bkURn

bUR

bnc

××+

××+

+×××+

×××+

×+

×+=

∑

∑

∑

∑

∑

=

=

=

=

=

The terms in (5) represent the communication costs for the
Query_Msg’s, Result_Msg, Mapping_Req_Msg’s,
Mapping_Resp_Msg’s, Decryption_Req_Msg’s, and
Decryption_Msg’s respectively.

VI. EXPERIMENTS

A. Experimental Setup

Our experimental study has two main goals.

• Studying the protocol’s performance in a real system
using real data.

• Studying the fairness properties of protocol.

For the performance study, the metrics we use are (1) the
query total response time and (2) the total number of bytes
transmitted over the network per query execution. We
compare the performance of the privacy-preserving protocol
(call it PPP) to that of the regular non-privacy-preserving
protocol (call it NPPP). Moreover, we vary two parameters in
this study: (1) the path length from the client to the server and
(2) the K vector used to specify the K-protection privacy
requirement.

To study the fairness properties of the protocol, we use the
total revenue made by the translators as our metric. The
revenue made when PPP is used is compared to that made
when another protocol is used, which is a variant of PPP (call
it PPP_V). PPP_V operates in the same way as PPP except
that the Mapping_Resp_Msg’s contain plaintext-to-plaintext
value mappings rather than plaintext-to-encrypted value
mappings; i.e. the client learns (and pays for) the mappings
both for the real and noise values. The translators’ revenue
made with these protocols is also compared against the upper
bound (UB) and lower bound (LB) of the fair range for the
revenue (see Definition 3.2). The parameters varied in the
fairness study experiment are: (1) the client behavior, which
can be one of “no cache and no black market”, “cache and no
black market”, or “cache and black market”; (2) the client
cache size; and (3) the number of black market search
attempts a client performs before resorting to purchasing a
mapping entry from its owner translator.

We use a dataset obtained from a pet hospital chain to
conduct our experiments. The original data set includes
information about the demographics of pets, their hospital
visits, diagnosed diseases, lab tests, prescribed medications,
etc. The dataset contains information about over 45 million
pets with hospitals spanning 40 US states. For the sake of the
experiments, we modified the data set as follows. First, we
partitioned the data based on the state information to obtain 40
different dataset partitions. Second, for each partition, we
mapped the data into a smaller schema, similar to the ones
shown in Figure 3, thus keeping only the pet medication
information. We assumed that each partition represents the
database of a peer in the network. In particular, we used six
such partitions representing six different states in our
experiments. Table 2 shows some statistics about these dataset
partitions.

TABLE 2. STATISTICS ON THE DATA SETS USED IN THE

EXPERIMENTS

State

pets

medications

Size of
Treatments

table

Av. #
medications

/ pet
AL 25015 1934 350639 14.02

AR 10253 1392 156659 15.28

AZ 217688 2950 3724275 17.11

CA 427433 3435 8136616 19.04

CO 195067 3194 4139109 21.22

CT 18585 2193 375267 20.20

We implemented the Pohlig–Hellman commutative
encryption algorithm [16] using the GMP C library for
cryptography applications [23]. Although Hyperion is
implemented in Java, we integrated it with the C library as our
experiments showed that it is 10x faster than the
corresponding Java implementation of the encryption
algorithm. We ran each Hyperion peer on a Sun Blade 1000

with 2GB RAM and two 1.2GHz SPARC V9 processors. The
peers were connected through a 100Mbps LAN. The DBMS
we used is MySQL. Each Hyperion peer used one of the
dataset partitions as its local database.

B. Studying the Protocol Performance

The setup of this experiment was based on the observation
that the performance of each individual query in a PDMS
depends on the path between the client and the server, rather
than the network as a whole. To this end, we used six
machines for this experiment. Thus, we were able to vary the
path length from 3 to 6.

Every data point reported in the experiment was measured
by running a workload of 100 random queries and taking the
average of their measurements. A random query requests all
medications for some randomly selected pet in the server peer.

0

50

100

150

200

250

3 4 5 6

Path Length

C
o

m
m

u
n

ic
a
ti

o
n

 C
o

s
t

(K
B

s
/q

u
e
ry

)

NPPP PPP-1 PPP-3 PPP-5

Figure 6. Effect of path length on the query response time

0

5

10

15

20

25

3 4 5 6

Path Length

Q
u

e
ry

 R
e
s
p

o
n

s
e
 T

im
e

(s
e
c
o

n
d

s
)

NPPP PPP-1 PPP-3 PPP-5

Figure 7. Effect of path length on the communication cost

Figures 6 and 7 show the query response time and the
communication cost respectively for NPPP and PPP as the
path length increases. In the figures, PPP- k1 corresponds to

PPP when K is set to (k1), k1∈{1,3,5}. When K is set to (1), no
noise values are inserted in the result, which implies that the
result is not protected. However, the value of this special case
is that the measured overhead only corresponds to the
encryption/decryption operations performed by PPP. It is
observed that response time is increased by a factor ranging
from 2.5 to 3.3 for PPP-1 compared to NPPP, while the
communication cost is increased by a factor ranging from 6.8
to 11.5 also for PPP-1 compared to NPPP. The increase in the
communication cost is due to the larger number of bytes
needed to represent the encrypted values. As indicated in
Subsection V-B, increasing the values in K does not increase
the encryption/decryption cost. Therefore, the higher overhead
of PPP-3 and PPP-5 is only attributed to the inserted noise
values. Comparing PPP-5 to NPPP, we find that the response
time is increased by a factor ranging from 4.5 to 6, while the
communication cost is increased by a factor ranging from 15.5
to 26.6. These factors are expected because the client
explicitly requests to get k1-times the original number of

values in the result for privacy preservation. Generally,
cryptography-based techniques incur an overhead in return for
the benefits they bring. A good example is the work by
Agrawal et al. [2], which also employs commutative
encryption, but for a different purpose: finding shared
information between private databases. In our context, we
have verified that the overhead does not exceed a few extra
seconds in query response time, which does not seem a high
price for preserving privacy.

C. Studying the Protocol Fairness

In this experiment, we study the impact of having different
client behaviors on the fairness of the protocols. We use a
simple economic model, where the cost of a mapping entry is
fixed for all peers. In reality, more sophisticated models may
exist (e.g. based on supply and demand). However, this simple
model still serves the purpose of showing the different levels
of fairness achieved by the protocols.

It is obvious that if clients use no caches, then with PPP,
they will have to purchase every mapping entry needed from
its owner translator. Thus, the translators’ revenue will be
identical to UB. With PPP_V, the translators’ revenue will be
much higher depending on the setting of K, and thus PPP_V is
unfair to the clients in this case. In what follows, we focus on
the cases when the clients choose to use caches without
forming a black market, or use caches and form a black
market. When using caching, clients can have different cache
sizes. Also, when the black market is used, clients may choose
different number of attempts to search in the black market
before resorting to purchasing a mapping entry for its regular
price from the owner translator.

To study the effect of all such parameters, we developed a
trace-based simulator that simulates the protocols PPP and
PPP_V, where K is set to (4) for both of them. The simulator
allows us to consider a large network while being able to
easily vary the above parameters. In our experiment, we
simulated a network of 50 peers. The network topology was
based on a random graph, were the probability of having a
link between any pair of peers was set to 0.05. For simplicity,
we assumed that the local database for each peer is similar to
one of the dataset partitions in Table 2. In particular, all local
databases have distributions similar to that of the AR
partition. But of course, it is still assumed that the values they
store are different, and thus mapping tables are still needed.

The client caches follow an LRU replacement scheme. The
black market is operated as follows. There is a central bulletin
board where all clients advertise the mapping entries they
have in their caches. An advertisement states that a given
client peer has a given number of mapping entries from a
given translator. Whenever a client is in need for a mapping
entry it gets a list of the other client peers who advertised that
they have the highest number of mapping entries from the
desired translator. The size of the list is decided by the
requesting client, which then contacts the peers on the list in
descending order of the number of mapping entries they have.
This number of peers contacted represents the number of
black market search attempts.

Each data point reported in this experiment represents a
simulation run, in which a trace of 10,000 random queries are

executed in the network. A random query requests all the
medications for a randomly selected pet in the server’s
database, given that both the client and server peers are also
randomly selected. The network links are assumed to have
equal weights.

Figure 8 shows the effect of varying the size of client cache
on the revenue collected by all the translators in the network
when clients use caching and no black market. It is clear form
the figure that with PPP, the revenue is within the fair range.
In contrast, with PPP_V, it is much higher than the upper
bound of the fair range, which implies that the PPP_V is
unfair to the clients.

0

1

2

3

4

5

6

0.1 0.316 1 3.16 10

Size of Client Cache (% of the size of mapping

tables in the whole network)

T
ra

n
la

to
rs

 R
e
v
e
n

u
e

(1
M

 x
 c

o
s
t

o
f

1
 m

a
p

p
in

g
 e

n
tr

y
) UB LB PPP PPP_V

Figure 8. Effect of cache size on protocols fairness when clients use
caching and no black market

Figure 9 also shows the effect of the cache size on the
translators revenue, but this time, when the clients use caching
in addition to the black market. Clients make four search
attempts (equivalent to 8% of the total number of peers) in the
black market before purchasing a mapping entry from its
owner. Again, PPP is shown to be generally fairer than
PPP_V. The effect of the black market is also clear in this
figure, as the translators revenue is significantly lower in this
case compared to the case when the black market is not used.
Expectedly, the black market effect increases as the cache
sizes increase, since more mapping entries will be available in
the black market.

0

1

2

3

4

5

6

0.1 0.316 1 3.16 10

Size of Client Cache (% of the size of mapping

tables in the whole network)

T
ra

n
la

to
rs

 R
e
v
e
n

u
e

(1
M

 x
 c

o
s
t

o
f

1
 m

a
p

p
in

g
 e

n
tr

y
) UB LB PPP PPP_V

Figure 9. Effect of cache size on protocols fairness when clients use
caching and black market

0

1

2

3

4

5

6

4 8 12 16 20

Number of Black Market Search Attempts

(% of total number of peers)

T
ra

n
la

to
rs

 R
e
v
e
n

u
e

(1
M

 x
 c

o
s
t

o
f

1
 m

a
p

p
in

g
 e

n
tr

y
)

UB LB PPP PPP_V

Figure 10. Effect of number of black market search attempts on protocols
fairness

Figure 10 shows the impact of changing the number of black
market search attempts on the translators’ revenue. The
clients’ cache size is set to be 1% of the total size of mapping
tables in the whole network. The results here too show that
PPP is substantially fairer than PPP_V.

VII. RELATED WORK

The application of P2P approaches to database systems has
attracted considerable attention in the recent years. Gribble et
al. [8] showed some benefits that the database technology can
bring to the P2P research. They also addressed the data
placement issues in P2P systems from a database perspective.
PeerDB [15] is a P2P distributed data sharing system, which
supports fine grained content-based searching and does not
rely on a shared schema. It employs information retrieval
approaches, such as keyword search, to find peers having data
relevant to the user’s query. It also uses mobile agents to be
able to perform operations at peer sites. coDB [7] is another
P2P database system with techniques for searching and
updating peer databases. In coDB, mappings are defined in
terms of GLAV coordination rules. Halevy et al. introduced
the Piazza PDMS [9, 19, 20] to address the problems of
defining a language for schema mappings, reformulating
queries based on these mappings and automating the schema
matching process in order to assist the user in constructing the
mappings. In [11], Kementsietsidis et al. addressed the issue
of mapping data, rather than schemas, in P2P data sharing
systems. They propose treating the tables used in mapping the
data from different peers as mapping constraints in order to be
able to reason about them. In particular, they propose
algorithms for inferring new mapping tables and determining
the consistency of a set of mapping constraints. This whole
body of work did not consider the security issues that need to
be addressed in PDMSs.

Miklau et al. [14] proposed a framework for controlled
sharing of XML data. The framework includes high-level
access control policies, a logical model for protecting a
document tree, and encryption techniques to construct an
XML document that enforces the policies. This work however
assumed a shared schema among all peers. Agrawal et al. [2]
attempted to formalize the notion of limited information
sharing across private databases. They focused on providing
secure protocols for the computation of the intersection and
equi-join of two sets in two different databases. Their work
did not consider any semantic mappings between the sources,
and therefore no translators were involved between the two
communicating databases. Interestingly, their protocol also
relies on commutative encryption.
A great deal of research is occurring in the area of k-
anonymity [e.g. 1, 4, 12, 13, 18, 21]. A key difference
between our work and this body of work is that we do not
apply any generalization or suppression to the data in the way
k-anonymity techniques do; instead we perturb the data by
introducing noise values which are not part of the query
answer. Another body of work addresses the problem of
output perturbation in statistical databases [e.g. 5, 6].
However, similar to the work on k-anonymity, this body of
work targets privacy preservation while maximizing data
utility, for the purposes of statistical analysis and data mining.
In contrast, our goal is to limit the utility of the query result

for the translators, such that they can only translate the values,
while learning the minimum information possible about the
result. To the best of our knowledge, there has not been prior
work addressing the privacy and fairness issues in PDMSs
similar to this work.

VIII. CONCLUSIONS

In this paper, we introduced a novel privacy-preserving
protocol that protects both query results and mappings in a
PDMS, while maintaining fairness among peers. This protocol
is based on noise insertion and commutative encryption
methods. Our implementation on top of the Hyperion PDMS,
our security and cost analyses of the protocol, and our
extensive experimental study using real data from the
healthcare domain showed promising results for our approach.

REFERENCES

[1] C. Aggarwal. On k-Anonymity and the Curse of Dimensionality.
In VLDB, 2005.
[2] R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing
across private databases. In SIGMOD, 2003.
[3] P. Andritsos et al. Kanata: adaptation and evolution in data
sharing systems. In SIGMOD Recorod 33(4):32-37, December 2004.
[4] R. J. Bayardo. Jr. and R. Agrawal. Data privacy through optimal
k-anonymization. In ICDE, 2005.
[5] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical
privacy: The suLQ framework. In PODS, 2005
[6] I. Dinur and K. Nissim. Revealing information while preserving
privacy. In PODS, 2003.
[7] E. Franconi, G. Kuper, A. Lopatenko, I. Zaihrayeu. Queries and
Updates in the coDB Peer to Peer Database System. In VLDB'04
Demonstration session, 2004.
[8] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What
can databases do for peer-to-peer. In WebDB, 2001.
[9] A. Y. Halevy, Z. G. Ives, D. Suciu, and I.Tatarinov. Schema
mediation in peer data management systems. In ICDE, 2003.
[10] A. Kementsietsidis and M. Arenas. Data Sharing Through
Query Translation in Autonomous Sources. In VLDB 2004
[11] A. Kementsietsidis, M. Arenas, R. J. Miller. Mapping Data in
Peer-to-Peer Systems: Semantics and Algorithmic Issues. In
SIGMOD, 2003.
[12] K. LeFevre, D. J. DeWitt and R. Ramakrishnan. Incognito:
Efficient Full-Domain K-Anonymity. In SIGMOD, 2005
[13] A. Meyerson and R. Williams. On the complexity of optimal k-
anonymity. In PODS, 2004.
[14] G. Miklau and D. Suciu. Controlling Access to Published Data
Using Cryptography. In VLDB, 2003.
[15] W.S. Ng, B. C. Ooi, K.L. Tan, A. Zhou. PeerDB: A P2P-based
System for Distributed Data Sharing. In ICDE, 2003
[16] S. Pohlig and M. Hellman. An improved algorithm for
computing logarithms over GF(p) and its cryptographic significance.
IEEE Transactions on Information Theory, 24:106–110, Jan 1978.
[17] P. Rodriguez-Gianolli et al. Data Sharing in the Hyperion Peer
Database System. In VLDB, 2005
[18] P. Samarati and L. Sweeney, Protecting privacy when disclosing
information: k-anonymity and its enforcement through generalization
and suppression. In Proc. of the IEEE Symposium on Research in
Security and Privacy, 1998.
[19] I. Tatarinov and A. Y. Halevy. Efficient query reformulation in
peer-data management systems. In SIGMOD, 2004.
[20] I. Tatarinov et al. The Piazza Peer Data Management Project. In
WWW, 2003.
[21] C. Yao, X. S. Wang, S. Jajodia. Checking for k-Anonymity
Violation by Views. In VLDB, 2005.
[22] http://www.carfax.com
[23] http://www.gmplib.org

	Preserving Privacy and Fairness in Peer Data Management Systems
	Report Number:
	

	tmp.1307986960.pdf.J00kV

