2008

S-Presence Without Complete World Knowledge

M. Ercan Nergiz

Chris Clifton
Purdue University, clifton@cs.purdue.edu

Report Number:
08-016

https://docs.lib.purdue.edu/cstech/1703

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
S-Presence Without Complete World Knowledge

M. Ercan Nergiz
Chris Clifton

CSD TR #08-016
June 2008
Abstract—Advances in information technology, and its use in research, are increasing both the need for anonymized data and the risks of poor anonymization. [1] presented a new privacy metric, δ-presence, that clearly links the quality of anonymization to the risk posed by inadequate anonymization. It was shown that existing anonymization techniques are inappropriate for situations where δ-presence is a good metric (specifically, where knowing an individual is in the database poses a privacy risk). This article addresses a practical problem with [1], extending to situations where the data anonymizer is not assumed to have complete world knowledge. The algorithms are evaluated in the context of a real-world scenario, demonstrating practical applicability of the approach.

Index Terms—k-anonymity, privacy, delta presence, medical databases

Note to reviewers: This work extends the work in [1]. Around 70% of the paper (including Sections 4,5,7,8,9, and part of 6) is new material. The material carried over from [1] has been revised and summarized, and is needed to make this submission a standalone paper.

1 INTRODUCTION

The increasing ability to collect, manage, and share information is raising every-increasing privacy concerns. This poses a challenging tradeoff between the value (both to society, and to individuals) from the knowledge available from ubiquitous, shared information, and the risk to individuals posed by disclosure and misuse of private data.

One solution to this problem is anonymity: ensuring that disclosed data cannot be linked to the individual whom the data is about. The European Community Directive 95/46/EC protects ‘personal data’:

‘personal data’ shall mean any information relating to an identified or identifiable natural person (‘data subject’); an identifiable person is one who can be identified, directly or indirectly, in particular by reference to an identification number or to one or more factors specific to his physical, physiological, mental, economic, cultural or social identity;

This lends credence to using anonymity to protect privacy. The United States Healthcare Information Portability and Accountability Act (HIPAA) [2] protects ‘individually identifiable data’, and allows disclosure of data that has been de-identified. But what does it mean to be ‘de-identified’?

Health information that does not identify an individual and with respect to which there is no reasonable basis to believe that the information can be used to identify an individual is not individually identifiable health information.

How do we interpret these rules with respect to anonymity? Is it enough to say that if we cannot positively identify a record as belonging to an individual, it is suitably anonymous? What if we can identify the individual with 90% probability? The U.S. HIPAA rules do give some guidance: if someone applying generally accepted statistical and scientific principles “determines that the risk is very small that the information could be used, alone or in combination with other reasonably available information, by an anticipated recipient to identify an individual who is a subject of the information”. While this could be interpreted as data is de-identified if the recipient could not be absolutely certain a record applied to an individual, the regulations give further guidance suggesting that de-identification can be accomplished by removing not only identifying numbers/names/images, but also geographic information that limits granularity to less than 20,000 individuals or dates more specific than the year. This implies that identification with high probability, even if less than 100%, would probably not be considered suitably de-identified.

An alternative view is to look at the risk posed by disclosure of information. It is easy to see that anonymity is not enough; for example, suppose we use k-anonymity to protect data [3], [4]. This says that knowing identifying information about an individual, there are at least k records in the database that could (with equal probability) refer to that individual. However, suppose that those records also include sensitive information, e.g., if an individual is diabetic. If all k individuals share the same value for the sensitive information (e.g., all are diabetic), then k-anonymity provides no protection against disclosure of that fact. This has lead to alternate approaches, such as discernibility [5] / \(\ell \)-diversity [6]. However, it is still difficult to answer the question, “is the data anonymous enough?”

This paper looks at a basic, and yet common and practical, problem: the risk is simply from identifying that an individual is (or is not) in an anonymized dataset. This could occur when there is a desire to publish a dataset to support research on a specific condition, but identifying individuals meeting that condition is damaging. Examples could range from counter-terrorism, publishing a database containing information about suspected terrorist groups to support research in automated support for discovering terrorism; to medical research, such as a database of patients with a particular type of cancer. In both cases, identifying that an individual is present in the database is damaging, both to the individual, and in the terrorism example by disclosing to real terrorist groups that their “cover organization” is suspect (or not suspected).

The basic idea (introduced in [1]) is that anonymizing such a database should mean that a recipient of the database should not be able to identify any individual as being in that database...
with certainty greater than δ. This is actually the primary value of anonymization; anonymizing to protect against linking an individual with sensitive data in the released dataset can be done just as effectively without anonymization [7]. As we shall see, this δ-presence measure has the nice property that it can be interpreted in terms of increased risk of disclosure. This enables a meaningful bridge between human-understandable policy and mathematically sound standards for anonymity. Another, perhaps surprising, outcome is that the k-anonymity approach is a bad way to meet this standard; requiring a substantial and unnecessary loss of detail in the anonymized data. Unfortunately, while k-anonymity (and related approaches) can be checked knowing only the data to be released, evaluating δ-presence requires complete knowledge of all entities, not just those in the dataset to be anonymized. This paper addresses the issue, presenting approaches that enable the δ-presence measure to be used to anonymize a dataset assuming knowledge of only global distributions of data.

1.1 Example: Diabetes

During the paper, we will use the “medical research dataset” problem as a running example. Diabetes is an expensive and widespread health problem, representing 11% of U.S. health care expenditures [8]. Of note is that people with diabetes have medical expenditures 2.4 times the expenditures if they did not have diabetes [9]; under the “employer pays” system used at most large U.S. companies, this would certainly be an incentive for an employer to (illegally) discriminate against hiring someone with diabetes. As we can see, it is clear that there is both great value in making data available to support research on diabetes, and a clear need to protect the individuals in such data.

Take the Diabetes dataset from the UCI machine learning repository [10] as an example. This contains data on 70 patients. What is a reasonable risk of identifying an individual as being in this dataset? At first glance, we might say that we don’t want an adversary to be able to identify with certainty greater than a random guess: 70/260,000,000 (the size of the dataset divided by the number of individuals in the U.S. in 1994), or 0.000027%. However, if we look at the larger problem, we realize that the risk is identifying that an individual has diabetes. As 7% of the U.S. population has diabetes [8], even without the anonymized dataset an adversary would know the probability that an individual has diabetes is much greater than 0.000027%.

The real question is, how much could the anonymized database improve the adversary’s estimate of the probability that an individual has diabetes? The “no better than a random guess” standard is clearly too conservative.

It is hard to address the issues stated above without assuming some knowledge about the world from which the private dataset was drawn from. The original definition of δ-Presence in [1] assumes that the data anonymizer has complete information about the world in the form of a public database (and allows the adversary to have the same knowledge.) This is perhaps unrealistic; more appropriate is to assume the anonymizer has partial knowledge about the outside world such as statistics, limited selections/projections, count queries, · · · . Such information is not privacy sensitive and likely to be publicly available (or might be publicized upon request). In this paper, we revisit δ-presence when only distributions for attributes are known by the data owner and the connections between distinct attributes is not known. (E.g., the data owner knows exactly how many male-female, single-married, young-old · · · people there are in the outside world; but does not know if there is a married, young woman.) To ensure privacy, we still keep the strong adversary assumption; the adversary might have access to the whole world knowledge (except the presence/absence of individuals in the private dataset) in the form of a public database. This way, we guarantee an upper bound on privacy at a user selected confidence level.

From the view of a data owner that has access to attribute distributions only, the outside world acts as a random variable. Given each possible value from the sample space, a given anonymization satisfies different levels of δ constraints. A given δ-presence constraint can only be satisfied at a certain confidence level. In Section 4, we formulate and show how to check for c-confident δ-presence from a given anonymization and attribute distributions. In Section 5, we also show the checking process is computationally expensive and present certain heuristics to speed up the operations.

We now give background and notations used in the paper, based on the original definition of δ-presence in [1]; Section 3, briefly summarizes that work. In Section 4, we reformalize δ-presence assuming the anonymizer knows only attribute distributions. Section 8 gives a set of experiments evaluating the performance of the checking process.

2 Background and Notation

Before formalizing the problem of hiding presence of individual from a given database, we give some basic notation and review the original k-anonymity framework.

Given a dataset (table) T, $T[c][r]$ refers to the value of column c, row r of T. $T[c]$ refers to the projection of column c on T and $T[][r]$ refers to selection of row r on T (the rth tuple or record). We write $[t \in T]$ for the cardinality of tuple $t \in T$.

Definition 1 (Generalization Function):

Given a data value v, a generalization function ψ returns the set of all generalizations of v.

Although there are many ways to generalize a given value, in this paper, we will stick to generalizations according to DGH structures given in Figure 1. (e.g., ψ(USA) = {USA, N. America, America, *}) We will also write, for tuples t and t', $t' \in \psi(t)$ when $t'[i] \in \psi(t[i])$ for all possible index i.

Definition 2 (Table Generalization):

Given two tables T and T^*, we say T^* is a generalization of T (and write $T^* \in \psi(T)$) if and only if $|T| = |T^*|$ and records in T, T^* can be ordered such a way that $T^* [i][j] \in \psi(T[i][j])$ for every attribute $i \in QI$ and for every possible index j. We say tuple $t^* = T^*[i][j]$ is linked to tuple $t = T[i][j]$ and write $(t^* \in T^*) \iff (t \in T)$.

In Tables 1-2, tables P_2 and P_3 are different generalizations of table P. (The T tables will be discussed in Section 3.2, and should be ignored for now.)

Definition 3 (Non-Overlapping Generalization):

Given a private table T and a generalization T^* of T, we say T^* is non-overlapping if and only if there does not exist $t_1^*, t_2^* \in T^*$ and any possible tuple t such that $t_1^* \neq t_2^*$ and $t_i^* \in \psi(t), t_i^* \in \psi(t)$ in other words, a generalization is non-overlapping when any possible tuple can match at most one generalized tuple. In Tables

1. unless implied by the attribute distributions
TABLE 1
Public dataset \(P \) and research subset \(T \)

<table>
<thead>
<tr>
<th>(P) (Publicly Known Data)</th>
<th>(T) (Research Subset)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Zip</td>
</tr>
<tr>
<td>a</td>
<td>Alice</td>
</tr>
<tr>
<td>b</td>
<td>Bob</td>
</tr>
<tr>
<td>c</td>
<td>Christine</td>
</tr>
<tr>
<td>d</td>
<td>Dirk</td>
</tr>
<tr>
<td>e</td>
<td>Eunice</td>
</tr>
<tr>
<td>f</td>
<td>Frank</td>
</tr>
<tr>
<td>g</td>
<td>Gail</td>
</tr>
<tr>
<td>h</td>
<td>Harry</td>
</tr>
</tbody>
</table>

(Initial “key” columns for clarity only; Sen. represents sensitive data not publicly known.)

![DGH structures](image)

1 and 2; datasets \(P_2 \) and \(P_3 \) are non-overlapping generalizations of \(P \). Similarly \(T_2 \) is such a generalization of \(T \).

Definition 4 (Same Mapping Generalizations):

Let \(T_1 \) and \(T_2 \) be two non-overlapping generalizations of tables \(T \) and \(T_2 \) respectively. We say \(T_1 \) and \(T_2 \) have the same generalization mapping if the following holds:

- For all quadruple \((t_1 \in T_1) \text{ and } (t_2 \in T_2)\), if \(t_1 \in \psi(t_2) \) then \(t_2 = t_1 \) and similarly if \(t_2 \in \psi(t_1) \) then \(t_1 = t_2 \).

In Table 1 and 2, generalization \(T_2 \) of \(P \), and \(T_3 \) of \(T \) are same mapping generalizations.

Definition 5 (k-Anonymity): A table \(T^* \) is \(k \)-anonymous w.r.t. a set of attributes \(QI \) if each record in \(T^* \) \(QI \) appears at least \(k \) times.

The idea behind this definition is the following; each record in the private dataset contains publicly available information in some attributes \(QI \) (quasi-identifiers). The values of these attributes can be exploited to (almost uniquely) link those records to records in other tables. The goal of \(k \)-anonymity is to limit an adversary’s ability to link a record from a set of released records to a specific individual. (E.g., for dataset \(P \) in Table 1, attributes Zip, Age, Nationality can be considered as \(QI \) attributes. Attribute Sen. can be considered as sensitive. Dataset \(P_2 \) of Table 2 is a 3-anonymous generalization of \(P \). Note that by only seeing \(P_2 \), an adversary can at best link a tuple \(<47906,35,USA> \). Alice, to the tuples \(a, b, \) and \(c \) of \(P_2 \).

Definition 6 (Equivalence Class): The equivalence class of tuple \(t \) in dataset \(T^* \) is the set of all tuples in \(T^* \) with identical quasi-identifiers to \(t \).

In dataset \(P_2 \), the equivalence class for tuple \(a \) is \(\{a,b,c\} \).

3 δ-PRESENCE GIVEN PUBLIC DATABASE

In this section, we summarize and reformalize δ-presence from [1]. Next sections will build upon the ideas given in this section.

3.1 Public Table Assumption

In this framework the adversary is presumed to have access to all publicly known data (represented in a, possibly huge, public table \(P \)) that links names to other set of attributes (e.g., day of birth, sex, race.) When a data holder (e.g., a medical institution) releases a (private) research subset data, the adversary can match quasi-identifiers (or common attributes) in both tables to discover unique links between records in the public and released table. Given that being linked to the research subset is a privacy risk, we instantly see that releasing the research subset \(T \) in Table 1 is not acceptable; each individual can be uniquely linked with the publicly known data. Though by releasing some generalization of \(T \), \(T^* \); the risk can be controlled. Thus framework can be summarized as follows:

Publisher View: \(P,T \)

Adversary View: \(P,T^* \)

The challenge is to find a suitable anonymization \(T^* \) of \(T \) that will limit the risk. [1] shows that neither \(k \)-anonymization nor enforcing \(\ell \)-diversity solve the problem.

We now give a definition for δ-presence, a metric to evaluate the risk of identifying an individual in a table based on generalization of publicly known data.

Definition 7 (δ-Presence): Given an external public table \(P \), and a private table \(T \), we say that \(\delta \)-presence holds for a generalization \(T^* \) of \(T \), with \(\delta = (\delta_{\text{min}}, \delta_{\text{max}}) \) if

\[
\delta_{\text{min}} \leq \mathcal{P}(i \in T \mid P,T^*) \leq \delta_{\text{max}} \quad \forall i \in P
\]

In such a dataset, we say that each tuple \(i \in P \) is δ-present in \(T \) or we say the existence probability of \(i \) is within \(\delta \). Therefore, \(\delta = (\delta_{\text{min}}, \delta_{\text{max}}) \) is a range of acceptable probabilities for existence probability \(\mathcal{P}(i \in T \mid P,T^*) \). From now on, we assume \(T \subseteq P \).
Before we show how to check for the δ-Presence property, we define two more properties:

3.2 Checking for δ-Presence

Given the public dataset, it is trivial to check a non-overlapping generalizations of the private dataset for δ-presence. Given a non-overlapping generalization T^* of T and a public dataset P, construct the generalization P^* of P with the same mappings used in T^*. For any tuple $t \in P$, let t^* be its generalization in P^* (e.g., $(t^* \in P^*) \Rightarrow (t \in P)$). Then the presence (or existence) probability for t takes the following form:

$$
\mathcal{P}(t \in T \mid P, T^*) = \frac{|t^* \in T^*|}{|t^* \in P^*|} \quad (1)
$$

If the existence probability is within the δ parameters for all tuples $t \in P$ then the presence property holds for T^*.

In Tables 1 and 2, dataset T^*_3 shows a $(\frac{1}{2}, \frac{1}{2})$-present generalization of T w.r.t. public dataset P. $\mathcal{P}(\text{tuple } a \in T \mid T^*_3) = \frac{|\{b,c,d,e\}|}{|a,b,c,d,e,f|} = \frac{1}{2}$. The same probability holds for tuples $b,c,d,e,$ and f. Probability for tuples g,h,i and j is $\frac{|\{h,j\}|}{|a,b,c,d,e,f|} = \frac{1}{2}$.

The probabilities can also be calculated by making use of the attribute Sen. in P^*'s. (see dataset P^*_2 of Table 2) For each tuple t in an equivalence class $[t^* \in T^*]$ is the number of entries with $\text{Sen.}=1$, and $[t^* \in P^*]$ is the size of the equivalence class. Checking process can be done by processing each equivalence class of P^* and by using attribute Sen..

In [1], it is discussed in detail that previous anonymization approaches such as k-anonymity, ℓ-diversity, or t-closeness do not provide mechanisms to check for δ-presence. This is mainly because public dataset P is not taken into account for the anonymization of T. Even when applied on P^*, diversity enforcing privacy mechanisms (ℓ-diversity, t-closeness) cannot be used to enforce constraints on Equation 1. Due to space limitations, we do not include further discussion and refer to [1].

[1] also proves the anti-monotonicity property for δ-presence:

Theorem 1: Given a public table F, private table T, a non-overlapping generalization T^*_f of T, and a non-overlapping generalization T^*_f of T^*. If T^*_f is not $(\delta_{\min}, \delta_{\max})$ present w.r.t. P and T then neither is T^*_f.

4 δ-PRESENCE GIVEN PUBLIC ATTRIBUTE DISTRIBUTIONS

4.1 Public Attribute Distributions Assumption

Generally the party anonymizing the data does not have knowledge of the whole population, however it is reasonable to assume knowledge of statistics about the population. (Statistics over data are not individually identifiable and thus generally not considered private/protected information.) We now relax our assumption on the availability of a public table and instead assume that a set of attribute distribution functions is known by the publisher. We keep the assumption that adversary has access to the public table; assuming ignorance on the part of the adversary is not a good idea if we really want to make statements about privacy protection. We redefine δ-presence against such an adversary; this definition subsumes the previous definition that assumes a public table.

Definition 8 (Distribution Function): A distribution function f^D_i for a set of attributes $A = \{a_1, \cdots, a_n\}$ defined over a population D is a function that when given a set of values $\{v_1, \cdots, v_n\}$ returns the number of entities t in D with $v_i \in \Psi(t[a_i])$ for $i \in [1..n]$.

If we assume that we have the population given in $D = P - T$ of Table 1 (tuples that do not exist in T). $f^D_{\text{Zip,Nationality}}(47906', 'USA') = |\{Alice\}| = 1$ and $f^D_{\text{Nationality}}(\"America\") = |\{Alice,Dirk,Eunice\}| = 3$. Note that knowing $f^D_{\text{Zip,Age,Nationality}}$ is the same as knowing table D. Table 3 shows two other examples for sets of distribution functions; f^D_{Age} and $f^D_{\text{Age,City}}$ ($c_2 = 3$).

Throughout this section, distribution functions will describe the part of the population that does not exist in the private dataset (the negative subset $D = P - T$) and will not contain superscripts (e.g., $f = f^D$). While it is more likely that distribution functions for P are known, the publisher knows T and can easily construct distribution functions of D from those of P. We also assume, without loss of generality, each function f describes only one attribute.

The new framework then looks like the following:

Publisher View: F, T

Adversary View: P, T^*

Having probabilistic information on the public dataset, the δ-presence property can now be achieved with a given confidence:
3. To keep the discussion simple, the generalization we check is unknown. In other words; tuple distribution functions \(\delta = (\max, \min) \). Note that \(\delta \text{max} \) and with confidence \(\delta = (\delta_{\text{min}}, \delta_{\text{max}}) \) and with confidence \(c \) if

\[
\mathcal{P}(t | F) \geq c \quad \forall t \in T
\]

In formally, a \(c \)-confident \(\delta \)-present anonymization ensures that a given tuple \(t \) is \(\delta \)-present w.r.t. \(T^* \) the current population with \(c \) probability. This definition has two important properties.

- Privacy is defined over tuples independently, meaning each tuple will be \(\delta \)-present with \(c \) probability. An alternative definition would enforce the anonymization to be \(\delta \)-present with \(c \) probability. The approach taken has advantages in estimating the cost of identification, especially when privacy is personalized. (E.g., some tuples with high cost of identification may require higher confidence levels.) The latter gives guaranteed for-all privacy with \(c \) probability and is harder to achieve. In this work, we stick with the former.

- Privacy is satisfied for only those tuples that are in the private dataset, not all tuples that are possibly in the public dataset. What this means is that while it is impossible to determine if \(e \in T \) given \(T^* \) with greater than \(\delta \) probability, it may be possible to determine that \(e \notin T \). The reason is that possible outliers needs to be considered, particularly challenging given that the public data (and outliers) are not actually known. (E.g., if there is only one person with age \(> 100 \) in a big population, every attribute-join with age \(> 100 \) needs to be considered.) A better approach would consider the tuples in the private dataset plus probable tuples from the attribute distribution. In coming sections, we discuss how to convert the methodology presented in this work to handle such tuples.

As an example, assume we have the private table \(T \) given Table 4.1 and the set of distribution functions \(\delta_{T^*} \) given in Table 3. To keep the discussion simple, the generalization we check for \(c \)-confident \(\delta \)-presence is \(T^* \) itself. \(T^* = T \), that means also \(D^* = D \). Let us also assume \(\delta_{\text{min}} = .33 \) and \(\delta_{\text{max}} = 1 \). Throughout the section, we will show that \(\delta \) presence holds for \(T \) with \(\frac{15}{16} \)

Table 3

<table>
<thead>
<tr>
<th>Distribution Functions</th>
<th>Probability space for (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{\delta})</td>
<td>(Last column shows the frequency of the corresponding tuple.)</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Private Table (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
</tr>
<tr>
<td>(a_1)</td>
</tr>
<tr>
<td>(a_2)</td>
</tr>
</tbody>
</table>

Definition 9 (c-Confident \(\delta \)-Presence): Given a public set of distribution functions \(F \), a private table \(T \), a confidence level \(c \in [0, 1] \), and a generalization \(T^* \) of \(T \), let \(I_t \) be the event that tuple \(t \in T \) is \(\delta \)-present w.r.t. \(T^* \) and the whole population (which is unknown). In other words; \(I_t \) holds if \(\delta_{\text{min}} \leq \mathcal{P}(t \in T | T^*) \leq \delta_{\text{max}} \). Note that \(I_t \) is a random event since public dataset \(P \) is a random variable. We say that \(\delta \)-presence holds for \(T^* \), with \(\delta = (\delta_{\text{min}}, \delta_{\text{max}}) \) and with confidence \(c \) if

\[
\mathcal{P}(t | F) \geq c \quad \forall t \in T
\]

We next show how to check for \(c \)-confident \(\delta \)-presence for a given anonymization and distribution function.

4.2 Checking for \(c \)-Confident \(\delta \)-Presence

We now show how to calculate the confidence given a \(\delta \) parameter, a private table \(T \), an anonymization \(T^* \) of \(T \), and a set of distribution functions \(F \) (for \(P = T \)).

Let \(t \) be any tuple in \(T \), then

\[
\mathcal{P}(I_t | F) = \sum_{D} \mathcal{P}(I_t | D) \cdot \mathcal{P}(D | F)
\]

(3)

From Section 3, we know how to calculate \(\mathcal{P}(I_t | P) \).

\[
\mathcal{P}(I_t | P) = \left\{ \begin{array}{ll} 1, & \delta_{\text{min}} \leq \frac{|t^* \in T|}{|t^* \in P|} \leq \delta_{\text{max}}; \\ 0, & \text{otherwise}. \end{array} \right.
\]

Since we assume \(F \) describes \(D = P - T \), we now rewrite the above for \(D \).

\[
\mathcal{P}(I_t | D) = \left\{ \begin{array}{ll} 1, & \delta_{\text{min}} \leq \frac{|t^* \in T|}{|t^* \in P|} \leq \delta_{\text{max}}; \\ 0, & \text{otherwise}. \end{array} \right.
\]

We are interested in only those \(D_t \) satisfying \(\delta \)-presence. Setting the cardinality numbers \(n_1 = |t^* \in T| \) and \(n_0 = |t^* \in D^*| \), the requirement for \(D_t \) to make \(t \) \(\delta \)-present:
In other words, the cardinality of t^* in dataset D^* needs to be within some boundaries. Each boundary number can be calculated from the T^*. From now on for the sake of compactness, we use $c_{\text{low}} = \left[\frac{1}{4} \cdot n_1 - n_1 \right]$, and $c_{\text{high}} = \left[\frac{1}{4} \cdot n_1 - n_1 \right]$ for the boundary requirements for D^* given T^* and t.

In Table 3, we list all possible Ds given the set of distribution functions F_{3d}. Following the above example, suppose we check tuple $t^* = <a_2, b_2, c_2>$ which have cardinality 1 in T^* for presence property. By the above equation, $c_{\text{low}} = \left[\frac{1}{4} \cdot 1 - 1 \right] = 0$ and $c_{\text{high}} = \left[\frac{1}{4} \cdot 1 - 1 \right] = 2$. So t will be δ-present for all D with $0 \leq |t^*| \in D^* \leq 2$. Among 5 possible D, only D_4, D_5, D_6, and D_7 makes t δ-present in T^*.

Given above, we can rewrite Equation 3:

$$P(I_t \mid F) = \sum_{x \in [c_{\text{low}} - c_{\text{high}}]} P(|t^*| \in D^* = x \mid F)$$

which basically states the summation of likelihoods for each possible D (given F) satisfying the cardinality boundary condition gives us our confidence on the δ-presence of t w.r.t. T^*.

In Table 3, we also list likelihoods of all possible D given F_{3d}. Following the example above, $|t^*| \in D^*$ is 1 for D_2 and 2 for D_4, D_5, D_6, so the confidence level is $\frac{0}{15} + \frac{9}{15} + \frac{3}{15} = \frac{12}{15}$.

We now show how to calculate the likelihood of getting a D with $|t^*| \in D^* = x$. More precisely, we show how to solve for x-cardinality likelihood, $P(|t^*| \in D^* = x \mid F)$.

The x-cardinality likelihood for T with n dimensions and a set of distributions $F = \{f_1, \ldots, f_n\}$ explaining a population of size U can be calculated recursively by starting with only one dimension and adding one dimension at a time. Let D^* be the event that $|t^* - n^*| \in D^* \mid x = n$ and $\ell_x^* = P(D^* \mid F)$ (ℓ_x^* is x-cardinality likelihood for T projected on the first n dimensions.), then

$$\ell_x^n = \begin{cases} 1, & n = 1, x = f_1(t^*[1]) \\ \sum_{y \in [1-U]} \ell_{y}^{n-1} \cdot \text{hyp}(x; y, f_{n}(t^*[n]), U), & \text{otherwise} \end{cases}$$

where hyp is the hypergeometric density function defined as

$$\text{hyp}(x; n, M, N) = \left\{ \begin{array}{ll} \frac{\binom{M-x}{n-x} \binom{y}{x}}{\binom{N}{n}}, & x = 0, \ldots, n; \\ 0, & \text{otherwise}. \end{array} \right.$$
an anonymization. However, as mentioned before providing \(c \)-confident \(\delta \)-presence for all possible tuples is perhaps too strong a privacy requirement. In the following sections, we stick to definition 9.

5 Speeding up the Checking Process

We now present several optimizations to reduce the number of hyp function calculations. All of the optimizations presented in this section stand as a trade-off between utility and efficiency. We do not sacrifice privacy. In other words, the privacy level achieved with the optimizations is at least as good as the original privacy level. In Section 8, we show experimentally that the loss in the utility is very small while a huge speed up can be achieved from the use of optimizations. We also show that each optimization is effective independently of the others.

5.1 Practical Anti-monotonicity

Unfortunately \(c \)-confident \(\delta \)-presence does not possess the anti-monotonicity property (which we proved for the original \(\delta \)-presence in Theorem 1). In other words, given a non-overlapping generalization \(T'_1 \) of \(T \) and a non-overlapping generalization \(T'_2 \) of \(T'_1 \), even though \(T'_2 \) does not respect \(c \)-confident \(\delta \)-presence (w.r.t. a public distribution), it is possible that \(T'_2 \) does. This so because of the 'per tuple' definition we adopt for \(c \)-confident \(\delta \)-presence. More precisely, for a tuple \(t \) in \(T \) and a public distribution \(P \), let \(P_{T'_1} \) be the set of all possible public tables in which \(t \) is not \(\delta \)-present w.r.t. \(T'_1 \), and let \(P_{T'_2} \) be the set containing those violating the presence property w.r.t. \(T'_2 \). \(P_{T'_2} \) is not necessarily a subset of \(P_{T'_1} \) and thus the sum of the corresponding likelihoods may increase towards the confidence level. This does not contradict Theorem 1. Theorem 1 states given \(T'_2 \) is not \(\delta \)-present, there will be at least one tuple in \(T'_2 \) violating the presence property. Tuples violating the property in each generalization do not necessarily match, there may be tuples that are present w.r.t. \(T'_1 \) although they are not w.r.t. \(T'_2 \).

We can argue that, although it is possible, such a situation is unlikely. Given a tuple \(t \) violating the presence property with respect to a more general anonymization (e.g., \(T'_2 \)) and a fixed public dataset \(P \), let us derive an upper bound for the probability that \(t \) is present w.r.t. a more precise randomly created anonymization (e.g., \(T'_1 \)) and \(P \).

Let \(P_{T'_1} \) and \(P_{T'_2} \) be the generalizations of \(P \) with the same mappings used in \(T'_1 \) and \(T'_2 \) respectively. Let \(ec_1, ec_2 \) be the equivalence classes of \(P_{T'_1}, P_{T'_2} \) containing \(t \) respectively. Since \(T'_2 \in \psi(T'_1) \), also \(P_{T'_2} \in \psi(P_{T'_1}) \) and also \(ec_1 \subseteq ec_2 \). Let \(ep_1 \subseteq ec_1 \) and \(ep_2 \subseteq ec_2 \) be the set of present tuples in \(ec_1 \) and \(ec_2 \) respectively. Without loss of generality, assume upper bound condition of \(\delta_{\text{min}} = 0 \). We are interested in the following probability:

\[
\mathbb{P} \left(\frac{|ep_1|}{|ec_1|} \leq \delta_{\text{max}}, \frac{|ep_2|}{|ec_2|} \geq \delta_{\text{max}} \right)
\]

It is complicated to derive the exact probability. However, if we restrict the random \(ec_2 \) to be sufficiently large\(^3\), we can model each tuple in \(ec_2 \) as an independent random variable. Let \(X_i \) be a Bernoulli random number representing \(t_i \) with \(\mathbb{P}(X_i = 1) = p = \frac{ep_2}{|ec_2|} \). Note that assuming independence of random variables is not realistic but unbiased towards what we try to prove. Most of the time, the tuples (data points) are skewed in the whole space. Present tuples are more likely to be clustered together and are relatively far from absent tuples. The presence property is more likely to fail in such skewed spaces compared to uniform spaces.

Suppose \(ec_1 \) contains \(n \) of these tuples then the probability above takes the following form:

\[
\mathbb{P}(X_n \leq \delta_{\text{max}})
\]

where \(X_n = \frac{X_1 + \cdots + X_n}{n} \).

We can bound the mean of Bernoulli variables using Hoeffding’s Inequality:

\[
\mathbb{P}(X_n - p < -\varepsilon) \leq e^{-2n\varepsilon^2}
\]

\[
\mathbb{P}(X_n < p - (p - \delta_{\text{max}})) \leq e^{-2n(p - \delta_{\text{min}})^2}
\]

Similarly it can be showed for any \(\delta_{\text{min}} \leq \delta_{\text{max}} \):

\[
\mathbb{P}(X_n < \delta_{\text{max}}) \leq e^{-2n(p_{\text{dist}})^2}
\]

where \(p_{\text{dist}} = \min(\|p - \delta_{\text{min}}\|, \|p - \delta_{\text{max}}\|) \).

For a small value of \(n = 100 \) and \(p_{\text{dist}} = 0.1 \), the upper bound probability is 0.13. For a moderate value of \(n = 1000 \) and \(p_{\text{dist}} = 0.05 \), the probability is 0.006. Generally when \(p_{\text{dist}} \) is more than 0.1, the bounding probability is sufficiently low for most probable \(n \) values.

Using this tool, we can have a rough estimate of the confidence level for \(T'_2 \) without calculating it (thus only calculating the final anonymization for verification). It should also be noted that there may be more than one tuple \(t \) violating the presence property which further makes an anti-monotonic behavior very probable. In Section 8, we show experimentally that \(p_{\text{dist}} \) is generally high enough to make a correct estimate, and it is safe to use apriori pruning even though anti-monotonicity does not hold theoretically.

5.2 Normal Approximation to Hypergeometric Distribution

Hypergeometric calculations are costly for big datasets since they require factorization of huge numbers. Fortunately \(hyp(x,n,M,N) \) can be approximated by the normal distribution \(N(\mu,\sigma) \) where \(\mu = \frac{M}{N} \), \(\sigma = \sqrt{\frac{M}{N}(1-\frac{M}{N})\frac{N}{N-1}(1-\frac{M}{N})} \) when \(\frac{M}{N} \) and \(\frac{N}{N-1} \) are bounded away from 0 and 1 which are called standard cases [11]. Non-standard cases are also studied [12] and guaranteed error bounds have been proposed. For example, theoretical upper bound for total deviation between the normal approximation and the hypergeometric distribution (over all possible \(x \) is 0.12 for \(N = 2000 \), \(\frac{M}{N} = 0.9 \), \(\frac{N}{N-1} = 0.9 \). In Figure 2(a), we plot the two distributions for this case. Actual total deviation is 0.037, much smaller than the theoretical upper bound. However when \(\frac{M}{N} = 0.975, \frac{N}{N-1} = 0.975 \) as shown in Figure 2(b), deviation increases to 0.24.

Unfortunately, we cannot use the normal approximation as an alternative to hypergeometric distribution, even in standard cases, for the following reasons:

- The sign of the deviation is not known. In other words, a normal approximation can give a higher confidence level

\[^3\] Large datasets are more likely to have large equivalence classes.
Fig. 2. Normal Approximation and Discretization for Hyper Geometric Distribution

than the original level. Since we want to guarantee an upper bound on the privacy, this is not desirable.

- A guaranteed cdf-error bound of the approximation could be subtracted from the normal approximation to ensure that approximation is smaller than the original value. However, we are required to calculate the probability at each integer value (which is as big as the size of the population) and probabilities tend to be smaller than the error bound itself.

Instead of using the normal approximation as an alternative to the hypergeometric distribution, we use the approximation to identify those parameters that contribute little to the total confidence level. About 95% of values drawn from a normal distribution are within two standard deviations of the mean (see Figure 2(a)). For standard cases, we can assume the same for the hypergeometric distribution and avoid calculating hyp function on x points far from the mean and assume a zero probability for those points. So we define a new function hyp’ as

\[hyp'(x; n, M, N) = \begin{cases}
 hyp(x; n, M, N), & x \in [\mu - 2\sigma \cdots \mu + 2\sigma] \\
 0, & \text{otherwise.}
\end{cases} \]

In Figure 2(a), there are 200 possible x values for which function hyp’ would return a positive probability. Only 16 of these values are within two standard deviations of the mean. So hyp’ returns 0 instantly for 92% of the cases.

In our experiments, we considered all parameters \(\frac{N}{n} < 0.99, \frac{n}{N} < 0.99 \) for \(N = 40000 \) as standard cases. The Normal approximation caused little distortion for these parameters. It should also be noted that it is easier to compute hyp for non-standard cases compared to standard cases, since there are not as many possible x values (with a non-zero probability). In Figure 2(b), we have only 50 possible x values that require a hypergeometric calculation as opposed to 200.

5.3 Tuple Dominance

In Section 4.2, we calculate the confidence level for all tuples in \(T^* \). In this section, we present a technique that will reduce the number of tuples required to be checked for confidence when either \(\delta_{\text{min}} = 0 \) or \(\delta_{\text{max}} = 1 \).

Definition 11 (Tuple Dominance): Given some public distribution \(F = \bigcup a_i f_i \), an anonymization \(T' \) of table \(T \), and tuples \(t_1, t_2 \in T' \), we say \(t_1 \) dominates \(t_2 \) on the min parameter if \(|t_1^1 | T' | \leq |t_2^1 | T' | \) and \(f_i(t_1^1 | A_i |) \geq f_i(t_2^1 | A_i |) \) for all attributes \(A_i \). Similarly we say \(t_1 \) dominates \(t_2 \) on the max parameter if \(|t_1^1 | T' | \geq |t_2^1 | T' | \) and \(f_i(t_1^1 | A_i |) \leq f_i(t_2^1 | A_i |) \) for all attributes \(A_i \).

Given \(F_{cd} \) in Table 3 and \(T' = T \) in Table 4.1, tuple \(t_3 :< a_2, b_2, c_2 > \) dominates \(t_1 :< a_1, b_1, c_1 > \) on the min parameter since both have cardinality 1 and \(f_2(a_2) = f_2(b_2) = f_2(c_2) = 3 > f_3(a_1) = f_3(b_1) = f_3(c_1) = 1 \). Similarly \(t_1 \) dominates \(t_2 \) on the max parameter.

The next Theorem proves that to check for the presence property when \(\delta_{\text{min}} = 0 \) or \(\delta_{\text{min}} = 1 \), it is enough to calculate the confidence level only for the dominant tuples.

Theorem 3: Following the definitions above, given that tuple \(t_1 \) dominates tuple \(t_2 \) on the min parameter, if \(t_1 \) respects \(c \) confident (\(\delta_{\text{min}}, 1 \)) presence, so does \(t_2 \).

Proof:

1. We first assume \(|t_1^1 | T' | \leq |t_2^1 | T' | \) and \(f_i(t_1^1 | A_i |) = f_i(t_2^1 | A_i |) \). By equation 4, confidence level for tuple \(t_1 \) is

\[\sum_{x \leq c_{\text{high}}} P(|t|^1_1 \in D^* | x \neq F) \]

where \(c_{\text{high}} = \left[\frac{1}{\sum_{x \leq c_{\text{high}}} |t|^1_1 \in T' | - |t|^1_1 \in T' |} \right] \).

By definition, \(|t_1^1 | T' | \leq |t_2^1 | T' | \), so \(c_{\text{high}} \leq c_{\text{high}}^2 \). So the confidence for \(t_1 \) will be higher (or the same) if \(f_i(t_1^1 | A_i |) = f_i(t_2^1 | A_i |) \) for all attribute \(A_i \).

2. We now assume \(|t_1^1 | T' | \leq |t_2^1 | T' | \), \(f_i(t_1^1 | A_n |) = f_i(t_2^1 | A_n |) + 1 = M + 1 \) where \(A_n \) is the last attribute. \(f_i(t_1^1 | A_i |) = f_i(t_2^1 | A_i |) \) for any other attribute \(A_i \). Therefore \(t_1 \), \(t_2 \) differ on their last attribute cardinality by 1. Since the calculations are independent of the attribute order, the proof can be extended by induction even if any subset of attributes differ by any amount.

From Section 4.2, the confidence level for tuple \(t_1 \) is

\[\sum_{x \leq c_{\text{high}}} P(|t|^1_1 \in D^* | x \neq F) = \sum_{x \leq c_{\text{high}}} (\ell_p - 1) \cdot \delta_p \cdot \delta_{\text{high}}(x, y, f_a(t^1_1 | n_1 |), U) \]
5.4 Discretization

As mentioned above, the hyp function is calculated for a large range of \(x \) parameters. Fortunately, a hypergeometric distribution has a well-defined behavior. As in a normal distribution, the probability density function monotonically increases for \(x < \mu \), is maximized for \(x = \mu \) and monotonically decreases for \(x > \mu \), having a concave shape. We can exploit this property for further discretization of the hypergeometric distribution. In other words, we partition the probability space into fixed sized buckets and calculate the hyp function on only the boundaries of the buckets. We set the minimum of the boundary probabilities as the probability of the points inside the bucket, thus sacrificing utility for efficiency. If we have a fixed bucket size of \(b \), the discretized function \(\text{hyp}' \) will take the following form:

\[
\text{hyp}'(x; n, M, N) = \begin{cases}
\min(\text{hyp}'(x; n, M, N)), & x < b; \\
\text{hyp}'(x + b; n, M, N)), & x \geq b; \\
\text{hyp}'(x - 1; n, M, N), & \text{otherwise}.
\end{cases}
\]

Figure 2 shows 3-discretization of two hypergeometric distributions. An important point to make is that the utility loss due to the discretization is negatively correlated with the size of the probability space within 2 standard deviations from the mean. For example, in Figure 2(a) where we have 16 points 2\(\sigma \) close to \(\mu \), the area covered by the discretization is 79% of the total area under the hypergeometric distribution while it is 8% in Figure 2(b) with 6 points close to mean. In experiments, we used discretization only if we have at least 4 buckets within a 2\(\sigma \) range.

6 LIMITING HARM: SELECTING A GOOD \(\delta, c \)

The presence parameters \(\delta_{\text{min}}, \delta_{\text{max}} \) defines the level of trade-off between the utility and privacy of the anonymized dataset. As \(\delta_{\text{min}} \) increases (or \(\delta_{\text{max}} \) decreases), more information is hidden leading to better privacy protection but poorer dataset utility. This means that a maximal \(\delta_{\text{min}} \) and minimal \(\delta_{\text{max}} \) value should be selected such that privacy conditions of the application are met. In this section, we use the diabetes dataset example to demonstrate how to bound probability of disclosure in ways that correspond to real risk of misuse.

Let \(I_p \) be the event that person \(p \) has diabetes. Since the rate of diabetes in all US population is public information [8], any adversary will have a prior belief \(b_o \) on \(I_p \) given the public dataset \(P \):

\[
b_o = P(I_p) = 0.07
\]

The private dataset \(T \) is a subset of the set of all diabetes patients in \(P \). Seeing some anonymization \(T^* \) of \(T \), attacker will have a posterior belief \(b_r \) on \(I_p \):
acceptable misuse, \(a \), is then \(\frac{m}{\sigma} = \frac{1}{100} \); we must ensure:

\[
\begin{align*}
 b_r \cdot d - b_y \cdot d & \leq m \\
 b_r - b_y & \leq a \\
 \Pr(p \in T \mid T') \cdot \frac{(1 - b_r)P}{|P| - |T|} + \frac{b_yP - |T|}{|P| - |T|} & \leq a \\
 \Pr(p \in T \mid T') & \leq \frac{a \cdot P + (1 - a - b_r)T}{(1 - b_r)P}
\end{align*}
\]

Unfortunately, this does not take into account the \(c \) parameter (possibility that we fail to maintain \(\delta \)-presence for a tuple.) The risk that an individual is exposed with greater than \(\delta_{\text{min}} \) probability is a different kind of risk; the possible damage to the individual could be significantly greater than \(a \). While this could be calculated as \(a = \frac{m}{\sigma} \cdot \frac{1}{100} \), it is more appropriate to separate this out as a liability risk that should fall on the anonymizer. \(\frac{1}{\sigma} \) can thus be viewed as a separate parameter, set based on the needs of the anonymizer rather than as protection for the individuals.

Letting \(|T| \approx 0.04P \) as in our experiments and applying the above numbers, we get:

\[\Pr(p \in T \mid T') \lesssim 0.05 \]

This gives us the minimum \(\delta_{\text{max}} \) parameter to protect against substantial misuse when hiring a single job applicant. However the upper bound does not protect against misuse when comparing two job applicant \(p_1 \), \(p_2 \). The reason is that in this setting, an anonymization that gives \(b_r = 0.032 \) for \(p_1 \) (this happens when \(\Pr(p_1 \in T \mid T') \gg 0 \)) and \(b_r = 0.07 \) for \(p_2 \) is perfectly okay, which implies \(p_2 \) is much more likely to have diabetes than \(p_1 \). We need to ensure that the company can’t “cherry-pick” employees known not to be in the database. Thus the posterior belief should not be arbitrarily low. If we let probabilistic acceptable misuse \(a = \frac{200}{1000} = 0.02 \) then

\[
\begin{align*}
 b_r - b_y & \leq a \\
 \Pr(p \in T \mid T') & \geq \frac{-a \cdot P + (1 + a - b_y)T}{(1 - b_r)P} \\
 & \gtrsim 0.02
\end{align*}
\]

This gives us a maximum \(\delta_{\text{min}} \) parameter.

7 **Algorithms**

Given the “world knowledge” assumption made in [1], we provided an optimal full-domain generalization algorithm SPAI; this works under the constraint that if a value is generalized, all occurrence of that value must be generalized. We also gave an algorithm MPALM that relaxed this restriction. (The difference between these approaches is analogous to the difference between the \(k \)-anonymization algorithms of [13] and [14].)

In this section, we present a \(c \)-confident \(\delta \)-presence algorithm SFALM that makes use of the optimizations discussed in Section 5. We basically modify the SPALM algorithm from [1] to accept a confidence threshold and a public distribution instead of a public table. The practical anti-monotonicity claim discussed previously enables us to use this same approach to give an algorithm that is comparable in performance to SPALM; if anti-monotonicity does not hold we lose only the optimality (with respect to the amount of generalization); the privacy guarantee of \(c \)-confident \(\delta \)-presence still holds. The following notations and definitions briefly recall the problem setting:

For two values \(v_i, v_j \) of the same attribute \(A_i \), we write \(v' = \Delta_{i}(v) \) if and only if \(v' \) is the immediate parent of \(v \) in the domain generalization hierarchy for \(A_i \). To express greater levels of generalization, for the \(n \)th generalization of \(v \), we write \(\Delta_{n}^{0}(v) = \Delta_{n}(\cdots \Delta_{0}(v) \cdots) \).

We say a table \(T' \) is a \([g_1', \cdots, g_n']\) full domain generalization of table \(T \) with set of attributes \(\{A_1, \cdots, A_n\} \) if and only if for all pairs of tuples \(t, t' \) such that \(\{t \in T \} \Rightarrow \{t' \in T'\} \); we have \(t'[A_i] = \Delta_{i}^0(t[A_i]) \) for all \(1 \leq i \leq n \). Let \(T'' \) be \([g_1'', \cdots, g_n'']\) full domain generalization of table \(T \). We say \(T'' \) is a higher level generalization than \(T' \) and write \(T'' \gg T' \) if and only if \(T' \neq T'' \) and \(g_i \leq g_i'' \) for all \(1 \leq i \leq n \). For cost metrics proposed so far, a high level generalization (e.g., \(T'' \)) is more costly than a lower generalization (e.g., \(T' \)).

In Tables 1 and 2, \(T_j \) is a \([3, 3, 2]\) full domain generalization of \(T \).

The possible full domain generalizations of table \(T \) form a lattice on the \(\gg \) relation. (see Figure 3.) To find a cost-optimal \(\delta \)-present (or \(k \)-anonymous) generalization, each generalization on the lattice needs to be checked and the lowest cost \(\delta \)-present dataset should be identified. However the practical anti-monotonicity property of presence can be used to prune the lattice and reduce the search space. In contrast to previous \(k \)-anonymity algorithms, we exploit only the anti-monotonicity property of presence and propose a top-down approach. (E.g., if \(T'' \) is not \(\delta \)-present, neither is \(T' \).) We observed that a top-down approach prunes much faster, especially when the data is of high dimensionality and sparsely distributed (as in the experimental data used in coming section). Notice that, for very high dimensional spaces, optimal solutions for \(k \)-anonymity (and therefore, optimal \(\delta \)-presence) are subject to the curse of dimensionality, as discussed in [15].

The pseudo-code in Algorithm 1 summarizes SFALM. At line 5, the algorithm creates the Minimum Dominant Subset of the anonymizer given the \(\delta \) parameters are one-sided. At line 7, algorithm calls for Equation 4 (with 2\(\sigma \)-cut and discretization optimizations) to get confidence levels for all tuples and checks if any confidence level falls below the threshold.
Algorithm 1 SFALM

Require: publicly available distribution F; private table T, a cost metric COST;
Ensure: return minimum cost c-confident ($\delta_{\text{min}}, \delta_{\text{max}}$) present full domain generalization of T.
1: create lattice lat for all possible generalization mappings for T. Let n be the number of levels in lat.
2: for all level $i : 1 \leq n$ do
3: for all node m in level i of lat do
4: create T^*; full domain generalization of T according to mapping in m
5: let set of tuples ST be the MDS of T^* if $\delta_{\text{min}} = 0$ or $\delta_{\text{max}} = 1$. Otherwise $ST = T^*$
6: for all tuple $t^* \in ST$ do
7: use Eqn 4 with function hyp” to get the confidence level c_{t^*} for t^* given F.
8: if $c_{t^*} < c$ then
9: delete node m and all children and grandchildren of m from lat
10: return the least-cost generalization and the corresponding mapping among the generalizations being tested.

8 Experiments

As in [1], a simulated dataset is created through random selection of a 4% subset of the UCI adult dataset [10]. The entire adult dataset (specifically, the 45222 records with no unknowns) is considered the “Universe”, a randomly selected subset of 1957 records is taken as the dataset of individuals whose discovery in the dataset is to be protected against (we refer to this as the Random dataset.) Note that for this paper, only the distribution of the Universe is used by the algorithm; the only data needed is the 1957 record subset to be anonymized.

As was done in [1], for a more realistic test we also generate a diabetes dataset by performing a biased selection simulating a database of individuals with diabetes; the selection is biased toward individuals with demographics matching those of actual diabetes patients (as given in [8]). Specifically, for each individual we estimate their probability of being in the diabetes subset based on independent probabilities for diabetes given age, race, and gender as shown in [8]; this gives a dataset skewed towards people with similar characteristics. (This is also the reason for 1957 records in the dataset, as this is the number obtained using these statistics to guide selection.)

We evaluate how varying δ affects the cost of anonymizing the dataset (w.r.t. utility) of the dataset, as determined by the Loss Metric (LM) [16] and the Discernibility Metric (DM) [17]. We only present results on LM since the DM results were almost identical. The LM cost for a given generalized data value v^* from an atomic domain of size $|A|$ is defined as $\frac{w(v^*)}{|A|}$. For example, in Figure 1 generalizing “Canada” to “N. America” incurs a penalty of $(2-1)/(7-1) = .16$; to “America” gives a penalty of $(4-1)/(7-1) = .5$. The LM cost for a generalization T^* is the normalized cost of all data values in T^*. The higher the LM cost of the anonymization, the higher the distortion caused by the anonymization.

Fixing the private dataset and distribution functions as inputs, we evaluate the behavior of SFALM and the effectiveness of the optimizations SD (4σ cut on normal approximation), PA (Practical Anti-monotonicity), DM (minimum dominant subset), and DC (4-Discretization) presented in Section 5 with respect to efficiency and utility.

In Figure 4(a) and 4(c), we use the first 4 attributes of the diabetes dataset and random dataset respectively, fix confidence to be 0.8 and plot the execution time for runs of SFALM using different subsets of 4 optimizations (note the log scale). The first 4 bars refers to SFALM with all but one optimization. (E.g., the first bar, “SD, shows the results when we have PA+DM+DC (all but SD).) The fifth bar is for SFALM with all optimizations. Thus the graph explains the effectiveness of a particular optimization even when all others are also in effect. We see that PA is quite effective and dominant especially for tight ranges of δ parameters. This is expected since in such levels, anonymization is very distorting and anti-monotonicity allows us to prune the majority of the lattice nodes. As we loosen the privacy constraints, SD starts to kick in and DC becomes a bit more effective, but DM optimization is not significant even when $\delta_{\text{min}} = 0$. We see that with few attributes, the time gained due to the small size of the minimum dominant subset does not compensate for the time spent on the creation of the dominant set.

In all our experiments, SFALM with optimization PA or SD nearly always returned the same output. DM by definition is not an approximation and does not change the original output. Figure 4(b) and 4(d) plot the LM cost metric results for the above mentioned runs. DC does result in a slight increase in the loss metric but the overall utility-time trade-off is very good. When all optimizations are in place, SFALM runs more than 1000 times faster with less than 5% worse LM cost. For the random dataset, DC results in a relatively higher utility loss but also provides a higher speed up. While the complexity of obtaining values without any optimization was prohibitive, the fact that removing any single optimization (except DC) had little impact on the loss metric gives confidence that these values would be close to the exact SFALM algorithm.

When we have more attributes, it becomes impractical to run SFALM without SD and PA. In such cases, the significance of DM and DC becomes more observable. In Figures 5(a) and 5(c), we show execution times for “DM DC,” “DM,” “DC,” and “ALL” when we use the first 7 attributes of the Diabetes and Random datasets. DM and DC are both effective in speeding up SFALM especially for loose δ constraints. DC seems to be better, however, as we see in Figures 5(b) and 5(d), it introduces an 8% increase in utility cost of the output. The use of DM+DC stands as a beneficial trade-off, since SFALM runs 100 times faster when both optimizations are active. Results for the random dataset are similar except that utility cost levels were a bit lower (justifying the discussion in Section 5).

We show in Figure 6 how much pruning SD, PA, and DM do when we use all optimizations. Prune rates of 80-95% for SD and PA clearly shows why it becomes infeasible to run SFALM without them. For SD, pruning is displayed as an average for each recursive step in Equation 4. In fact, SD prunes much more than what the figures show since each cut cancels out additional calculations in the tail of the recursion.

In Figure 7 we show the behavior of SFALM with respect to decreasing confidence by setting $\delta_{\text{min}} = 0, \delta_{\text{max}} = 0.1$. From the
the minimum limit we set for the number of points within 4 quick but stabilize for large bucket sizes. This is mostly due to

While k-anonymity and related techniques have received considerable attention, it isn’t clear that they are the best way to balance privacy and data utility [7]. We have presented a problem where anonymization is an appropriate solution, and a metric δ-presence that correlates to the real risk/cost of a privacy violation. Datasets anonymized directly to meet the δ-presence standard distort data less than k-anonymization to comparable privacy levels, and provide a clear risk-based guarantee of privacy. Introducing a

“liability risk” confidence metric allows the δ-presence metric to be utilized in practical scenarios.

The ability to anonymize data to meet δ-presence without complete world knowledge does come with a cost. Knowing the public dataset, the single-dimensional approach in [1] achieved LM cost under 0.6 for the scenario in Figure 7(b). They also showed that k-anonymity could achieve similar LM costs, but again this requires knowing the public dataset (as well as trying multiple values of k) as there is no direct relationship between choice of k and the disclosure risk measured by δ-presence, and thus no way to determine if δ-presence has been met other than by testing against the public dataset. A typical example from the experiments depicted in Figure 7(b) generalizes the tuple (39, State-gov, Bachelors, Never-married, Adm-clerical, Not-in-family, White) to (Any, Any, University, Any, Other, Not-in-family, Any) at confidence 0.8, and (Any, Any, Any, Any, Adm-clerical, Any, Any) at confidence 0.98. Note the suppression of relatively specific items (age, working for state government). Significant improvement may be possible through algorithms achieving c-confident δ-presence with multi-domain generalization, as done for basic δ-presence in [1].

Extending this work to linking with sensitive data in a disclosed dataset, as with ℓ-diversity at t-closeness, is straightforward (and could be easily accomplished using the technique of [7]). It may be possible to design δ-presence algorithms that guarantee bounds on optimality as done for k-anonymity in [18]. Further development of δ-presence will address a variety of real-

TABLE 5

Table shows decrease in execution time and increase in cost with varying bucket sizes for DC optimization

<table>
<thead>
<tr>
<th>hs</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>.62</td>
<td>.36</td>
<td>.20</td>
<td>.13</td>
<td>.11</td>
</tr>
<tr>
<td>$+$</td>
<td>0</td>
<td>.05</td>
<td>.05</td>
<td>.09</td>
<td>.11</td>
</tr>
</tbody>
</table>

shape of the graphs, the same conclusions can be made about the effect of the various pruning techniques.

Table 5 shows how varying bucket size affects the utility-efficiency tradeoff for optimization DC. We set $c = 0.8$, $\delta_{\text{min}} = 0$, $\delta_{\text{max}} = 0.1$ for the diabetes dataset. The increase in speed starts quickly but stabilize for large bucket sizes. This is mostly due to the minimum limit we set for the number of points within 4σ.

9 Conclusions and Future Work

While k-anonymity and related techniques have received considerable attention, it isn’t clear that they are the best way to balance privacy and data utility [7]. We have presented a problem where anonymization is an appropriate solution, and a metric δ-presence that correlates to the real risk/cost of a privacy violation. Datasets anonymized directly to meet the δ-presence standard distort data less than k-anonymization to comparable privacy levels, and provide a clear risk-based guarantee of privacy. Introducing a
world privacy issues not adequately addressed by other methods. The δ-presence definition can be revisited by assuming an adversary with varying levels of background knowledge: an adversary who knows more (e.g., the weight of an individual) gains in their ability to identify an individual, but also in their prior estimation of sensitive data. For example, knowing an individual is obese may make them easier to identify than not knowing their weight, but even without the anonymized data an adversary would have a strong reason to believe the individual was at risk for diabetes. As adversary prior knowledge increases, the probability of disclosure increases but the cost from disclosure decreases; giving a cost-utility tradeoff (instead of simply privacy-utility).

It is also possible to use randomization instead of generalizations on the private dataset to provide δ-presence. The authors are currently working on a hybrid approach where generalization is done through probability distributions. In all these cases, more advanced bayesian or statistical techniques would be required.

We have shown that the δ-presence measure first introduced in [1] not only provides a more meaningful approach to privacy than competing metrics, but with this paper we show that it can be practically achieved.
Fig. 7. Result with varying confidence with 7 dimensions

REFERENCES

