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Trajectory datasets are becoming more and more popular due to the massive usage of GPS and
other location-based devices and services. In this paper, we address privacy issues regarding
the identification of individuals in static trajectory datasets. We provide privacy protection
by defining trajectory k-anonymity, meaning every released information refers to at least k
users/trajectories. We propose a novel generalization-based approach that applies to trajec-
tories and sequences in general. We also suggest the use of a simple random reconstruction of
the original dataset from the anonymization, to overcome possible drawbacks of generalization
approaches.

We present a utility metric that maximizes the probability of a good representation and
propose trajectory anonymization techniques to address time and space sensitive applica-
tions. The experimental results over synthetic trajectory datasets show the effectiveness of
the proposed approach.

Keywords: Spatio temporal, k anonymity, privacy

1. Introduction

Data publishing is essential for providing resources for research, and for the trans-
parency of government institutions and companies. However, data publishing is
also risky since published data may contain sensitive information. Therefore, the
first step before data publishing is to remove the personally identifying informa-
tion. In (37), it has been shown that removing personally identifying information
is not enough to protect privacy. This is due to the fact that the released database
can be linked to public databases through a set of common attributes which are
called quasi-identifiers. For example in US the combination of zip code, and birth
date is unique for 87% of the citizens (37). This figure increases as more attributes
are added to the combination. Sweeney et al. showed that they could re-identify
the supposedly anonymous health records via linking them to publicly available
voters registration list. This striking result increased the concerns and research ef-
forts for privacy and anonymization in published databases. The problem of linkage
becomes even more complicated in our highly connected world as the number and
variety of data sources increase.

Mobile service providers can now predict the location of mobile users via trian-
gulation with a high precision. Coupled with applications such as location-based
services (LBS) that are enabled by GPS equipped mobile devices, it is now very
easy to track the location of individuals voluntarily or non-voluntarily over a pe-
riod of time. The time and location information of a person (or a moving object in
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general) collected over a period of time forms a trajectory which can be thought of
as a set of spatio-temporal data points spanning a time interval. Trajectory data
sets contain valuable information which can be harvested by data mining tools to
obtain models for applications such as city traffic planning or marketing.

However, time and location are sensitive information, therefore personally iden-
tifying information needs to be removed from trajectories before they can be re-
leased. But, even after de-identification, trajectory data sets are still prone to
linkage attacks since space and time attributes are very powerful quasi-identifiers.
For example, for a trajectory that starts at a specific location every weekday in the
morning and reaches another location in an hour, it is very easy to infer that the
starting location in the morning is home, and the location reached after an hour is
the work place. What an adversary can do is to look at a phone directory to search
for home addresses and work addresses to link the trajectories with their owners.

In general, the solution to prevent linkage attacks in de-identified data sets is
anonymization (37, 36). k-Anonymity was proposed as a standard for privacy over
relational databases. It can be summarized as “safety in numbers” and ensures that
every entity in the table is indistinguishable from k − 1 other entities. Achieving
optimal k-anonymity was proven to be NP-Hard, therefore heuristic algorithms
have been proposed in the literature to k-anonymize data sets. In case of spatio-
temporal trajectories the problem of anonymization is even harder since consecutive
points in a trajectory are dependent on each other. Therefore anonymization should
consider every trajectory as a whole when anonymizing.

In this paper, we concentrate on spatio-temporal trajectories. We first extend
the notion of k-anonymity for trajectories and then describe a heuristic method
for achieving k-anonymity of trajectories. Trajectories are then published by only
releasing a representative trajectory to further protect the privacy of people whose
trajectories refer to.

Outline of the paper. In Section 2 we give some motivating applications for
anonymization of static trajectory and sequence datasets. In Section 3 related work
on privacy over relational databases and spatio-temporal data is presented. We then
describe the problem of trajectory anonymity in Section 4. Detailed algorithms on
how to obtain generalized trajectories and results on the computational complexity
are given in Section 5, while in Section 6 we propose a (optional in general but
required in some applications) reconstruction step to release only a representative
trajectory (instead of generalized trajectories). Finally, in Section 7 we discuss
results of our empirical experimentation and then we sketch some conclusions.

2. Applications

A number of applications motivate our work. In this section, we give several exam-
ples of interesting and emerging applications where privacy over static trajectory
or sequence dataset is of paramount importance:

2.1. Data Analysis and Mining

As the use of mobile devices grows rapidly, the value of storing spatio-temporal data
is better understood. Business companies, governments, and science institutes are
heavily collecting and storing spatio-temporal data to extract useful and relevant
information (35, 30, 39, 31, 27, 11).

The applications over mobile data, such as GPS data, is no longer limited to
location-based servicing or querying. Several spatio-temporal data mining tech-
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niques has been developed. Such techniques has been used by business companies
to maximize employee efficiency (30), by governments to understand the infras-
tructure (39) and by research groups to observe human behavior (31, 27, 35).

We stress that the output of mining algorithms might fail to remove all individu-
ally identifying information In fact, work in (5, 4) shows that even simple statistics
such as the most higher counts over column projections (same as frequent itemset
mining in data mining literature) may violate anonymity based privacy definitions.
In other words, information regarding very few people may be released, allowing
possible linking/joining attacks through the use of some columns. Therefore, in or-
der to release statistics over any dataset, provable anonymization techniques must
be applied before computing statistics and/or mining. Our paper provides such
techniques for spatio-temporal trajectory datasets, that can be used before any
non anonymity-preserving mining or analysis algorithms.

2.2. Trajectory Data Sharing and Outsourcing

As in the case of conventional databases, storing of spatio-temporal data along with
the variety and importance of applications necessitate the release of the data. Since
most trajectory databases contain personal information, publicizing such databases
is subject to privacy regulations and requires de-identification (14, 15, 20). One of
the most effective and recognized technique for de-identification is anonymization
(20).

Even though human data is subject to changes, most real world applications work
on static data. The reason is the high cost of mining dynamic information in terms
of both accuracy and efficiency. Most systems instead follow a trade-off. Changes
in the system are captured by incremental mining up to date data periodically
(e.g. monitor the traffic continuously but mine the data every week) or updating
the existing data mining model with fresh data. In either cases, static databases
are valuable. This is the case when sharing trajectory databases for outsourced
trajectory analysis. As a typical example, we have municipalities willing to perform
traffic data analysis but with limited internal skills.

2.3. Web Analytics and other Logs-based Activities

Web analytics, that is, analysis and mining of user traces, is not only becoming
of fundamental importance for internet business, but also posing serious privacy
concerns.

A notable event related to this privacy problem is American On-line’s (AOL)
release of massive amounts of log data. The data included queries done by those
users in a three month period this year, as well as whether they clicked on a result,
what that result was and where it appeared on the result page. Although there
was no personally-identifiable data linked to these accounts, a number of attacks
have been performed by using quasi-identifiers and other infrequent information
contained in the logs.

The paper is focused on trajectories, i.e., sequences of spatio-temporal points.
Nevertheless, the generalization-based approach we are proposing easily adapt to
different kind of sequences, such as web server logs of page visits.

Here we only sketch the idea on how to extend trajectory anonymity to web
server logs. Suppose the trajectory anonymization algorithm recognizes the second
page of a visit, namely:

session=8545634 page_sequence=2
servername.com/sect1/sect1.2/page1.html



June 4, 2008 15:15 Journal of Geographical Information Science gis˙traj˙kanon

4 Nergiz & Atzori and Saygin

as an infrequent “point” among the user web traces. In this case, the point may be
generalized to, e.g.,

session=8545634 page_sequence=[2 OR 3]
servername.com/section1/*

by suppressing or using or a user-provided page hierarchy. Notice that this kind
of generalization cannot be computed by relational k-anonymity algorithms (34)
since the sequence information of the user trace would not be taken into account
appropriately. Even if we ignore ordering among page visits, session or user pseudo-
ID columns will force the anonymization process to consider pages of the same user.
This will bring to possibly overestimating privacy protection (e.g., when a user has
visited several pages) but, more often, reducing the effectiveness by suppressing
unnecessary data (e.g., when a user visited less than k pages).

3. Related Work

3.1. k-Anonymity and Privacy over Relational Databases

Addressing privacy concerns when releasing person specific datasets is well studied
in the literature (36, 28, 3, 26, 32). Simply removing uniquely identifying infor-
mation (SSN, name) from data is not sufficient to prevent identification because
partially identifying information (quasi-identifiers (QI); age, sex, city . . . ) can still
be mapped to individuals by using external knowledge (37). k-Anonymity is defined
in (36), to protect against identification of individuals in person specific datasets.

Definition 3.1 k-Anonymity:: A table T ∗ is k-anonymous w.r.t. a set of attributes
QI if each record in T ∗[QI] appears at least k times.

k-Anonymity property ensures that a given set of quasi identifiers can only be
mapped to at least k entities in the dataset. The most common technique being
used to anonymize a given dataset is value generalizations and suppressions. In
multidimensional space, the counter part of these operations is replacing a set of
points with the minimum bounding box that covers the points. It should be noted
that k-anonymization preserves the truth of the data.

Entities in trajectory datasets are more complex than those studied by classical
k-anonymity approaches. Anonymization of complex entities was proposed in (34)
where data about private entities reside in multiple datasets of a relational data-
base. Even though trajectory datasets can be represented in relational databases,
order of points over a given trajectory matters due to the linear time property.
Work in (34) does not assume any ordering between points. Also applications over
trajectory databases are very specific and require different cost metrics and differ-
ent anonymization techniques.

In (28) authors also warn that, in each set of people with same values for the
anonymized QI `-diversity must hold, i.e., sensitive attribute values must be diverse
enough. Otherwise, it is possible to infer the exact sensitive value with arbitrar-
ily high probability. We will discuss how to extend the concept of `-diversity for
trajectory dataset in Section 8.

As done in previous work on LBS and trajectory privacy, we will not directly
address `-diversity issues during the presentation, while we will sketch some possible
approaches to this interesting issue as a future work in Section 9.
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3.2. Privacy-preserving LBS

There has been a lot of work on privacy issues regarding the use of location based
services (LBSs) by mobile users. Most work defined the privacy risk as linking of
requests and locations to specific mobile users. Works in (13, 21) used perturba-
tion and obfuscation techniques to deidentify a given request or a location; they
differ from this work in the privacy constraints they enforce. Anonymization based
privacy protection was used in (16, 6, 17, 18). In (18), anonymity was enforced on
sensitive locations other than user location points or trajectories. In (16, 17), indi-
vidual location points belonging to a user is assumed to be unlinked and points of
the users are anonymized other than the trajectories. In (6), anonymization process
enforces points referring to same set of users to be anonymized together always.
However work assumes anonymization per request other than whole trajectory an-
onymization and heuristic to specify groups of users is restricted in a time frame.
(Such an approach does not anonymize time.)

3.3. Trace and Trajectory Anonymization

All of the proposed privacy preservation methods on LBSs so far assume a dynamic,
real-time environment and methodology being used is based on local decisions. We
are also aware of very recent, independent work (7, 22) addressing the problem of
preserving privacy in static trajectory databases. Both works rely on uncertainty
in the spatio-temporal data in order to enforce anonymity. The first technique (7)
protects privacy by shifting trajectory points (that are already close to each other
in time) in space. Clusters of k trajectories are enforced to be close to each other
to fall in the same area of uncertainty given by a user parameter representing the
GPS precision. The second work (22) presents a subsampling-based algorithm, i.e.,
privacy is preserved by removing some points s.t. uncertainty between consecutive
points is increased to avoid identification. Due to the inherit uncertainty assump-
tion of both works on trajectories, the privacy constraints enforced and the cost
metric do not match with those used in this work.

In this work, we address the privacy concerns when publishing static trajec-
tory databases by extending the concept of k-anonymity to trajectories. We model
trajectories in a general way (sequences of spatio-temporal points) such that the
same techniques can be possibly used in other context (sequence events, strings,
non-euclidean spaces, etc.) without much effort.

To the best of our knowledge, this is the first work that extends the concept of
relational k-anonymity to trajectories without relying on data distortion and un-
certainty. We instead remove information from the data by making use of space and
time generalizations, point alignment both in space and time, point and trajectory
suppressions. The basic methodology does not rely on uncertainty (as was the case
in previous works). The cost metric being used is statistically derived and captures
time and space sensitivity to address various applications. Also no previous work
seems to have measured the level of distortion due to anonymization in the context
of trajectory mining applications, which we consider one of the ultimate purpose
in trajectory publishing.

In systems where freshness of the data is crucial (e.g., healthcare data, stream
data), release (and anonymization) of data needs to be on the fly. An important
example is authenticated LBS, where authenticated users send streams of queries to
a service provider, and a trusted anonymizer filters the communication by applying
anonymization techniques. To the best of our knowledge, no work on authenticated
LBS studied space-time generalization, although it is considered a state-of-the-art
technique for non-authenticated LBS. Our work make the assumption that all the
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data is static. Adapting trajectory k-anonymization framework given in this paper
for such online systems is no different than adapting conventional k-anonymization
for dynamic databases. The latter is already studied by the literature (38, 9) and
such an extension to the framework seems not to be challenging, and currently left
for future work.

4. Problem Formulation

4.1. Notation

We assume the space is discretized into εs× εs size grids and a point in our domain
is actually a grid. All space measurements are in units of εs. We assume time is also
discretized into buckets of size εt and domain of time is finite. So datasets act as
the snapshots of the world in many time instances. Datasets with continuous time
and space domains can be fit into this assumption by the use of interpolations. The
level of granularity in discretization does not affect the efficiency of the proposed
methodology.

We define a trajectory database in an object-oriented way. A trajectory dataset
T is a set of private entities or trajectories (e.g., T = {tr1, · · · , trn}, |T | = n). Each
private entity tri is an ordered set of spatio-temporal 3D volumes (e.g., points)
composed of time, x, and y dimensions (e.g., tri = {p1, · · · , pm} where pk =<
tk, xk, yk >, |tri| = m). We assume that the ti, xi and yi components are range
of values defined as ti : [t1i − t2i ], xi : [x1

i − x2
i ] and yi : [y1

i − y2
i ]. Each tri is

ordered by their subtime component t1i . tris refer to the individuals and each triplet
specifies the area location of the individual at some time in the corresponding time
interval. We use the following notation for components to express their length;
|xi| = |x1

i − x2
i |, |yi| = |y1

i − y2
i |, |ti| = |t1i − t2i |. We also use ‘·’ operator to refer to

a specific component of a bigger set. (E.g., tri.pj : jth point of the ith trajectory)
We say a trajectory tr1 is a subset of another trajectory tr2 and write tr1 ⊂ tr2

if for each point pi ∈ tr2, we have some unique pj ∈ tr1 such that t1i ≤ t1j , t2i ≥ t2j ,
x1

i ≤ x1
j , x2

i ≥ x2
j , y1

i ≤ y1
j , y2

i ≥ y2
j . We say a trajectory tr is atomic if |xi| = |yi| =

|ti| = 1 for every pi ∈ tr. We use the notation BBP for the 3D point with minimum
volume that covers all points inside set P (E.g., minimum bounding box).

We also assume S is the universal space (the maximum area possible in the space
domain), T is the universal time (the maximum time interval in the time domain),
and U is the universal volume (U = S · T ).

4.2. Problem Definition

We assume that prior to release, the trajectory database is complete and static.
No uniquely identifying information is released. However we assume that we have
adversaries that may

(1) already know some portion of the trajectory of an individual in the dataset
and may be interested in the rest. (e.g., adversary knows that a particular
person lives in a particular house. He also knows that she leaves the house and
comes back home at specified times. He is interested in finding the locations
she visited.)
(2) already know the whole trajectory of an individual but be interested in
some sensitive information about the individual. This is a concern if some
sensitive info is also released, as part of the database, for some of the spatio-
temporal triplets or for some individuals. Sensitive info, for example, could be
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the requests done by the individual to location based services.

We protect privacy of the individuals against the above adversary by using the
following techniques

• k-Anonymity: anonymize the dataset so that every trajectory is indistinguish-
able from k − 1 other trajectories.
• Reconstruction: release atomic trajectories sampled randomly from the area

covered by anonymized trajectories.

k-Anonymity limits the adversary’s ability to link any information to an indi-
vidual. Reconstruction further prevents leakage due to anonymization. Both tech-
niques are discussed in Sections 5 and 6.

Since reconstruction is just sampling from anonymized data, expectation on the
amount of privacy-utility depends only on the anonymization. As an anonymi-
zation is required to satisfy the privacy constraints, it also needs to maximize the
utilization. An anonymization with a reconstruction that better explains the data is
considered to be highly utilized. However the amount of utilization also depends on
the target applications. Although there may be many classes of target applications,
in this work, we consider two of them:

Time Sensitive Applications: This class covers the applications in which the
time component is crucial compared to space components. Trajectories that have
similar paths in space, but occur in different time periods are considered to be far
away from each other. Such applications include mining traffic data to monitor
traffic jams, anomaly detection when timely access control constraints are in place,
etc.

Space Sensitive Applications: Similarities are calculated w.r.t. space. Time
shifted trajectories or trajectories with different velocities can be considered to be
close. Target applications include mining the world for region popularity to make
business decisions, measuring road erosion caused by vehicles for maintenance, etc.

Section 6.2 discusses that some anonymization tr∗ of tr minimizing the following
equation (log cost metric1) also maximizes the probability of generating the exact
dataset.

LCM(tr∗) =
∑

pi∈tr∗

[ws(log |xi| + log |yi|) + wt log |ti|]

+(|tr| − |tr∗|) · (ws log S + wt log T ) (1)

where ws and wt are weights to adjust sensitivity to space and time respectively.
From now on, our objective is to minimize Equation 1 while respecting k-

anonymity in anonymizations. In later sections to ease the discussion, we assume,
without loss of generality, ws = wt = 1 unless noted otherwise.

5. k-Anonymity in Trajectory Databases

In this section, we redefine the k-anonymity notion for sets of trajectories. Next,
we use a condensation based approach to form groups of similar trajectories. Last,
we show how to k-anonymize trajectories in a given group. Anonymization process
will be dependent on the selection of metric parameters being used for grouping.

1We postpone the discussion on the reasoning behind using the log cost as a metric until Section 6.2
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Figure 1. Anonymization Process
a. trajectories tr1,tr2, and tr3; b. anonymization tr∗ of tr1 and tr2; c. anonymization of tr∗ and tr3; d.
point matching used in the anonymization of tr1,tr2, and tr3. Matching contains five point links

5.1. k-Anonymity for Trajectory Databases

Original k-anonymity prevents an adversary from identifying a given QI to be in a
set with less than k elements in the anonymized dataset. Since we assume adver-
saries know about all or some of the spatio-temporal points about an individual,
the set of all points corresponding to a trajectory become the quasi identifiers in
our domain. To enforce k-anonymity against such an adversary, we require the
following property to hold in a given anonymization T ∗ of trajectory dataset T :

|{tr∗ ∈ T ∗ | tr ⊂ tr∗}| ≥ k ∀ tr ∈ T

This implies that a given trajectory in the original dataset can at best be linked
to at least k trajectories in the anonymized dataset. It can be shown easily that
the following definition for k-anonymity satisfies the requirement and also preserves
the truth of the original dataset:

Definition 5.1 Trajectory k-Anonymity:: A trajectory database T ∗ is a k-
anonymization of a trajectory dataset T if

• for every trajectory in T ∗, there are at least k − 1 other trajectories with
exactly the same set of points.
• there is a one to one relation between the trajectories tr ∈ T and trajectories

tr∗ ∈ T ∗ such that tr ⊂ tr∗.

Following definitions show how to create anonymization of a set of trajectories.

Definition 5.2 Point Link and Matching:: A point link between a set of tra-
jectories TR = {tr1, · · · , trn} is an ordered set of points PL = {p1, · · · , pn}
such that pi ∈ tri. An ordered set of point links between trajectories in TR,
PM = {PL1, · · · , PLm}, is a point matching between the trajectories if for all
i < j and all possible k, PLi.t

1
k < PLj .t

1
k.

Figure 1.d shows a point matching between trajectories tr1, tr2, and tr3. Note
that point links are ordered, do not overlap and there may be unmatched points
in any of the trajectories.

Theorem 5.3 : Let TR = {tr1, · · · , trn} be a set of trajectories and PM =
{PL1, · · · , PLm} be a valid point matching between them. Let TR∗ = {tr∗1, · · · , tr∗n}
be another set such that tr∗1.pi = · · · = tr∗n.pi = BBPLi

. Then TR∗ is an n-
anonymization of TR.

Proof : Since all the n elements in TR∗ are the same, the first requirement of
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Table 1. Optimal Alignment Optimizing Against Metric σ

OPTσ(tr1, tr2) =



∑
pi∈tr1

σ(pi,⊥), |tr2| = 0;∑
pi∈tr2

σ(pi,⊥), |tr1| = 0;

min{OPTσ(tr1 − tr1.p1 , tr2 − tr2.p1) + σ(tr1.p1, tr2.p1),
OPTσ(tr1 , tr2 − tr2.p1) + σ(tr2.p1,⊥),
OPTσ(tr1 − tr1.p1 , tr2) + σ(tr1.p1,⊥)}, |tr1|, |tr2| > 0.

anonymity trivially holds. Since each point in tr∗j is a bounding box for some point
in trj ; trj ⊂ tr∗j . The second requirement also holds. ¤

Figure 1.c shows the 3-anonymization of tr1, tr2, and tr3 through the point
matching in d. Unmatched points are suppressed in the anonymization.

Theorem 5.3 states that any matching between the points of a given set of trajec-
tories can be used to anonymize the trajectories. Although there are many possible
matchings, the aim of the anonymization is to find the one that will minimize the
log cost of the output anonymization.

5.2. Trajectory Grouping

Although there are numerous k-anonymity algorithms proposed for single table
datasets, a grouping based approach is discussed to be more suitable for the ano-
nymization of complex structures, due to the direct identification of private entities
(trajectories in our case) being anonymized (34). Most clustering algorithms can
easily be modified for k-anonymity by enforcing that the size of the clusters should
be more than k (2, 33, 12, 1). The only challenge at this stage is to define a dis-
tance metric between trajectories. Since our objective is to minimize the log cost
metric, we can define the distance of two trajectories as the cost of their optimal
anonymization. Having said that the problem reduces to finding the cost optimal
anonymization given two trajectories.

Finding the optimal anonymization of two trajectories is the same as finding the
point matching between the two trajectories such that anonymizing the trajectories
through the matching minimizes the log cost. A similar alignment problem is well
studied for strings (where the goal is to find an alignment of strings such that
total pairwise edit distance between the strings is minimized) in the context of
DNA comparisons. Alignment problem for two trajectories is polynomial and can
be solved by using a dynamic programming approach. The equation that solves the
alignment problem for optimizing against a given incremental function σ is given
in Table 1. The log cost metric (LCM) is also incremental and defines σ as follows:

σLCM (p1, p2) =
{

log U, p2 =⊥;
log BB{p1,p2}, otherwise.

So the distance between two trajectories tr1 and tr2 is given by

DST (tr1, tr2) = OPTσLCM
(tr1, tr2)

In this work, we adapted and slightly modified the condensation based grouping
algorithm given in (1) for trajectory k-anonymity. Algorithm multi TGA given in
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Algorithm 1, in each iteration, creates an empty group G, randomly samples one
trajectory tr ∈ TR, puts tr into G, sets the group representative repG = tr. Next,
the closest trajectory tr′ ∈ TR − G to repG is specified (line 6). tr′ is added into
G and group representative repG is updated as the anonymization of repG and tr′

(line 8). Update of repG and G with new trajectories continues until G contains k
trajectories. At the end of each iteration, a new group of k trajectories is formed,
and is removed from TR. Trajectories in every group are anonymized with each
other (details are in the next subsection.). Iteration stops when there are less than
k trajectories remaining in TR.

The costly operation in the grouping algorithm is finding the closest trajectory
to the group representative (line 6). This nearest neighbor operation needs to be
done |TR| times and it is difficult to speed up each operation by indexing. (This is
because our distance metric does not satisfy triangular inequality.) To decrease the
number of operations, we also try another version of algorithm 1 (fast TGA) by
skipping the update of group representative (e.g., skipping of line 9). In this case,
k−1 closest trajectories to the group representative can be found in one pass so the
number of nearest neighbor operations will be |TR|

k . The resulting algorithm is faster
by a factor of k but expected to have less utility since it does not directly optimize
against log cost function. Experiments on the time/utility relations between fast
and multi TGA algorithms are provided in Section 7.

Algorithm 1 multi & fast TGA(TR, k)
Require: Set of trajectories TR, integer k > 1, the log distance metric
Ensure: return k-anonymization of the trajectories in TR.

1: repeat
2: Let G be an empty group with group representative repG

3: Let tr ∈ TR be a randomly selected trajectory.
4: G = {tr}, repG = tr.
5: repeat
6: Let tr′ ∈ TR − G be the closest trajectory to repG.
7: G+ = tr′,
8: if multi TGA then
9: repG = anonTraj(repG, tr′).

10: end if
11: until |G| = k
12: anonTraj(G)
13: TR− = G
14: until |TR| < k
15: Suppress remaining trajectories in TR.

5.3. Anonymization of Trajectories

Once the groups are formed, the trajectories inside each group needs to be
anonymized. As mentioned before, the anonymization process needs to specify the
optimal point matching that will minimize the log cost. Finding the optimal match-
ing between two trajectories is easy. Algorithm specifies the point pairs between
the trajectories by tracing OPTσLCM

and anonymizes the paired points w.r.t. each
other (by replacing the points with the minimum bounding box that covers the
points). Any unmatched points are suppressed.

The real challenge is to find the optimal point matching between n > 2 trajec-
tories. Similar versions of the problem on strings were proved to be NP-Hard (24).
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Figure 2. NP-Hardness Reduction Construction

Trajectory alignment and its complexity is not yet studied. Now, we formalize and
prove the NP-Hardness of the decision trajectory alignment problem (DTA):

Definition 5.4 DTA Problem:: Given a set of trajectories TR = {tr1, · · · , trn} for
arbitrary n > 2, is there a point matching PM between the trajectories in TR such
that the log cost (with arbitrary weights ws and wt) of anonymizing TR through
PM is at most c?(i.e., is DTA(TR) ≤ c?)

Theorem 5.5 : DTA problem is NP-Hard

Proof : We first assume the log cost function has parameters ws = 1,wt = 0. We
extend the proof for cost functions with arbitrary weight parameters at the end.
We proof that DTA is NP-Hard by reducing from longest common subsequence
problem (LCS) which is proved to be NP-Hard for a sequence alphabet of size 2
(29):

Definition 5.6 LCS Problem:: Given an integer ` and a set of sequences SQ =
{sq1, · · · , sqn} where each sqi = {s1, · · · , sm} is an ordered set of strings from the
alphabet

∑
= {0, 1}; is there a common subsequence of sequences in SQ with

length at least `? (i.e., is LCS(SQ) ≥ `?)

For an instance (`, SQ) of LCS, we create the set of input trajectories TRSQ =
{tr1, · · · , trn} for DTA, as follows: setting |tri| = |sqi|

tri.pj =
{

< [j - j + 1], [0-1], [0-1] >, sqi.sj = 0;
< [j - j + 1], [1-2], [1-2] >, sqi.sj = 1.

Figure 2 shows an example trajectory construction for a given set of sequences.

Lemma 5.7: For a sequence SQ = {sq1, · · · , sqn}, LCS(SQ) ≥ ` if and only if
DTA(TRSQ) ≤ (t − n · `) · log 4 where t =

∑
i

|tri|



June 4, 2008 15:15 Journal of Geographical Information Science gis˙traj˙kanon

12 Nergiz & Atzori and Saygin

Proof : (
onlyif← ) Suppose sq′ = {s′1, · · · , s′`} is one common subsequence, and let ini

j

returns the index of s′i in sqj . Observe that PM = {PL1, · · · , PL`} where PLi.pj =
trj .pini

j
is a valid point matching for TRSQ. Since sq1.sini

1
= · · · = sqn.sini

n
= s′i;

we have, using the notation S= as an equality operator for points having the same
spatial components, PLi.p1

S= · · · S= PLi.pn for every 1 ≤ i ≤ `. This implies
that every point in a point link has the same spatial components. So anonymizing
TRSQ through PM will match ` space-similar points. The final anonymization
will have a unit (1 × 1) area in ` positions. Assuming the worst anonymization
(in this case, an area of 2 × 2) for the t − n · ` points, we have a log cost at most
(t − n · `) log 4 + n · ` log 1 = (t − n · `) log 4.

(
if→) Let PM = {PL1, · · · , PLr} be the point matching resulting in at most

(t − n · `) log 4 log cost. Let PM0 = {PLi ∈ PM | PLi.p1
S= · · · S= PLi.pn} and

PM1 = PM − PM0. (PM0 contains the point links that connect space similar
points. Every link in PM1 contains at least two spatially different points.) Since
we have only two points in our domain, the points in PM1 will add a log cost of
the whole space (an area of 2×2). The same cost applies also for points unmatched
(suppressed). However the points in PM0 will have unit (1 × 1) area. Since the
total number of points in PM0 is n|PM0|, we have;

LCM(TR∗
SQ) ≤ (t − n · `) log 4

n|PM0| log 1 + (t − n|PM0|) log 4 ≤ (t − n · `) log 4

(t − n|PM0|) log 4 ≤ (t − n · `) log 4

|PM0| ≥ `

This means that we have a possible matching of size at least ` where the points
linked to each other are space-similar. The reverse construction of the (

onlyif← ) proof
states that such a matching implies a common subsequence of length at least `. ¤

We ignored the effect of time component in the log cost function (wt = 0) in the
above construction. However, the proof can be modified to prove NP-Hardness of
any fixed log cost function with any selection of weight parameters. The intuition
is to prevent the effect of time component on finding the optimal matching. (The
same matching needs to be optimal regardless of the value of wt.) This can be done
by adjusting the domains of space and time components such that increase in cost
due to time generalizations will be negligible compared to the cost due to space
generalizations. (ws log S >> n · wt log T where S and T are the universal space
and time respectively.) ¤

Given the similar nature of the string and trajectory alignment problems, we
adopted the string alignment heuristic given in (19) (where an upper bound on
the total pairwise distance for the output alignment is guaranteed.) for trajectory
alignment problem. Algorithm anonTraj given in Alg. 2 uses the following heuris-
tic to come up with a possible alignment of points. Algorithm first identifies the
trajectory trm whose total pairwise log cost distance with other trajectories is min-
imum and marks trm as done. At each step, OPTσLCM

finds the optimal matching
between the points of one unmarked trajectory trnew and the current anonymi-
zation of the marked trajectories, and marks trnew. Each matching creates links
between the points. Point suppressions and generalizations are applied according to
the matching. (Figure 1 shows an example anonymization of three trajectories.) In



June 4, 2008 15:15 Journal of Geographical Information Science gis˙traj˙kanon

International Journal of Geographical Information Science 13

Figure 3. Reconstruction Process

later sections, we show experimentally that alignment heuristic works in practice.

Algorithm 2 anonTraj(G)
Require: a (set) group of trajectories G.
Ensure: anonymize the trajectories inside G.

1: let trm ∈ G be the trajectory whose total pairwise distance with other trajec-
tories is minimum.

2: let set of trajectories M contains initially trm.
3: repeat
4: let tr∗ be the anonymization of trajectories in M through linked points.
5: let trnew ∈ G − M be a randomly chosen trajectory
6: run OPTσLCM

to find a min cost matching between the points in trnew and
tr∗

7: create links between the points matched by OPTσLCM
.

8: suppress all unmatched points and all points directly or indirectly linked to
unmatched points.

9: M = M + trnew

10: until M = G
11: for all unsuppressed point p of each tr ∈ M do
12: let PL be the point link containing p.
13: p = BBPL

14: end for

6. Randomized Reconstruction

6.1. Reconstruction as a Privacy Method

Trajectory anonymization techniques preserve the truth of the data while provid-
ing protection against certain adversaries. However the approach suffers from the
following shortcomings.
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Table 2. Reconstruction trR of tr∗

Pr(trR = tr′) =


1∏

pi∈tr∗

(|xi| · |yi| · |ti|)
, atomic tr′ ⊂ tr∗;

0, otherwise.

(1) Use of minimum bounding boxes in anonymization discloses uncontrolled
information about exact locations of the points. (E.g., in the case of two trajec-
tories, two non-adjacent corners give out the exact locations.) This information
may be critical for applications where existence of a trajectory in a dataset is
sensitive (e.g., δ-presence (32)).
(2) It is challenging to take full advantage of information contained in
anonymizations. Most data mining and statistical applications work on atomic
trajectories

The first problem can be weakened by applying some cloaking on the sides of the
rectangle or by partitioning the space into grids and returning set of grids covering
all points.

The second problem is more tricky as it is a common problem for heterogenous
anonymizations with large output domain. (most clustering based anonymity algo-
rithms suffer from the same problem.) One proposed technique to solve this issue is
reconstruction (33, 1) where an atomic dataset is recreated from the anonymized
dataset by uniformly selecting atomic points from anonymized regions. It is ex-
perimentally shown in (33) that reconstruction is sufficiently successful in learning
from anonymized data.

In this work, we adapt the reconstruction approach as a means for privacy protec-
tion (as in (1)) and release reconstructed data rather than anonymized data. The
intuition behind is that reconstruction not only serves as a solution to learn from
the heterogeneous anonymized datasets but also greatly weakens the first problem
without requiring a user input. We define the reconstruction trR of trajectory tr∗

in Table 2.
An example reconstruction is shown in Figure 3. The output after reconstruction

is atomic and suitable for any trajectory application.

6.2. Maximizing Utility: The Log Cost Metric

The success of the anonymization heavily depends on the success of the recon-
structed data in explaining the original data. Since we have tr ⊂ tr∗ between
original trajectory tr and its anonymization tr∗, the probability of generating the
original trajectory is non-zero and given by the constant denominator in Table 2
case 1. A good anonymization would maximize this probability.

arg max
tr∗

∏
pi∈tr∗

1
|xi|

· 1
|yi|

· 1
|ti|

= arg min
tr∗

(
∑

pi∈tr∗

log |xi| + log |yi| + log |ti|) (2)

The Equation 2 equally weights the effects of time and space on the reconstruc-
tion. This is not desirable if we have the class of target applications given in Section
5. So instead, we weight the log cost metric;
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Figure 4. Map of the city with 3 groups each containing 2 trajectories

∑
pi∈tr∗

ws(log |xi| + log |yi|) + wt log |ti| (3)

Since a given anonymization tr∗ of tr does not contain the points suppressed
in tr, Equation 3 does not add any log cost regarding those suppressed points.
However a suppressed point can be safely thought as a point covering the whole
universal space. The final weighted log cost function is given by;

LCM(tr∗) =
∑

pi∈tr∗

[ws(log |xi| + log |yi|) + wt log |ti|]

+(|tr| − |tr∗|) · (ws log S + wt log T ) (4)

7. Experiments

We run a set of experiments on a trajectory dataset generated by using the state-of-
the-art Brinkhoff generator1. It contains 1000 spatio-temporal trajectories with an
average length of 70 points, for a total of 70118 spatio-temporal points. The spatial
projection of the dataset is shown in Figure 4. For a qualitative understanding of
the log distance behavior, we also show 3 randomly-chosen groups of trajectories
obtained by using k = 2. Trajectories in the same group are clearly close in space
and also similar in length (although not shown, also time intervals are similar.)

Experiments focus on (1) measuring the amount of utility preserved after ano-
nymization and perturbation processes, and (2) time performance.

7.1. Utility

We compared the anonymized datasets (by varying k and the anonymization heuris-
tics) against the original one, measuring how much different they are according to
a number of metrics.

1http://fh-oow.de/institute/iapg/personen/brinkhoff/generator/
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7.1.1. Number of Removed Points

The anonymization step allows suppression of points or trajectories, depending
on the cost associated to suppression. We used a high cost for suppressions, but
notice that since trajectories may have different lengths, suppression may be re-
quired to enforce k-anonymity. Figure 5 shows the results on two heuristics used
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Figure 5. Points removed in the anonymized dataset

in our experiments: multi, i.e. logdistance computed on multiple trajectories; and
fast, where logdistance has been always computed only on trajectory pairs (see
Section 5.3). As expected, the number of removed points generally increases with
k. Notice that multi has a low distortion, with less than 9% of points removed even
with k = 25. On the contrary, fast heuristic needs to remove nearly twice or three
times the number of points removed by multi2

7.1.2. Distortion on Clustering

We also analyzed the utility of the anonymized datasets for mining purposes.
We measured the deviation from the original clustering results,i.e., we compare
clusters obtained from the original trajectory dataset (reference partition) against
the clusters obtained from the sanitized dataset (response partition). For the eval-
uation, we used a bottom-up complete-link agglomerative clustering algorithm,
coupled with the ERP distance metric (10), which has been specifically developed
for trajectories.

As the algorithm requires to specify the number of clusters as input, we ranged
from 2 to 60 clusters. Note that due to the large number of experiments and the
final complexity of the clustering algorithm we used1 the whole comparison process
required days of computation.

We used a standard approach to evaluate clusters. We considered every pair
of trajectories and verified whether both are in the same cluster in the reference
partition and whether they are in the response partition. We have therefore four
case, namely: true positive (TP), true negative (TN), false positive (FP), false
negative (FN). Then we computed the following standard measures:
• accuracy = (TP + TN)/(TP + FN + FP + TN);
• precision = TP/(TP + FP );
• and recall = TP/(TP + FN).

Figure 6 shows the results computed from the sanitization datasets, by using dif-
ferent (prearranged) number of clusters. Figures 6(a,b,c) show the behavior of the
multi heuristic, while on the second row Figures 6(d,e,f) show a similar behavior

2for k = 2 the two heuristics are equals, and the only small difference is due to the randomization in the
reconstruction of trajectories
1Our hierarchical clustering implementation requires O(n3) distance computations (where n is the number
of trajectories), and each ERP computation requires, by using dynamic programming, O(l2) (where l is
the longest trajectory).
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Figure 6. Distortion evaluation on clustering results.

for the fast heuristic. In this set of experiments, we notice therefore that for clus-
tering purposes, the fast heuristic has nice behavior. In order to better understand
the values of each measure used in the plots, we also show results of a “random
algorithm”, i.e. a randomly-selected reference partition of uniformly distributed
clusters. For a reasonable number of clusters (e.g., up to 20) all the measures re-
ported good results. We can also notice that smaller k’s result in less distortion,
although there is not a tight monotonicity due to the randomization steps.

7.2. Time Performance

In Figure 7, we show a plot on time performance. As we can see, execution time
grows linearly with increasing k for multi algorithm, while fast is almost constant.
Also notice that multi required almost 3 hours for k = 25; for datasets larger than
3K-4K trajectories, running time may be infeasible for multi, while fast scales well.
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Figure 7. Time performance.

7.3. Query Answering

We stress that most common uses of static datasets are statistical analysis and data
mining other than querying. However querying the anonymizations is still valuable
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Figure 11. Query error over queries with increasing diagonal slope

to understand the behavior of the cost metric and the anonymization process. In
this section, we make use of spatio-temporal queries in order to

• compare time and space sensitive anonymizations.
• and observe how anonymizations respond to queries of different shapes.
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Figure 12. Query error over queries with decreasing diagonal slope

Our queries are basically, 3D rectangular volumes drawn inside the space of the
spatio-temporal dataset. For an anonymization T ∗ of a dataset T , and a query
volume Q, we are interested in two measures:

Q(T ): The number of trajectories passing through (having at least one point in)
Q in T .

Q(T ∗): The expected number of trajectories passing through Q in a reconstruc-
tion TR of T ∗.

In a good anonymization, we would like the two measures be close to each other.
Given this, we define the query error EQ as

EQ =
|Q(T ) − Q(T ∗)|

Q(T )

By itself, EQ is not very descriptive since it heavily depends on the volume and
position of the query and the number of suppressed points. (Even a bad anonym-
ization might give an EQ close to 0, for a Q with large volume.) However it can
be used to compare two anonymizations with similar number of suppressed points.
Our aim is to measure the behavior of time and space sensitivity.

We first created 1000 queries of varying size, shape, and location; and measured
an average EQ value for both time-sensitive (wt = 1) and space-sensitive (wt = 0)
anonymization, t-fast and s-fast respectively. (t-fast preserves time better, s-fast
preserves space better.) We also created two totally random anonymizations, t-
rand and s-rand, out of t-fast and s-fast by using the same number of points and
trajectories. These random anonymizations serve as a lower bound on the utility
of query answering. Figure 8 shows the average query error of t-fast, s-fast, t-rand,
and s-rand for varying k. As desired, both fast algorithms has much lower error
rates than their counter random versions. The difference decreases as k increases
since anonymizations gets closer to randomization (and loses utility).

Figure 9 shows a similar scenario for k = 5 but this time for 1000 queries of
varying volumes. The volumes are listed in the multiples of the whole space. This
time error rate drops with larger queries since the Q(T ) becomes bigger. (Error for
the largest possible query would be 0.) Figure 8 and 9 together show that t-fast
is slightly better. The comparison is trustworthy since the number of suppressed
points are similar for both algorithms.

Next, we fixed the volume to be 0.05 and k=5, and created 1000 queries for each
different shapes. Figure 10 shows how anonymizations respond when we increase
the length of the time component of the queries. (Horizontal axis lists arctan of the
slope of the query diagonal with the space diagonal in celsius degrees.) A query
with a low range time component would be very sensitive to distortion of time
information. This means that in Figure 10, query sensitivity to time decreases
along the horizontal axis. As expected for low time range queries, t-fast performs
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better. As the time range increases, s-fast outperforms t-fast. Even though it is not
shown here, same behavior persists for queries of different volumes.

Next experiments shown in Figure 11 and 12 evaluates the behavior varying the
shape of the query on space. We fixed the time component of the query to be
the highest range possible (e.g., factor out the time dimension). We again fixed
the volume to be 0.05. We created different shapes with different emphasis on x
component and perform 1000 queries for each shape. Figure 11 and 12 shows the
behavior of the algorithms when query shapes turn from rectangles to squares.
(Horizantal axis shows arctan of the slope of the space diagonal.) As expected,
s-fast has consistently less query error. We also observed that query errors increase
for square queries. This is due to the log cost behavior. Given a rectangle (high
on one axis) and a square both with a diagonal of the same size, a rectangle has a
smaller volume, so statistically such anonymization is less costly. 1

8. Discussion and Future Work

As we define and enforce k-anonymity for spatio-temporal databases, there are still
issues not addressed explicitly in this work.

k-anonymity provides de-identification for individually identifiable data. However
as mentioned before, when sensitive information is present, k-anonymity does not
necessarily prevent the disclosure of the sensitive information. (As mentioned in
item 2 of Section 4.2; for trajectory datasets, sensitive information could be the
requests done by the individual to location based services.) This is mainly because
k-anonymity does not enforce diversity on the sensitive info within each equality
groups. Such issues have been addressed with alternative privacy definitions (23,
26, 28). Extension of this work for such privacy definitions is not challenging.
Once we know how to group and anonymize trajectories, we can also enforce other
anonymity constraints on the groups. For example, `-diversity can be achieved:

• by applying a higher (or infinite) weight between the entities with similar
sensitive values as stated in (8).
• by using a top-down hierarchical clustering approach (note that the method-

ology presented in this paper is independent of the clustering algorithm) and par-
tition clusters only if diversity requirement is not violated to achieve `-diversity
(25).
• by simply suppressing those clusters violating the constraints. This approach

has the advantage of being resistant to against minimality attacks (40).

However we leave the practical evaluation of enforcing other privacy definitions
on trajectory databases as a future study.

When multiple k-anonymizations of the same private entities is released, a pri-
vacy attack known as intersection attack becomes possible (where two equality
groups containing a specific individual is intersected to identify an individual). So
releasing anonymizations of trajectories in a fixed region per period may be subject
to such attack. However such an attack is possible only if the quasi-identifiers (and
the sensitive attributes) do not change over time, and as for the trajectories, this
is generally not the case. Designing intersection resistant k-anonymization is not a
specific problem to trajectories but could be pursued as a future study.

1This may not be a desired property always. Even though such an approach would preserve statistical
properties better, human mind tends to view world in an Euclidean space. This makes it difficult to use
the log cost metric for visualization purposes.
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9. Conclusions

We addressed privacy issues regarding the identification of individuals while shar-
ing trajectory datasets. We redefined the notion of k-anonymity for sequences of
spatio-temporal points, and further provided privacy by releasing only a randomly
generated set of representative trajectories. A novel generalization-based approach,
which exploits previous results on string alignment, has been successfully applied
to trajectory data for the first time. We also propose an additional, simple recon-
struction step for applications where generalized trajectories are not effective, but
true k-anonymity must be provably preserved.

Experiments show that the log distance and the heuristics proposed are effective
for trajectory dataset sharing.
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