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ABSTRACT
Interactive web applications powered by new technologies
such as Asynchronous Javascript and XML (AJAX) have
undeniably altered the course of the Web. Despite their pop-
ularity, the associated machinery for characterization, mea-
surement, and monitoring of these AJAX-based applications
has lagged behind significantly. Part of the problem is that
there exists no systematic way to generate AJAX workloads
and observe their network behavior today. This paper fo-
cuses on addressing this issue by developing a tool, called
AjaxTracker, that automatically mimics a human interac-
tion with an AJAX-powered web site and collects associated
network traces. These traces can further be post-processed
to understand various characteristics of AJAX applications.
Given the completely automated nature of our tool, we can
study several popular AJAX Web services, such as mail and
maps applications from popular providers, both across time
as well as space (different vantage points). Our results us-
ing a month-long study revealed that AJAX application sig-
natures exhibit remarkable similarity along several features
across days. Somewhat surprisingly, there seems to be a lot
of similarity across applications that belong to the same cat-
egory (such as maps, mail) but different providers (such as
Google, Yahoo).

1. INTRODUCTION
The advent of a new breed of interactive applications has

changed the face of the Web significantly. These include in-
teractive versions of existing Web services such as maps and
email, as well as Web-based offerings of traditional desktop
applications such as spreadsheets, presentations and word
processors. The core of these interactive applications con-
sists of several new technologies such as XHTML, XML,
CSS and in particular, Asynchronous Javascript and XML
(AJAX) [6].

The continued success of these applications, however, hinges
on whether these new technologies can provide the level
of interactivity available in the traditional desktop counter-
parts for these applications. It is important, therefore, for the
stake-holders such as customers as well as service providers
to continuously study and monitor the characteristics of these
applications. An essential ingredient in such an endeavor is

a framework for scalable measurement and characterization
of these applications.

These interactive applications behave significantly differ-
ently from the traditional web. This difference is largely due
to the fact that each mouse movement can lead to a transac-
tion between the client and the server, with each transaction
involving an exchange of one or many messages. Moreover,
such transactions can sometimes happen asynchronously and
autonomously even without the user requesting by clicking
on an object. For example, the auto-save feature in AJAX-
enabled email applications regularly sends a copy of the email
message being currently composed to the server. Thus, these
applications represent a fundamental shift from the tradi-
tional click-to-refresh model that was associated with the
Web.

Given their differences with traditional Web services, con-
temporary measurements studies on Web traffic character-
istics do not readily apply in the context of AJAX appli-
cations. Similarly, several traffic generators (e.g., [5] and
those listed in [4]) that have been proposed before to repro-
duce network behavior of applications such as Web services
do not completely capture the AJAX characteristics. This
is in part because we do not completely understand how
different AJAX applications behave yet, and partly because
they continuously evolve over time. Recently, researchers
have conducted some measurement studies to characterize
the network-level behavior of AJAX applications [10] using
passive network traces. Since they do not control the work-
load generation, they do not completely capture all (or at
least a large sequence of) operating modes of these appli-
cations, which we believe is important to comprehensively
study and understand these applications.

Our goal in this paper is to focus on two main aspects
of AJAX-based Web services. First, we wish to develop
a tool that can automatically generate, AJAX application
workloads by simulating human like behavior, and collect-
ing measurements that are representative of these new ap-
plications. Second, given that they are evolving, we wish
to characterize the evolution of these applications over large
periods of time.

Our first contribution in this paper is the design of a tool
called AjaxTracker that satisfies the twin goals of user emu-
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lation of AJAX applications and periodic data collection of
these AJAX websites. At the heart of our approach is an au-
tonomous navigation engine that can emulate typical mouse
events on a web browser (including events like drag and
drop) and capturing network traces during these AJAX ses-
sions. These captured traces are then post-processed to ob-
serve characteristics of the AJAX applications. Using Ajax-
Tracker, one can script the interactive navigation processto
be followed on a given Web site—just as a human would
interact—and then replay the process over several days, and
possibly at several locations thus enabling large-scale data
collection for these applications. Such a temporal as well
as spatial data collection allows us to characterize and ob-
serve anomalies and abnormalities, that are otherwise very
difficult to observe. We discuss the details of the tool in
Section 2

Our second contribution in this paper is the analysis of
several representative AJAX applications such as maps and
mail services from Yahoo, Google and MSN. In order to
study each application session individually, we must con-
sider all packets (possibly belonging to different flows) that
are part of the exchange between the client and the Web
server(s). Thus, we run the tool at the end host with one
application session at a time, so that there is no interference
from any other client to server interaction. We characterize
each of these representative applications using several fea-
tures such as request and response message length and inter-
request times. Our results indicate that several of these fea-
tures remain consistent over time. In addition, features such
as inter-request times are similar for applications that belong
to the same category even across providers, suggesting that
similar applications are probably architected in similar fash-
ion. Section 3 discusses these results in more detail.

2. MEASUREMENT COLLECTION
Traffic measurement and characterization is an essential

component of various network management tasks such as
provisioning, security, and performance monitoring. Much
of the existing work on network traffic classification and
characterization routinely clubs all HTTP traffic over port80
into one singular class of traffic encompassed by the WWW.
Although, this coarse classification may have been sufficient
in the past where each service had a different port and pro-
tocol designated for itself, it may not be justified to do so in
the current landscape where HTTP is increasingly used as
a transport protocol for serving several services and appli-
cations —including document editors, spreadsheets, maps,
mail and video. Therefore, it is important to further classify
HTTP traffic into groups of applications.

The granularity at which one needs to characterize or clas-
sify different applications can be quite varied depending on
the particular scenario. Given the latest trend towards in-
teractive applications based on AJAX technology, at a min-
imum, we may want to identify whether Web traffic we ob-
serve is AJAX-based or not, and thus, can restrict ourselves

to studying the differences between AJAX-enabled and non-
AJAX applications. One level of sophistication we may con-
sider is to break up the AJAX traffic into various application
categories such as Maps, Word processors, Spreadsheets,
etc. A further level of detail may include the provider as
well. For example, Google Maps could be considered differ-
ent from Microsoft Live Search Maps (MS Maps) or Yahoo
Local Maps (Yahoo Maps). In this paper, we focus on these
fine-granular AJAX applications identified by both the cate-
gory as well as the provider.

With this application landscape in mind, our goal is to de-
velop a tool that can enable us to automatically collect mea-
surements that can effectively characterize the network level
behavior of these applications. Before we describe our tool
in more detail, we first motivate the need for a new tool by
describing why existing tools do not automatically provide
these functions.

2.1 Difficulties of large-scale data collection
One way to measure network-level characteristics of var-

ious applications is by employing a packet sniffer that col-
lects packets in the middle of the network (say, at a gateway
router). The problem with this approach, however, is the dif-
ference between a TCP-level flow (consisting of the 5-tuple)
and an application session. An application session (such as
when a user navigates Google Maps) may actually result in
several TCP sessions because a single service may be pro-
vided through different servers, or different parts of a single
page are obtained from different servers. Thus, identifying
the group of flows that all belong to a single application ses-
sion can be quite challenging. Besides, this approach only
allows us to observe how these AJAX applications are be-
ing used in the wild, as opposed to controlled generation of
AJAX workloads and observing their behavior.

Our approach, therefore, is to perform application mea-
surements at the end-host. By ensuring that there exists only
one application session at any given time, we can collect
packet traces that are unique for that particular session, even
if the session itself consists of connections to several servers
or multiple connections to the same server. Given that we
need session characteristics, we need a way to emulate user
application sessions. A simple option to automatically gen-
erate web traffic workloads is to use web crawlers like wget
to periodically download several websites and simultane-
ously collect traffic traces, which can then be post-processed
for characterization. There are, however, several limitations
with wget-like crawlers: First, because these applications
make extensive use of client-side scripting, one needs to ac-
tually execute the scripts in order to obtain the complete con-
text of the web page. Traditional crawlers are tailor made for
navigating links embedded within a web page thus they sim-
ply parse it to identify the embedded links. Second, tradi-
tional crawlers have no built in mechanisms to interact with
the interactive controls (like drag-and-drop), which require
mouse or keyboard input, and are fairly common in these
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new applications.
It is, therefore, unclear whether the downloads generated

by such web crawlers is representative of the true workloads.
Next, we describe the design of our tool which addresses
these challenges.

2.2 Design of AjaxTracker
We observe that a full-fledged web browser is required to

generate the application sessions, which can subsequently
be sniffed on the wire. Thus, our approach revolves around
exploiting the web browser to artificially emulate user level
clicks and other actions such as drag-and-drop to influence
the browser into executing a sequence of user actions in a
controlled and flexible fashion.

Algorithm 1 Procedure of AjaxTracker.
collect web packet data(url) begin
run tcpdump()
run browser(url)
wait for 3 seconds till web browser is launched
run eventgenerator(scenario file)
wait until eventgenerator terminates
kill process(browser)
timer = 0
while http connection is open and timer≤ 120do

wait for 10 seconds
timer = timer + 10

end while
kill process(tcpdump)

Our tool, called AjaxTracker, is mainly composed of tcp-
dump [3], an event generator and a web browser. The event
generator, which forms the bulk of our tool, produces the ap-
propriate mouse or keyboard events and provides them to the
web browser, which executes the actions, in turn, generat-
ing the required set of measurements needed to characterize
the particular application. The pseudocode of our process is
shown in Algorithm 1. AjaxTracker first runs tcpdump, then
launches the web browser, and executes the event generator
until all specified events have been processed.

The event generator is a command-line program which is
developed using C++, GTK+ and the X library. It accepts
several parameters, including the URL to navigate, the web
application type (a choice between map, mail, docs and gen-
eral), a total time duration and a scenario file. The scenario
file contains the sequence of events and the position of ob-
jects (like link, button, etc.) in a web site. For example, on
the Google maps web page, the scenario file could specify
several operations such as zooming into a location, entering
an address in the search bar and clicking the submit button,
dragging the map from one location to another, or some such
combination.

The event generator supports two basic navigation modes—
static and random. In the static navigation mode, AjaxTracker
generates the sequence of events exactly in the order speci-

fied in the scenario file. In the random mode, it tries to gen-
erate events as randomly as possible, while still following
the scenario file as a guideline. For example, the city loca-
tion can be made random (within a set of cities specified).
Optionally, the mouse click can be randomly placed on the
map and dragged to random places. Thus, within the ap-
plication context, the tool allows specification that controls
how a given user session looks like. This flexibility is one
of the hallmarks of our tool. For applications that require a
login—such as mail or Google Docs—the tool performs the
login process before proceeding with the event generator. If
the tool encounters a generic application, one that does not
require a scenario file, then the event generator dynamically
generates the events.

Since AjaxTracker uses human specified scenario files,
significant changes to the user interface by the application
provider may cause the tool to malfunction. Though this
limitation may seem serious, observations made by the tool
over a period of weeks shows considerable consistency in
the results of the static navigation mode, barring a few user
interface changes that were easy to modify in the scenario
file.

3. MEASUREMENT RESULTS
In this section, we explain our measurement results us-

ing AjaxTracker on a sample set of popular AJAX applica-
tions that consist of Google Maps, MS Maps, Yahoo Maps,
Google Mail, HotMail, Yahoo Mail, and Google Docs.

AjaxTracker considers a set of 5-tuple flows of<src, dst,
src port, dst port, protocol> as a session. Since AjaxTracker
aims to characterize mainly AJAX applications, it filters out
non-TCP non-Web traffic (i.e., packets that do have port 80
in either the source or destination port fields). We do not
need to analyze the packet payload as AjaxTracker only ex-
plores one specific AJAX application at a time. Thus, the
data collected at the end host does not require any further
clustering.

For our measurements, we schedule to run the tool on
a daily basis on a Linux based host with a Firefox web-
browser. Generally, a web site may contain several docu-
ments and images with possibly different sources, in addi-
tion to the actual AJAX content. While we can choose to
count these as part of overall application session traffic, it
might lead to inconsistent behavior either due to differences
in the image sizes or other non-AJAX content. So, to elimi-
nate this inconsistency, we exclude flows that have only one
transaction, with the rationale being that AJAX-related flows
almost always incur more than one transaction.

Once we collected the traces corresponding to individual
AJAX sessions, we extracted several features of these ses-
sions in our measurement results. As a first cut, we selected
the CDF of request message length (QML), CDF of response
message length (RML) and inter-request time (IRT). Note
that the list of features we have selected is not exhaustive by
any means and could be arbitrarily extended. The features
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Figure 1: Google Maps’ traffic patterns over time.
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Figure 2: Similarity among map applications.

we have selected have less dependence on the location of
the vantage point or on the network conditions. For exam-
ple, since we do flow reassembly, these features do not look
at individual packets or their timing, and hence capture more
intrinsic characteristics of the AJAX applications.

Given the automated nature of our tool, we could conduct
longitudinal study on how these applications vary over time,
whether we could see similarity across applications, and how
sensitive the measurements are to the exact sequence of nav-
igation steps. We can even repeat the same experiments at
different vantage points and compare their differences; we
however did not perform this study yet and is part of our fu-
ture work. We summarize our results and observations based
on a month-long deployment of the tool on a university cam-
pus machine.

Similarity over time. Our goal in this experiment is to
explore whether AJAX applications exhibit temporal simi-
larity. Thus, we configured AjaxTracker to repeat the same
set of steps and collect information for the different sessions
over a period of 10 days. Figure 1 shows the three features
extracted out of Google Maps’ traffic. The figure shows that
there exists no significant difference over time for all the fea-
tures except in the QML (in Figure 1(a)). The difference also
appears to be just a shift along the x-axis for four out of the
10 days. We believe these changes are the result of devel-
opers testing and patching new functionality. Similarly, with
Google docs (not shown in the figure), we observed abnor-

mal patterns because of user interface changes. We had to
modify the tool to adjust to the new UI by simply rewriting
the scenario file. Once we did that, we observed that the
QML was consistent.

Similarity within application group. We next group to-
gether different providers’ version of the same service (such
as as Google Maps, Yahoo Maps, and MSN Maps) into one
category (shown in Figure 2). In Figure 2(a), we can observe
that MS Maps and Yahoo Maps have very similar QML dis-
tributions until about the 80 percentile mark. Upon manual
inspection, we found that the largest 20% of QMLs of MS
Maps belonged to requests for javascript code or requests
sent to servers in 2o7.net domain used by Omniture, Inc,
which collect any session data of visitors to the customer
websites on behalf of the customer (in this case, Microsoft).
The curve labeled MS Maps-refined removes these requests
and responses from the original data. We can clearly observe
that once we prune these requests out, the curves look much
similar both for the RML and IRT features.

In Figure 2(c), for all applications, at least 50 percent of
IRTs are less than 40ms. Particularly, 92% of Google Maps’
IRTs and 85% of Yahoo Maps’ IRTs are around 100ms, and
thus are quite similar along this feature. Google Maps achieves
very fast requests by usually opening up to eight connections
and making requests simultaneously. Similarly, Yahoo Maps
makes between two to five connections with the same server.
In case of MS Maps, a web browser communicates with as
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Figure 3: Similarity among mail applications.
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Figure 4: Comparison between static and random navigations.

many as four different servers with up to two connections per
server. Note that, for For MS Maps we aggregate the differ-
ent sessions which download tiles images from four different
servers into one session in order to present MS Maps’ IRT
exactly.

For mail applications (as shown in Figure 3), we find sim-
ilarity along the IRT feature, which suggests that all the ap-
plications use similar prefetching mechanisms. The RML
feature also appears to follow a similar trend, while in QML
distribution, Google Mail is quite different while Yahoo Mail
and HotMail are quite similar. In general, it is hard to expect
that the QML distributions are going to be similar because
typical requests consist of HTTP headers which may be dif-
ferent for different Web sites even for the same type of ser-
vice. However, RML to some extent, and IRT to a large
extent appear to be quite similar to each other indicating that
same category of AJAX applications even across providers
may exhibit quite a bit of similarity.

Comparison between Static and Random Navigations.
To explore whether these features are tied to specific naviga-
tion steps, we compare static and random navigation modes
for AjaxTracker across two applications: Google Mail, and
Yahoo Maps. Figure 4 shows the similarities between static
and random navigations. Google Mail has similar patterns
for QML and RML graphs, but has slight difference in IRT
graph. For Yahoo Maps, the similarities between static and
random navigations are clearly shown in terms of QML and

IRT, and the dissimilarity in the RML graph is also tolera-
ble. It can observed, somewhat surprisingly, that AJAX ap-
plications have similar features (particularly along the IRT
feature) even when the exact navigation steps are quite dif-
ferent.

Dissimilarity across application groups. We mainly fo-
cus on differences between different application groups. Fig-
ure 5 shows the differences between mail, maps, and docs.
For each application group, we consider the aggregate dis-
tribution across all providers. We can observe from Figure 5
that the maps application group exhibits quite different char-
acteristics in comparison with both mail and docs. Both mail
and docs share a lot of similarity, particularly with respect to
the RML and IRT distributions. We believe that this could
be because of the fact that the architecture of these applica-
tions is quite similar. For example, they both employ similar
prefetch characteristics for data outside of the visible win-
dow within the AJAX webpage. They both have traffic up-
load characteristics, when for example, a mail is sent or au-
tomatically saved, just as a document could be automatically
saved.

4. RELATED WORK
Given the recent trend in the growth in popularity of AJAX

based applications, there has been very limited research work
either geared towards devising a tool that can collect proper
measurements or studying the overall characteristics of these
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Figure 5: Dissimilarity among application groups.

applications.
A recent paper by Schneider et al. [10] made one of the

first attempts to characterize AJAX enabled application pro-
tocols by examining the contents of HTTP headers over ISP
traces. They extract features that are similar to ours. How-
ever, our work is significantly different from theirs, as we
focus on generating user interactions with a web page in
a controlled fashion to generate our traces, while they rely
only on passively obtained data which is quite restrictive.
Besides, our analysis includes several new results that have
not been reported before in literature.

Several Web traffic generators based on statistical models
have contributed to understanding the impact of Web traffic
(see [4] for a list of these). These tools, however, do not
factor the exact AJAX application traffic characteristics,as
there does not exist a model for AJAX application behavior
yet. Our tool allows us to conduct large-scale studies on
the characteristics of various AJAX applications in the wild,
thus contributing to the creation of a model which can then
possibly be integrated into the afore-mentioned tools.

Web automation tools such as sahi [1] and SWAT [2] en-
able one to navigate a web site automatically and repeatedly.
However, these tools are mainly tailored for static naviga-
tion of websites using automatic filling of forms and lack
the functionality to interact with AJAX enabled applications
(such as emulate mouse drag-and-drop events).

Roughan et al. [9] leverage statistical information of flow
data such as mean and standard variance of packet size, con-
nection duration, packet inter-arrival period, and so on. They
then attempt to classify applications by applying machine
learning techniques. Ma et al. [8] propose an unsupervised
protocol inference framework that employs both payload as
well as statistical information to classify packets. Finally,
BLINC [7] depends on the social behavior between hosts to
identify applications. We can use our work as a mechanism
to obtain specific traffic signatures that can assist in devising
an AJAX classifier similar to these works and thus is com-
plementary to these approaches.

5. CONCLUSION
As the popularity of AJAX-powered Web services increases,

it becomes critical to study and understand their network-
level behavior. To this end, we have described AjaxTracker,
a tool that is capable of both statically as well as randomly
navigating AJAX-based Web sites. Our tool, successfully
captures realistic network-level flow measurements by im-
itating a set of mouse events that in turn leads to an ex-
change of messages between the client and the Web server.
By running AjaxTracker at a stand-alone server and iterating
through several web sites, one at a time, we can automati-
cally collect and track several AJAX-enabled Web sites in a
scalable fashion. By post-processing the individual trace, we
can extract the unique features for the particular application.
Our measurement results using data collected over a period
of more than one month show that many features for each of
the Web sites remain consistent over days. Somewhat sur-
prisingly, we also found that there exist similarities between
similar AJAX-based applications (such as maps and mail)
offered by different providers, which suggest that there are
some fundamental characteristics of these applications that
are shared across providers. As part of ongoing work, we
are exploring how we can use these features (and possibly
new features) to scalably classify AJAX applications in the
middle of the network.
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