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Fibonacci Modeling of Malware Propagation
Yu Zhang, zhangyu@cs.purdue.edu and Bharat Bhargava, Fellow, IEEE, bb@cs.purdue.edu ∗

Abstract—Self-propagating malware spreads over the network
quickly and automatically. Malware propagation should be
modeled accurately for fast detection and defense. Existing
malware propagation models fail to consider a number of issues.
First, the malware can scan a host for multiple vulnerabilities
on multiple ports. Second, the vulnerability scanning can be
done by multiple threads concurrently. Third, the exploitation
of vulnerabilities and the infection of vulnerable hosts cannot
be done instantly. Fourth, the malware propagation can start
from multiple places in the network rather than a single release
point. Finally, the malware copies can collaborate with each
other to cause much more damages.

Inspired by the Fibonacci Number Sequence, We develop the
discrete-time Generic Fibonacci Malware Propagation (GFMP)
Model. We present the malware propagation tree and forest,
prove that the GFMP model is analytically sound, and compare
it to existing models. To our knowledge, the GFMP model is
the first model that considers and quantifies issues of multi-
port scanning, multi-threading, infection time, multiple starting
points, and collaboration among infected hosts. Experimental
results show that the GFMP model can accurately represent the
malware propagation, and fits in the propagation data of the
real-world malware such as the notorious Witty Worm.

Index Terms—Fibonacci, Propagation, Network Security.

I. INTRODUCTION

Malware is the software designed to compromise computer
systems. Examples of malware include Logic Bomb, Virus,
Worm, and Botnet [2], [7]. Malware can be classified into two
categories: self-propagating malware and non-self-propagating
malware. Self-propagating malware poses a much more serious
threat due to its ability to propagate through networks to
infect a large number of hosts. For instance, worms, which
are famous examples of the self-propagating malware, had
infected thousands of computers [1], [10], [11], [15]. Malware
replicates itself and intrude vulnerable hosts without human
intervention. Malware can carry malicious payloads that can be
released upon infection of the vulnerable hosts. Malware can
cause significant damages, including consumptions of network
bandwidth, destructions of infected hosts, and leak of private
information such as credit card numbers, etc.

The malware propagation consists of four steps:
1. Reconnaissance: search vulnerable victim hosts by perform-
ing port scans;
2. Infection: transmit malicious payloads, exploit vulnerabili-
ties on victim hosts to gain control;
3. Discovery: perform information-gathering activities on vic-
tim hosts, e.g., stealing passwords and personal files;
4. Destruction: perform destructive activities on victim hosts,
e.g., formatting the hard disk.

∗ Authors are with Department of Computer Sciences, Purdue University,
West Lafayette, IN, 47906.

After the second step (infection), the malware is ready to
propagate from the newly infected host to another by repeating
the whole process.

The first step of malware propagation is Reconnaissance,
during which the malware discovers the vulnerable victims.
Reconnaissance is normally done by performing port scans. To
perform a thorough port scan, the malware sends probe packets
to each port on each victim host, and analyzes the responses
from victim hosts. In a hypothetical scenario, a packet sent to
FTP port 21 on the victim host triggers a reply packet, which
is then analyzed by the malware to infer detailed information
such as the type and version of the operating system about
the victim host. Based on these information, a more-informed
attack can be launched (e.g., exploiting the vulnerability that
exists on the particular operating system). The malware has
to perform port scans for a huge number of IP address/port
number combinations. In IPv4 networks, the size of IP address
space is 232 and the size of port number space is 216 [14].
Hence, the size of search space for IP address/port number
combination is 248. While the large size of search space
renders port scanning a daunting task, malware authors have
employed sophisticated techniques to perform fast scanning.
For example, many real-world worms search vulnerabilities
only on a particular port, which effectively reduces the size of
search space to 232 [9], [19], or commonly used ports (e.g.,
FTP port 21 and HTTP port 43).

It is clear that malware with different scanning and
propagation strategies have different spread time. A number
of models have been proposed to characterize the propagation
of worms, including the Analytical Active Worm Propagation
(AAWP) model and the epidemiological two-factor model
[1], [10], etc. We observe that existing malware propagation
models fail to take into consideration a number of issues:

• That the malware can scan a host for multiple vulnera-
bilities. For instance, while the malware may fail to find any
vulnerability on the FTP port 21 of a host, such failure does not
exclude the possibility that the host has other vulnerabilities.
Therefore, sophisticated malware look for vulnerabilities on
other ports as well, e.g., the DNS port 53. In the case that the
malware discovers multiple vulnerabilities, it has the option
to exploit the best according to some criteria (e.g., infection
time).
• That the scanning can be done by multiple threads.

Multi-threaded malware can scan and infect multiple machines
concurrently. Moreover, since vulnerabilities exist on many
ports, multi-threaded scanning of multiple ports on one host is
an effective way to expedite port scans. Most existing models,
including the AAWP model, fail to consider that the malware
may spawn a large number of threads to scan concurrently.
• That the exploitation of vulnerabilities and the infection
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of victim hosts are not done instantly. It takes time for the
malware to transmit the payload, exploit a vulnerability, and
subvert the defense system on the victim host. A newly found
vulnerable host can neither be infected immediately nor be
ready to infect other hosts. Although the AAWP model claims
to be able to incorporate the infection time, it simply makes
the clock ticks larger, without precise calculation of the ratio of
scan time to infection/propagation time. Note, however, that
port scans can be done much faster than infections. In the
extreme case, Figure 1.(c) in [1] assumes that the infection
time could be as long as 60 seconds, while the scanning time
for one IP/port combination is usually shorter than 0.1 second
[25]. We discuss this issue further in Section V-B.
• That the malware propagation can start from multiple

places in the network rather than a single starting point, and the
infected hosts can collaborate to cause much more damages
(e.g., the Botnet [7] and the orchestrated attacks to Estonia
[32]). For example, multiple attackers can simultaneously
release the same malware at multiple places, and researchers
suspect the Witty Worm [2] was released from multiple IP
addresses at the same time. The malware can be released
in different geographical regions of the world, e.g., Europe,
Asia, and North America, which will significantly expedite
its propagation. Although commonplace in the real world,
multiple starting points and collaboration among attackers are
not represented by existing models.

To address these issues, we propose the discrete-time
Generic Fibonacci Malware Propagation (GFMP) Model,
which is inspired by the Fibonacci Number Sequence. In the
Fibonacci rabbit problem, newly-born rabbits cannot give birth
to baby rabbits immediately. Instead, they need some time to
get mature, which is reminiscent of the infection/propagation
time problem discussed above: similarly, a host cannot scan
and infect other hosts until maturity, i.e., completely infected.

The GFMP model employs the malware propagation tree
and forest to represent the infection and propagation time.
We prove that the GFMP model is analytically sound, derive
its important properties, and compare it to existing models.
To our knowledge, the GFMP model is the first model that
considers and quantifies issues of multi-port scanning, multi-
threading, infection time, multiple starting points, and collab-
oration among infected hosts. Experimental results show that
our model can accurately represent the malware propagation,
and fits in the propagation data of the real-world malware such
as the notorious Witty Worm [2].

The rest of the paper is organized as follows. Section
2 discusses related work. In Section 3, we briefly review
the Fibonacci Number Sequence and infer several important
properties. In Section 4, we present the propagation tree and
propagation forest. In Section 5, we describe the GFMP model
and its properties, and compare it to existing models. In
Section 6, we conduct experiments to evaluate the GFMP
model. Section 7 concludes our research.

II. RELATED WORK

Scan Strategy. Over the years, researchers have proposed
various scanning algorithms for the malware, including: naive

random scanning, in which the malware chooses a random
address uniformly from the IPv4 address space [1]; localized
scanning, in which the malware scans a local IP address
(e.g., addresses that are in the same subnet as the malware)
with a high probability p and scans a random address with
a low probability (1-p) each time [30]; importance scanning,
in which the malware assumes that the vulnerable hosts are
unevenly distributed and such distributions are obtainable [6];
self-learning scanning, in which the malware estimates the
distribution of the vulnerable hosts [27]; hit-list scanning, in
which the malware uses an existing list. e.g., BGP routing table
list, social network list, etc., to look for vulnerable hosts [15];
permutation scanning, in which the malware could determine
whether a host was infected or not and change scan targets
[15]; sampling scanning, in which the malware first samples
the target network and then spread to the corresponding subnet
[3]; and passive scanning, in which the malware analyzes the
network traffic passively without sending probe packets, etc.

Collaboration. Malware can collaborate with each other
and perform much more efficient reconnaissance. S. Staniford
et al. [15] discussed the Warhol worm, which propagates
extremely quickly by self-coordination with both hit-list scan-
ning and permutation scanning. B. Wiley [16] described an
abstract distributed and collaborative worm Curris Yellow. C.
Gates [29] discussed possible collaborations in port scans, and
how to detect collaborative port scans.

Port Scan. Port scanners can employ various techniques
to perform scanning. Examples include: SYN Scan, in which
the scanner produce its own IP packet and sends TCP SYN
packets to the victim hosts and analyzes the responses; UDP
scan, in which the scanner sends UDP packets to the victim
hosts and checks whether ICMP port unreachable messages
are received afterwards; and application-layer scans, such
as HTTP/FTP/DNS scans [19], [12]. Port scanning can be
performed on multiple ports. Famous ports include port 21
for FTP, port 53 for DNS, port 80 for HTTP, port 25 for
SMTP, and port 443 for HTTPs [14]. Some scanners perform
the scanning in two-iterations: they scan with one technique,
e.g., the SYN scan, first, and scan the un-denied ports with
another technique. For instance, the famous NMAP scanner
[25] uses the two-iteration approach when executed with the
-SUV option.

IPv6 Scan. J. Yang [13] discussed how to defend worms
in IPv6 networks. S. Bellovin et al. [23] presented worm
propagation strategies for IPv6 networks. A. Kamra et al. [12]
proposed a DNS-scan method that can achieve high spread
rates in IPv6 networks. In general, IPv6 networks have much
larger address space, rendering the port scan more difficult.
However, some IPv6 features reduce the address space, and
the malware can utilize the high-speed network connection in
the future to speed up the propagation.

Malware Propagation. A. Wagner et al. [24] presented
characteristics of worms, including the protocol, the size of
the payload, and the scanning strategy, etc. C. Zou [9] et
al. analyzed the performances of different worm propagation
strategies. A.G. Voyiatzis et al. [20] described a class of worms
that target network components such as routers. M. Vojnovic
et al. [3] discussed how to minimize the required number of
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TABLE I
NOTATIONS USED IN THIS PAPER

Notation Explanation
b the number of IP addresses on the blacklist of the malware
c the number of ports the malware scans for each IP address
conh the number of contagious hosts that can infect other hosts

d destruction rate: the number of destructed hosts over
the number of infected hosts

k the number of threads in the malware

p patching rate: the rate at which
the vulnerable machines are patched

r birth rate: the rate at which
the new vulnerable hosts joins the network

v the number of vulnerable (excluding infected)
host/port combinations

V the number of vulnerable (including infected)
host/port combinations

x/y the initial values for the FNS/LNS

φ
see Equation (2) for the formal definition.

(For FNS, φ is approximately 1.618, the golden ratio.)

θ
see Equation (8) for the formal definition.

(For FNS, θ is
√

5.)
α/β the coefficients for the LNS. See Equation (7).
PT Propagation Time
IT Infection Time

scans to infect hosts. Storm Worm [4], [5] used the Distributed
Hash Table (DHT) protocol based on Kademlia [26] to control
the infected nodes. Z. Chen et al. [1] proposed the Analytical
Active Worm Propagation (AAWP) model. C. Zou et al. [10]
proposed the epidemiological two-factor model.

Defense. J. Wu et al. [17] proposed a worm detection ar-
chitecture for various worm scanning techniques. J. Twycross
et al. [18] built a virus throttle program that can detect the
malware based on their abnormal network behaviors. J. Jung
et al. [21] developed the Threshold Random Walk (TRW)
algorithm to identify malicious remote hosts. A. Kumar et al.
[28] presented the analysis of the Witty Worm and inferred
about the IP address where the Witty Worm was released. S.
Staniford et al. [22] described Spice, a port scanner that can
detect stealthy scans.

III. BACKGROUND ON FIBONACCI NUMBER SEQUENCE

In this section, we briefly summarize the Fibonacci Number
Sequence (FNS) and discuss its generalizations. We infer
several important properties of the FNS and discuss their uses
in the malware propagation. In Section V we discuss in detail
on how the FNS is applied to analyze the malware propagation
and to model multi-threading, infection time, multiple start
points, and collaborative attacks. The FNS is named after
Leonardo Fibonacci. Interested readers are referred to [31] for
thorough discussions of the FNS. Table I lists the notations
used throughout this paper.

A. Fibonacci rabbit problem

We briefly present the famous Fibonacci rabbit problem: In
the beginning there is no rabbit. After one month, one pair of
baby rabbits is brought in. The baby rabbits will get mature
after one month. Each pair of mature rabbits gives birth to a
new pair of baby rabbits every month. The problem is: how
many pairs of rabbits will there be after n months?

B. Definition of Fibonacci Number Sequence

To solve the fibonacci rabbit problem, we assume that
rabbits never die. We use Fn to represent the number of pairs
of rabbits there are after n months. Note that F0 = 0 and F1 =
1. We observe that F2 = 1 6= 2, since after 2 months the first
pair of baby rabbits will get mature and cannot yet give birth
to new baby rabbits. Note that in the malware propagation
field, most existing models ignored this issue.

Since rabbits never die, to calculate how many pairs of
rabbits there are after n (n>1) months, we simply add the
newly born rabbits to the existing rabbits after (n-1) months,
which is represented by Fn−1. Not all those Fn−1 pairs of
rabbits are mature. Because the baby rabbits take one months
to get mature, we observe that the baby rabbits are those
born within one month, i.e., the (n-2, n-1) month window.
Therefore, the rabbits that were born before this window are
all mature by Month n. There are Fn−2 pairs of such rabbits.

Assume that Fn−1 and Fn−2 are known. We have:
Fn = Fn−1 + Fn−2 when n > 1.

Hence, the solution can be summarized as:

Fn =


0 if n = 0;
1 if n = 1;
Fn−1 + Fn−2 if n > 1.

(1)

We call the numbers generated by the recursive definition (1)
Fibonacci numbers, and call the number sequence FNS.

C. Properties of Fibonacci Number Sequence

1) Closed-Form Expression: We can solve the recursive
equation of the FNS with the initial conditions F0 = 0 and
F1 = 1.

Fn =
φn − (1− φ)n

θ
, where θ =

√
5 and φ =

1 + θ

2
(2)

Since | (1−φ)n

θ | is a very small number (smaller than 0.1
when n is larger than 3), we can safely discard it and rewrite
the result as:

Fn =
φn

θ
, where θ =

√
5 and φ =

1 + θ

2
(3)

Note that φ is the golden ratio (approximately 1.618).
2) Growth Rate: The growth rate of the FNS, regardless of

the initial values (except for F0 = F1 = 0), is:

lim
n→∞

Fn+1

Fn
= φ

Hence, the FNS approximately follows the exponential growth
at the rate of the golden ratio φ when n is large. Note that
the malware propagation is also exponential before saturation
[4],[30].

D. Generic Fibonacci Number Sequence: Arbitrary Initializa-
tion

1) Definition of Generic Fibonacci Number Sequence:
If the initial values of the FNS are changed to x and y
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respectively, we will have the generic FNS Gx,y,n:

Gn =


x if n = 0;
y if n = 1;
Gn−1 +Gn−2 if n > 1.

(4)

2) How to Calculate Generic Fibonacci Number Sequence:
Gx,y,n can be represented by the original FNS.

Gx,y,n = xFn−1 + yFn (5)

Due to space limitations, we omit the proof for Equation (5).
Note that F−1 = F1 - F0, thus Equation (5) still holds when
n is 0.

Similar to Section III-C1, when n is larger than 3, we apply
Equation (3) and rewrite Gx,y,n as:

Gx,y,n = xFn−1 + yFn

= x
φn−1

θ
+ y

φn

θ

= (
x

φ
+ y)

φn

θ

= (
x

φ
+ y)Fn

(6)

We observe that the Generic FNS can be approximately
calculated by multiplying the original FNS by a constant
factor.

3) The Shift Property of Generic Fibonacci Number
Sequence: Given Equation (6) we can infer the ”Shift”
property of the Generic FNS, i.e., the generic Fibonacci
number Gx,y,n can be represented by the original Fibonacci
number of Fn+s, where s is the number of shifts and s is
equal to log(yφ+x)

log φ − 1. Formally:

Theorem 1: Gx,y,n = F
[n+

log(yφ+x)
log φ −1]

Proof: According to Equation (6),

Gx,y,n = (
x

φ
+ y)

φn

θ

= (
x+ yφ

φ
)
φn

θ

= (
φlogφ (x+yφ)

φ
)
φn

θ

= (φ[
log(x+yφ)

log φ −1])
φn

θ

=
φ[n+

log(x+yφ)
log φ −1]

θ
Apply Equation(3), = F

[n+
log(yφ+x)

log φ −1]
�

Given x and y, the number of shifts s is a constant num-
ber. Theorem 1 has important implications on the Fibonacci
malware propagation: it quantifies the effects of different
initialization values, and proves that the same effects can be
achieved by ”shifting” the index of the original FNS by a
constant number. Hence, the effects of hitlist scanning and
flash scanning, etc., can be quantified in the model by shifting
the regular scanning. We discuss this further in Section V.

4) The Linear Property of Generic Fibonacci Number
Sequence: The Linear Property of the Generic FNS states
that the sum of two Generic FNSes with initial values (x1,y1)
and (x2,y2) is equivalent to the Generic FNS with the initial
values (x1 + x2, y1 + y2, respectively. Formally:

Theorem 2: Gx1,y1,n + Gx2,y2,n= Gx1+x2,y1+y2,n

Proof: According to Equation (6),

Gx1+x2,y1+y2,n = (
x1 + x2

φ
+ y1 + y2)

φn

θ

= (
x1

φ
+ y1)

φn

θ
+ (

x2

φ
+ y2)

φn

θ

= Gx1,y1,n +Gx2,y2,n �

Corollary 1: Gmx,my,n = mGx,y,n
Proof: According to Theorem 2,

Gmx,my,n = Gx,y,n +G(m−1)x,(m−1)y,n

= 2Gx,y,n +G(m−2)x,(m−2)y,n

= ...

= kGx,y,n +G(m−k)x,(m−2)y,n

= ...

= mGx,y,n �

E. Generic Lucas Number Sequence

A further generalization of the FNS is the Generic Lucas
Number Sequence (LNS). Given constant integers x and y, we
have:

Hn =


x if n = 0;
y if n = 1;
αHn−1 − βHn−2 if n > 1.

(7)

The Generic FNS is a special case of the Generic LNS when
α = 1 and β = -1. To investigate malware propagation, we are
interested in the case where α = 1 and β = -q (|q|< 1

4 ). We
discuss this further in Section V-C.

When α = 1 and β = -q (|q|< 1
4 ), as in Section III-C1, we

can solve the recursive equation of the special LNS with the
initial conditions H0 = x = 0 and H1 = y = 1, and get its
closed-form expression:

Hn =
φn − (1− φ)n

θ
, where θ =

√
1 + 4q

and φ =
1 + θ

2

(8)

Since |q|< 1
4 and 4q<1, we can expand θ using binomial

expansion:

θ =
√

1 + 4q

=
+∞∑
m=0

(−1)n(2n)!
(1− 2n)(n!)24n

(4q)m

≈
n∑

m=0

(−1)n(2n)!
(1− 2n)(n!)24n

(4q)m, n = 2

= 1 +
4q
2
− (4q)2

8
= 1 + 2q − 2q2
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Fig. 1. The propagation tree of the self-propagating malware.

Hence, given that |q|< 1
4 , | (1−φ)n

θ | = | (φ−1)n

θ | = | (
θ−1
2 )n

θ | =
| (q−q2)n
1+2q−2q2 | is a very small number. Thus, we can can safely

discard it and rewrite the result as (when α = 0 and β = -1):

Hn =
φn

θ
, where θ =

√
1 + 4q and φ =

1 + θ

2
(9)

Note that when q = 1, we get the closed-form expression
for FNS as in Section III-C1. We observe that Equation
3 and Equation 9 differ only in the constants. Therefore,
the properties, including the Shift Property and the Linear
Property, of the Generic FNS all hold for the Generic LNS
when α = 1 and β = -q (q< 1

4 ). Due to space limitations, we
omit the formal proof for this observation.

IV. PROPAGATION TREE AND FOREST

A. The propagation tree of self-propagating malware

As shown in Fig. 1, assume that the malware propagation
starts from a single node, We develop the propagation tree of
the self-propagating malware PropTr, which consists of:
1. the root node r: the node where the the malware author
releases it;
2. the intermediate nodes: the nodes that caused direct infec-
tions of at least one other node; and
3. the final nodes: the nodes that caused no direct infections
of other nodes.
Note that the final nodes may have attempted to infect other
nodes, although those attempts, if any, must be unsuccessful.

Formally, we define:
1. the source (parent) function S, such that:
S(i) = j, iff node i, j ∈ PropTr, and j is a parent of i in the
tree PropTr. As shown in Fig. 1, if S(i) = j, node i is the
child of node j.

2.The propagation tree of the self-propagating malware
PropTr is a directed tree in which each node is either:
1. the root node r, where @ node j ∈ PropTr such that j 6= r
and S(r) = j;
2. the intermediate node i, where ∃ node j ∈ PropTr such
that j 6= i and S(j) = i; or
3. the final node f, where @ node j ∈ PropTr such that j 6= f

and S(j) = f, and ∃ node k ∈ PropTr such that k 6= f and S(f)
= k.

B. The propagation forest of self-propagating malware

If the malware is released at k sources, ri, i ∈ [1..k], we
can generate one propagation tree for the malware propagation
rooted at each source node. These propagation tress form the
propagation forest.

The propagation forest of self-propagating malware Fprop
is the disjoint union of the propagation trees rooted at nodes
ri, i ∈ [1..k], formally:

Fprop =
k⋃
i=1

PropT ri

C. The infection time and propagation time

As shown in Fig. 1, for the newly infected victim host, there
is a short delay between the intrusion of the malware and the
propagation of the malware to other hosts. Such delay includes
the time spent on the exploitation of the vulnerability on the
victim host and subversion of the victim host. We denote the
delay as infection time.

Intuitively, we define the Infection Time (IT) as the time
interval between the start of infection on a particular host
(i.e., the time when the host was initially intruded) and the
start of propagation on the same host (i.e., the time when the
same host was starting to infect other hosts). Formally,

IT = TStartPropagation − TStartInfection (10)

Note that actual infection time may vary and follow particular
probability distributions.

At the same time, we could define Propagation Time
(PT) of the malware between two hosts as: the time interval
between the infection of a particular host (denote it as s) and
the successful infection of a subsequent target host (denote it
as T(s)) that was caused by this particular host. Formally,

PT = TInfection(T (s)) − TInfection(s) (11)

For a host m that neither received intrusion attempts nor was
infected successfully, the time of infection (Tinfection(m))) is
defined as +∞ (infinite).

We can measure the propagation time for all infected hosts
and collect the statistics about them, e.g., we can calculate
the average propagation time. However, there is one problem
with definition (2): it works only if there is at least one
subsequent successful infection from the original host (S).
If the infection attempt was unsuccessful (e.g., if the target
host was invulnerable) or there was no subsequent infection
attempt (e.g., if the malware on the host was quarantined by
administrators) the propagation time is +∞ (infinite).

Alternatively, we can calculate the propagation time from
the infected hosts, under the observation that each infected
host must be infected by some source host. Hence, we define
the Propagation Time (PT) of the malware between a host
and its infector as: the time interval between the successful
infection of a particular host (denote it as t) and the infection
of the host that caused the infection of this particular host [8]
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(denote it as S(t)). Formally,

PT (S(t), t) = TInfection(t) − TInfection(S(t)) (12)

We can infer several important properties for Propagation Time
(PT).

1. Additivity: if there are three hosts (Host m, n, and o) that
satisfy the following two conditions:

a) the malware propagated directly from Host m to n; and
b) the malware propagated directly from Host n to o,
then the propagation time between Host m and o is the
sum of the propagation time between Host m and n and the
propagation time between Host n and o. Formally,

For Hosts m, n, and o that satisfy S(o) = n and S(n) = m:

PT (m, o) = PT (m,n) + PT (n, o), (13)

2. Diameter: the diameter of the tree (Diameter(PropTr))is
the time elapsed since the release of the malware until the
infection of the last vulnerable hosts (denote it as lv). Hence,
we can use PT(r, lv) to represent the diameter of the tree:
Diameter(PropTr) = PT(r, lv).
Assume that there are n intermediate nodes on the path
between r and lv. We denote them as nodei, i ∈ [1..n], where:

S(nodei) = r, if i = 1;
S(lv) = nodei, if i = n;
S(nodei+1) = nodei if i ∈ (1..n).

(14)

Using Property 1, Diameter(Tprop) can be further calculated
as:

Diameter(PropTr)
= PT(r, lv)
= PT(r, nodei) + PT(node1, node2) + ... + PT(nodei, nodei+1)
+ ... + PT(noden, lv)

= PT (r, nodei)+PT (noden, lv)+
∑
i

i∈(1..n)

PT (nodei, nodei+1)

(15)

V. GENERIC FIBONACCI MALWARE PROPAGATION
(GFMP) MODEL

In this section, we describe the discrete-time Generic Fi-
bonacci Malware Propagation (GFMP) model, and show how
we apply Fibonacci numbers to model the malware propaga-
tion and address the issues presented in the previous sections.

A. Preliminaries

We assume that during the Reconnaissance step the malware
will perform port scanning to discover the vulnerable ports on
the target host.

Malware may selectively scan the IP addresses rather than
scan all. E.g., reverse engineering [30], [11] shows that Code
Red I and II never scan some IP addresses, including the local
(127.0.0.0/8) and multicast (224.0.0.0/8) addresses. This fact
is often overlooked by researchers (e.g., in [10] the authors

assume that CodeRed will scan all IP addresses with equal
probability). Assume that the malware puts b IP addresses on
its blacklist, i.e., it will never scan those IP addresses, and
IPv4 is in use, the number of the IP addresses the malware
may scan is (232 - b).

We further assume that the malware scans c ports for each
destination IP address. Hence, the total search space for the
malware is c(232 - b).

Advanced real-world scanners are mostly multi-threaded.
Most existing models overlooked multi-threading issues in
modeling the malware propagation. In our model, we assume
that the malware employs multi-threaded programming and
scans multiple address/port combinations concurrently. If there
are k threads of each malware scanning module,we assume
that each time each infected host can scan k address/port
combinations. We do not assume that these k scans are
independent.

Hence, we need to calculate how many new vulnerable
IP address/port combinations are discovered each time. Note
that vulnerability discovery is not the same as successful
infection. After the vulnerability discovery, the malware still
needs some time to propagate to the victim host and exploit the
vulnerability. We assume that there are v uninfected vulnerable
IP address/port combinations (multiple ports on one host can
be infected) and i infected hosts in the network before the
scanning. Given that each time each infected host can perform
k scans simultaneously, we would like to know how many out
of those v combinations will be discovered by all infected
hosts.

We denote the number of contagious hosts as conh
(contagious host). The number of new vulnerable
IP address/port combinations discovered (denoted as
newlyinfected) during the scanning is:

newlyinfected
= v × (the probability that a given IP address/port combination
will be discovered by at least one of the conh infected hosts)
= v × (1 - the probability that a given IP address/port
combination will not be discovered by all the conh infected
hosts)
= v × (1 - (the probability that a given IP address/port
combination will not be discovered by one infected host)conh]
= v × [1 - (1 - The probability that a given IP address/port
combination will be discovered by one infected host))conh]

Since the probability that a given IP address/port combina-
tion will be discovered by one infected host is k

c(232−b) , we
have:

newlyinfected = v × [1− (1− k

c(232 − b)
)conh] (16)

B. More on Infection Time and Propagation Time

As discussed in Section IV-C, we cannot ignore the infection
time and propagation time in the malware propagation model.

The epidemiological models use the infection time and the
propagation time as parameters in simulations without detailed
discussions [10]. In the AAWP model [1], all infected hosts
(including the ones that were newly infected) perform their
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scanning activities at the next time tick (denote it at t and
the length of the time tick as L(t)). Therefore, the the newly
infected hosts that were infected between (t, t + L(t)) are
treated equally and the hosts infected near time t will perform
the same number of scans as the hosts infected near time t
+ L(t). Such equal treatment is imprecise. The AAWP model
also models the infection time by simply making the clock
ticks larger without considering the difference between the
scan time and infection/propagation time. The scan can usually
be performed much faster with advanced scanning techniques
than the infection. In the extreme case, the scan time for one IP
address/port combination usually takes less than 0.1 seconds
[25], while [1] assumes that the infection could be as large as
60 seconds.

Moreover, the Theorem 1 for the AAWP model is proved
by induction on the number of scans, which can either be suc-
cessful (which brings a newly infected host) or unsuccessful
(which brings no new host). Hence, each induction step will
either add a host or do nothing. At the next time tick, the
number of infected host will be either unchanged or increased
by one. Hence, The AAWP model assumes that the scans are
performed step by step by the worms, i.e., in each step the scan
of one worm is performed, and the number of the infected
hosts is updated. This is not always true, e.g., according to
its user documentation, the famous NMAP scanner [25]: is
capable of scanning many hosts in parallel by dividing targets
into multiple groups, and scanning one group (e.g., 50 hosts)
at a time.

To our knowledge, the AAWP model does not take into
consideration the propagation time of the worm, and ignores
the time of data transfer between hosts.

C. Generic Fibonacci Malware Propagation (GFMP) Model

In the Fibonacci rabbit problem, the newly born rabbits are
not mature, and cannot produce rabbit right away. Instead,
they take some time to get mature, which is reminiscent
of the infection/propagation time problem in the malware
propagation modeling.

Inspired from the Fibonacci Number Sequence (FNS), we
propose the Generic Fibonacci Malware Propagation (GFMP)
Model.

In the GFMP model, A malware cannot scan or infect other
hosts until it has gained control of the infected host. We use
the propagation time to model the time delay between the time
when the host gets attacked and the time when the host starts
to attack other hosts.

1. We first derive the formula of the GFMP Model. We
denote the total number of vulnerable hosts in the beginning
as V and the number of infected hosts as Ij , where j denotes
the time tick (one time tick could represent one second). We
denote the length of the time tick as L(t). We assume that
the administrators may patch the vulnerable hosts. We assume
that the propagation time (PT) defined in Section IV is two
time ticks for all infections. Hence, the newly infected hosts
intruded at time t are not able to infect new hosts at time t +
L(t), but will be able to infect new hosts at time t + 2×L(t). At
time tick j + 2, there are Ij infected hosts that are contagious

and can infect other hosts. Formally:

conh = Ij (17)

At time tick j+1, the number of uninfected vulnerable hosts
is the number of all unpatched vulnerable (including infected
and newly born) hosts minus the number of infected vulnerable
hosts. Note that neither dead infected hosts nor newly born
hosts could be patched. We assume that the malware can
carry destructive payloads (e.g., formatting the hard disk). In
this case, the destructed hosts are wiped out, and must be
removed from the vulnerable host list. We define destruction
rate to be the number of destructed hosts divided by the
number of infected hosts, considering that only infected hosts
can be destroyed. Therefore, we calculate the dead hosts by
multiplying the destruction rate to the number of infected
hosts, instead of the number of all vulnerable hosts. We denote
the destruction rate of the hosts as d, the birth rate of the
vulnerable hosts (e.g., new vulnerable hosts that just joined
the network) as r, and the patching rate of the vulnerable hosts
as p. Formally:
The number of hosts that are vulnerable (including infected
and newly born) and can be patched at time tick j+1 is:

vj+1 = (1− p)vj − d ∗ Ij + r ∗ vj = (1− p+ r)vj − d ∗ Ij
This is a recursive calculation. We expand the recursion and
get:

vj+1 = (1− p+ r)j+1v0 −
j∑

k=0

(1− p+ r)k ∗ d ∗ Ij−k.

Given that v0 = V, we have:

vj+1 = (1− p+ r)j+1V −
j∑

k=0

(1− p+ r)k ∗ d ∗ Ij−k (18)

The number of hosts that are vulnerable but not infected is:

v = vj+1 − Ij+1 (19)

After one time tick (time tick j+2), without considering
destruction and patching, the number of infected hosts is the
sum of the number of infected hosts at the previous time tick
(j+1) and the number of newly infected hosts during the time
tick.
The number of infected hosts that died or were patched is

dp = (d+ p) ∗ Ij+1 (20)

The number of newly infected hosts is calculated in Section
V-A.

Hence, given (16), (17), (18), (19), (20), we have:

Ij+2

= Ij+1 + newlyinfectedhosts− deadorpatchedhosts

= Ij+1 + v ∗ (1− (1− k

c(232 − b)
)Ij )− (d+ p) ∗ Ij+1

= (1− d− p)Ij+1 + [(1− p+ r)j+1V−
j∑

k=0

((1− p+ r)k ∗ d ∗ Ij−k)− Ij+1][1− (1− k

c(232 − b)
)Ij ]

(21)
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Note that this recursive Fibonacci growth function applies
when there is at least one vulnerable host in the system.

2. If the birth rate and the patching rate are equal, (21) can
be simplified to:

Ij+2

= (1− d− p)Ij+1+

(V − d
j∑

k=0

Ij−k − Ij+1)[1− (1− k

c(232 − b)
)Ij ]

(22)

3. If the birth rate, the destruction rate, and the patching
rate are all zero, (21) can be simplified to:

Ij+2 = Ij+1 + (V − Ij+1)[1− (1− k

c(232 − b)
)Ij ] (23)

4. We can use binomial expansion to expand and simplify
1 - (1 - k

c(232−b) )
Ij :

1− (1− k

c(232 − b)
)Ij

= 1−
+∞∑
m=0

(
Ij
m

)
(− k

c(232 − b)
)m

= 1−
n∑

m=0

(
Ij
m

)
(− k

c(232 − b)
)m, n = +∞

(24)

We observe that: k represents the multi-threading level of
the malware propagation scanner, and normally range from 1
to 210 or one thousand; V represents the number of vulnerable
hosts(including infected hosts), and is normally smaller than
220 or one million; c represents the number of ports that the
malware is scanning, and c > 0; and b represents the number
of IP addresses that the malware puts on the blacklist. If the
malware puts local and multicast addresses on the blacklist
only, 232 - b ≈ 232. Hence, kV

c(232−b) <
210×220

232 = 1
4 . Note that

these are conservative estimations since normally k is much
smaller than 210 and V is smaller than 220. Since the number
of infected hosts cannot be larger than the number of all
vulnerable hosts, i.e., Ij ≤ V, we conclude that Ij ∗ k

c(232−b)
is small. Therefore, we can approximate (24) by setting n to 1.

When n is 1, we can rewrite (23) as:
Ij+2 = Ij+1 + (V − Ij+1)[1− (1− k

c(232−b) )
Ij ]

≈ Ij+1 + (V − Ij+1)[1−
1∑

m=0

(
Ij
m

)
(− k

c(232 − b)
)m]

= Ij+1 + (V − Ij+1)
(
Ij
1

)
(

k

c(232 − b)
)

= Ij+1 +
kIj(V − Ij+1)
c(232 − b)

= Ij+1 +
k

c(232 − b)
IjV −

k

c(232 − b)
IjIj+1

During the initial phase of the spread of the malware, Ij+1
V is

a small number, we can safely throw away − k
c(232−b)IjIj+1.

Therefore:

Ij+2 = Ij+1 +
kV

c(232 − b)
Ij (25)

Equation 25 suggests that the initial spread of the malware
approximately follows the Generic Lucas Number Sequence
(LNS) with α = 1 and β = - kV

c(232−b) :

Ij =


x if j = 0;
y if j = 1;
Ij−1 − (− kV

c(232−b) )Ij−2 if j > 1.
(26)

As discussed above, |β| = kV
c(232−b) < 1

4 . Therefore, the
conditions specified in Section III-E that α = 1 and |β| < 1

4
are satisfied, and we can safely apply the properties, theorems,
and corollaries discussed in Section III.

5. Equation 25 holds when the propagation time PT =
2L(t) (twice as much as the length of the time tick). We now
discuss the effects of different lengths of the propagation time.
Generally, if PT = eL(t), where e is an integer, we have:

Ij+2 = Ij+1 +
kV

c(232 − b)
Ij+2−e, where(j + 2 > e)

(27)

We observe that the longer PT is, the slower the propagation
will be, which follows the intuition that longer PT delays the
malicious activities of the newly infected hosts.

D. Properties of GFMP Model

We infer several properties of the GFMP Model.
1) Multi-threading and the Closed-Form Expression:

Given Equation (9) and that q = kV
c(232−b) , the closed-form

expression for the number of infected hosts, when x = 0 and
y = 1, is:

Ij =
φj

θ
, where θ =

√
1 + 4q and φ =

1 + θ

2

=
[
√
c(232 − b) +

√
c(232 − b) + 4kV ]j

2
√
c(232 − b) + 4kV [2

√
c(232 − b)]j−1

Note that the malware propagation stops when all vulnerable
hosts that can be infected are indeed infected, i.e. Ij ≤ V.
Hence, we can rewrite Ij as:

Ij =


λ, if λ ≤ V;
V, if λ > V.

(λ = [
√
c(232−b)+

√
c(232−b)+4kV ]j

2
√
c(232−b)+4kV [2

√
c(232−b)]j−1

)
(28)

In Equation (28), k denotes the number of active threads
in the malware scanner. We observe that as k increases, the
growth rate increases. However, we note that multi-threaded
programs can easily generate huge network traffic by sending
a large number of packets. Although context switching costs
among the threads are smaller than those of processes, the
costs increase as k increases. Real-world multi-threaded mal-
ware normally employs between 10 - 100 threads. Equation
(28) was derived from Equation (25), where we assume that
the number of previous infected hosts is much smaller than the
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number of all vulnerable hosts ( Ij−1
V is small), and dropped

− k
c(232−b)IjIj+1. Hence, Equation (28) grows faster than the

actual malware propagation when the number of infected hosts
is large.

We conduct experiments to verify Equation (28). We discuss
the experimental results in Section VI.

2) Sophisticated Scanning and the Shift Property: In
Section V-D1, we derived the closed-form expression when
the malware employ multi-threaded random scanning, and the
initial values x and y are 0 and 1, respectively. However, the
malware can employ more sophisticated scanning techniques,
such as a combination of the scanning strategies. The malware
can perform hitlist scanning to infect a large number of pre-
selected vulnerable hosts first [15], then employ the regular
random scanning on the newly infected hosts. The GFMP
model can model such scanning strategies by different ini-
tializations of x and y. For example, if the size of the hitlist
is h, we assume that at time 1 the number of infected hosts is
h (the original release point of the malware) instead of 1, i.e.,
x = 0 and y = h.

According to the Shift Property (Theorem 1) in Section
III-D3, The Generic LNS sequence determined by Equation
28 with initial values x and y can be calculated as:

GIx,y,j = I
[j+

log(yφ+x)
log φ −1]

(29)

When x = 0 and y = h, we have:

GI0,h,j = I
[j+

log(hφ)
log φ −1]

(30)

Hence, the number of infected hosts of the malware with a
hitlist of size h and the combined scanning strategy at time
j can be represented by the number of infected hosts of the
original random-scanning malware at time (t+s), where s is
the shifting number and s = log(hφ)

log φ − 1.
Furthermore, according to Equation (5),

GIx,y,j = xIj−1 + yIj

Hence, the propagation of malware employing the combined
hitlist and random scanning is the linear combination of
the two propagations of malware employing merely random
scanning. When x = 0 and y = h, we have:

GI0,h,j = hIj (31)

We call (h) the linear Fibonacci Coefficient (FC) of the linear
combination.

The real-world Witty Worm propagation confirms our analy-
sis [2]. We discuss this issue further in the experiments section
(Section VI).

3) Multiple Starting Points, Collaborative Attacks and the
Linear Property: The malware propagation can start from
multiple places in the network rather than a single release
point, and the infected computer systems can collaborate with
each other to cause much more damages. For example, the
coordinated Botnet zombie nodes can collaborate to launch
DoS Attacks [7] and the well-orchestrated collaborative attacks
to Estonia caused large-scale disruptions [32].

We consider the representation of the following attacks:

Case 1. There are m uncoordinated attackers who release the
same copy of malware at m places simultaneously. We assume
that the malware employs the localized random scanning
strategy and the search spaces of the attackers are independent
(e.g., attackers divide the whole IP address space equally into
m parts and each attacker will be responsible for one part).
For the initializations, we assume that x = 0 and y = 1 for all
attackers. According to Equation (26), the propagation of the
malware released by all attackers can be represented as I0,1,j
because their initial values and β coefficients are the same.
Note that |β| = kV

c( 232
m −b)

now since the search space for each

attacker is now reduced to 232

m . Recall that we require |β| <
1
4 . As discussed in Section V-C, if we assume that V = 220

and b = 0, we have kV

c( 232
m −b)

= mk
212c <

1
4 . Hence, mkc < 210,

which means that the product of the number of threads per
malware and the number of attackers divided by the number
of ports scanned should be smaller than 1024, if there are
around one million vulnerable hosts. We assume that this is
true and denote the propagation of the whole collaborative
attack as ITOTALxtotal,ytotal,j .

According to Corollary 1 of the the Linear Property, we
have:

ITOTALxtotal,ytotal,j =
m−1∑
n=0

I0,1,j

= mI0,1,j

= I0,m,j

Hence, the number of the infected hosts of the m
uncoordinated attacks that perform localized scanning is
equivalent to that of the single attack released at one point
with initial values xtotal = 0, and ytotal = m.

Case 2. There are still m collaborative attackers releas-
ing the malware. We assume that the malware employs the
sophisticated scanning strategy (but each malware copy has
the same search space) and the malware at different hosts
can communicate with each other to avoid duplicate infection
attempts. Note that we do not assume the infected hosts can
avoid duplicate scanning (in which multiple attackers can be
modeled as one attacker with a huge number of threads and
minimized thread maintenance costs). We assume that the
initial values of the propagation of the malware released by
Attacker An are xn and yn (n∈[0..m)), respectively. We still
denote the propagation of the whole collaborative attack as
ITOTALxtotal,ytotal,j .

According to the Linear Property (Theorem 2) in Section
III-D4, we have:

ITOTALxtotal,ytotal,j =
m−1∑
n=0

Ixn,yn,j

= I∑1
n=0 xn,

∑1
n=0 yn,j

+
m−1∑
n=2

Ixn,yn,j

= ...

= I∑m−1
n=0 xn,

∑m−1
n=0 yn,j

(32)
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Fig. 2. The Propagation of the multi-threaded malware with different hitlist
sizes.

Hence, the power of the m collaborative attacks is equivalent to
the single attack released at one point with initial values xtotal
=
∑m−1
n=0 xn, and ytotal =

∑m−1
n=0 yn. Equation (32) quantifies

the power of collaborative attacks. It grows much faster than
Equation (26).

VI. EXPERIMENTS

In this section, we present the experiments on the GFMP
model, including experimental setup, methods, and results.
We have conducted the experiments on a Pentium 4 3.2GHZ
workstation with 1GB physical memory and the Gentoo Linux
Operating System. In all the experiments, we set V (the
number of all vulnerable hosts) to 1,000,000, c (the number
of ports the malware scans for one host) to 1, and b (the
number of IP addresses that the malware does not scan) to
225 (approximately the local and multicast addresses) in the
GFMP model.

A. The effect of different hitlist sizes on the multi-threaded
propagation

We conducted experiments to evaluate whether the hitlist
scanning can accelerate the propagation of multi-threaded
malware, and compare the effects of different hitlist sizes on
the malware propagation. In this experiment, we set k (the
number of threads in the vulnerability scanner of the malware)
to 100, d (destruction rate) to 0.0001, p (patching rate) to
0.0002, and r (birth rate) to 0. Note that we set birth rate to
0 to show the effects of threading (otherwise the increased
number of infected hosts may be caused by the newly joined
vulnerable hosts).

Fig. 2 shows the malware propagation with hitlist sizes
50, 100, 1000, 10000, and 100000. We observe that the
propagation speed of the multi-threaded malware increases as
the size of the hitlist increase. Specifically, with the hitlists
of sizes 100000, 10000, 1000, 100, and 50, the malware
propagated to 500,000 hosts in 100, 210, 319, 441, and 489
time ticks (seconds), respectively. We conclude that the hitlist
scanning can effectively accelerate the multi-threaded malware
propagation, especially when the size of the hitlist is very
large.

When the size of the hitlist is 100,000, the malware prop-
agation reached its peak after 290 time ticks, after which the

Fig. 3. The propagation of hitlist size 100 and 200/100 times of hitlist sizes
1 and 2.

actual number of infected hosts decreased. The decrease is
caused by the patching and destruction. In our experiment,
the destruction and patching rates are not zero. Moreover,
we set the birth rate to zero so that there will be no new
vulnerable hosts to join the network. Therefor, after the
malware propagation reached its peak, there will be no more
vulnerable hosts to infect, and the patched hosts can no longer
be infected. Hence, the number of infected hosts decreases
afterwards. We note that different birth rates and patching
rates can cause different propagation behaviors. We discuss
our experimental results on the birth rates and patching rate
in Section VI-D and Section VI-E, respectively.

B. Verification of the Shift Property and modeling of the Witty
Worm

We performed experiments to verify the Shift Property
presented in Section V-D2 and to model the propagation of
the notorious Witty Worm. We set k to 100, d to 0, p to
0.0002, and r to 0.0002 so that the conditions for the property
are satisfied.

From Equation (31), GI0,h,j = hIj , we conclude that the
the number of infected hosts with hitlist size h divided by the
number of infected hosts with hitlist size 1 is h. Hence, when
the sizes of the hitlists are 2, 100, and 200, the quotients are
2, 100, and 200, respectively. We observe that the number of
infected hosts with hitlist size 200 should be 200

100=2 times of
the number of infected hosts with hitlist size 100.

Fig. 3 shows the results on the propagation with hitlist
sizes 1, 2, 100, and 200. Note that the numbers of infected
hosts for hitlist sizes 1 and 2 are enlarged 100 times. The
results confirm our analysis, and verify the Shift Property. For
instance, we observe that the numbers of infected hosts with
hitlist size 100 (or 200) are essentially coincident with the
numbers of infected hosts (enlarged 100 times) with hitlist size
1 (or 2). The numbers of infected hosts with hitlist size 200
are approximately twice as many as the numbers of infected
hosts with hitlist size 100.

According to Equation (30), GI0,h,j = I
[j+

log(hφ)
log φ −1]

.
Therefore, we can calculate the number of shifts required to
calculate the number of infected hosts with hitlist size 100.
Since k = 100, V = 220, b = 225, c = 1, we have: q = 100∗220

1∗(232−225)

= 100
32∗127 = 0.025. Hence, θ =

√
1 + 4q =

√
1.098 = 1.048,
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Fig. 4. The propagation of hitlist size 100 and 200/100 times of hitlist sizes
1 and 2.

Fig. 5. The Real-World Propagation of the Witty Worm (from caida.org).

and φ = 1+θ
2 = 1.024 Therefore, the number of shifts is :

log((h)φ)
log φ − 1 = log(100∗φ)

logφ -1 = 2.010
0.010 - 1 = 200.

Fig. 4 confirms our analysis. The solid line shows the
propagation with hitlist size 1. The dotted line shows the
propagation with hitlist size 100. The dashed line that connects
the solid line and the dotted line illustrates the number of
shifts required. We observe that the number of shifts required
is approximately constant. The projection of the dashed line on
the x-axis suggests that the number of shifts is 206. Therefore,
the analytical result deviates from the experimental results by
only 206−200

206 = 2.9%.
Moreover, we compare our experimental results to the real-

world propagation of the Witty Worm. The Witty Worm [2]
is suspected to employ a hitlist scanning or was released on
previously hacked hosts. Fig. 5 (Figure 1, Witty Worm Global
View, in [2], from www.caida.org) produced by C. Shannon
and D. Moore shows the initial spread (the first half minute)
of the Witty Worm. The initial spread is unusual and could
not be explained by the existing models including the AAWP
model, because the worm propagated to 110 hosts in the first
10 seconds.

However, our GFMP model correctly shows that the effect
of hitlist scanning can be approximated by the linear combi-
nation of two random scannings. When the linear Fibonacci
Coefficient (h, the size of hitlist) is large, the unusual growth of
the malware propagation can be explained by the linear combi-
nation of regular propagations. Fig. 6 shows our experimental

Fig. 6. The Propagation predicted by Equation 30 and 31 (100 times hitlist
= 1 and shift by 10 time ticks.

Fig. 7. The malware propagation with different number of threads.

results with hitlist size 1 (enlarged 100 times, and right-shifted
by 10 time ticks). We observe that the graph approximately
matches the propagation of the Witty Worm. Subtle differences
exist (e.g., the concavity), and possible causes are different
operating environment and different settings of parameters
(e.g., k and b).

C. The effect of different threading-levels

We conducted experiments to identify the relationship be-
tween the number of scanning threads in the malware and
its propagation. In this experiment, we set d to 0.0001, p to
0.0002, r to 0, and the hitlist size to 10000.

Fig. 7 shows the propagation with different threading-levels:
50, 100, and 250. We observe that the propagation speed
increases as the number of threads in the malware increases.
The effects of the multi-threads are significant: when the
number of threads is 50, the malware took almost 700 time
ticks to infect 800,000 hosts, while the same malware took
approximately 300 time ticks with 100 threads and 100 time
ticks with 250 threads to accomplish the same task. Note that
when the number of threads is 250, the malware propagation
reaches its peak in less than 200 time ticks. The number of
infected hosts then decreased because of the destruction and
the patching. Since we assume that a patched host cannot be
infected again in this experiment, the number of infected hosts
keeps decreasing afterwards. The patching rate we set in this
experiment is fairly high (0.0002), which means that in every
time tick two out of one thousand infected hosts are patched.
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Fig. 8. The malware propagation with different birth rates.

Fig. 9. The malware propagation with different patching rates.

D. The effect of different birth rates

We conducted experiments to study the effects of different
birth rates on the malware propagation. In this experiment, we
set d to 0.0005, p to 0.0000, k to 100, and the hitlist size to
10000. Note that we set the patching rate to 0 to focus on the
birth rates.

Fig. 8 shows the propagation with birth rates 0, 0.0001,
0.0002, 0.0003, 0.0004, and 0.0005. Note that when the birth
rate is 0.0005, it is equal to the destruction rate (0.0005). We
observe that the birth rate does matter during the malware
propagation. Specifically, we observe that the number of the
infected hosts peaked at 1050000 when the birth rate is 0.0004,
while the number of the infected hosts peaked at only 917000
when the birth rate is 0.

Moreover, when the birth rate is 0.0005, which is equal to
the destruction rate, we observe that the number of infected
hosts peaked at 1080000. The number of infected hosts neither
increased nor decreased afterwards. Therefore, an equilibrium
was reached: although 5 out of 10000 hosts are destructed
in each time tick, 5 out of 10000 hosts are newly born and
infected by the malware in each time tick.

E. The effect of different patching rates

We performed experiments to evaluate the effects of dif-
ferent patching rates on the malware propagation. In this
experiment, we set d to 0.0001, r to 0.0003, k to 100, and
the hitlist size to 10000.

Fig. 9 shows the malware propagation with patching rates
ranging from 0 to 0.010. We observe that patching signif-
icantly reduces the number of infected hosts. Specifically,

Fig. 10. The malware propagation with multiple attackers.

we observe that the malware propagation peaked at 900,000
hosts when there was no patching, and the number dropped to
approximately 700,000 hosts when the patching rate was just
0.001, which means that only one out of one thousand hosts
is patched. Furthermore, we see that the malware propagation
peaked at only 193,000 hosts when the patching rate was
0.005, and the malware propagation was significantly reduced
and peaked at only 66,000 hosts when the patching rate
was 0.01 (one out of one hundred hosts). Therefore, we
conclude that patching can significantly diminish the malware
propagation and should be employed by most networks, if
possible.

F. The effect of multiple attackers

We conducted experiments to study the effects of multiple
attackers on the malware propagation. In this experiment, we
set d to 0.005, p to 0.005, r to 0.03, and k to 100. We
first set the hitlist size to 100 and 200, respectively, and
performed the experiments. Then, we simulated the multiple-
attack scenario discussed in Case 2 of Section V-D3: there are
two collaborative attackers, one with hitlist size 100, and the
other with hitlist size 200. The two attackers start at the same
time, and communicate each other to avoid duplicate infection
attempts.

According to Equation (32), the effects of the collaborative
attack is the sum of the individual attacks. Fig. 10 presents
the experimental results. The dotted line represents the prop-
agation with hitlist size 100. The dashed line represents the
propagation with hitlist size 200. The solid line represents the
propagation with two attackers, one with hitlist size 100 and
the other with hitlist size 200. We observe that the number
of infected hosts for the collaborative attack is approximately
the sum of the number of hosts infected for the individual
attacks with hitlist sizes 100 and 200 initially, which proves
Equation (32). However, we note that after around time tick
300, the sum of the number of infected hosts for the individual
attacks become larger than the number of infected hosts for
the collaborative attacks, which means:

ITOTALxtotal,ytotal,j < I∑m−1
n=0 xn,

∑m−1
n=0 yn,j

The explanation is that the number of infected hosts for
the collaborative attacks decreased faster due to the possible
contention between the collaborating attackers. In Case 2 of
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Fig. 11. The malware propagation with different propagation time.

Section V-D3, we assume that the collaborative attackers can
avoid duplicate infection attempts, but cannot avoid duplicate
scanning. Hence, some scanning activities in the collaborative
attack may collide and such collision can cause the reduced
efficiency of the collaborative attack.

G. The effect of different propagation times

We performed experiments to evaluate the effects of dif-
ferent propagation times on the malware propagation. In this
experiment, we set d to 0.005, p to 0.005, r to 0.003, k to 100,
and the hitlist size to 1000. Note that in our experiments, the
destruction rate and the patching rate are high. The sum of
the two rates are 0.005 + 0.005 = 0.01. We note that the birth
rate is 0.003, which is smaller than the patching rate.

Fig. 11 shows the malware propagation with different propa-
gation times: 2 time ticks, 20 time ticks, and 50 time ticks. We
observe that as the propagation time increases, the propagation
speed decreases. In 200 time ticks, the malware infected
38416, 13249, and 5512 hosts, with the 2-time-tick, the 20-
time-tick, and the 50-time-tick propagation times, respectively.
In 300 time ticks, the malware infected 125980, 39497, and
13403 hosts, with the 2-time-tick, the 20-time-tick, and the
50-time-tick propagation times, respectively. Furthermore, we
observe that the malware propagation reached its peak at time
tick 482 with 263,732 infected hosts with the 2-time-tick
propagation time, while the malware propagation with the
20-time-tick and the 50-time-tick propagation times are still
in the process of trying to infect more nodes. Therefore, we
conclude that the defenders to malware should try to maximize
its propagation time (e.g., by throttling [18]).

VII. CONCLUSION

In this paper, we present the Generic Fibonacci Malware
Propagation (GFMP) Model to address the issues of multi-
port scanning, multi-threading, infection time, multiple start
points, and collaborative attacks in the malware propagation.
We consider the multi-threading issue in the calculation of the
probability of successful scans. We propose the propagation
tree and propagation forest, and model the infection time and
propagation time of the malware. In the GFMP model, we
effectively utilize the generic Fibonacci Number Sequence
(FNS), mathematically infer several important properties of
the generic FNS, and apply them to quantitatively analyze the

malware propagation. In particular, we analyze the effects of
the propagation time, multiple starting points, and collabo-
rative attacks. We perform experiments to verify our model.
The experimental results confirm our mathematical analysis,
and demonstrate that the GFMP model fit into the real-world
propagation data, including the propagation of the notorious
Witty Worm.

In Case 2 of Section V-D3, we assume that the malware
at different hosts can communicate with each other to avoid
duplicate infection attempts. We note that the communication
may incur overhead, which could be caused by network delays,
the limits of communication protocols, and the sizes of the
data buffers at different hosts, etc. Currently the overhead is
not represented in the GFMP model. Moreover, to improve
the efficiency of scanning, the malware should not scan the
already infected machines. A key observation is that data
structures similar to the hash table or the DHT (Distributed
Hash Table) [7] can be applied in this case to efficiently
answer whether the IP address was already scanned or not.
More advanced algorithms used in routers may be applied [33].
Advanced malware can also employ intelligent localized-scan
algorithms. Enhancing the GFMP model with representation
of communication and processing overhead, intelligent collab-
oration schemes, and smart localized-scan algorithms for the
malware is the subject for future work.

Researchers discussed how to improve the performance of
scanning by sampling [3]. With the prevalence of wireless
networks, there will be more dynamic hosts that may join and
leave the network frequently. We plan to extend the GFMP
model to represent the sampling scheme and the dynamic host
memberships.

In Section V, we assume that the propagation time is the
same for all infections, and derived Equation (25) and (27).
In the real-world, the propagation time for different infections
may vary. For example, if the propagation time is three time
ticks, we can apply the Tribonacci Number Sequence [34] to
study the malware propagation. Extending the GFMP model
to analyze the effects of the varying propagation time is the
subject for future work.

In this paper, we focused on applying the Fibonacci
Number Sequence (FNS) and its properties to analyze
the performance of malware propagation schemes, including
collaborative malware propagation. We employed the patching
rate to model the defense activities as a black box. Questions
then arise as how to defend sophisticated malware and delay
the collaborative propagation. Modeling and analysis of the
sophisticated collaborative defense is an interesting subject
for future work.
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