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ABSTRACT
The localization of a radioactive source can be solved in
closed-form using 4 ideal sensors and the Apollonius circle
in a noise- and error-free environment. When measurement
errors and noise such as background radiation are consid-
ered, a larger number of sensors is needed to produce ac-
curate results, particularly for extremely low source intensi-
ties. In this paper, we present an efficient fusion algorithm
that can exploit measurements from n sensors to improve
the localization accuracy, and show how the accuracy scales
with n. We report testbed results for a 0.911 μCi source
to illustrate the effectiveness of our algorithm, in particular
performance comparisons with state-of-the-art fusion algo-
rithms based on Mean of Estimates (MoE) and Maximum
Likelihood Estimation (MLE). We show that ITP is more
accurate than MoE, whereas the choice between ITP and
MLE is generally a tradeoff between accuracy and run time
efficiency. Higher-intensity radioactive sources are not safe
for actual experiments. In this case, we present simulation
results based on a validated simulation model. We show
that a low-intensity 400 μCi source, similar to the radioac-
tivity of a concealed dirty bomb, can be localized to within
32.5 m using a sensor density of about 1 per 1100 m2 in a
surveillance area.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Source lo-
calization.
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1. INTRODUCTION
Urbanization is a powerful trend. In the U.S., more than

80% of the population will live in a city by 2025. The con-
centration of people increases their susceptibilty to stealthy
attacks. When a radioactive stealthy bomb is detonated,
for example, the small explosion might be dismissed as in-
significant, but the real damage in terms of the number of
people exposed to harmful radiation may be quite substan-
tial. The hidden radiation can only be detected with suitable
radiation sensors. At the same time, as sensor technologies
mature which drive down costs and wireless connectivity
becomes ubiquitous, it is possible to have dense in-situ net-
works of sensor nodes in urban areas for people protection.
These sensors are embedded in the background and always
on, and their measurements can be streamed wirelessly to a
control center, where fusion of the data produces valuable
information about important events.

In this paper, we are concerned with the near real-time
localization of a low-level radioactive point source, similar
in strength to a stealthy dirty bomb, in a geographical area.
We assume that a network of n low-cost radiation sensors
is available, where n can be large. Accurate and timely
localization of the source would allow the source to be de-
stroyed/removed or inform evacuation decisions for the peo-
ple affected. Real-world deployments of such immersed ra-
diation sensor networks are known. For example, the U.S.
federal SensorNet project has deployed a network of RFTrax
RAD-CZT [1] sensors in Washington D.C. to detect traces
of gamma radiation in populated areas.

The localization problem has attracted a lot of interest in
the sensor network community. When the direction to the
source of the signal can be determined, e.g., acoustic or RF
signals, three sensors are sufficient for localizing the source,



in an ideal deployment environment [12]. By ideal environ-
ment, we mean one in which noise and measurement errors
can be filtered out or ignored in the localization process.
In addition, a range free localization algorithm is proposed
in [8] in which a node determines its position by measuring
the RF signal strength from three anchor nodes and test-
ing whether it is within the triangle formed by the anchors.
The test is repeatedly performed for different groups of 3
anchors among all the

(
n
3

)
anchors within communication

range, and the node infers its position by finding a region
where most triangles intersect. When determining the di-
rection to the source of the signal is impossible, as in the
case of gamma rays emitted by a radioactive source, three
sensors will generally produce two estimates, each of which
could be the real source position. In this case, a fourth sen-
sor is sufficient to disambiguate the two estimates in an ideal
environment. The solution uses a geometric approach based
on the Apollonius circle [3].

Another widely used class of localization algorithms is
based on the time difference of arrival (TDOA) [2, 18, 21].
TDOA (sometimes referred to as DTOA in the literature)
measures the differences in time instants at which a signal
emitted by the source reaches the different sensors. Hence,
the exact distance between the source and a sensor is un-
known, but the differences in distances between the source
and each sensor can be inferred from the time differences.
TDOA has been used for the localization of plumes (e.g., ra-
dioactive, biological, chemical) assuming idealized product-
form plumes and an exponential decay function, i.e., a source
of strength A will register a signal strength of Ae−r at a dis-
tance r away [14]. When measurement and computational
errors are considered, a geometry approach has been pro-
posed [22, 17] to solve the TDOA problem with increased
robustness. Their approach reduces the numerical instabili-
ties when exact solutions of a system of quadratic equations
are perturbed by noise. It is a general solution for TDOA
problems, and is not specific to radiation localization.

In this paper, we show that given the specific focus of
radiation localization, an inverse-square model is applicable
and has been validated by our experiments, i.e., a source of
strength A will register an intensity measurement of A/r2

at a distance r away. In this case, the difference between
two intensity measurements does not have a linear relation-
ship with the difference in distances from each sensor to the
source, and TDOA is not directly applicable. An adapta-
tion of TDOA to log-space is suggested in [14, 15], in which
TDOA is applied on the log of the intensity measurements,
for use with radiation localization. Rather than adopt the
log space transformation, our solution in this paper is to an-
alyze the geometry based on taking direct ratios of square
distances (RoSD) for each pair of sensors. We will present
an experimental comparison between RoSD and log-space
TDOA.

A novel approach to jointly solve the detection and lo-
calization problem for low-level radioactive sources is pre-
sented in [15]. In their approach, a tentative solution to
the localization problem is solved by log-space TDOA using
three sensors. After that, a sequential probability ratio test
(SPRT) is applied to accept the solution, reject the solution
as a phantom source due to background radiation, or return
no decision due to insufficient information. The algorithm is
designed to achieve given false alarm and missed detection
ratios.

In real world deployments, noise and measurement errors
are unavoidable. In this case, fusion of measurements by n
sensors, n > 3, is useful to increase the robustness of the so-
lution. For the distributed detection of radioactive sources,
a copula method is proposed in [20] as the fusion technique.
In their approach, each sensor performs a local hypothesis
testing of whether the source is present or not. Based on the
sensors’ local decisions, a novel test based on copula theory
and exploiting the correlated decisions of the sensors is then
used to determine the final answer. For radiation source lo-
calization with n sensors, a mean of estimator (MoE) method
is presented in [16] in which the localization results by each
subset of three sensors are linearly combined to give the final
answer. In [6], a maximum likelihood estimation (MLE) is
proposed to search over a solution space of both the source
strength and position, such that the difference between the
predicted measurements according to the sensing model and
the real measurements by the n sensors is minimized.

Our main contribution in this paper is to address the prac-
tical issues that arise in a near real-time radiation sensor
network implementation using low-cost radiation sensors. In
particular,

• We elucidate the sources of errors in an actual net-
work, due to (1) background radiation and its inac-
curate characterization; (2) variable efficiencies of dif-
ferent sensors and their incomplete determination; (3)
the probabilistic nature of the underlying physical phe-
nomenon causing statistical errors when the measure-
ment time is limited, as required by the near real-time
requirement; and (4) practical limitations of sensor de-
signs and implementations.

• We show how the noise/errors can be mitigated using
a sensor calibration process. In addition, we present
a highly efficient iterative pruning (ITP) fusion algo-
rithm for RoSD results produced by groups of three
sensors among n available sensors. We show how the
accuracy of the localization results improves with n,
and compare the performance of ITP with those of
the MoE and MLE algorithms. We show that ITP
improves upon MoE by explicitly addressing the exis-
tence of phantom estimates computed by RoSD and by
preferring higher-SNR non-phantom estimates in the
fusion process. We show that ITP is somewhat less
accurate than MLE, but generally runs much faster
because it does not require an expensive optimization
step over a large solution space.

• For an extremely low level 0.911 μCi radioactive source,
we present actual testbed results for the performance
evaluation. In addition, we present simulation results
using a validated simulation model so that we can sys-
tematically explore the parameter space (e.g., vary the
source strength) that is impossible with the actual test-
bed. For a higher- (but still low-) intensity source,
comparable to the intensity of a stealthy dirty bomb,
experimentation is not safe. In this case, we present
a larger scale simulation based on the validated sim-
ulation model, and show that such a source can be
localized in near real-time and with good accuracy in
practice.

The balance of the paper is organized as follows. In Sec-
tion 2, we formulate our problem, with explicit account for



the background radiation and sensor sensitivities in the sens-
ing model. The ratio-of-square-distance (RoSD) localization
algorithm using measurements by three sensors is presented
in Section 3. We also define the notion of phantom estimate
when RoSD produces two equivocal solutions. When noise
and measurement errors are considered, fusion of measure-
ments by n sensors is necessary. In Section 4, we review
two state-of-the-art fusion algorithms based on mean of es-
timates (MoE) and maximum likelihood estimator (MLE).
We then design an iterative pruning algorithm that (1) aims
to explicitly eliminate phantom estimates in the fusion pro-
cess, and (2) prefers higher SNR non-phantom estimates in
producing the final result. Testbed results and simulation
results using a validated simulation model are presented in
Section 5 to illustrate the performance of the algorithms.
In particular, we evaluate the impact of different sources of
errors on the localization accuracy. We also compare ITP
with MoE and MLE in terms of accuracy and efficiency.
Simulation results are presented in Section 6 for higher in-
tensity radiation sources similar to concealed dirty bombs.
Section 7 concludes.

2. PROBLEM FORMULATION
We consider the localization of a static point radioactive

source of unknown strength A0 in a two dimensional surveil-
lance area R

2. Such a source might correspond to a dirty
bomb left at a concealed location in a train station or other
public venues. The unknown location of the source is given
by (xs, ys) ∈ R

2. The source induces a radioactivity of in-
tensity A (x, y) at any location (x, y) ∈ R

2. Let Si denote
a radiation sensor located at (xi, yi) ∈ R

2. Background ra-
diation is universally present, and its measurement by Si is
denoted as Bi. All quantities of radioactivity are in terms of
the number of emitted radioactive particles per time interval
and are given in counts per minute (CPM). The objectives
of the localization algorithm are to compute (1) an estimate

of the radioactive strength Â0, and (2) an estimate of the
source location (x̂s, ŷs), such that the difference between the
estimate and the corresponding true value is minimized.

2.1 Radiation sensing model
Existing sensing models for radiation (e.g., [15]) consider

background radiation as a point source whose radioactiv-
ity is superimposed on that of the unknown point source to
be localized. They typically assume ideal sensors, and do
not account for the effects of sensor efficiency on the sen-
sor readings. Real radiation sensors, however, have different
sensitivities, and their CPM readings may differ significantly
even when they are subjected to the same level of radioac-
tivity. Converting the CPM readings by sensors to the true
underlying radioactivity levels, thus accounting for the mea-
surement errors in the sensing process, requires therefore a
careful calibration process which has not been considered
in [15].

We propose a radiation sensing model to account for the
efficiency of real sensors and hence their measurement er-
rors. We note that a typical radiation sensor uses a detector
to record the amount of radioactivity occurring over a given
time interval, say one minute, and reports the recorded val-
ues per time interval. In the United States, the popular
radiation measure is the number of disintegrations of the ra-
dioactive material in question over a time period. The mea-
surement unit is Curie (Ci), where 1 Ci corresponds to 37

billion disintegrations per second, and 1 μCi corresponds to
2.22 million disintegrations per minute (DPM). Depending
on the technology and the exposure surface of its detector,
a radiation sensor will only detect a fraction of the disin-
tegrations. We denote the fraction of the disintegrations
detected by sensor Si as the sensor efficiency Ei, of unit
CPM/DPM. We assume that the radiation intensity decays
over space according to the inverse square law [15]. Under
this model, the radiation intensity due to a point radioactive
source is given by A (x, y) = A0

(xs−x)2+(ys−y)2
. Consequently,

the CPM reading measured by sensor Si is given by

Ii =
2.22 × 106 × A0Ei

(xs − xi)
2 + (ys − yi)

2 + Bi. (1)

The sensor efficiency Ei is assumed to be a constant. It is
determined empirically with a calibration procedure. During
the calibration, we need to first determine the background
radiation intensity. To do so, the radiation sensor is placed
away from any known radioactive source, and its intensity
readings are collected over a long period of time. The av-
erage of the collected readings is then used as the estimate
of the (average) background radiation intensity Bi. After
Bi is determined, a low-level radioactive source of known
strength A0 is placed directly on top of the radiation sensor
to be calibrated, and the intensity readings reported by the
sensor are again collected over a long period of time. The
average of these readings is then used as the measurement
Ii for the source intensity A0. Using these values, the sen-
sor efficiency is computed by Ei = Ii−Bi

2.22×106×A0
. Note that

even sensors of the same model from the same manufacturer
may have different Ei values. Hence, calibration should be
ideally performed for each individual sensor.

Lastly, we note that the above model applies to all three
types of Alpha, Beta, and Gamma radiation. Our appli-
cation context in this paper is, however, Gamma radiation
because it is highly penetrating and therefore the most dan-
gerous type of radiation among the three.

2.2 Sources of noise and errors
The localization of a radioactive source, especially one of

low intensity, is hard due to the nature of radioactive disin-
tegrations, the presence of background radiation, and limi-
tations in existing sensing hardware. First, the Gamma rays
emitted by a point source (such as CS-137) are probabilis-
tic and follow the Poisson process [10, 11, 15]. Because of
the randomness of the phenomenon being observed, a single
instantaneous reading of the source intensity is not reliable
in determining the true source strength. This is another
form of measurement error, which we call the statistical er-
ror, and affects the accuracy of A0 used in our radiation
model. In principle, a perfect measurement would require
an infinite measurement time interval. In practice, only a
limited number of samples can be used, particularly in the
case of realtime or near-realtime localization. The magni-
tude of the statistical error is given by the standard devia-
tion of the difference between the measured intensity and the
true intensity, and is proportional to 1√

m
where m denotes

the number of samples. In localizing a low-level radioactive
source, whose intensity measurement is heavily influenced
by the background radiation, a sensing time on the order
of minutes is required for COTS radiation sensors such as
the RFTrax. The sensing time can be shortened with higher
efficiency sensors.



Second, background radiation is universal, but is extremely
hard to characterize due to many variables of natural and
man-made radioactive sources. Examples of natural radioac-
tive sources include potassium (K-40) radio-isotopes present
in natural foods like bananas, carbon (C-14) in vegetation
and other organic materials, and cosmic rays in space. Ex-
amples of man-made radioactive sources include smoke de-
tectors, X-ray machines, and nuclear fuels. We are exposed
to any combination of these common sources in everyday
life, which is not a cause for concern and hence should be
classified as part of the background radiation Bi. However,
because each source is probabilistic and their exact combina-
tions are not known and vary with time and space, a perfect
characterization of the background radiation is impossible.
While the calibration procedure described above can miti-
gate the effects of the background radiation to a significant
extent, we have to acknowledge the presence of the back-
ground radiation as an unavoidable source of noise that will
affect the localization task.

Third, limitations of sensing technologies and cost consid-
erations for the sensing hardware may affect the accuracy
of measurements. This is explained above as the sensor effi-
ciency Ei, and is a source of measurement errors in the sens-
ing process. While calibrating sensors to determine their Ei

values can mitigate the effects of measurement errors to a
significant extent, dust and other contaminants gathering on
the surfaces of detectors over time may degrade the sensor
efficiency. In this paper, we acknowledge that the calibra-
tion process is not perfect, and sensors may not always be
re-calibrated even when needed, and will use sensor fusion
techniques to manage the possible measurement errors.

3. LOCALIZATION USING RATIO OF
SQUARE-DISTANCES

Given three radiation sensors S1, S2, S3 placed on a two
dimensional surface, the intensities due to a point radioac-
tive source measured by the sensors are given by

I
′
i =

Ii − Bi

Ei × 2.22 × 106
=

A0

(xs − xi)
2 + (ys − yi)

2 ,

for i = 1, 2, 3, according to the sensing model in Section 2.1.
The ratio of intensity measurements by two of the sensors,
Si and Sj , due to the radioactive source is given by

I
′
j

I
′
i

=
(xs − xi)

2 + (ys − yi)
2

(xs − xj)
2 + (ys − yj)

2 ,

which is equivalent to the ratio of the square-distance be-
tween the radioactive source and Sj to the square-distance
between the radioactive adiation source and Si. Using this
relationship, we define a locus that contains all the possible
points satisfying the ratio of intensity measurements by Si

and Sj as

Lij =

{
(x, y)

∣∣∣∣∣ (x − xi)
2 + (y − yi)

2

(x − xj)
2 + (y − yj)

2 =
I
′
j

I
′
i

}
.

The ratio of square-distance (RoSD) method computes the
source position estimate (x̂s, ŷs) by solving the equation
L12 = L13, which is equivalent to finding the intersection
points of the two loci. The locus Lij is an Apollonius Cir-

-300

-200

-100

0

100

200

300

-500 -400 -300 -200 -100 0 100 200 300

Y

X

L12

L13

S1
S2

S3

Intersections

Figure 1: Illustration of loci L12 and L13, where S1 =

(−100, 0), S2 = (100, 0), S3 = (0, 100), I
′
2/I

′
1 = 0.40, and

I
′
3/I

′
1 = 3.00.

cle [13] centered at
(
Lx

ij , L
y
ij

)
and with radius Lr

ij , where

Lx
ij =

I
′
i xi−I

′
jxj

I
′
i−I

′
j

Ly
ij =

I
′
i yi−I

′
jyj

I
′
i−I

′
j

Lr
ij =

√√√√ I
′
i I

′
j(

I
′
i − I

′
j

)2

[
(xi − xj)

2 + (yi − yj)
2],

for I
′
j/I

′
i �= 0, 1,∞.

Thus, L12 = L13 may have at most two solutions. An ex-
ample of the two loci is shown in Figure 1. A closed-form for-
mula that solves the equation returns two solutions as shown
in Figure 1. In the case of the two estimates produced, either
estimate could be the true position of the source. We do not
know which one is the true source position because a strong
intensity source located far away from the sensors will pro-
duce similar readings as a low intensity source located close
to the sensors. One of the two estimates is a false position,
and we call this estimate a phantom estimate. Identifying
the phantom estimate is not straightforward. The fusion
algorithm in Section 4 accomplishes this task by using mea-
surements from n > 3 sensors. In particular, it exploits the
availability of more sensors to produce a robust solution in
the presence of noise (i.e., background radiation), statistical
errors (due to the random nature of the source being mea-
sured), and measurement errors (due to the limited sensor
efficiencies).

4. SENSOR DATA FUSION
The ratio of square-distance (RoSD) method with three

sensors produces up to two position estimates of the source
depending on the placement of the sensors and the location
of the source. When there are two estimated positions, it is
known that the ambiguity can be resolved by using 4 (in-
stead of 3) sensors [3], in the case of ideal deployment condi-
tions without noise, statistical errors, and measurement er-
rors. In a real deployment, however, noise and errors must
be considered, in which case a larger number of sensors is
needed to produce reliable localization results. Specifically,



if n sensors are used,
(

n
3

)
distinct subsets of 3 sensors are

available, each of which will produce up to two source posi-
tion estimates by RoSD. We will refer to the set of position
estimates produced by RoSD as the candidate estimates de-
noted by C. Using C, we will design a fusion algorithm—one
that is robust to noise and statistical/measurement errors—
to compute a fused estimate as the final estimate of the true
source position.

A simplistic design of the fusion algorithm is to select the
estimate having the smallest maximum distance to all the
sensors in the surveillance area. The design gives preference
to the candidate estimate that has the highest signal-to-
noise (SNR) ratio. The rationale is that, by the inverse-
square law, radiation sensors closer to the source will record
stronger signals of the source (i.e., higher intensity readings
induced by the source) compared with sensors that are far-
ther away from the source. Clearly, the stronger signals are
less affected by the noise and hence are more reliable. When
phantom estimates are part of the candidate estimates, how-
ever, this reasoning may not always hold. This is because
a phantom estimate can appear to have a strong signal but
is in fact produced as a side effect of RoSD localization and
does not well approximate the true source location. As a
solution to the problem, the design of a clustering algorithm
to eliminate the phantom estimates with high probability is
the subject of Section 4.2.

4.1 Existing fusion methods
We now review two state-of-the-art fusion algorithms in

the literature for radiation localization. Ajith Gunatilaka
et al. [6] propose the maximum likelihood estimator (MLE)
method to estimate the parameters of a radioactive source,
i.e., the 2D coordinates of the source location (x, y) and the
strength of the source A0, by finding a solution that best
fits the measurement data to the sensing model. Using a
radiation intensity model similar to ours, the estimated ra-
diation intensity is calculated. The main idea of MLE is
to find values of x, y, and A0 that minimizes the error be-
tween the estimated radiation intensity and the actual mea-
surements recorded by the sensors. This approach does not
require a separate fusion step when scaling to n > 3 sen-
sors, unlike our algorithm in Section 4.3, which treats the
localization and fusion steps as separate problems. In MLE,
finding the best-fit solution maps into a multi-dimensional
optimization problem for which there are known existing
solutions. Specifically, they use the fminsearch routine in
MATLAB c©, which implements the derivative-free downhill
simplex method to solve the problem numerically. The dis-
advantage of the approach is that the result may not be the
global optimum when phantom estimates are considered.

Rao et al. [16] proposed the mean-of-estimator method
(MoE) to fuse the candidate estimates. The MoE method
computes the fused estimate as the mean of all the candidate
estimates. The advantage of the MoE method is that it
has linear time complexity and generally runs significantly
faster than MLE. The main drawback of MoE is that it is
not explicitly designed to eliminate the phantom estimates
in the fusion process. Phantom estimates can be detrimental
to the localization accuracy, particularly when they appear
to be produced by strong (and hence presumably reliable)
sensor readings. As a result, their algorithm can produce
large localization errors when a significant fraction of the
candidate estimates are phantom estimates.

4.2 Data fusion with phantom estimates elim-
inated by clustering

Let us take a look at the characteristics of candidate esti-
mates produced by RoSD. Assume an ideal deployment situ-
ation in which there is no noise due to background radiation,
and the sensor measurements are perfectly accurate. As dis-
cussed in Section 3, RoSD may produce one or two candidate
estimates with measurements from a group of three sensors,
S1, S2, and S3. In the case that there are two estimates,
the phantom estimate is the estimate that is farther from
the true source position compared with the other estimate.
Note that phantom estimates are produced not because the
localization algorithm is not accurate, but because the lo-
calization algorithm does not have sufficient information to
compute an unequivocal solution. Suppose now that an ad-
ditional sensor S4 is available, and consider the group of
three sensors S1, S2, and S4. One or two candidate esti-
mates are again produced. In the assumed ideal deployment
situation, one of the two estimates in each group (i.e., the
group S1, S2, S3 and the group S1, S2, S4) will coincide at
the true position of the source. The other estimates, namely
the phantom estimates, from the two groups are highly un-
likely to coincide because two of the sensors from the groups
are located differently. Thus, by counting the number of es-
timates at different positions, the position with the highest
frequency would be the true position of the source.

In general, with n sensors and assuming the sensor place-
ments are not degenerate, there are

(
n
3

)
= n

6
(n − 1) (n − 2)

groups of sensors available to perform RoSD localization,
and each group produces a set of candidate estimates Ci

for i = 1, 2, . . . , n
6

(n − 1) (n − 2). At least one of the esti-
mates in Ci is the true position of the source; thus there
are at most

(
n
3

)
estimates located at the true position of the

source, and at most
(

n
3

)
phantom estimates. The source po-

sition can be estimated by (x̂s, ŷs) =
⋂

Ci for n > 3. With
precise intensity measurements and lack of noise from back-
ground radiation, n = 4 is guaranteed to accurately estimate
the position of the source. Generalizing to many groups of
three sensors, we see that in an ideal deployment situation,
one of the estimates from every group will coincide at the
true source location, thus solving the localization problem
redundantly.

When there are noise and statistical/measurement errors,
the noise/errors will scatter the non-phantom estimates and
hence they will not exactly coincide. The extent of the scat-
tering depends on the noise/error magnitudes. As a result,
a simple intersection of the candidate estimates will likely
produce a null set. Nevertheless, in spite of the scattering,
the candidate estimates that are not phantom estimates will
likely be close to each other and concentrate around the true
position of the source. On the other hand, the candidate
estimates that are phantom estimates will not cluster to-
gether. Instead of finding the intersection of the candidate
estimates, we can therefore “zoom in” to the true source po-
sition by identifying a most dense cluster of the estimates.
Ideally, the most dense cluster found does not contain any
phantom estimate, so that an unbiased estimator of the can-
didate estimates in the cluster will give a fused estimate that
closely approximates the true source location. In practice,
the phantom estimates may not be eliminated completely,
but if most of them are eliminated, their total contribution
to the fused estimate will be small.



In summary, we divide the localization problem using n
sensors, under realistic noise and error conditions, into two
solution steps:

1. Subproblem P1: Clustering. Find a smallest region
in the surveillance area that contains most, if not all,
candidate estimates that are not phantom estimates.

2. Subproblem P2: Fusion. Compute the fused esti-
mate as an unbiased estimator of all the candidate es-
timates in the cluster found above.

4.3 Iterative pruning (ITP) clustering
algorithm

There are existing clustering algorithms that are relevant
to the first solution step above. Algorithms such as k-mean
[7], CURE [5], and DBSCAN [4] are not directly applicable
because they are concerned with classifying all samples into
a number of closest clusters, whereas our problem aims to
find one largest cluster that will likely contain most of the
non-phantom estimates but few of the phantom estimates.
Another algorithm, the Quality Threshold (QT) clustering
algorithm [9], was invented by Heyer to cluster gene expres-
sion patterns. In their domain, the algorithm groups genes
of high similarity into the same cluster. The measure of sim-
ilarity is user defined, although the correlation of the gene
expression is often used in their problem. The quality of the
cluster computed is ensured by specifying a threshold such
that all genes with a similarity measure within the thresh-
old will fall into the same cluster. Consider that there are
n genes. The algorithm first builds n candidate clusters. It
then outputs the largest cluster among the n candidates as
a result. The genes produced are removed from the pool
of n genes and the algorithm repeats the same step for the
remaining genes. The candidate cluster is built by selecting
the i-th gene from the pool, and then iteratively including
the most similar gene, the second most similar gene, and so
on, until the similarity threshold is exceeded.

In our problem domain, the genes can be interpreted as
our candidate estimates, and the similarity measure cor-
responds to the distance between the candidate estimates.
The QT algorithm will then basically associate each candi-
date estimate (the gene) with a cluster such that the diam-
eter of the cluster does not exceed d (the similarity thresh-
old). The difference is, we are only interested in the maxi-
mum size cluster in our problem, and therefore do not need
to iteratively find the next largest cluster as in the original
algorithm.

While QT is useful for our purpose, the main disadvantage
of QT clustering is that the time complexity is very high,
O

(|C|4), even for finding the maximum size cluster only.
For our problem, the algorithm will not scale to a large-size
network (i.e., the number of sensors n is large and there are
O(n3) samples for clustering) required for, say, monitoring
of large city areas. We now propose an algorithm, which
we call the iterative pruning (ITP) algorithm, that for our
problem, can achieve similar performance as QT clustering,
but has a greatly reduced time complexity. Specifically, ITP
has a worst case time complexity of O (|C| log2 A), where A
denotes the area of the surveillance region.

The ITP algorithm has two steps. First, it solves Subprob-
lem P1 heuristically by pruning the space (in the surveillance
area) with low density of candidate estimates, so that a clus-
ter with a high density of the estimates remains. Second,

it solves Subproblem P2 by computing a weighted centroid
of the candidate estimates in the cluster as the fused esti-
mate. The pseudo-code of the ITP algorithm is given in
Algorithm 1. The algorithm takes three input parameters.
The C parameter takes the union of all the candidate esti-
mates C =

⋃
Ci produced by the RoSD algorithm. The N

and d parameters limit the maximum number of estimates
in the remaining region, and the maximum size (in terms of
area) of the smallest region, respectively.

The algorithm begins with the smallest rectangle that
bounds all the candidate estimates is determined. The bound-
ing rectangle is then divided into 5 regions ra = r0 ∪ r1 ∪
r4 ∪ r5, rb = r2 ∪ r3 ∪ r6 ∪ r7, rc = r0 ∪ r2 ∪ r4 ∪ r6,
rd = r1 ∪ r3 ∪ r5 ∪ r7, re = r4 ∪ r5 ∪ r6 ∪ r7, and 8 subregions
r0, r1, . . . , r7. The subregion labels are shown in Figure 3.
The number of candidate estimates in each of the sub-regions
inside the rectangle is tallied, and then the region containing
the most estimates is selected for the next iteration.

The algorithm continues until the number of candidate es-
timates remaining is less than N and the area of the bound-
ing rectangle is smaller than d×d. In each iteration, the size
of the bounding rectangle is reduced by at least half. This
guarantees that the algorithm will terminate in O (log2 A) it-
erations. Unlike existing partitioning algorithms such as the
generalized bisection method in [19] which iteratively divides
the search space in halves, ITP divides the space into five
overlapping regions. The overlapping minimizes the chance
that the algorithm will incorrectly prune a region because a
cluster is concentrated near the division boundaries. For in-
stance, Figure 4 shows two scenarios where non-overlapping
partitioning will fail. In particular, Figure 4(a) shows a sce-
nario in which the candidate estimates are concentrated at
the center of rc. If a non-overlapping region division is used,
the algorithm would choose either r0 ∪ r4 or r2 ∪ r6. Since
the numbers of candidate estimates in both regions are close,
however, it is better to choose r0 ∪ r2 ∪ r4 ∪ r6 for the next
iteration.

In the second part of the algorithm (Lines 32 to 37), the
weighted center of the cluster is computed as a solution to
Subproblem P2. The weighting gives estimates produced
by sensors close to the source higher weights because their
measurements are less influenced by the background noise.
Although this is similar in concept to the use of SNR in wire-
less communication, there are subtle differences. In wireless
communication, the SNR provides a measure of how intru-
sive the background noise is compared with the goodness of
the signal received. In particular, the SNR quantifies how
likely the data received will be correctly decoded in spite of
the noise. These quantities can be directly measured at the
receiver side. In our problem, the SNR of a candidate esti-
mate is a function of the SNRs of the three measurements
that produced the candidate estimate. Essentially, the SNR
of a candidate estimate measures the goodness of the esti-
mate given the goodness of the measurements by the indi-
vidual sensors. Without knowledge of the sensor location,
using the average of the SNRs of all the three measurements
gives us an unbiased estimate of the SNR of the candidate
estimate.We define the SNR of a candidate estimate as

SNR (c) =

∑
x={i,j,k} Ix∑
x={i,j,k} Bx

where Si, Sj , Sk are the three sensors that produce the esti-
mate c.
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Figure 2: The candidate estimates are pruned in each iteration until the remaining estimates are clustered
within a d × d rectangular region.
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Figure 3: Region division in ITP algorithm.

(a) Cluster located at the di-
vision of two regions.

(b) Cluster located at the
center, division of four re-
gions.

Figure 4: Two examples illustrating that non-
overlapping region division may lose accuracy when
the cluster is located near the division of regions.

Figure 2 shows a sample output tracing selected iterations
of the ITP algorithm. The candidate estimates fed into the
algorithm (Figure 2(a)) are iteratively pruned such that the
region having the largest number of estimates remains after
each iteration. The algorithm stops when the number of es-
timates remaining is less than N and the area of the region
is less than d × d. The weighted center of the remaining
estimates is computed as the fused estimate. As the num-
ber of sensors increases, the candidate estimates produced
increases as O

(
n3

)
. As a result, the algorithm can identify

a small region that will most likely contain the true source
location as the region with a high density of the estimates.
The experimental results in Section 5.5 confirm that the ac-
curacy of ITP increases with the number of sensors used.

5. TESTBED AND SIMULATION RESULTS
FOR 0.911 μCI SOURCE

In this section, we evaluate the performance of our local-
ization algorithm for an extremely low-intensity (0.911 μCi)
radiation point source using both testbed and simulation ex-
periments. Section 5.1 describes the setup of the simulation
experiments. Section 5.2 presents the calibration procedure
to obtain the efficiency coefficients of sensors described in
Section 2.1. In Section 5.3, we validate the radiation sensing
model and our simulation model to ensure that the simula-
tion results are realistic. After that, in Section 5.4, we char-
acterize the performance of the RoSD localization algorithm
with three sensors and identify the source of localization er-
rors in the algorithm. We also compare the performance
of RoSD with the log-space DTOA localization algorithm
in [15]. Lastly, in Section 5.5, we evaluate the performance
of the ITP fusion algorithm, and compare its performance
with that of the MoE and MLE algorithms in the case of
more than 3 sensors.

To ensure that the results are comparable, we will imple-
ment the same scenario for both the simulation and testbed
experiments. Specifically, we will use the following small-
scale setup that is commensurate with the extremely low
intensity radioactive source we use in this section. There
are 18 sensors in a 50 cm × 50 cm surveillance region; their
positions are given in Table 1. Not all the sensors will
be activated in all the experiments. A CS-137 radiation
point source (which emits Gamma rays) of intensity A0 =
0.911 μCi is located at (xs, ys) = (19.09, 19.09). All the dis-
tance measurements are in centimeters (cm). The placement
scenario is illustrated in Figure 5.

For the testbed experiments, the distances between the
radioactive source and the sensors were calculated accord-
ing to Table 1. The radioactive source was then placed at
the calculated distances from the sensors. Traces for S1 to
S18 were collected by polling the corresponding sensors ev-
ery 4 seconds. A total of 3738 measurements were collected
for each sensor. Note that the traces are not synchronized
because they may not have been taken at the same time.
However, this does not affect the experimental results be-
cause the underlying nuclear disintegrations follow a memo-
ryless Poisson process. The traces collected were then used
to drive the experiments.

Note that the radioactive source used in the testbed ex-
periments needs to be of extremely low intensity in order to
be safe for experimentation. The intensity is so low that the



Algorithm 1 ITP(C, N , d)

1: rS = smallest rectangular region that bound all esti-
mates c ∈ C.

2: Let b and t denotes the bottom-left and top-right coor-
dinate of rS .

3: Divide the rectangle into 8 regions ri for i = 0, 1, . . . , 7
as in Figure 3.

4: Let kw denotes the number of estimates in region w.
5: Initializes kw = 0, for w = r0, r1, . . . , r7.
6: for all c ∈ C do
7: for i = 0 to 7 do
8: if c is inside ri then
9: kri = kri + 1

10: end if
11: end for
12: end for
13: Let ra = r0 ∪ r1 ∪ r4 ∪ r5; Let rb = r2 ∪ r3 ∪ r6 ∪ r7

14: Let rc = r0 ∪ r2 ∪ r4 ∪ r6; Let rd = r1 ∪ r3 ∪ r5 ∪ r7

15: Let re = r4 ∪ r5 ∪ r6 ∪ r7

16: rS = arg max
w∈{ra,rb,rc,rd,re}

kw

17: if rS = ra then
18: t.y = 0.5 (t.y + b.y)
19: else if rS = rb then
20: b.y = 0.5 (t.y + b.y)
21: else if rS = rc then
22: t.x = 0.5 (t.x + b.x)
23: else if rS = rd then
24: b.x = 0.5 (t.x + b.x)
25: else
26: b.x = 0.25 (t.x + b.x); b.y = 0.25 (t.y + b.y)
27: t.x = 0.75 (t.x + b.x); t.y = 0.75 (t.y + b.y)
28: end if
29: if |rS | > N or (t.x − b.x) (t.y − b.y) > d then
30: return ITP Fusion(∀c ∈ rS , N , d)
31: else
32: e = (0, 0), s = 0
33: for all c ∈ rS do
34: e.x = e.x+ c.x×SNR (c); e.y = e.y + c.y×SNR (c)
35: s = s + SNR (c)
36: end for
37: return

(
e.x
s

, e.y
s

)
38: end if

sensors observe only the background radiation when they are
placed more than 4 feet away from the source. This caused
us to use a small size region in the experiments.

5.1 Simulation model
We have also created a simulation model for the above

testbed scenario to allow us to systematically explore the pa-
rameter space that we cannot do in actual experiments. The
simulation results will, for example, reveal the sensitivity of
the RoSD and ITP algorithms to varying source strengths.
Radiation counts emitted by the source are modeled as a
Poisson process. Further, we evaluate our algorithm using
three variations of the radiation sensors:

1. Real sensor (testbed): We use the RFTrax RAD-
CZT radiation sensor [1] as the real sensor in our test-
bed experiments. The RFTrax sensor uses the Cad-
mium Zinc Telluride (CZT) detector technology and
has 0.1 mREM/hour sensitivity.

2. Ideal sensor (simulations): We simulate an ideal sen-
sor as one that is capable of detecting all gamma rays
radiated, i.e., its sensitivity is Ei = 1.0 CPM/DPM so
that its measurements are totally accurate.

Table 1: Sensor coordinates used in 0.911 μCi source
experiments.

Sensor X (cm) Y (cm) Sensor X (cm) Y (cm)
S1 36.52 29.89 S10 38.19 16.33
S2 27.45 29.70 S11 4.43 0.47
S3 26.13 40.46 S12 14.65 5.60
S4 18.53 37.08 S13 19.46 7.10
S5 10.11 41.57 S14 4.64 35.28
S6 32.31 12.00 S15 36.15 0.00
S7 0.00 0.00 S16 23.65 7.67
S8 5.24 21.10 S17 0.81 7.77
S9 3.13 15.77 S18 42.68 24.01
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Figure 5: Placement of radioactive source and radi-
ation sensors in experiments.

3. Model of real sensor (simulations): We create a
simulation model of the RFTrax RAD-CZT radiation
sensor using specifications from the manufacturer. We
discussed the architecture of the sensor with a knowl-
edgeable Engineering Manager in RFTrax, Inc. We ob-
tained needed information to model the firmware pro-
cessing in the RFTrax sensor accurately. Essentially,
there are some major differences between the RFTrax
sensor and a model of the ideal sensor: (1) The effi-
ciency coefficient of RFTrax sensor is much less than
1.0 CPM/DPM, but is instead given in Table 2; (2)
The RFTrax sensor keeps track of the radiation count
in the past second only, instead of for minutes. Hence,
a CPM count reported by the sensor is the number of
disintegrations detected in the past second multiplied
by 60. The measurements are therefore inaccurate,
particularly for the extremely low intensity 0.911 μCi
CS-137 source used in the experiments.

5.2 Testbed sensor calibration
As discussed in Section 2.1, the sensor calibration proce-

dure determines the sensor efficiency and the background
radiation intensity at the sensor location. During the cali-
bration process, three RFTrax RAD-CZT radiation sensors
were placed on a table, without the presence of a radioac-
tive source, to collect readings of the background radiation
intensity. Then, we used a CS-137 radioactive source of
A0 = 0.911 μCi to collect another set of readings due to
the source intensity. The calibration results are shown in
Table 2.

5.3 Validation of sensing model
We have validated the sensing model in Section 2.1 by col-

lecting traces of CPM counts obtained with the 0.911 μCi



Table 2: Efficiency coefficients of three real RFTrax
sensors, average measured intensities of CS-137 ra-
dioactive source, and measured background intensi-
ties.

Sensor Avg Source Avg Background Efficiency
Serial# (CPM) (CPM) (CPM/DPM)
000877 4202.6859 10.5217 0.2078%
000809 6274.8549 13.6521 0.3103%
000841 4882.6332 18.4220 0.2414%

Table 3: Comparison between real measurements
from three RFTrax sensors and the radiation inten-
sity model.

Sensor Distance Avg Source Model Difference
Serial# (cm) (CPM) (CPM) (CPM)

13.5 37.0099 48.0821 11.0722
000877 24.2 21.1236 24.3667 3.2431
(S1, S4, 14.0 32.3821 45.6667 13.2846
S7, S10, 23.7 19.9144 24.8235 4.9091
S13, S16) 21.7 22.1469 26.9776 4.8307

21.5 23.1495 27.2267 4.0772
22.5 25.3450 28.0667 2.7218

000809 15.0 38.3307 40.1226 1.7920
(S2, S5, 16.3 32.8900 36.7992 3.9093
S8, S11, 14.2 40.3292 42.6366 2.3075
S14, S17) 25.6 24.3019 25.8723 1.5704

24.1 25.8622 26.8286 0.9665
20.5 19.7025 20.5222 0.8197

000841 18.0 21.0433 23.4930 2.4496
(S3, S6, 27.0 15.3083 16.2867 0.9784
S9, S12, 19.3 19.5326 21.8044 2.2718
S15, S18) 12.0 35.0893 39.7071 4.6178

12.3 34.5478 38.3007 3.7529

CS-137 radioactive source placed at specified distances from
the sensors. The measured radiation intensities and the cor-
responding distances between the sensor and the source were
recorded. The experiment was repeated 6 times with the
source located at a different distances to the sensors. A total
of 18 traces were collected. The average intensity computed
from the traces is compared with the value computed from
the sensing model. The results are shown in Table 3. They
show that the the model results and actual measurements
differ by less than 5 CPM for 89% of the time.

5.4 Performance of RoSD

5.4.1 Evaluation methodology
In this section, we evaluate the performance of the RoSD

algorithm in both testbed and simulation experiments. We
activate sensors S7, S15, and S4 and measure the perfor-
mance of RoSD only, i.e., without running the ITP fusion
algorithm. Because the fusion algorithm is not used, multi-
ple candidate estimates produced by RoSD are resolved us-
ing the smallest maximum distance approach, i.e., we select
the estimate that has the higher SNR. To ensure that the
simplified algorithm will work, the 3 sensors are placed such
that the radioactive source is contained within the triangle
formed by the sensors.

During the simulation experiments, the sensors sample
the radiation intensity m times, and the average intensity is
computed. The radiation intensity detected by the sensor is

modeled as a Poisson variable with λ = Ii. The values of
I
′
15/I

′
7 and I

′
4/I

′
7 are then calculated using the average inten-

sities measured by each sensor. We then invoke the RoSD
algorithm to compute a position estimate. Each simulation
run is repeated 1000 times for each w value of 1, 2, . . . , 100.

5.4.2 Localization error
The impact of the probabilistic radioactivity on the mea-

sured radiation intensities can be seen in Figure 6(a). In
this experiment, the model of ideal sensors is used; hence,
the only source of variability in the system is due to the
underlying Poisson process of radioactivity. Given the stan-
dard error of the measurements,

σ ˆ
I
′
i

=
σ

I
′
i√
m

=
μ

I
′
i√
m

,

we expect that the localization error decreases like O
(

1√
m

)
.

In the simulation results, the localization errors as a func-
tion of number of measurements are best fitted to the curve
y = 0.203m0.44, which is close to the expected O

(
1√
m

)
.

Moreover, the localization error is small—an average error
of 0.05 cm with 20 measurements in a testbed where the
maximum distance between two sensors is 41.45 cm.

We now introduce measurement errors in the experiment.
To do that, we repeat the above experiment, but now with
a model of the RFTrax sensor. In this case, the localization
error increases by 125× on average, as shown in Figure 6(b).
This increase in error is solely due to the limitation of the
actual sensor that the particle count during the last second
only is remembered. Should the sensor record a longer his-
tory of the counts, the localization error would have been
lower. This result shows that limitations in specific sensor
implementations can contribute significant errors in RoSD
localization.

We now report results for the actual testbed experiments.
In this case, probabilistic background radiation is also present
besides the measurement errors. Because of the background
radiation, the localization error increases by 29% compared
with simulations using the RFTrax sensor model. In ad-
dition, there are high fluctuations in the localization error
when the number of measurements is small. This is shown
in Figure 6(c), and suggests that a small number of mea-
surements is not sufficient for accurately localizing a source,
given the high variance of the underlying Poisson process.
The problem is similarly amplified in the case of the real
RFTrax sensors, due to the short, one-second measurement
window remembered by the sensors. Consequently, averag-
ing over a small number of measurements does not give ac-
curate estimates of the true source intensity, which is needed
for RoSD to work well.

5.4.3 Comparison of RoSD with log-space DTOA
For comparison with the RoSD algorithm, we have im-

plemented the DTOA algorithm in [22] and adapted it to
log space as described in [15] for radiation localization. Our
performance comparison is therefore between RoSD and the
log-space DTOA algorithm. In this experiment, all distances
are given in a generic distance unit since the exact physi-
cal unit does not matter. We construct a simulation sce-
nario in which three sensors are placed at coordinate (0, 0),
(1000, 0) and (500, 1000). We systematically set the radioac-
tive source location to be at each position (in steps of 2 dis-
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Figure 6: Localization error with respect to the number of measurements using 3 sensors. The source is
positioned such that ambiguity can be resolved using mini-max distance approach.

tance units) in (xs, ys) = ([−140, 1140] , [−300, 1000]). For
each position, we calculate the ratio of intensities by two
sensors and feed it into the RoSD algorithm. Similarly, the
logarithm of intensity differences is calculated, and we feed
it into the log-space DTOA algorithm. All inputs are deter-
ministic, and noise and errors are not present. The log-space
DTOA algorithm is an iterative algorithm. It terminates
when the error in the distance ratio is smaller than ε. We set
the value of ε to be 1.0× 10−12, in which case the algorithm
usually terminates in less than 100 iterations. Nevertheless,
we set the maximum number of iterations allowed to 10,000,
to ensure that any error in the position estimate is not due
to premature termination of the algorithm.

Both the RoSD and log-space DTOA algorithms may pro-
duce up to two estimates for each set of measurements from
3 sensors. In the case that there are two estimates, both
algorithms select the estimate that has the smaller maxi-
mum distance to all the sensors. Hence, both algorithms
are not able to localize a source that is not contained by
the triangle formed by the sensors. By our calculations, ap-
proximately 21.46% of the simulated source positions are
not contained within this triangle. This is the lower bound
of the errors, i.e., both algorithm will not able to produce
correct estimates for at least 21.46%. We compute the dis-
tance between the estimate and the true source position, and
conclude that the algorithm successfully localizes the source
if the localization error is less than 2 distance units. Oth-
erwise, we conclude that the algorithm produces a wrong
estimate. If the algorithm does not produce any estimate,
we count that as no estimate. Figure 7 shows the error
rates for the RoSD and log-space DTOA algorithms. In
general, with 3 sensors, RoSD algorithm improves 6% over
log-space DTOA algorithm. The log-space DTOA algorithm
produces 7.8× more no estimates than RoSD, but RoSD pro-
duces 6% more wrong estimates than log-space DTOA. In
total, RoSD and log-space DTOA do not produce a correct
estimate for 26.70% and 28.35%, of the cases, respectively.
These numbers are 5.24% and 6.89% above the 21.46% error
lower bound, respectively, showing that the performance loss
is minor. With one additional sensor, RoSD with the ITP
fusion algorithm will produce correct estimates virtually all
of the time.

5.4.4 Run time of algorithms
In terms of execution time, RoSD runs 497 times faster

than log-space DTOA in our experiments, as shown in Ta-
ble 4. The reported execution times are for the algorithms

Table 4: Execution time of RoSD and Log-space
DTOA.

Algorithm RoSD Log-space DTOA
Execution Time (s) 0.395 196.413
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Figure 7: Error rates comparison between RoSD
and Log-space DTOA.

to localize all the source positions in the above experiment
setup. Our execution time results were taken on an Intel
Pentium 4 HT 3.40 GHz machine with 2 GB RAM. The re-
sults were obtained using the hardware performance counter
in the CPU, which has high resolution and is minimally in-
fluenced by software overheads.

5.5 Performance of ITP fusion algorithm

5.5.1 Evaluation methodology
We now evaluate the performance of the sensor data fu-

sion algorithm. We repeat the experiments in the previous
section, but now with more than three sensors and with fu-
sion of the candidate estimates by the ITP algorithm. In the
experiments, we systematically activate sensors S1 to Sn for
n = 4, . . . , 18. We compute the union of all the estimates
and feed it into the ITP algorithm. ITP outputs the fused
estimate, which is compared against the true source posi-
tion. The localization errors produced by ITP are compared
against those of the Maximum Likelihood Estimator (MLE)
and mean-of-estimator (MoE) methods in Section 4.1. For
clustering, comparison results with QT clustering are also
shown. One issue is that the MoE algorithm assumes that
the localization algorithm produces only one candidate es-
timate per run. In our case, the localization algorithm may
produce up to two estimates for each subset of 3 sensors.
Because selecting between the two candidate estimates for
use in MoE has a large performance impact, we evaluate two
possible approaches:



• Smaller maximum distance to sensors: Labeled
as MoE in the reported results (Figure 8), this ap-
proach selects the estimate that has the smaller maxi-
mum distance between the estimate and all the sensors.

• Random: Labeled as MoE/R in the reported results,
this approach randomly selects one of the two candi-
date estimates for use with MoE.

5.5.2 Comparison of localization errors
Two major factors determine the errors of fused estimates.

The first factor is the error produced by the localization al-
gorithm. The second factor is the distance between the two
candidate estimates. The former is determined by the accu-
racy of the localization algorithm itself and the magnitude
of noise that gets included in the computation. The noise is
in turn affected by factors such as the sensor placements and
the accuracies of the measurements themselves. For exam-
ple, although MoE has no built-in design to disambiguate
each pair of estimates, the omission will not have a large
performance impact if the distance between the two candi-
date estimates is small, i.e., selecting one versus the other
will not matter much. ITP, in contrast, has a built-in clus-
tering step to disambiguate the candidate estimates. This is
very useful in general, but will appear less so if the phantom
estimates are close true position of the source.

The above observations are illustrated in Figure 8(a) and
8(b). With ideal sensors, RoSD produces virtually zero lo-
calization errors. Hence, the distances between candidate
estimates are huge in comparison with the (almost zero) lo-
calization errors. In this case, MoE and MoE/R produce
large localization errors, but ITP produces practically no
error because the algorithm accurately disambiguates the
two candidate estimates. With non-ideal sensors, the local-
ization error is much larger. Errors due to the probabilistic
measurements cause the estimate to deviate by as large as
the distance between two sensors. At the same time, the dis-
tance between candidate estimates is roughly the same as the
distance between the source and each estimate. In this sit-
uation, averaging over all the estimates performs as good as
the more expensive ITP algorithm. The performance advan-
tages of ITP become more clear when background radioac-
tivity is considered as shown in Figure 8(c). With radiation
sensors of higher efficiency, the ITP algorithm will perform
better as the localization error is reduced.

The parameter d in ITP controls the maximum size of the
region that will not contain the phantom estimates. With
error-free measurements, small value of d is sufficient. When
considering the measurement errors, a larger value of d is
required to tolerate the measurement errors such that the
algorithm will include most, if not all, non-phantom esti-
mates. Setting the value of the d too large degrades the
performance of the algorithm because the algorithm will be
more likely to include phantom estimates into the region. In
fact, setting d = ∞ causes the algorithm to behave similarly
to MoE. Implicitly, the value of d gives a boundary to the
region where the radioactive source is most likely to con-
tain. The results in Figure 9 show that accurately setting
the value of parameter d is not required and a rough value
will work well in practice.

5.5.3 Comparison of execution time
In terms of execution time, the results in Figure 10 show

that the efficiency of ITP scales well with a larger number

0

5

10

15

20

3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Number of sensors

QT

ITP

MLEO(n11.5)

Figure 10: Execution time of ITP, MLE, and QT
algorithms.

of sensors, compared with the QT clustering algorithm and
MLE. The reported results measure the average execution
time of the ITP, MLE and QT clustering algorithms in 1000
runs. In each run, the execution time of ITP and QT was
measured using the CPU performance counter on an Intel
Pentium 4 HT 3.40 GHz machine with 2 GB RAM. The
execution time of MLE was measured on the same hard-
ware platform using the profile on -timer cpu command
in MATLAB c© because the program was implemented on
MATLAB c©. The ITP algorithm completes in split seconds
in all the runs. Even when the experiment is scaled to 100
sensors, the ITP algorithm takes only about 0.2 seconds to
run. For QT clustering we only present data for 4 to 12
sensors because the running time of QT clustering is pro-
hibitive for a larger number of sensors. The execution time
of QT clustering will not allow near real-time localization
of the source. The execution time of MLE does not show a
clear trend with respect to the number of sensors, because
the algorithm is sensitive to the starting point of the search.
Among all the experiments we ran, the execution time of
MLE is at least 252 times of ITP, and on average the exe-
cution time is 16000 times longer. The performance of the
downhill simplex optimization used in MLE depends on the
initial values of the estimated parameters. The algorithm
can take many iterations to converge, and frequently ex-
ceeded the maximum number of iterations allowed (set to
10,000) in our experiments, if the initial estimates are not
close to the actual solution (the true position of the source).
Although reducing the maximum number of iterations al-
lowed would bound the execution time, the localization error
would increase.

6. SIMULATION RESULTS FOR DIRTY
BOMB SCENARIOS

We conducted experiments based on the sensing model in
Section 2.1 to evaluate the practicality and effectiveness of
ITP localization in real-life situations. We use simulations
because actual experimentation with source intensities sim-
ilar to that of a concealed dirty bomb is not safe. In the
simulation setup, up to 100 sensors are located uniformly in
a grid, in a surveillance area of size 10× 10 m2, 50× 50 m2,
100 × 100 m2, and 200 × 200 m2. We model a radioactive
source of four different strengths, namely 400 μCi, 4 mCi, 40
mCi, and 400 mCi. The source is uniformly randomly placed
in the surveillance area. We compare results by ITP with
those of the MoE and MLE algorithms, under the same sim-
ulation scenarios. All simulations are repeated at least 6000
times to ensure the statistical significance of the results.
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Figure 8: Localization error of four different variants of QT clustering algorithms, with respect to the number
of sensors. Number of measurements and clustering diameter were m = 20 and d = 5 respectively.
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Figure 9: Localization error with respect to the number of sensors. RoSD was run with m = 20 measurements.

The simulation results show that ITP performs better
than both MoE and MLE in localizing a low-dose radioac-
tive source. With one sensor per 33× 33 m2 area or roughly
110 × 110 ft2, ITP is able to localize a low level radioactive
source of strength 400 μCi with an accuracy of 32.5 m us-
ing m = 20 measurement samples, whereas MoE and MLE
achieve accuracy of 33.6 m and 218.219 m respectively. Fig-
ure 11 shows that ITP achieves higher performance gains
compared with MoE when the sensor density increases, al-
though MoE has smaller localization errors when the sensor
density is very low. MoE outperforms ITP at low sensor
densities because the majority of the sensors in this case
are not able to detect the source, since they are sparsely
located. This leads to a lower number of candidate esti-
mates available. As discussed in Section 4.3, a low number
of candidate estimates hurts the performance of the ITP al-
gorithm. When a sufficient number of sensor groups produce
estimates, however, the localization errors of ITP dramati-
cally decrease. When the radioactive source has high inten-
sity, MLE outperforms ITP but the MLE execution time is
significantly higher and has high variance.

Given that the sensor intensity measurements follow a
Poisson process, the variance of the intensity readings is
equal to the mean. This indicates that a stronger source will
exhibit a larger variance of the measurements. In spite of
a large variance, the localization error of the ITP algorithm

decreases roughly like O
(

1√
A0

)
, as shown in Figure 12(a),

implying that a higher intensity source can be located more
accurately. This is a desirable property because high inten-
sity radioactive sources are dangerous, and there is a need to
localize such a source quickly and accurately. On the other
hand, a stronger source may in fact reduce the localization
accuracy of MoE. This is because MoE averages over all the

estimates produced, and a larger variance implies a larger
error in the estimates produced, for the same number of
measurements used. This phenomenon is observed in Fig-
ure 12(b), where the localization error increases gradually
with the source strength.

Using a larger number of measurements increases the sens-
ing time. A longer sensing time generally decreases the local-
ization error, although the gain in performance is sub-linear.
Figure 13 shows the normalized 90-percentile localization er-
ror for different numbers of measurements m, for different
source strengths. For each source strength, the localization
error is normalized to the localization error with m = 20.
For instance, with a 400 μCi radioactive source, increasing
the number of measurements by 250% reduces the localiza-
tion error by 29% only. The MLE algorithm shows larger im-
provements when the number measurements increases, when
compared with ITP. On the other hand, MoE benefits lit-
tle when the number of measurements increases. In fact, in
some cases the localization error increases when the number
of measurements increases.

7. CONCLUSION
We have addressed the problem of accurately and quickly

localizing a low-level point radioactive source using n sen-
sors, under realistic noise and measurement errors. We have
presented an efficient iterative pruning (ITP) algorithm to
efficiently fuse the position estimates by groups of 3 sensors
to produce a final estimate that is close to the true source
position. We have compared the performance of ITP with
that of the existing MoE and MLE algorithms. Testbed
results and simulation results using a validated simulation
model illustrate the performance of our algorithm, includ-
ing the performance impact of different sources of errors.
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Figure 11: Comparison of average localization error for various algorithms with respect to sensor density in
large scale simulation. m = 20.
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Figure 12: Average localization error with respect to different source strength. Sensor density = 0.01
sensor/m2, d = 7.5 feet, m = 20.

We show that ITP improves upon MoE by (1) explicitly
eliminating the effects of phantom estimates, and (2) pre-
ferring the higher SNR estimates among the non-phantom
estimates. Lastly, we show that ITP is somewhat less accu-
rate than MLE when n is large, but it can run significantly
faster than MLE, whose performance is highly sensitive to
initial estimates of the localization parameters.
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