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Abstract— Peer Data Management Systems (PDMSs) promise to 
extend the classical data integration approach to the Internet 
scale. Unfortunately, some challenges remain before realizing 
this promise. One of the biggest challenges is preserving the 
privacy of the exchanged data while passing through several 
intermediate peers. Another challenge is protecting the mappings 
used for data translation. Achieving privacy preservation 
without being unfair to any of the peers is yet a third challenge. 
This paper presents a novel query answering protocol in PDMSs 
to address these challenges. The protocol employs a technique 
based on noise selection and insertion to protect the query 
results, and a commutative encryption-based technique to 
protect the mappings and ensure fairness among peers. An 
extensive security analysis of the protocol shows that it is 
resilient to seven possible types of attacks, assuming a malicious 
model. We implemented the protocol within an established 
PDMS: the Hyperion system. We conducted an experimental 
study using real data from the healthcare domain. The results 
show that our protocol introduces a moderate communication 
overhead compared to its non-privacy preserving counterpart 
and manages to achieve fairness among the peers. 

I. INTRODUCTION 

Peer Data Management Systems (PDMSs) were introduced 
in recent years as an extension to the classical data integration 
paradigm, where a number of heterogeneous databases are 
accessible through a central mediator. In contrast to traditional 
data integration systems, the scale of a PDMS can be as large 
as the Internet. A key design principle is that the functions 
initially offered by the central mediator are performed in a 
decentralized fashion, so that the PDMS can scale with the 
large number of peer databases. Most of the work in the 
PDMS literature has focused on this problem; the provision of 
decentralized autonomous mechanisms for the peer databases 
to be able to share data seamlessly despite their heterogeneous 
schemas. Enabling this sharing involves having peers 
maintain mappings that capture the differences between their 
schemas and schemas of their “acquainted” peers in the 
PDMS. In this sense, peers may be needed to act as translators 
of queries and answers if they happen to occur on the path 
from a requesting client peer to some target server peer. 

In this paper, we address an equally important challenge in 
PDMSs, namely privacy management. When two peers in a 
PDMS decide to share data, all their queries and related 
answers might need to be exposed to one or more intermediate 
peers acting as translators. Needless to say, in many cases this 
information can be highly sensitive and should not be publicly 
revealed. Consider the following cases: 

1- In healthcare, two hospitals may need to exchange the 
medical records of patients for the purpose of consultancy 
or patient transfer. 

2- In law enforcement, officers may need to access crime 
databases under different jurisdictions or even countries to 
be able to track down suspects. 
3- In supply chain, a manufacturer needs to exchange parts 
data with new suppliers. 
While there are naïve methods to preserve privacy in a 

PDMS, these methods are very inefficient and unfair to some 
of the peers. For instance, to answer a query, we can require 
all intermediate peers between the client and the server to ship 
all their mappings to the client, such that translation occurs at 
the client-side. Besides inefficiency, this approach is unfair to 
the intermediate peers, who are requested to give up all their 
mappings for no return. On the other extreme, the 
intermediate peers may charge the client for all the mappings 
they provide. However, this is unfair to the client, who only 
needs a very small subset of these mappings to translate the 
query and the result. Thus, there is a need to maintain fairness 
among peers. Peers acting as translators should not 
unnecessarily overcharge clients, and similarly clients should 
not be able to underpay translators.  

Our proposed protocol achieves the privacy and fairness 
goals, while maintaining a moderate overhead, in the 
following way. When a server answers a query, the real result 
values are mixed with noise values before they are exposed to 
the translators. The percentage of noise depends on the 
privacy requirements set by the client. The noise values are 
selected such that a malicious translator cannot filter them out. 
The protocol also employs a technique based on commutative 
encryption, which ensures that clients only learn (and pay for) 
the value mappings needed to translate the query result, 
without getting the result’s real values exposed to the 
translators. Although our protocol preserves privacy in 
addition to maintaining fairness, for simplicity, we will just 
refer to it as a privacy-preserving protocol. We summarize our 
contributions in this paper as follows: 

1- We propose a privacy-preserving query answering 
protocol based on noise insertion and commutative 
encryption methods. It preserves the privacy of the query 
results and mappings, while maintaining fairness. 
2- We formally show that the protocol satisfies the privacy 
requirements if a semi-honest model was assumed. We also 
discuss the protocol’s resilience to seven possible types of 
attacks if a malicious model was assumed. 
3- We implemented the protocol on top of an established 
PDMS, namely Hyperion. 
4- We conducted an extensive experimental study using real 
data sets from a healthcare scenario. The results show that 
our protocol introduces a moderate processing and 



communication overhead, which is outweighed by the high 
levels of privacy and fairness it offers. 
The rest of the paper is organized as follows. Section II 

gives an overview of the Hyperion system, which our protocol 
is based upon. Section III first discusses the privacy 
requirements for the query results and mappings in addition to 
the fairness considerations, and then presents the details of the 
privacy-preserving protocol. Section IV explains the noise 
selection technique. In Section V, we perform security and 
cost analyses of the protocol, while in Section VI we report 
the results of our experimental study. We discuss related work 
in Section VII. Finally, Section VIII concludes the paper. 

II. SYSTEM OVERVIEW 

We consider a PDMS, in which each peer can play three 
different roles: a client, a server, and a translator. A peer is 
considered a client if it issues queries. It is considered a server 
if it processes queries and returns results from its local 
database. Finally, it is considered a translator if it maintains 
schema and data mappings with other peers, and is capable of 
translating data and queries to and from these peers. Since the 
work presented in this paper builds upon the Hyperion system, 
we will briefly describe the architecture of a Hyperion system 
and the different types of queries the system can answer. 

A. System Architecture 

Figure 1 (adapted from [17]) shows the Hyperion peer 
architecture. Our privacy-preserving protocol was 
implemented within what is called the privacy-preserving 
query service. For a detailed discussion about the architecture 
of a Hyperion peer, please refer to [10,17]. 
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Figure 1. Hyperion Architecture 

In Hyperion, as in other similar PDMSs like Piazza [20], the 
complete network graph is available and accessible to all the 
peers. Hyperion stores such graph locally in each peer. A node 
in the graph represents a peer and an edge represents an 
acquaintance link between two peers, which implies that 
mapping tables are available to translate data and queries 
between these two peers. Weights can be assigned to edges to 
reflect one or several factors about the acquaintance link such 
as reliability, latency, usage cost, or a combination of these 
factors. The mapping tables are typically replicated in both 
acquainted peers. Thus, any two peers having a common 
acquaintance (common neighboring peer) can communicate 
directly using the schema of their common acquaintance. It 
follows that the original graph can be augmented by adding 
shortcut edges between any two nodes that are two links apart. 
Figure 2 shows how the example graph shown in Figure 1 is 

augmented. The weight of a shortcut edge can either be 
dependant on the weights of its two “shortcutted” edges or not 
(e.g. the sum of usage costs, the product of reliability values, 
or just the latency between the peers at both ends of the 
shortcut edge). 
 

A Hyperion Peer Original Edge Added Shortcut Edge

Augmentation

Original Graph Augmented Graph  

Figure 2. Graph Augmentation 

B. Query Answering 

There are two types of queries that can be answered in a 
PDMS: broadcast queries and targeted queries. For broadcast 
queries, the client sends the query to its acquaintances which 
in turn forward it to their own acquaintances and so on, thus 
propagating the query to the whole network. Before a peer 
forwards the query, it is translated first to conform to the 
schema of the following peer. Each peer receiving the query 
and having a local database executes it locally. Finally, all the 
peers that could find relevant local results send those results 
back to the client; each through the same path that was used to 
deliver the query to it, but in the reverse direction. The results 
get translated by the intermediate peers on their way back to 
the client. For targeted queries, the client specifies a target 
peer from where to get the results. The shortest path to the 
target peer is first computed on the augmented graph. The 
query is then sent (and translated) along the discovered path, 
and the corresponding result is also sent (and translated) along 
the same path, but in the reverse direction. For the rest of the 
discussion, we will focus on targeted queries rather than 
broadcast queries. A broadcast query can be viewed as a 
collection of targeted queries in terms of delivering results 
from different servers back to the client. Each result will 
travel back through a certain path, similar to targeted queries. 

In Hyperion, mappings used for query translation depend on 
mapping tables, which are value-to-value mappings. More 
generally, in other PDMSs and data integration systems, 
mappings can either be Local-As-View (LAV), Global-As-
View (GAV), or Local-and-Global-As-View (GLAV). We 
emphasize that our work is independent from the way queries 
are translated. It is also worth mentioning that the version of 
Hyperion we used is an extension to the one presented in [17]. 
We have added support for targeted queries as well as result 
translation on the path back to the client. 

III. PRIVACY AND FAIRNESS IN QUERY ANSWERING 

A. Privacy and Fairness Requirements 

1) Privacy of the Query Result: The result R of a query Q 
consists of l columns (R1, R2,…, Rl) representing the attributes 
(a1, a2,…, al). Dj denotes the domain of attribute aj, and URj 

denotes the unique values in Rj, j∈[1,l]. If Q, R, Rj, URj, aj, 
and Dj follow the schema of some peer X, then we refer to 

them as Q
X
, R

X
, Rj

X
, URj

X
, aj

X
, and Dj

X
 respectively, j∈[1,l]. 

The main role of any PDMS’s query answering protocol can 
be stated as follows. Consider a client peer C issuing a query 
Q

C
 to be executed on a target server peer S, such that the path 



PCS from C to S is (C,T1,T2,…,Tn,S), where (T1,T2,…,Tn) are n 
intermediate translator peers. A PDMS query answering 

protocol ℘ should be able to translate Q
C
 into Q

S
, execute Q

S
 

on S to obtain R
S
, translate R

S
 to R

C
, and finally return R

C
 to C. 

The knowledge leaked through ℘ to any peer Th during the 

execution of ℘ is denoted by ℜ(℘,Th), h∈[1,n]. In what 
follows, we introduce the notion of K-protection, which 
allows the client to specify the privacy requirements for the 
query result. 

 

Definition 3.1 K-protection Given a vector K=(k1,k2,…,kl), 

where kj is an integer, a protocol ℘ for returning R
C
 given 

Q
C
, S and PCS is said to provide K-protection to R

C
 if 

Pr(v∈Rj
X
|ℜ(℘,X))≤max(1/kj,|URj

S
|/|Dj

S
|), ∀ v∈Dj

X
, where X 

is neither C nor S, j∈[1,l]. 
 

The above definition states that for a protocol ℘ to satisfy 
the K-protection requirement, whatever information it passes 
to a peer X (other than C and S) should not increase the 
certainty of X about the result beyond a certain limit. In 
particular, X should not be able to determine, with a 
probability above a certain threshold, that any given value v 
belongs to R

X
 (the translation of R

C
 to X’s schema). This 

threshold is determined by the maximum of two values: (1) a 
user-specified value; and (2) the probability that v belongs to 
R

X
 knowing the number of values in v’s domain and the 

number of unique values in the result from that domain (since 
these numbers are not considered sensitive under the K-

protection model). The following example illustrates how to 
check if a protocol satisfies the K-protection requirement. We 
will also be referring to it throughout the discussion. 

 

Example 3.1  
We consider a scenario from the healthcare domain, where 

peers represent hospital databases storing information about 
their patients and the medications they were given. Figure 3a 
depicts part of the P2P network, including a client peer C, a 
server peer S, and the path PCS between them (C,T1,T2,S). 
Along PCS, two intermediate translator peers exist: T1 and T2. 
Data and queries exchanged between C and T1 conform to the 
schema of their common acquaintance, X. Similarly, data and 
queries exchanged between T1 and T2, and between T2 and S 
conform to Y’s and Z’s schemas respectively. 

Figures 3b and 3c show the tables in the databases of C and 
S, while Figures 3d and 3e show the mapping tables of both 
translators. Note that the mapping tables for patient IDs map 

every value to itself as denoted by the variable X. We assume 

that all peers use similar patient IDs (e.g. SSN). The schemas 
of all peers are shown to be similar for ease of exposition.  

C issues a query Q
C
 to request the medication information 

stored in S for patient p35. Q
C
 is shown in Figure 4a. The 

PATH clause specifies PCS, while the K-PROTECTION clause 
specifies the K vector, which was specified as (2), i.e., k1=2. 

Q
S
 (Figure 4b) represents the query Q

C
 after being 

translated to follow S’s schema. R
S
, the result corresponding 

C X T1 Y T2 Z S PCS : (C,T1,T2,S)  
 

(a) Part of the peer network and path from client to server 
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(b) Client local tables and mapping tables 
 

 

(c) Server local tables and mapping tables 
 

m4’’m4’

m5’’m5’

m6’’m6’

m7’’m7’

m8’’m8’

m9’’m9’

m3’’m3’

m10’’m10’

m2’’m2’

m1’’m1’

T1MIDXMID

m4’’m4’

m5’’m5’

m6’’m6’

m7’’m7’

m8’’m8’

m9’’m9’

m3’’m3’

m10’’m10’

m2’’m2’

m1’’m1’

T1MIDXMID

XX

T1PIDXPID

XX

T1PIDXPID

XPID_2_T1PID XMID_2_T1MID

mδm4’’

mεm5’’

mφm6’’

mγm7’’

mηm8’’

mιm9’’

mχm3’’

mϕm10’’

mβm2’’

mαm1’’

YMIDT1MID

mδm4’’

mεm5’’

mφm6’’

mγm7’’

mηm8’’

mιm9’’

mχm3’’

mϕm10’’

mβm2’’

mαm1’’

YMIDT1MID

XX

YPIDT1PID

XX

YPIDT1PID

T1PID_2_YPID T1MID_2_YMID

 

mc’’mχ

md’’mδ

me’’mε

mf’’mφ

mg’’mγ

mh’’mη

mi’’mι

mj’’mϕ

mb’’mβ

ma’’mα

T2MIDYMID

mc’’mχ

md’’mδ

me’’mε

mf’’mφ

mg’’mγ

mh’’mη

mi’’mι

mj’’mϕ

mb’’mβ

ma’’mα

T2MIDYMID

XX

T2PIDYPID

XX

T2PIDYPID

YPID_2_T2PID YMID_2_T2MID

mc’mc’’

md’md’’

me’me’’

mf’mf’’

mg’mg’’

mh’mh’’

mi’mi’’

mj’mj’’

mb’mb’’

ma’ma’’

ZMIDT2MID

mc’mc’’

md’md’’

me’me’’

mf’mf’’

mg’mg’’

mh’mh’’

mi’mi’’

mj’mj’’

mb’mb’’

ma’ma’’

ZMIDT2MID

XX

YPIDT2PID

XX

YPIDT2PID

T2PID_2_ZPID T2MID_2_ZMID

 
 

(d) Translator T1 mapping tables 
 

 (e) Translator T2 mapping tables 

Figure 3. Peer network and peer tables in Example 3.1 



to Q
S
 is shown in Figure 4c, and finally the translation of R

S
 

back to C’s schema, R
C
 is shown in Figure 4d. 

If T2 knows that the number of unique values of SMID in R
S
 

is 2 (|UR1
S
|=2), and knows that the domain of SMID in S has 

10 unique values (|D1
S
|=10), then given no additional 

information, T2 can only conclude that Pr(v∈R1
T

2)=2/10=0.2, 

for every v∈D1
T

2. The same applies to T1. Thus, with k1 

specified as 2, the threshold value is given by max 
(1/2,2/10)=0.5. 

 

 
Q

C
: SELECT CMID 

   FROM CTreatments 
   WHERE CPID = ‘P35’ 
   PATH C,T1,T2,S 
   K-PROTECTION CMID 2 

 
Q

S
: SELECT SMID 

   FROM STreatments 
   WHERE SPID = ‘P35’ 
   PATH C,T1,T2,S 
   K-PROTECTION SMID 2 

(a) Query QC on client 
 

(b) Query  QS  on server 
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(c) Query result  RS on server 
 

(d) Query result RC on client 

Figure 4. Queries and query results in Example 3.1 

 To check if a certain protocol provides K-protection to R
C
, 

consider the two protocols℘1 and℘2. ℘1 represents the 
standard non-privacy-preserving protocol, where the result 

has to pass through T1 and T2. With ℘1, T2 learns precisely 

the two values in R
T

2, i.e. Pr(mf”∈R1
T

2|ℜ(℘1,T2))=1, which is 

larger than the threshold. Clearly, ℘1 does not preserve the 
privacy of R

C
 based on the K-protection model. 

℘2 requires T1 and T2 to send all their mapping tables to S 
where all the result translation occurs from R

S
 all the way to 

R
X
, which is finally sent to C to be translated locally to R

C
. 

With℘2, neither T1 nor T2 learns any additional information 
about R

T
1 or R

T
2 respectively. Thus, 

Pr(v1∈R1
T

1|ℜ(℘2,T1))=Pr(v2∈R1
T

2|ℜ(℘2,T2))=0.2, for every 

v1∈D1
T

1 and v2∈D1
T

2 (using the knowledge about unique 

values of SMID and its domain). This value is below the 

threshold. Thus, ℘2 preserves R
C
’s privacy based on the K-

protection model. However, ℘2 is very inefficient since the 

mapping tables of T1 and T2 may be quite large. Also,℘2 
violates the mapping tables’ privacy, as will be shown next.   
 

2) Privacy of the Mapping Tables and Fairness 
Considerations: Usually, peers in a PDMS will act as 
translators for other peers based on some incentives. For 
instance, peers can provide their translation services for a 
service fee that is based on the number of mapping entries 
requested by the client. One issue with this model is that after 
purchasing a mapping entry from some translator, a client can 
then distribute that entry to other peers. These peers will not 
have to pay any fees to the original owner of the entry. This is 
considered unfair to the translator. Conversely, if a translator 
forces a client to purchase more entries than what the client 
actually needs, the situation is reversed, and it becomes unfair 
to the client. Therefore, it is desirable to achieve fairness 
between clients and translators, especially when some peers 
mostly act as clients, while others mostly act as translators.  

We will define the fairness of a protocol with respect to 
translators and clients. We model the protocol’s fairness based 
on the total revenue realized by every translator in a PDMS. 

 

Definition 3.2 protocol fairness. A protocol is considered to 
be fair if the revenue of any translator T at any point in time 

t=τ is bounded by: 
a) (Upper bound) the sum of costs of every request made by 

every client before t=τ to obtain one of T’s mapping entries. 
b) (Lower bound) the sum of costs of every “unique” request 

made by every client before t=τ  to obtain one of T’s mapping 
entries. Uniqueness is considered independently for every 
client. 
 

The rationale behind the above definition is as follows. On 
one hand, if T’s revenue is less than the specified lower 
bound, then some clients have obtained some of T’s mapping 
entries to translate their query results from sources other than 
T, for example through some sort of a “black market”. This is 
clearly unfair to T. On the other hand, if T’s revenue is greater 
than the specified upper bound, then at least one client C has 
paid T more than the total cost of all its requested mapping 
entries. This time it is unfair to C.  

In other words, according to this definition of fairness, a 
client is allowed to cache some of the mapping entries it has 
previously purchased from a translator T, and then re-use 
them in translating newer query results. However, neither 
should the client get involved in any sort of black market 
activity, nor should the translator charge clients more than the 
cost of what they actually need. A stricter definition of 
fairness may be also considered, such as a definition that does 
not allow clients to cache and re-use any of their purchased 
mapping entries. However, for the rest of the discussion, we 
will only consider Definition 3.2 for protocol fairness. 

B.  Privacy Preserving Protocol 

Our proposed privacy preserving protocol relies on two key 
ideas. The first idea is to insert selected noise values in the 
query result before requesting mapping entries from the 
translators. This is geared towards preserving the privacy of 
the query result. The second idea is concerned with preserving 
the privacy of the mapping tables while maximizing fairness 
between clients and translators. In this case, we use a 
technique based on commutative encryption [16] to ensure 
that the client only knows the mapping entries necessary to 
translate the result of its query, while the translator still cannot 
distinguish between the real values that actually exist in the 
query result and the noise values inserted into it. 

Before discussing the details of the protocol, we recall that 
the input of the protocol is a query Q

C
 that conforms to C’s 

schema, a path PCS (C,T1,T2,…,Tn,S) that connects C to S, and 
the K vector, which defines the query result privacy 
requirements; while the output is the query result R

C
 which is 

the translation of R
S
. For ease of exposition, we assign the 

alias names T0 and T(n+1) to the client and the server in 
addition to their original names C and S respectively. We will 
use these aliases interchangeably with the original names. We 
assume that data and queries sent between peers Th and T(h+1) 

follow the schema of some peer T’h, h∈[0,n+1]. T’h can either 
be Th, T(h+1), or a common acquaintance of both Th and T(h+1) 
in case they are not directly connected.  

The protocol has three phases: the query delivery phase 
(phase I), the result and mappings collection phase (phase II), 
and the mappings decryption and result translation phase 
(phase III). The protocol uses message passing between the 



participating peers, where six types of messages are involved. 
Table 1 lists the six message types along with the 
senders/receivers for each type, and the protocol phase in 
which messages from each type are used. In general, before 
peers communicate, they first authenticate each other to guard 
against impersonation attacks. We now discuss how the 
protocol operates in the three phases. 
 

TABLE 1. PROTOCOL MESSAGE TYPES 

Message Type Phase Sender(s) Receiver(s) 

Query_Msg (QM) I 
Client and 
Translators 

Server and 
Translators 

Mapping_Req_Msg 
(MRqM) 

II 
Server and 
Translators 

Translators 

Mapping_Resp_Msg 
(MRsM) 

II Translators Client 

Result_Msg (RM) II Server Client 

Decryption_Req_Msg 
(DRqM) 

III Client Translators 

Decryption_Resp_Msg 
(DRsM) 

III Translators Client 

 

Phase I: Query Delivery 
The main goal of this phase is to deliver the client’s query to 

the target server peer after translating it to a form that 
conforms to the server’s schema. Since, based on our problem 
definition, this phase does not involve privacy preservation; 
the protocol operates in the same way as the non-privacy-
preserving protocol. The Query_Msg is forwarded from C to S 
passing through T1 to Tn. Lines 1.1-1.3 in Algorithm 1 show 
how translator peers handle an incoming Query_Msg. Later, 
in Section V, we will show that a modification needs to be 
applied to this phase to guard against a certain type of attacks. 

 

Phase II: Result and Mappings Collection 
This phase begins when S receives a Query_Message. The 

way S handles the Query_Message is also outlined in 
Algorithm 1 (lines 1.4-1.16). S first translates the incoming 
query to get Q

S
, which is executed to obtain the result R

S
 

(lines 1.5,1.6). Then, the unique values in R
S
 are extracted to 

form UR
S
 (line 1.7). To ensure K-protection of the result, for 

every unique value in Rj
S
, a list of kj-1 noise values are 

selected from Dj
S
 (the domain of aj

S
). The noise values are 

then merged with the values of URj
S
 to form NURj

S
 (lines 1.8-

1.9). The technique used to select the noise values is 
explained in details in Section IV. The values in NURj

S
 are 

shuffled (line 1.10) to make sure that real values cannot be 
isolated from noise values. After NUR

S
 is created, S translates 

R
S
 and NUR

S
 to R

T’
n and NUR

T’
n respectively, where the 

former is sent to C in a Result_Msg, while the latter is sent to 
Tn in a Mapping_Req_Msg (lines 1.11-1.14). 

The way Tn (as well as any other translator) handles the 
Mapping_Req_Message is shown in Algorithm 2. Tn creates a 
mapping from the received values of NUR

T’
n to their 

corresponding values in T’(n-1) (lines 2.1,2.2). However, the 
values in T’(n-1) are encrypted using the key of Tn. We refer to 
such mapping from the plaintext values in T’n to the encrypted 
values in T’(n-1) by En(Mn). When the mapping is from the 
plaintext values in T’n to the plaintext values in T’(n-1), we 
simply refer to it as Mn. To construct En(Mn) efficiently, Tn 
keeps the values in its mapping tables both in plaintext and 
encrypted formats. This way, it does not have to perform 
encryption each time it receives a Mapping_Req_Msg. After 
constructing En(Mn), Tn sends it to C in a Mapping_Resp_Msg 

(line 2.3). Tn also translates NUR
T’

n to NUR
T’

(n-1), shuffles 

NUR
T’

(n-1), and sends it in a new Mapping_Req_Msg to the 

preceding translator on the path, T(n-1) (lines 2.5-2.7). 
Shuffling guarantees that NUR

T’
(n-1) cannot be correlated with 

NUR
T’

n, which can result in the decryption of En(Mn). This is 

important to prevent certain attacks, as will be discussed in 
Subsection V-A. On receiving the new 
Mapping_Req_Message, T(n-1) handles it in a similar way, and 
Mapping_Req_Msg’s keep on propagating backwards until T1 
is reached (line 2.4). 

When C receives a Result_Msg from S, or a 

Mapping_Resp_Msg from Th, h∈[1,n], it stores the incoming 
result and mappings locally, until all of them have arrived. At 
this point, phase II ends. The handling of both messages is 
described in Algorithms 3 and 4 respectively. 

 

Phase III: Mappings Decryption and Result Translation 
This phase begins when C receives the result (R

T’
n) from S 

and the mappings (Eh(Mh), h∈[1,n]) from all the translators. 
Lines 3.2-3.6 in Algorithm 3 and lines 4.2-4.6 in Algorithm 4 
are similar and they both describe the beginning of phase III. 
The lines in Algorithm 3 are executed if C receives the result 
after it has received all the translators’ mappings. Otherwise, 
the lines in Algorithm 4 are executed instead.  

At first, C extracts the unique values from R
T’

n to generate 

UR
T’

n and translates UR
T’

n using En(Mn) (lines 3.3,3.4 or 

4.3,4.4). The translation gives the corresponding values in T’(n-

1) encrypted with Tn’s key. We refer to the generated values by 
En(UR

T’
(n-1)). C then re-encrypts each value in En(UR

T’
(n-1)) with 

its own key to generate E0(En(UR
T’

(n-1))), and sends such 

doubly-encrypted values to Tn in a Decryption_Req_Msg 
(lines 3.5,3.6 or 4.5,4.6).  

Tn handles the Decryption_Req_Msg as shown in Algorithm 
5. It decrypts the incoming values (E0(En(UR

T’
(n-1)))) from C 

with Tn’s key. Since commutative encryption is used, this step 
removes the prior encryption with Tn’s key, thus generating 
E0(UR

T’
(n-1)) (line 5.1). Tn then sends E0(UR

T’
(n-1)) back to C in a 

Decryption_Resp_Msg (line 5.2). 
Algorithm 6 shows the behavior of C once it receives the 

Decryption_Resp_Msg. C re-decrypts the incoming values 
(E0(UR

T’
(n-1))) with its own key, which generates the plaintext 

values in T’(n-1), or UR
T’

(n-1) (line 6.1). C also extracts the unique 

values from R
T’

n to get UR
T’

n (line 6.2), and creates a mapping 

Mn from the values of UR
T’

n to the values of UR
T’

(n-1) (line 6.3). 

C uses Mn to translate R
T’

n into R
T’

(n-1), and stores it in place of 

R
T’

n (lines 6.4,6.5). C then repeats the same process with every 

translator preceding Tn until R
T’

0 is obtained (lines 6.6-6.9). At 

this point, C translates R
T’

0 to R
C
 using its own mapping tables 

(lines 6.11,6.12). 
 

Algorithm 1: Handle_Query_Msg (QT’
(h-1), PCS, K) 

Th : the current peer 
1.1- if (Th is not S) 
1.2- Translate QT’

(h-1) to QT’
h  

1.3- Send a new Query_Msg(QT’
h, PCS,K) to T(h+1) (if h<l) or 

to S (if h=n) 
1.4- else  //Th is S; i.e. h-1=n 
1.5- Translate QT’

n to QS 

1.6- Execute QS to get RS 
1.7- Extract unique values from RS to get URS 



1.8- for each attribute aj
S in RS 

1.9- Construct NURj
S as the union of URj

S and min((kj-

1)×|URj
S|,|Dj

S
|-|URj

S|) additional noise values  
1.10- Shuffle NURj

S 
1.11- Translate NURS to NURT’

n 

1.12- Translate RS to RT’
n 

1.13- Send a new Mapping_Req_Msg(NURT’
n, PCS) to Tn 

1.14- Send a new Result_Msg(RT’
n) to C 

1.15- return 
 

Algorithm 2: Handle_Mapping_Req_Msg (NURT’
h, PCS) 

Th : the current peer 
2.1- Translate NURT’

h using T’(h-1) values encrypted with the key 

of Th to get Eh(NURT’
(h-1)) 

2.2- Join each value in NURT’
h with its corresponding value in 

Eh(NURT’
(h-1)) to get the encrypted mapping Eh(Mh) 

2.3- Send a new Mapping_Resp_Msg(Eh(Mh)) to C 
2.4- if (T(h-1) is not C) 
2.5- Translate NURT’

h to NURT’
(h-1) 

2.6- Shuffle NURT’
(h-1) 

2.7- Send a new Mapping_Req_Msg(NURT’
(h-1), PCS) to T(h-1) 

2.8- return 
 

Algorithm 3: Handle_Result_Msg (RT’
n) 

// the current peer must be C 
3.1- Store RT’

n 

3.2- if (all translators’ mappings and RT’
n are received) 

3.3- Extract unique values from RT’
n to get URT’

n 

3.4- Translate URT’
n using En(Mn) to get En(URT’

(n-1)) 

3.5- Encrypt En(URT’
(n-1)) with C’s key to get E0(En(URT’

(n-1))) 

3.6- Send a new Decryption_Req_Msg(E0(En(URT’
(n-1)))) to Tn 

3.7- return 
 

Algorithm 4: Handle_Mapping_Resp_Msg (Eh(Mh)) 

// the current peer must be C 
4.1- Store Eh(Mh) 
4.2- if (all translators’ mappings and RT’

n are received) 

4.3- Extract unique values from RT’
n to get URT’

n 

4.4- Translate URT’
n using En(Mn) to get En(URT’

(n-1)) 

4.5- Encrypt En(URT’
(n-1)) with C’s key to get E0(En(URT’

(n-1))) 

4.6- Send a new Decryption_Req_Msg(E0(En(URT’
(n-1)))) to Tn 

4.7- return 
 

Algorithm 5: Handle_Decryption_Req_Msg (E0(Eh(URT’
(h-1)))) 

Th : the current peer 
5.1- Decrypt E0(Eh(URT’

(h-1))) with the key of Th to get E0(URT’
(h-

1))  //uses the commutative encryption property 

5.2- Send a new Decryption_Resp_Msg(E0(URT’
(h-1))) to C 

5.3- return 
 

Algorithm 6: Handle_Decryption_Resp_Msg (E0(URT’
(h-1))) 

// the current peer must be C 
6.1- Decrypt E0(URT’

(h-1)) with the key of C to get URT’
(h-1) 

6.2- Extract unique values from each attribute in RT’
h to get URT’

h 

6.3- Join each value of URT’
h with its corresponding value from 

URT’
(h-1) to get the non-encrypted mapping Mh 

6.4- Translate RT’
h with Mh to get RT’

(h-1) 

6.5- Store RT’
(h-1) in place of RT’

h 

6.6- if (h>1)  // RT
(h-1) is not RC 

6.7- Translate URT’
(h-1) using E(h-1)(M(h-1)) to get E(h-1)(URT’

(h-2)) 

6.8- Encrypt E(h-1)(URT’
(h-2)) with C’s key to get E0(E(h-1)(URT’

(h-2))) 

6.9- Send a Decryption_Req_Msg(E0(E(h-1)(URT’
(h-2))))) to T(h-1) 

6.10- else 

6.11- Translate RT’
(h-1) to RC 

6.12- Report RC to user 
6.13- return 
 

Example 3.2 
Continuing on Example 3.1, Figure 5 shows how the query 

in Figure 4a is executed when the privacy-preserving protocol 
is used. The figure shows the contents of the 12 messages 
exchanged between the peers during query processing. If we 

refer to the privacy-preserving protocol by ℘3, then the only 

information ℘3 passes to T2 about R
T

2 is that it contains two 

values, which belong to {mc”,mf”,mh”,mi”}. Therefore, 

Pr(v∈R1
T

2|ℜ(℘3,T2)) = 2/4 = 0.5, which is equal to the 

threshold given by max(1/2,2/10)=0.5. Similarly, we can find 

that Pr(v∈R1
T

2|ℜ(℘3,T2))≤0.5, for every v∈D1
T

2. The same 

applies to T1. Thus, unlike ℘1, ℘3 does preserve the privacy 

of R
C
 based on the K-protection model. Moreover, unlike ℘2, 

℘3 does not require the transfer of the complete mapping 

tables of T1 and T2. Thus, ℘3 is more efficient and more fair 

to T1 and T2 than ℘2.  
 

C T1 T2 S

1-QM: QX 2-QM: QY 3-QM: QZ

4-MRqM: [mc’,mf ’,mh’,mi’]6-MRqM: [mφ,mχ,mη,mι]

7-MRpM: [(mc’,E2(mχ)),(mf ’,E2(mφ)),
(mh’,E2(mη)),(mi’,E2(mι))]

5-RM: [mf’,mh’]

8-MRpM: [(mφ,E2(m6’),(mχ,E2(m3’))),

(mη,E2(m8’)),(mι,E2(m9’))]

12-DRpM:
[E0(m6’),E0(m8’)]

11-DRqM: [E0(E1(m6’)),E0(E1(m8’))]

9-DRqM: [E0(E2(mχ)),E0(E2(mφ))]

10-DRpM: [E0(mχ),E0(mφ)]
* Noise values are underlined 
for illustration purposes

 

Figure 5. Privacy-preserving protocol operation for Example 3.2 

IV. NOISE SELECTION 

Careful selection of noise values to be mixed with real 
values in the result is crucial to the protocol’s effectiveness. 
For example, if the selected noise values were purely random, 
then they can be easily filtered out By issuing the same query 
multiple times and comparing multiple instances of the result, 
the real values will remain unchanged, while the noise values 
may be different, and hence they can be eliminated. 

A good scheme for noise selection should guarantee that the 
reported result for the same query (including real and noise 
values) should remain the same every time the query is issued. 
Moreover, if the query result is changed, then the newly 
reported result for the query should be a superset of the 
previously reported results for the same query. 

Before presenting our proposed scheme for noise selection, 
we first discuss two requirements concerning the peers’ 
databases. First, database records need to be time-stamped. 
This is not an expensive requirement, especially with the 
decreasing cost of storage. Moreover, a peer whose existing 
database has no timestamps can still timestamp all its records 
with the current time before joining the PDMS. Second, the 



domains for the values appearing in a query result (i.e. Dj
S
, 

j∈[1,l]) should not be shrunken over time. This is also an easy 
requirement, because even if there was a need to remove 
certain domain values, they can just be marked as removed 
instead of physically removing them. 

Given the result R
S
, our goal is to select (kj-1) noise values 

for every unique value in Rj
S
 to generate NURj

S
, j∈[1,l], such 

that the selected noise values remain consistent every time the 
query is executed. The proposed scheme works as follows.  
1. Extract the unique values from Rj

S
 to get URj

S
, and 

associate each unique value with the earliest timestamp 
among the timestamps of all the records of R

S
 containing 

that value for Rj
S
. This implies that a value would not 

have appeared in the query result before the time 
indicated by its associated timestamp.  

2. Sort the values in URj
S
 based on their associated 

timestamps.  
3. Create |URj

S
| pseudo-random number generators 

(PRNGs), where the seed of the i
th

 PRNG is a function of 
the hash value of the concatenation of the first i values in 

URj
S
, i∈[1,|URj

S
|].  

4. Use the i
th

 PRNG to generate the (kj-1) noise values for 
the i

th
 real value in URj

S
 and insert those noise values 

along with the real value into NURj
S
. This step is 

repeated for every i∈[1,|URj
S
|] in an ascending order of i, 

and is performed as follows.  
a. Let D’j

S
 be Dj

S
 after removing all values already in 

NURj
S
 and all values whose timestamp in Dj

S
 is 

newer than the timestamp of the i
th

 real value in URj
S
. 

b. Generate |D’j
S
| random numbers, and associate each 

one of them with a value in D’j
S
.  

c. Sort D’j
S
 according to the associated random 

numbers (to get a random permutation).  
d. Return the top (kj-1) values.  

 

Example 4.1 
For the query Q

S
 (Figure 3b), the corresponding result, R

S
, 

or similarly UR1
S
, is {mf,mh} (Figure 3d). Assuming that the 

timestamp of mf is earlier than that of mh, then the scheme first 
inserts mf into NUR1

S
. Then, a single noise value is selected 

corresponding to mf (recall that k1=2) using the following 
query (follows the MySQL syntax). 

 

Q
1
: select SMID from SMedications  

   where SMID not in (‘m
f
’)  

   and TS < ts_m
f
 

   order by rand(seed1) limit 1 
 

The variable seed1 is an integer representing the leftmost 
four bytes of the hash value of the string “mf”. It is passed as 
the seed of a PRNG used to order the SMID values randomly. 
TS is the timestamp column in SMedications and ts_m

f
 is the 

timestamp of mf. With the TS predicate, we ensure that the 
noise value corresonding to mf only depends on SMID values 
which existed at a time when URj

S
 did not include mf. This 

way, if Q
1
 was re-issued at a later time, newly added SMID 

values will not change the noise selection for mf. Assume that 
the random value generated by this query is mc, then after 
inserting mc into NUR1

S
, NUR1

S
 now becomes {mf,mc}. We 

then insert the next value in UR1
S
 (mh) into NUR1

S
, such that 

NUR1
S
={mf,mc,mh}. Similar to Q1, the following query is used 

to get the noise value corresponding to mh. 
 

Q
2
: select SMID from SMedications  

   where SMID not in (‘m
f
’,‘m

c
’,‘m

h
’)  

   and TS < ts_m
h
 

   order by rand(seed2) limit 1 
 

The variable seed2 is computed similar to seed1 except 
that the string “mf” is replaced with “mf:mh”. If the above 
query returns the value mi, then NUR1

S
 becomes 

{mf,mc,mh,mi}, corresponding to UR1
S
={mf,mh}. 

When a new record (p35,mc) is added to STreatments, UR1
S
 

becomes {mf,mh,mc}. Thus, constructing the new NUR1
S
 will 

start by following exactly the same steps resulting in NUR1
S
 

becoming {mf,mc,mh.mi}. Next, the third value in UR1
S
 (mc) 

should be inserted into NUR1
S
 with another noise value. 

However, since mc already exists in NUR1
S
 (as a noise value 

from the previous steps), therefore we insert two random 
values to guarantee that the final NUR1

S
 will contain three 

real values and three noise values. This is achieved using the 
following query. 

 

Q
3
: select SMID from SMedications  

   where SMID not in (‘m
f
’,‘ m

c
’,‘ m

h
’,‘ m

i
’)  

   and TS < ts_m
c
 

   order by rand(seed3) limit 2 
 

Assuming that the query returns {mg,md}, then the final 
NUR1

S
 becomes {mf,mc,mh,mi,mg,md}, which is a superset of 

the previous version of NUR1
S
.  

 

Our noise selection scheme works well if the results for the 
same query stay unchanged or expand over time. However, if 
values can disappear from the result over time (because of the 
dynamic nature of data), then the scheme may not always be 
able to generate consistent noise values every time the query 
is issued. Thus, if (1) the same translator T is used for the 
same query before and after its result has shrunken, and (2) T 
happened to be storing the old values it received for that 
query; then T might be able to eliminate some of the noise 
values, and hence the privacy of the query result can be at 
risk. Although, typically, this event will not occur frequently, 
it would be interesting to investigate the extension of our 
scheme to handle this situation. The particular challenge is 
that solving this problem may require the server to keep track 
of all queries and results it has served in the past, which is not 
always practical. 

Fortunately, there is a wide class of applications where 
records are mostly appended rather than deleted or updated. 
Consider healthcare records, maintenance records, crime 
databases, retail transactions, and financial transactions to 
name just a few. Our protocol enables peers running any of 
such applications to exchange queries and results in a 
completely privacy-preserving manner. For other types of 
applications, where data is more likely to be updated or 
deleted, our protocol can still provide a fair degree of privacy, 
but with a small probability that certain query results may get 
disclosed over time. This can be useful for applications with 
data that is not highly sensitive. For example, we can think of 
a PDMS, where every peer is running a social network 
application, and through the PDMS it can allow its users to 
access their friends’ lists on the other social networks. 

V. PROTOCOL ANALYSIS 

A. Security Analysis 

In this subsection, we investigate the security of the protocol 

according to two models: (1) the semi-honest model, where all 



peers follow the protocol properly, but will try to gain 

additional information than they need if the protocol allows 

them to, and (2) the malicious model, where peers may 

deviate from the protocol to launch attacks against other 

peers. We will first present a theorem showing that in the 

semi-honest model, our protocol complies with the K-

protection requirement. Then we will consider several 

possible attacks, assuming a malicious model, and discuss 

how our protocol is resilient to them. 
 

Theorem 5.1. Assuming a semi-honest model, the proposed 

privacy-preserving protocol complies with the K-protection 

requirement. 

Proof. During a single run of the protocol (call it ℘) to 

answer a query, each intermediate translator Th, h∈[1,n] only 

receives three messages: a Query_Msg, a Mapping_Req_Msg, 

and a Decryption_Req_Msg. These three messages represent 

the information leaked by the protocol to Th., or ℜ(℘,Th). 

First, it is clear that Th cannot infer any information about the 

query result from the Query_Msg. Second, since all the values 

in the Decryption_Req_Msg are encrypted using the client’s 

key, then Th cannot infer any of these values. Third, for each 

attribute aj in the query result, the number of aj values 

received in the Mapping_Req_Msg is equal to the minimum 

of kj×|URj
S| and |Dj

S
| (Algorithm 1, line 1.19). Thus, since the 

number of unique values of aj in the query result is |URj
S|, then 

Th can be confident that a received aj value belongs to the 

query answer with probability: max(1/kj,|URj
S
|/|Dj

S
|). This 

shows that the proposed protocol complies with the K-

protection requirement (see Definition 3.1).  
 

We now discuss seven possible attacks against the protocol 
in the malicious model. The first four attacks are related to the 
privacy of the query result, while the following three attacks 
are related to the privacy of the mapping tables. 

 

1) Query Replay Attack : During the query delivery phase of 
the protocol, a translator T will learn the client’s query 
according to its own schema, Q

T
. In a query replay attack, T 

will re-issue the same query, Q
T
, several times, hoping that 

each time it may learn more information about the result. 
However, the discussion in Section IV has shown that for the 
same result, the selected noise values are always the same. 
Also, for a new result that is a superset of a previously 
encountered result, the set of real values in that new result 
along with the noise values will also form a superset of the 
real and noise values from the previously encountered result. 
Thus, the replay attack cannot be launched. 

 

2) Known Result Attack: In this attack, a translator T may 
send queries to S whose results are already known to T, in an 
attempt to learn how S selects noise values. In particular, T 
can attempt to build a lookup table for every attribute a. Given 
a certain instance of URa

T
 and an instance value for ka, the 

table gives the corresponding noise values that T would 
receive mixed with URa

T
. By URa

T
, we refer to the unique 

values of a in the query result based on T’s schema, and by ka, 
we refer to the value corresponding to a in the query’s K 
vector. T can populate a cell in this table by (1) sending a 
query to S whose result is known to have a URa

T
 instance 

identical to the URa
T
 instance corresponding to the cell being 

populated, and (2) specifying a value for ka equal to that cell’s 
corresponding ka value. The cell will then be populated by the 
noise values returned by S, which can be easily isolated since 
the real values are already known. Consider that the number 
of cells T manages to populate in this way is Npopulated_cells. If 
Da

T
 is a’s domain in T, then a URa

T
 instance can be any 

ordered subset of Da
T
. Order matters because the selected 

noise values depend on the timestamp ordering of the values 
in URa

T
. Thus, knowing that ka can take any value from 1 to 

|Da
T
|, the total number of cells in the lookup table is given by 
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Clearly, this number can be very large as the size of Da
T
 

increases. Consequently, assuming a uniform distribution for 
cell population, the probability that any given cell is 
populated, which is given by (Npopulated_cells/Nall_cells), will be 
very small. We now explain how T can use the lookup table to 
isolate the noise values when the real values are not 
previously known. During phase II of the protocol, T receives 
a Mapping_Req_Msg whose corresponding NURa

T
 (list of 

unique noise and real values of a) contains ka×|URa
T
| values. 

Thus, for every possible instance of URa
T
 within NURa

T
, T can 

initially assume that the remaining (ka-1)×|URa
T
| values are 

noise values. Then, T can verify if this assumption holds by 
checking the cell in the lookup table, which corresponds to the 
URa

T
 instance at hand and the specified value for ka. For T to 

succeed in identifying the noise values, this assumption must 
hold for only one instance of URa

T
 within NURa

T
, and fails for 

all the other instances. The total number of possible instances 
of URa

T
 within NURa

T
, or equivalently, the number of cells 

that must be checked, and hence must be populated is given 
by 
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It follows that the probability of success for this attack is 
given by 
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This probability is typically extremely small since Nall_cells is 
much larger than Npopulated_cells, and Nrequired_cells is also a very 
large number. However, only when |URa

T
| is very small, and 

ka is also small, Nrequired_cells may not be large enough. For 
example, if |URa

T
|=1, and ka=2, then Nrequired_cells=2. However, 

to address this problem, when a client C sends a query to S, in 
addition to specifying ka within the K vector, it can also 
specify a minimum bound on Nrequired_cells, or Nmin_required_cells. 
This way, if after executing the query, S discovers that 
Nrequired_cells<Nmin_required_cells, then S should increase ka 
appropriately, such that Nrequired_cells≥Nmin_required_cells. This 
guarantees that the probability of success for this attack will 
always be negligibly small.   

 

3) Privacy Relaxation Attack: Based on the protocol 

description given in Subsection III-B, a translator Th, h∈[1,n] 
may attempt to reduce the values in K before forwarding the 
query to T(h+1), This way, Th can illegitimately relax the 
privacy requirement set by C. To guard against this attack, 
phase I of the protocol should be modified as follows. C 
should send the K vector directly to S and not to any 



translator, along with the names of the attributes requested in 
Q

C
 (which conform to C’s schema). Moreover, every 

translator Th, h∈[1,n], should send to S the attribute name 
mappings it used for translating the query. At the end of phase 
I, S will be able to translate the attribute names it received 
from C to the attribute names of its own schema, using the 
mappings sent by the translators. Now, S can associate each 
attribute with its corresponding value in K without giving any 
opportunity for Th to change such values.  

 

4) Translators Collusion Attack: In this attack, several 
translators may collude together in an attempt to gain 
additional knowledge about the result. However, by analyzing 
the protocol, we find that the only inputs a translator gets 
related to the result are the Mapping_Req_Msg it receives 
from the server and the Decryption_Req_Msg it receives from 
the client. The Decryption_Req_Msg’s are encrypted by the 
client’s key, so no information can be inferred from them by 
the translators. Furthermore, the different 
Mapping_Req_Msg’s contain different translations for the 
same set of real and noise values originally sent by the server. 
Therefore, if the translators collect all their received 
Mapping_Req_Msg’s in a central location, this will still not 
allow them to identify any of the noise or real values, and 
hence their knowledge about the result will remain the same. 
In other words, this attack cannot be launched. 

 

5) Mappings Correlation Attack: In this attack, the client 
may attempt to correlate the mappings E(h+1)(M(h+1)) and 
Eh(Mh) sent by T(h+1) and Th respectively (recall that these 
mappings map plaintext values to encrypted values) to find 

Mh, h∈[2,n-1]. The key idea is to try to match each plaintext 
T’h value from the first mapping to its corresponding plaintext 
T’(h-1) value from the second mapping. This should result in 
obtaining Mh. However, the two mappings have different 
orderings, since they both have been randomly shuffled 
(Algorithm 2, line 2.6). Therefore, it is not possible to match 
corresponding values based on their positions in the 
mappings. Thus, launching this attack will not succeed. 

 

6) Rich Client Attack: In this attack, a rich client C may 
decide to purchase all the mapping entries from a certain 
translator T. This way, it can clone T and provide the same 
translation services, which T previously offered. Thus, T can 
be deprived from potential future revenues. To see how such 
attack can be stopped, we first draw an analogy between the 
revenue model of T and the revenue model of carfax [22], a 
real company specialized in providing vehicle history reports 
to its customers. Similar to T, carfax would like to protect its 
database of vehicle history reports from getting largely 
disclosed to a single customer or even to a small group of 
customers. To address this type of attacks, carfax’s customer 
agreement include the following statement: “Any commercial 
use of carfax vehicle history reports is strictly prohibited and 
any suspected commercial use will lead to the suspension of 
your account”. The term “suspected commercial use” implies 
requesting reports at a rate that is higher than a certain 
threshold, or that matches more sophisticated patterns 
indicating misbehavior. The details of such patterns are 
beyond the scope of this paper. However, we emphasize that 
this type of attacks can be detected and stopped using methods 
that are already applied by established real-world businesses. 

 

7) Black Market Attack: We refer by this attack to the 
situation where clients choose to form a black market to 
exchange mapping entries and thus negatively impact the 
revenues of the translators. Since it is not possible to 
completely stop this attack, we will experimentally show in 
Subsection VI-C how our protocol manages to limit the effect 
of this attack compared to other possible protocols. 

B. Cost Analysis 

If ce is the cost of encryption/decryption, ch is the cost of 
evaluating the hash function, and if we consider that the costs 
of performing these operations dominate other computation 
costs, then the overall computation cost for executing one 
query is given as follows 
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The first term in (4) corresponds to the hashing operations 
performed by S to obtain the seeds used to generate the noise 
values. From Section IV, S performs a hashing operation for 
every unique real value in R

S
, whose count represents the 

summation in the first term. The second term corresponds to 
the series of encryption, decryption, and re-decryption 
operations performed by C, Th, and C respectively for every 

unique real value in R
S
, and for every h∈[1,n]. Note that the 

initial encryption step that resulted in  the encrypted values 
sent in the Mapping_Resp_Msg of each translator Th have 
been performed offline by Th, rather than at query processing 
time. Thus, its cost is not accounted for in (4). 

If bq is the number of bytes in the query, bp is the number of 
bytes in plaintext value, bc is the number of bytes in a singly-
encrypted value, and bcc is the number of bytes in a doubly-
encrypted value, then the overall communication cost for 
executing one query is given as follows 
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The terms in (5) represent the communication costs for the 
Query_Msg’s, Result_Msg, Mapping_Req_Msg’s, 
Mapping_Resp_Msg’s, Decryption_Req_Msg’s, and 
Decryption_Msg’s respectively. 

VI. EXPERIMENTS 

A. Experimental Setup 

Our experimental study has two main goals. 

• Studying the protocol’s performance in a real system 
using real data. 

• Studying the fairness properties of protocol. 



For the performance study, the metrics we use are (1) the 
query total response time and (2) the total number of bytes 
transmitted over the network per query execution. We 
compare the performance of the privacy-preserving protocol 
(call it PPP) to that of the regular non-privacy-preserving 
protocol (call it NPPP). Moreover, we vary two parameters in 
this study: (1) the path length from the client to the server and 
(2) the K vector used to specify the K-protection privacy 
requirement. 

To study the fairness properties of the protocol, we use the 
total revenue made by the translators as our metric. The 
revenue made when PPP is used is compared to that made 
when another protocol is used, which is a variant of PPP (call 
it PPP_V). PPP_V operates in the same way as PPP except 
that the Mapping_Resp_Msg’s contain plaintext-to-plaintext 
value mappings rather than plaintext-to-encrypted value 
mappings; i.e. the client learns (and pays for) the mappings 
both for the real and noise values. The translators’ revenue 
made with these protocols is also compared against the upper 
bound (UB) and lower bound (LB) of the fair range for the 
revenue (see Definition 3.2). The parameters varied in the 
fairness study experiment are: (1) the client behavior, which 
can be one of “no cache and no black market”, “cache and no 
black market”, or “cache and black market”; (2) the client 
cache size; and (3) the number of black market search 
attempts a client performs before resorting to purchasing a 
mapping entry from its owner translator. 

We use a dataset obtained from a pet hospital chain to 
conduct our experiments. The original data set includes 
information about the demographics of pets, their hospital 
visits, diagnosed diseases, lab tests, prescribed medications, 
etc. The dataset contains information about over 45 million 
pets with hospitals spanning 40 US states. For the sake of the 
experiments, we modified the data set as follows. First, we 
partitioned the data based on the state information to obtain 40 
different dataset partitions. Second, for each partition, we 
mapped the data into a smaller schema, similar to the ones 
shown in Figure 3, thus keeping only the pet medication 
information. We assumed that each partition represents the 
database of a peer in the network. In particular, we used six 
such partitions representing six different states in our 
experiments. Table 2 shows some statistics about these dataset 
partitions.  

TABLE 2. STATISTICS ON THE DATA SETS USED IN THE 

EXPERIMENTS 

State 
#  

pets 
#  

medications 

Size of 
Treatments 

table 

Av. # 
medications 

/ pet 
AL 25015 1934 350639 14.02 

AR 10253 1392 156659 15.28 

AZ 217688 2950 3724275 17.11 

CA 427433 3435 8136616 19.04 

CO 195067 3194 4139109 21.22 

CT 18585 2193 375267 20.20 
 

We implemented the Pohlig–Hellman commutative 
encryption algorithm [16] using the GMP C library for 
cryptography applications [23]. Although Hyperion is 
implemented in Java, we integrated it with the C library as our 
experiments showed that it is 10x faster than the 
corresponding Java implementation of the encryption 
algorithm. We ran each Hyperion peer on a Sun Blade 1000 

with 2GB RAM and two 1.2GHz SPARC V9 processors. The 
peers were connected through a 100Mbps LAN. The DBMS 
we used is MySQL. Each Hyperion peer used one of the 
dataset partitions as its local database. 

B. Studying the Protocol Performance 

The setup of this experiment was based on the observation 
that the performance of each individual query in a PDMS 
depends on the path between the client and the server, rather 
than the network as a whole. To this end, we used six 
machines for this experiment. Thus, we were able to vary the 
path length from 3 to 6. 

Every data point reported in the experiment was measured 
by running a workload of 100 random queries and taking the 
average of their measurements. A random query requests all 
medications for some randomly selected pet in the server peer. 
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Figure 6. Effect of path length on the query response time 
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Figure 7. Effect of path length on the communication cost 

Figures 6 and 7 show the query response time and the 
communication cost respectively for NPPP and PPP as the 
path length increases. In the figures, PPP- k1 corresponds to 

PPP when K is set to (k1), k1∈{1,3,5}. When K is set to (1), no 
noise values are inserted in the result, which implies that the 
result is not protected. However, the value of this special case 
is that the measured overhead only corresponds to the 
encryption/decryption operations performed by PPP. It is 
observed that response time is increased by a factor ranging 
from 2.5 to 3.3 for PPP-1 compared to NPPP, while the 
communication cost is increased by a factor ranging from 6.8 
to 11.5 also for PPP-1 compared to NPPP. The increase in the 
communication cost is due to the larger number of bytes 
needed to represent the encrypted values. As indicated in 
Subsection V-B, increasing the values in K does not increase 
the encryption/decryption cost. Therefore, the higher overhead 
of PPP-3 and PPP-5 is only attributed to the inserted noise 
values. Comparing PPP-5 to NPPP, we find that the response 
time is increased by a factor ranging from 4.5 to 6, while the 
communication cost is increased by a factor ranging from 15.5 
to 26.6. These factors are expected because the client 
explicitly requests to get k1-times the original number of 



values in the result for privacy preservation. Generally, 
cryptography-based techniques incur an overhead in return for 
the benefits they bring. A good example is the work by 
Agrawal et al. [2], which also employs commutative 
encryption, but for a different purpose: finding shared 
information between private databases. In our context, we 
have verified that the overhead does not exceed a few extra 
seconds in query response time, which does not seem a high 
price for preserving privacy. 

C. Studying the Protocol Fairness 

In this experiment, we study the impact of having different 
client behaviors on the fairness of the protocols. We use a 
simple economic model, where the cost of a mapping entry is 
fixed for all peers. In reality, more sophisticated models may 
exist (e.g. based on supply and demand). However, this simple 
model still serves the purpose of showing the different levels 
of fairness achieved by the protocols.  

It is obvious that if clients use no caches, then with PPP, 
they will have to purchase every mapping entry needed from 
its owner translator. Thus, the translators’ revenue will be 
identical to UB. With PPP_V, the translators’ revenue will be 
much higher depending on the setting of K, and thus PPP_V is 
unfair to the clients in this case. In what follows, we focus on 
the cases when the clients choose to use caches without 
forming a black market, or use caches and form a black 
market. When using caching, clients can have different cache 
sizes. Also, when the black market is used, clients may choose 
different number of attempts to search in the black market 
before resorting to purchasing a mapping entry for its regular 
price from the owner translator. 

To study the effect of all such parameters, we developed a 
trace-based simulator that simulates the protocols PPP and 
PPP_V, where K is set to (4) for both of them. The simulator 
allows us to consider a large network while being able to 
easily vary the above parameters. In our experiment, we 
simulated a network of 50 peers. The network topology was 
based on a random graph, were the probability of having a 
link between any pair of peers was set to 0.05. For simplicity, 
we assumed that the local database for each peer is similar to 
one of the dataset partitions in Table 2. In particular, all local 
databases have distributions similar to that of the AR 
partition. But of course, it is still assumed that the values they 
store are different, and thus mapping tables are still needed. 

The client caches follow an LRU replacement scheme. The 
black market is operated as follows. There is a central bulletin 
board where all clients advertise the mapping entries they 
have in their caches. An advertisement states that a given 
client peer has a given number of mapping entries from a 
given translator. Whenever a client is in need for a mapping 
entry it gets a list of the other client peers who advertised that 
they have the highest number of mapping entries from the 
desired translator. The size of the list is decided by the 
requesting client, which then contacts the peers on the list in 
descending order of the number of mapping entries they have. 
This number of peers contacted represents the number of 
black market search attempts. 

Each data point reported in this experiment represents a 
simulation run, in which a trace of 10,000 random queries are 

executed in the network. A random query requests all the 
medications for a randomly selected pet in the server’s 
database, given that both the client and server peers are also 
randomly selected. The network links are assumed to have 
equal weights.  

Figure 8 shows the effect of varying the size of client cache 
on the revenue collected by all the translators in the network 
when clients use caching and no black market. It is clear form 
the figure that with PPP, the revenue is within the fair range. 
In contrast, with PPP_V, it is much higher than the upper 
bound of the fair range, which implies that the PPP_V is 
unfair to the clients. 
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Figure 8. Effect of cache size on protocols fairness when clients use 
caching and no black market 

Figure 9 also shows the effect of the cache size on the 
translators revenue, but this time, when the clients use caching 
in addition to the black market. Clients make four search 
attempts (equivalent to 8% of the total number of peers) in the 
black market before purchasing a mapping entry from its 
owner. Again, PPP is shown to be generally fairer than 
PPP_V. The effect of the black market is also clear in this 
figure, as the translators revenue is significantly lower in this 
case compared to the case when the black market is not used. 
Expectedly, the black market effect increases as the cache 
sizes increase, since more mapping entries will be available in 
the black market. 
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Figure 9. Effect of cache size on protocols fairness when clients use 
caching and black market 
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Figure 10. Effect of number of black market search attempts on protocols 
fairness 



Figure 10 shows the impact of changing the number of black 
market search attempts on the translators’ revenue. The 
clients’ cache size is set to be 1% of the total size of mapping 
tables in the whole network. The results here too show that 
PPP is substantially fairer than PPP_V. 

VII. RELATED WORK 

The application of P2P approaches to database systems has 
attracted considerable attention in the recent years. Gribble et 
al. [8] showed some benefits that the database technology can 
bring to the P2P research. They also addressed the data 
placement issues in P2P systems from a database perspective. 
PeerDB [15] is a P2P distributed data sharing system, which 
supports fine grained content-based searching and does not 
rely on a shared schema. It employs information retrieval 
approaches, such as keyword search, to find peers having data 
relevant to the user’s query. It also uses mobile agents to be 
able to perform operations at peer sites. coDB [7] is another 
P2P database system with techniques for searching and 
updating peer databases. In coDB, mappings are defined in 
terms of GLAV coordination rules. Halevy et al. introduced 
the Piazza PDMS [9, 19, 20] to address the problems of 
defining a language for schema mappings, reformulating 
queries based on these mappings and automating the schema 
matching process in order to assist the user in constructing the 
mappings. In [11], Kementsietsidis et al. addressed the issue 
of mapping data, rather than schemas, in P2P data sharing 
systems. They propose treating the tables used in mapping the 
data from different peers as mapping constraints in order to be 
able to reason about them. In particular, they propose 
algorithms for inferring new mapping tables and determining 
the consistency of a set of mapping constraints. This whole 
body of work did not consider the security issues that need to 
be addressed in PDMSs.  

Miklau et al. [14] proposed a framework for controlled 
sharing of XML data. The framework includes high-level 
access control policies, a logical model for protecting a 
document tree, and encryption techniques to construct an 
XML document that enforces the policies. This work however 
assumed a shared schema among all peers. Agrawal et al. [2] 
attempted to formalize the notion of limited information 
sharing across private databases. They focused on providing 
secure protocols for the computation of the intersection and 
equi-join of two sets in two different databases. Their work 
did not consider any semantic mappings between the sources, 
and therefore no translators were involved between the two 
communicating databases. Interestingly, their protocol also 
relies on commutative encryption. 
A great deal of research is occurring in the area of k-
anonymity [e.g. 1, 4, 12, 13, 18, 21]. A key difference 
between our work and this body of work is that we do not 
apply any generalization or suppression to the data in the way 
k-anonymity techniques do; instead we perturb the data by 
introducing noise values which are not part of the query 
answer. Another body of work addresses the problem of 
output perturbation in statistical databases [e.g. 5, 6]. 
However, similar to the work on k-anonymity, this body of 
work targets privacy preservation while maximizing data 
utility, for the purposes of statistical analysis and data mining. 
In contrast, our goal is to limit the utility of the query result 

for the translators, such that they can only translate the values, 
while learning the minimum information possible about the 
result. To the best of our knowledge, there has not been prior 
work addressing the privacy and fairness issues in PDMSs 
similar to this work. 

VIII. CONCLUSIONS 

In this paper, we introduced a novel privacy-preserving 
protocol that protects both query results and mappings in a 
PDMS, while maintaining fairness among peers. This protocol 
is based on noise insertion and commutative encryption 
methods. Our implementation on top of the Hyperion PDMS, 
our security and cost analyses of the protocol, and our 
extensive experimental study using real data from the 
healthcare domain showed promising results for our approach.  
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