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Quality of Monitoring of Stochastic Events by
Proportional-Share Mobile Sensor Coverage

David K. Y. Yau∗, Nung Kwan Yip∗, Chris Y. T. Ma∗, Nageswara S. Rao† and Mallikarjun Shankar†
∗Purdue University, West Lafayette, IN†Oak Ridge National Lab, TN

Abstract—There is significant interest in using mobile
sensors to protect geographical regions against hazards,
in which the sensing resources are distributed according
to the varying importance of the sub-regions, such as their
numbers of residents exposed to the hazards. The quality of
monitoring (QoM) resulting from such proportional-share
allocation of the coverage time, in terms of the amount of
information captured, is not well understood. In this paper,
we analyze the QoM properties of proportional-share
mobile sensor coverage, at different fairness time scales,
as a function of a wide range of event types, stochastic
event staying times, and stochastic event arrival/departure
dynamics. Based on the QoM analysis, we optimize a class
of periodic mobile coverage schedules that achieve accurate
proportional sharing while maximizing the QoM of the
total system.

I. I NTRODUCTION

There is considerable interest in using sensors to
protect populated areas against physical hazards, such as
chemical, biological, and radiation leaks/attacks. Real-
world chemical, biological, and radiation sensors have
limited ranges of tens to hundreds of feet. If the area to
be protected is large, such as entire metropolitan cities,
it is difficult to deploy a sufficient number of sensors to
cover the entire area. This leads to strong interest in the
use of mobile sensors to expand the area of coverage
while keeping the number of sensors low.

At the same time, it is recognized that the protected
region may not be homogeneous, but different sub-
regions may vary in terms of their importance. For
example, some parts are densely populated while other
parts are sparsely populated, so that an undetected hazard
in the former will result in more casualties than in the
latter. In this case, simple area of coverage is no longer
sufficient. An arguably more suitable goal is to allocate
sensing resources to the different parts in proportion to
their importance levels. Note that in the case ofstatic
sensors, their placement to best protect people has been
considered in the Memphis Port deployment [11]. There,
Smith APD2000 chemical sensors are used to detect
toxic chemical leaks. Because the sensors are expensive,
they cannot cover the whole area. A search method
is used to best place the next sensor to maximize the
marginal increase in the number of people protected.

Proportional sharing of resources is not a new con-
cept. The notion has been extensively employed in the
scheduling of CPU time, network bandwidth, buffers,

etc [7], [9]. In CPU scheduling, for example, a scheduler
may give one task twice the CPU share as another task.
In this case, the performance impact is more or less clear:
The first task gets twice as much computation done as the
other task over the same real-time interval, if both tasks
run the same application. In the case of sensor coverage,
proportional sharing must be evaluated in terms of its
impact on thequality of monitoring(QoM), which can
be expressed, for example, as the number of interesting
events captured, or the total amount of information
captured about these events.

In this paper, we target the problem of information
capture about interesting events (e.g., a chemical leak)
that dynamically appear and disappear at a given set of
locations calledpoints of interest(PoI). These PoIs have
different importance levels, such as numbers of residents
as motivated above. The events are detected by a mobile
sensor (e.g., a chemical sensor carried by a robot) whose
sensing range is sufficient to cover only one PoI at a
time. Hence, the sensor must move between the PoIs in
order to give them service. In our problem, we argue
that the QoM of proportional-share sensor coverage
may not have a simple interpretation thatγ times the
resource allocation to a PoI will result inγ times better
performance for the PoI. Rather, the achieved QoM
is an interesting function of several important system
parameters, including the time scale of the proportional
sharing, the event dynamics, and the type of event.

Our contributions are two fold.First, we provide
extensive analysis to answer the following questions: (1)
What is the meaning of allocating to one PoIγ times
more coverage time than another PoI? How will such an
allocation impact the QoM of the first PoI relative to the
second? (2) Does a fixed share of the coverage time for
a PoI imply the same QoM for that PoI? Is the QoM also
affected by the time scale of the proportional sharing?
Under what situations is finer/coarser time-scale sharing
preferred over the other? (3) What is the scaling law of
mobile coverage, i.e., when a mobile sensor is allocated
among k out of n PoIs, how is the average QoM
over all the PoIs affected ask increases? Can mobility
fundamentally improve the sensing by increasing the
achievable QoM?

Second, based on the QoM analysis, we will ana-
lyze the performance of a class of periodic coverage
algorithms considering the travel time overhead between
PoIs. We first optimize alinear periodicsensor schedule
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for maximum total QoM that achieves given proportional
shares of the coverage time between the PoIs. We then
discuss the optimization of general periodic schedules.
We present a simulated annealing algorithm for finding a
solution close to the global optimal with high probability
and within a practical time budget.

II. PROBLEM STATEMENT

We assume that events appear and disappear at given
points of interest (PoIs) and are to be monitored by a
sensor of sensing rangeR. The PoIs are located on a
2D plane. A pair of PoIs, sayi andj, are connected by
a road, given byEij , of distancedij . If there is no road
that directly connectsi andj, Eij = ∞. Otherwise, the
sensor traveling at speedv from i to j takes timedij/v
to complete the trip.

The next set of assumptions concerns the event dy-
namics. The events appear at PoIi one after another.
After appearing, each event stays for a duration of
time, which we call theevent staying time, and then
disappears. The next event appears after another duration
of time, which we call theevent absent time. We denote
the sequential staying and absent times by{X i

k}k≥1 and
{Y i

k}k≥1. The event inter-arrival timeis then denoted
by Zi

k = X i
k + Y i

k . We assume that (for eachi) the
{(X i

k, Y i
k )}k≥1 are i.i.d. random variables drawn from

a common distribution(X i, Y i), even though theX i
k

and Y i
k may be dependent. However, the event dynam-

ics at different PoIs are assumed to be independent.
Lastly the event arrival timesare denoted byT0 = 0,
Tk = Tk−1 + Zk for k ≥ 1.

We further classify the events as follows. When the
staying time drawn fromX i is always an infinitesimally
small ǫ amount of time, the corresponding events are
like “blips”, i.e. they do not stay but disappear instanta-
neously after arrival. Another type of events are those
which stay, i.e. there is an0 < ǫ ≪ 1 such that
P (X ≥ ǫ) = 1. An event at a PoI is captured by the
sensor provided that the PoI is within range of the sensor
during the event’s lifetime. We assume that different
events areidentifiable, i.e. when the sensor that sees an
event at a PoI, leaves the PoI, but comes back later to see
the same event, it will know that it is the same event.
We assume that as the sensor observes an event, the
information it accumulates about the event increases as
the observation time increases. We quantify the sensing
quality as a utility function that increases monotonically
from zero to one as a function of the total observation
time. Fig. 1 illustrates the following five examples of the
utility function:

(a) Step function: UI(x) = 1 for x ≥ 1. Full infor-
mation about an event is obtained instantaneously on
detection. (b)Exponential function: UE(x) = 1− e−Ax.
Much of the information about an event is obtained
at the beginning but the marginal gain decreases as
the observation time gets longer. (c)Linear function:
UL(x) = Mx for 0 ≤ x ≤ 1

M and UL(x) = 1 for
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Fig. 1. The utility functions.

x ≥ 1
M . Information obtained increases linearly with the

observation time until the full information is achieved.
(d) S-shaped functionUS(x). The initial observation
gains little information until a critical observation timeis
reached, at which point there is a large marginal gain of
information in a short time, and afterwards the marginal
gain drops sharply as the full information is approached.
(e) Delayed step functionUD(x) = UI(x − D). No
information is gained until the total time of observation
exceeds a threshold valueD, after which the full infor-
mation is captured instantaneously. We view (a) and (e)
as extreme cases. All of the above, excepting (d), are
quite amenable to analytical formulations.

When PoI i falls within the range of the sensor,
we say that the sensor ispresentat i. Otherwise, the
sensor isabsentfrom i. Since we are interested in the
resource competition between different PoIs, we make
the following assumption.

Assumption 1:The PoIs and the roads between them
are separated such that (1) no two PoIs fall within the
range of the sensor at the same time; (2) for the sensor
traveling from PoIi to PoI j on Eij at speedv, i will
be within range of the sensor forR/v time before the
sensor leavesi, andj will be within range of the sensor
for R/v time until the sensor reachesj, and (3) no PoI
other thani and j falls within the range of the sensor
during the trip onEij . In general, however, the sensor
can vary its speed while traveling on a road.

A. Definition of QoM

We now define the quantitative measurement of the
QoM at a PoI or for the whole protected area. In
the course of a deployment, denote byei

1, . . . , e
i
mi

the
sequence of events appearing at PoIi over the duration
[0, T ] of the deployment. For the eventei

j , assume that
it is within range of the sensor for a total (but not neces-
sarily contiguous) amount of timetij , wheretij ≥ 0. The
sensor will then gain a certain amount of information,
U i

j(t
i
j), aboutei

j, whereU i
j(·) is the utility function of

ei
j. The total information gained by the sensor ati is

defined byEi(T ) =
∑

1≤j≤mi
U i

j(t
i
j), and the average

information gained per event ati during the whole de-
ployment period is then̄Ei(T ) = Ei(T )/mi. Similarly,
the total information gained by the sensor in the whole
deployment isE∗(T ) =

∑

1≤i≤n Ei(T ), where n is
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the number of PoIs in the protected area. The average
information gained per event in the whole deployment
is then Ē∗(T ) =

(
∑

1≤i≤n miĒi(T )
)

/(
∑

1≤i≤n mi).
By means of the strong law of large numbers and
renewal theory,Ēi(T ) and Ē∗(T ) will converge to a
deterministic number asT −→ ∞. Hence we define the
QoM of PoI i and the whole covered area as:

Qi = lim
T→∞

Ēi(T ), and Q∗ = lim
T→∞

Ē(T ). (1)

Furthermore, they are related by:

Q∗ =
1

µ∗

∑

1≤i≤n

µiQi (2)

whereµi = 1
E(Z) is the mean event arrival rate at PoIi

andµ∗ =
∑

1≤i≤n µi.
Note that in defining the QoM, we should in prin-

ciple divide not by the number of eventsm, but by
the maximum possible utility achievable for an event:
∫ ∞

0
U(x)f(x) dx, where f(x) is the pdf of the event

staying time distribution. The latter may be less than
1 if the events do not stay infinitely long. However,
the difference is by a proportionality constant only, and
will not affect our comparison results. Unless otherwise
stated, we will further assume that all the events ati
have the same utility function, and denote this function
by U i(·).

III. R ELATED WORK

Quality of monitoring metrics in a sensor network
have been proposed, e.g., the rate of false positives [5].
Area coverage in a sensor network has been well
studied [4], [13]. Protocols have been proposed to
task subsets of sensors in a dense network to pro-
vide maximum lifetime area coverage [16]. Simple area
coverage does not consider the varying importance of
different sub-regions. Our work addresses the hetero-
geneity of sub-regions by proportional-share coverage.
Proportional-share resource allocation has been proposed
for CPU/network scheduling [7], [9]. Mobile coverage
has the additional challenge that the sensor schedules can
be severely constrained by the adjacencies and distances
between the PoIs.

The importance of the sensing time in accurately
assessing various physical phenomena has been well
documented [10]. The need for non-negligible sensing
durations to obtain useful information is due to noises
in the measurement process and the probabilistic nature
of the phenomena under observation. The impact of the
sensing time is captured by the event utility functions in
our problem statement.

Mobility has been discussed extensively in delay-
tolerant networks and vehicular networks. Passive mo-
bility has been analyzed for its effects on providing
communication opportunities [6], [17], and carry-and-
forward network protocols have been proposed [2]. Mo-
bility control has been used to deploy ferries and data

mules among a number of data sources, to optimize com-
munication of the source data to the data sink [14], [18].
In a hybrid mobile/static sensor network, similar data
mules are useful for collecting and disseminating data
reports from the static sensors to a control center [15].
Route optimization of ferries/mules is in general NP
hard.

The dynamics of real-world events are frequently
modeled as stochastic processes. Poisson arrivals are
generally accurate characterizations of a large number
of independent event occurrences, whose event inter-
arrival times are Exponentially distributed. Real-world
network/computing workloads have properties that are
found to be long-range dependent [3], [12], which fol-
low the Pareto distribution. In a sensor network, the
target events may have similar dynamic behaviors. For
example, radioactive particles arriving at a Geiger-Müller
counter follow a Poisson process [10]; a chemical leak
at a facility may occur with a probability, and the leak
may persist for a random duration until the chemical has
been dispersed. Our analysis applies to a wide range of
event inter-arrival and staying time distributions.

The impact of mobile coverage on the capture of
stochastic events has been studied in [1]. They analyze
the minimum sensor speed or the minimum number of
sensors to capture a given fraction of the events in the
case of Exponential event present/absent periods. They
do not provide proportional sharing, whereas our main
concern is the use of proportional sharing to differen-
tially cover regions of varying importance. They focus on
the number of detected events, which is equivalent to our
step utility function. More general utility functions are
also interesting as explained above. For capturing more
events, they show that a faster sensor is always preferred,
which agrees with our results for Step utility. However,
minimizing the fairness granularity can result in greatly
suboptimal performance under more general utility func-
tions. They analyze a looping coverage algorithm among
the given PoIs. The looping algorithm corresponds to
our linear periodic schedule; our work analyzes more
general periodic schedules that can perform better than
linear periodic schedules.

IV. SINGLE-POI A NALYSIS OF QOM

We explain the impact on the QoM by the coverage
schedule of a sensor at a given PoI. The schedule
specifies the time intervals over which the sensor is
present at or absent from the PoI. A given schedule is
achieved by how the sensor moves between the PoIs
according to some movement algorithm. The problem
of the algorithm design and the feasibility of a set of
PoI schedules are the subject of Section V.

We can illustrate some interesting QoM properties of
proportional-share mobile coverage by considering only
periodic schedules at individual PoIs. Specifically, we
assume that the sensor is alternately present and absent at
a PoI, sayi, for qi andpi−qi time units, respectively. For
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example, letS1 be the following the coverage schedule
of i:

S1 = {PAAAPAAA . . .}

for qi = 1 and pi = 4. In the schedule,P denotes one
time unit of the sensor’s presence andA denotes one
time unit of the sensor’s absence. The PoI is covered by
the sensor for one out of every 4 time units, for a share
of qi/pi = 25% of the sensor’s coverage time.

Clearly, a given proportional share fori can be
achieved in many different ways. For example,qi = 2
andpi = 8 give the following scheduleS2 with the same
25% share fori:

S2 = {PPAAAAAAPPAAAAAA . . .}.

While S1 and S2 are equivalent from the proportional-
share point of view, they differ in terms of the time
scale over which the proportional share is achieved.
Specifically, S1 achieves the 25% share over a time
period of 4 time units, whereasS2 achieves the same
share over a period of 8 time units. We say thatS1 has
a finer fairness granularitythan S2, and will usepi to
quantify this fairness granularity. Notice that for a fixed
proportional share, a smallerpi implies a proportionately
smallerqi.

The main purpose of this section is to analyze the
dependence of the QoM on the utility function and the
fairness granularity. In this section, as we will focus on a
single PoI, the subscripti will be omitted where there is
no confusion. We will frequently denote the proportional
shareq

p by γ. For simplicity, we usePj = [(j−1)p, (j−
1)p + q] and Aj = [(j − 1)p + q, jp] to denote thej-
th sensor present and absent periods, respectively. For
many of the proofs, it is sufficient to consider just the
casej = 1, i.e. P1 = [0, q] andA1 = [q, p].

The problem as formulated in Section II fits perfectly
well in the realm of renewal theory. Recall thatTk is
thek-th event arrival time andµ = 1/E(Z). One of the
conclusions of renewal theory is that in the long run, the
expected number of arrivals in an intervaldt equalsµ dt.

The following two types of event staying time distri-
bution will be considered in this paper, wheref(x) is
the pdf ofX :

• Exponential Distribution (λ > 0):

f(x) = λe−λx, x > 0, mean=
1

λ
.

• Pareto Distribution (α, β > 0):

f(x) =
αβα

xα+1
, x > β, mean=

αβ

α − 1
.

Now we proceed to present our results. All of the
proofs will only be outlined due to space constraints,
but can be made fully rigorous.

A. Step utility function

We begin our discussion with events that have the step
utility function (see Fig. 1). In this case, since the utility
reaches one instantaneously, the QoM is equivalent to the
fraction of events captured. The next result illustrates the

effect on the QoM by a periodic sensor schedule with
parametersp andq at a fixed PoI.

Theorem 1:For independent arrivals of events that
have the step utility function and do not stay, i.e. “blip
events”, the QoM at any PoI is directly proportional to
its share of coverage timeq/p.

Proof: In this case, an event is captured if and only
if it arrives when the sensor is present. Hence the QoM is
simply the ratio between the expected number of arrivals
per unit time during a sensor present period and the total
expected number of arrivals per unit time. I.e.Q = µq

µp ,
which gives the claimed result.

Corollary 1: For independent arrivals of events that
have the step utility function and do not stay, the
achieved QoM at a PoI does not depend on the fairness
granularityp.

The above scenario shows that only the proportional
sharing information determines the QoM. On the other
hand, for events that do stay, the QoM depends on the
relationship between the event staying time distribution
and the parametersp and q. Specifically, we have the
following result.

Theorem 2:For independent arrivals of events that
stay and have the step utility function, the QoM at a
PoI is given by

Q =
q

p
+

1

p

∫ p−q

0

Pr(X ≥ t) dt. (3)

Proof: As the utility function is a step function,
the overall utility is given by the total number of events
captured when the sensor is present. Note that an event
will be captured if (a) it arrives during the sensor present
period[0, q]; (b) it arrives during the sensor absent period
[q, p], but stays long enough to be captured during the
nextsensor present period[p, p+ q]. The contribution of
(a) to the QoM is given byqp , while that of (b) is given
by 1

p

∫ p

q Pr(X + t ≥ p) dt, which is the second term of
Equation 3 after a simple change of variable.

Theorem 2 implies that the sensor that stays at a PoI
for q/p of the time may be able to capture a significantly
larger fraction of events thanq/p. The following two
corollaries give further statements due to this extra
fraction of events.

Corollary 2: Under the setting of Theorem 2, with the
fairness granularityp kept constant, we have:

lim
γ→0

Q =
1

p

∫ p

0

Pr(X ≥ t) dt.

Proof: The proof is a direct consequence of Equa-
tion (3), upon taking the limitγ −→ 0. (Note that
q = γp −→ 0.)
This result clearly indicates that no matter how small
the proportional share is, there is always some definite,
positive gain of information. This is due to the fact that
the events stay.

Corollary 3: Under the setting of Theorem 2, the
QoM of a given fixed proportional share is a monotoni-
cally decreasing function of the fairness granularity, i.e.,
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Q decreases asp increases. Furthermore,

lim
p→0

Q(p) = 1, and lim
p→∞

Q(p) =
q

p
.

Proof: Using q
p = γ, the QoM can be written as:

γ + (1 − γ)
1

(1 − γ)p

∫ (1−γ)p

0

Pr(X ≥ t) dt.

Note that the second term in the above is the average over
the interval[0, (1−γ)p] of the monotonically decreasing
function of t, Pr(X ≥ t). Furthermore,limt→0 Pr(X ≥
t) = 1 and limt→∞ Pr(X ≥ t) = 0. Hence,

lim
p→0

1

(1 − γ)p

∫ (1−γ)p

0

Pr(X ≥ t) dt = 1

and lim
p→∞

1

(1 − γ)p

∫ (1−γ)p

0

Pr(X ≥ t) dt = 0,

which leads to the stated result.
In contrast to Corollary 1 for blip events, Corollary 3

implies that finer-grained fairnessdoes generally im-
prove the QoM for staying events having Step utility. In
particular, no matter how small the proportional share is,
an arbitrarily high QoM can be achieved by an extremely
fine fairness granularity.

The following are some explicit examples to illustrate
Theorem 2 and Corollary 3.

(i) Exponential Distribution.

Q = γ +
1 − e−λ(1−γ)p

λp
,

which converges to1 andγ asp −→ 0 and∞.
(ii) Pareto Distribution.
When (1 − γ)p ≤ β, thenQ = 1 because any event

will always be captured as its duration is at leastβ-time
units long. When(1 − γ)p > β, thenQ equals

γ +
1

p

[

β +
βα

(α − 1)

(
1

βα−1
−

1

((1 − γ)p)α−1

)]

.

The QoM also converges toγ asp −→ ∞.
We now consider a scaling result for mobile sensor

coverage amongk out ofn PoIs, whose event arrival and
departure processes are i.i.d., ask increases. Assume that
initially, the sensor achieves periodic schedules among
k of the n PoIs such thatqi = δ and pi = kδ, for
1 ≤ i ≤ k, whereδ is a unit of time. The following
theorem holds.

Theorem 3:The expected fraction of events captured
is an increasing function ofk, the number of PoIs
covered.

Proof: The expected fraction of the events captured
in the schedule is

Q∗ =
1

n

∑

1≤j≤k

[

1

k
+

1

kδ

∫ (k−1)δ

0

P (X ≥ t) dt

]

=
1

n

[

1 +
1

δ

∫ (k−1)δ

0

P (X ≥ t) dt

]

which is clearly an increasing function ofk.

Theorem 3 provides a formal justification for mobile
coverage, namely that the amount of information cap-
tured increases as the sensor moves among more PoIs to
search for interesting information.

B. General utility function

We now turn our attention to events that have a general
utility function U(·). In this case, we have the following
QoM result.

Theorem 4:For independent arrivals of events at a
PoI that have the utility functionU(·) and whose event
staying time pdf is given byf(x), the achieved QoM
equals (ξi = iq − t, ηi = x + ip − t):

∫ q

0

[
∫ q−t

0

U(x)f(x) dx +

∞∑

i=1

∫ q

0

U(ξi + x)f(ηi) dx

+

∞∑

i=1

U(ξi)

∫ 0

−(p−q)

f(ηi) dx

]

dt (4)

+

∫ p

q

[
∞∑

i=1

∫ q

0

U(ξi − q)f(ηi) dx

+

∞∑

i=1

U(ξi + t)

∫ p

q

f(ηi) dx

]

dt. (5)

Proof: The above formula follows from the fact
that the overall utility available for any particular event
depends on thetotal length of the intersecting region
(which might be discontinuous) during which both the
event and sensor are present. The two integrals (4)
and (5) and the various summands represent the different
cases for the event arrival and departure times. These are
explained as follows.

If an event arrives att ∈ [0, q], i.e. when the sensor
is present, then the total utility available from this event
is given by (ξi = iq − t):

∫ q−t

0

U(x)f(x) dx

+

∞∑

i=1

∫ x+t=ip+q

x+t=ip

U(ξi + x + t − ip)f(x) dx

+

∞∑

i=1

∫ x+t=ip

x+t=ip−(p−q)

U(ξi)f(x) dx.

In the above, the different integrals correspond to the
cases when the event departure timet + x falls in [t, q],
[ip, ip+ q], and[ip− (p− q), ip] respectively. A change
of variable gives (4). Similarly, if an event arrives at
t ∈ [q, p], i.e. when the sensor is absent, then the total
utility available from this event is given by:

∞∑

i=1

∫ x+t=ip+q

x+t=ip

U((i − 1)q + x + t − ip)f(x) dx

+

∞∑

i=1

∫ x+t=ip

x+t=ip−(p−q)

U((i − 1)q)f(x) dx.

A change of formula variable then gives the form of (5).
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The formula above can have a complicated analytical
form in general, but it is certainly amenable to numerical
computation. Nevertheless, we first present two exact
analytical results. (Recallγ = q

p .)
(1) Exponential utility functionUE and Exponential

staying time:f(x) = λe−λx.

Q =
Aγ

A + λ
−

1 − e−λq

λp
+

λ(1 − e−(A+λ)q)

(A + λ)2p

+
(eλq

− 1)2

λpeλq(eλp
− 1)

−

λ(e(A+λ)q
− 1)2e−(A+λ)q

(A + λ)2p(e(Aq+λp)
− 1)

+
2(eλ(p−q)

− 1)

p

×

[
eλq

− 1

λ(eλp
− 1)

−

e(A+λ)q
− 1

(A + λ)(e(Aq+λp)
− 1)

]

+
(eAq

− 1)eλq(eλ(p−q)
− 1)2

λp(eλp
− 1)(e(Aq+λp

− 1)
. (6)

Note that the above leads to

lim
p→0

Q =
Aγ

Aγ + λ
, lim

p→∞
Q =

Aγ

A + λ
. (7)

(2) Delayed utility functionUD and Exponential stay-
ing time: f(x) = λe−λx.

When p is very small such thatD is an integral
multiple of q, i.e. D = kq for k = 1, 2, . . ., we have:

e−
λD
γ

[

γ +
eλ(1−γ)p − 1

λp

]

. (8)

On the other hand, whenp is very large, specifically,
whenq > D, then

Q = e−λD

[

γ +

(
1

λ
− D

)
1 − e−λ(p−q)

p

]

. (9)

Combining Equations (8) and (9), we have:

lim
p→0

Q = e−λ D
γ , lim

p→∞
Q = γe−λD. (10)

The above analytical results can be intuitively under-
stood in many ways, which are instructive to discuss.

C. Implications and discussion of theoretical results

The first three discussion points concern various lim-
iting cases.

(i) Let the fairness granularityp and the proportional
shareγ be fixed. Then as the event staying time goes
to infinity, every event will always be captured and the
maximum value1 for the utility can be achieved. Fur-
thermore, the QoM is an increasing function of the mean
event staying time. Note that this scenario corresponds
to λ −→ 0 for the exponential staying time distribution,
andβ −→ ∞ for the Pareto distribution.

(ii) In the limit of p −→ 0, every event which stays
will always be captured. However, the total observation
time is onlyγ fraction of the event’s duration. Hence the
average utility achieved is:

Q0 =

∫ ∞

0

U(γx)f(x) dx. (11)

This result is consistent with the explicit results (7) and
(10). We further compute this quantity for the Pareto
event staying time distribution.

• For the Exponential utility functionUE,

Q0 = 1 − α

∫ ∞

1

e−Aγβx

xα+1
dx.

• For the Delayed utility functionUD,

Q0 =

{

1 for D
γ ≤ β,

(
γ
Dβ

)α
for D

γ > β.

(iii) In the limit of p −→ ∞, each event, if captured,
will essentially be observed for its whole duration. On
the other hand, onlyγ fraction of the events will be
captured. Hence the QoM is given by:

Q∞ = γ

∫ ∞

0

U(x)f(x) dx, (12)

which is also consistent with the explicit results (7) and
(10). For Pareto event staying time distribution, we have:

• Exponential utility function:

Q∞ = γ

[

1 − α

∫ ∞

1

e−Aβx

xα+1
dx

]

.

• Delayed utility function:

Q∞ =

{
γ for D ≤ β,

γ
(

β
D

)α

for D > β.

The next two discussion points concern the two most
important qualitative descriptions of the QoM function.

(iv) For the step and exponential utility functions, the
QoMs are monotonically decreasing functions ofp. This
is because both utility functions areconcavefunctions
of the observation time. Hence it is advantageous to
capture as manynew events as possible rather than to
gain information for the same event. A finer fairness
granularity exactly achieves this. (This is consistent with
the analytical formula (6).)

(v) However, the key feature is that for certain utility
functions, themaximumQoM is only achieved at some
optimal fairness granularity. We spend a moment to
explain this important phenomenon.

The above observation is easiest to explain for the
delayed step utilityUD. In the limit of p −→ 0, any
event can always be captured. This is essentially the
statement of Corollary 3. However, in order to gain
enough information about the event, it is necessary
that the event staying time be at leastD

γ long. This
probability is given byPr(X ≥ D

γ ). However, when
p is positive (no matter how small it is), this is not
absolutely necessary. In fact, if the event arrives right at
the beginning of a sensor present period, then the event
staying time just needs to be at leastD

γ − (1−γ)p long.
It is this saving that increases the QoM. Hence initially,
the QoM is anincreasingfunction ofp for smallp. (This
can also be seen analytically from Equation (8).)

The behavior of QoM whenp is large is also inter-
esting and quite intricate. From Equation (9), observe
that the QoM is adecreasing, constant, or increasing
function of p for λ less than, equal to, or greater than
1
D , respectively. This is due to the competitive effect
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(for p large) of the loss of utility for events arriving
near the end of a sensor present period and thegain
of utility for events arriving before the sensor present
period. Hence forλ < 1

D , the QoM initially increases
and then decreases as a function ofp. Thus it is optimal
at someintermediatep value.

All of the above implications are supported by the
simulation results in Section VI.

V. COVERAGE ALGORITHMS

The previous section discussed the QoM of periodic
schedules at a specific single PoI. We now address
the problem of coveringn PoIs by the sensor. This is
achieved by a visit schedule of the sensor to all the PoIs
under a coverage algorithm to be designed.

We will analyze the QoM ofperiodic coverage ofn
PoIs. By this we mean that the schedule is realized by a
periodic visit schedule of the sensor to the PoIs, in which
a the visit schedule in the smallest period is denoted by

S = {(L1, C1), . . . , (Lm, Cm)}, (13)

where Lj denotes thejth PoI visited for a time of
Cj in the sensor schedule,Lj 6= L(j mod m)+1, and
each of then distinct PoIs appears at least once inS.
Recall from Assumption 1 on Page 2 that the sensor
cannot be present at more than one PoI at a time. If
m = n, each PoI appears inS exactly once, then we
call S a linear periodic schedule. However, it is clear
that not all periodic schedules are linear. For example,
S = {(1, δ), (2, 3δ), (1, δ), (3, 2δ)}, whereδ is a unit of
time, is not. In the definition (13), ifm > n, we call the
periodic schedulenonlinear. We restrict our attention to
periodic schedules for now.

Given a sensor scheduleS, we define itsmaximum
feasible utilizationas

U∗(S) = sup
∑

1≤i≤n

qi

pi

where thesup is taken over all possible sensor move-
ments that realizeS. The utilization is affected by the
travel time overhead between two adjacent PoIs inS
during which the sensor is not present at any PoI. Using
d(i, j) as an equivalent notation todij for the distance
betweeni andj, we define forj = 1, . . . , m:

aj =
1

vmax

[

d(Lj , L(j mod m)+1) − 2R
]

as the minimum travel time overhead fromLj to
L(j mod m)+1 for the sensor moving at maximum speed
vmax. Then the following statement holds.

Theorem 5:The maximum feasible utilization ofS is

U∗(S) = sup

[

1 −

∑

1≤j≤m aj
∑

1≤j≤m(Cj + aj)

]

,

where thesup is taken over all possible sensor move-
ments realizingS.

Proof: Completing one period of the sensor sched-
ule requiresP∗ =

∑

1≤j≤m(Cj + aj) time units. Hence

the proportional share for PoIi is given byCj

P∗
. The result

thus follows from:
∑

j
qj

pj
=

∑

j
Cj

P∗
= 1− 1

P∗

∑

j aj.
Theorem 5 shows that 100% sensor utilization is

feasible if and only if each adjacent pair of PoIs inS are
exactly2R apart. In actual application, we would like to
maximizeU∗(S). As its form is a decreasing function of
the sum

∑

i≤j≤m aj, we would indeed want to minimize
the travel overhead.

A. Optimization of linear periodic schedules

Here we discuss the optimization of the QoMQ∗

(defined in Section II) for the overall system in the realm
of linear periodic schedules. The solution must satisfy a
given proportional fairness objective, i.e., for each pair
of PoIs, sayi andj, we must achieve a given ratio,γij ,
of their shares of coverage time. I.e., for the periodic
schedules induced byS at i andj, we haveqi/pi

qj/pj
= γij .

A linear periodic schedule exists if there is a Hamil-
tonian circuit of the PoIs. An optimization approach for
linear periodic schedules works as follows. We first de-
termine the visit order of the PoIs inS that will minimize
∑

1≤j≤m aj . The problem is the Traveling Salesman
Problem and is NP hard, but practical approaches exist
that give solutions within a few percent of the optimal
for problem sizes of up to 100,000 [8]. Once the visit
order is determined,aj , j = 1, . . . , m, is known, and it
remains to determine theCj , j = 1, . . . , m. Notice that
in a linear periodic schedule,m = n, Cj = qj , and
p1 = . . . = pn =

∑

j(Cj + aj) = P∗. We first select
eachCj to satisfyCj = γj1C1 so that all the coverage
times can be expressed in terms ofC1 only. This greatly
simplifies the problem as it becomes a purely one-
dimensional optimization problem. The choice ofC1 that
optimizesQ∗ depends on the event utility functionU .

We illustrate the above approach by a simple example.
Consider first blip events and the step utility functionUI ,
If

∑

j aj = 0, then any choice ofC1 is optimal as the
QoM is simply the fraction of events captured at the
PoIs. More precisely,

Q∗ =
1

nP∗

∑

j

Cj =
1

n
.

On the other hand, if
∑

j aj > 0, then there is no optimal
choice, but we can get arbitrarily close to the optimal by
using a finite but sufficiently large value ofC1.

For general event utility functions, we need to com-
pute the corresponding QoMQi for eachi using Theo-
rem 4. Recall thatCi = γi1C1, andQ∗ is expressible as
a weighted sum of the individualQi’s (from Equation 2):

Q∗ =
1

µ∗

∑

j

µjQi

(
γj1C1

P∗

)

.

ThereforeQ∗ is a function ofC1 only. The value ofC1

that optimizes QoMQ∗ can be computed by solving
dQ∗

dC1
= 0, and

d2Q∗

dC2
1

> 0.
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Note thatQ∗ can possibly have multiple local maxima
as eachQi has its own optimalCi’s. But the issue can be
easily resolved by a numerical search since the problem
is one-dimensional.

B. General periodic coverage

The previous section discussed the optimization
of linear periodic sensor schedules. However, a
linear periodic schedule does not exist if there is no
Hamiltonian circuit of the PoIs. Even if it exists, a
linear schedule is in general sub-optimal as the QoM
depends on the fairness granularity (Corollary 3). This
is illustrated by the following example. Consider three
PoIs, located such thatd12 = d13 = d23 = 2R, and
the proportional fairness objective ofγ12 = n/(n − 1)
and γ13 = n. For events that stay and have the step
utility function, the optimal linear periodic sensor
schedule is {(1, nδ), (2, (n − 1)δ), (3, δ)}, where
δ = 2R/vmax is the minimum presence time of the
sensor arriving at and then leaving a PoI — recall
Assumption 1. From Theorem 2, however, we know
that the QoM ati increases as the fairness granularity
decreases. Hence, the optimal non-linear periodic
schedule {(1, δ), (2, δ), . . . , (1, δ), (2, δ),

︸ ︷︷ ︸

n−1 times

(1, δ), (3, δ)}

increases the QoM at 1 and 2 without affecting either
the travel overhead or the QoM at 3. Whenn is large,
the performance loss of the optimal linear schedule
can be significant for certain distributions of the event
staying time, e.g., when the mean event staying time is
on the order ofδ.

The above argues for the need to search for general
periodic schedules with better performance. A beginning
observation is that a new and potentially better periodic
schedule can be obtained by rearranging the PoI order
in an original schedule. Changing the PoI order affects
the fairness granularity as discussed above, but it also
affects the travel overhead between the adjacent PoIs
visited. Since the travel time overhead is known given
a PoI visit order, the achievedQ∗ measure of the new
schedule can be computed by applying Theorem 4 with
a modification for non-linear periodic schedules.

For the case of the step utility functionUI , the QoM is
in fact simply a weighted sum of the QoMs for the linear
periodic sub-schedules which constitute the whole sched-
ule (see the next Theorem). For simplicity, we ignore the
travel overhead (which can be easily incorporated). To
set up the notation, for a general periodic schedule, let{
pi

k − qi
k, qi

k

}

1≤k≤Ki
be the consecutive sensor absent

and present times for PoIi. Note thatp∗ =
∑

1≤k≤Ki
pi

k
is the total period of the schedule (which is the same for
all i’s). Then we have the following result.

Theorem 6 (Step utility function):The QoM of PoIi

Qi =

Ki∑

k=1

pi
k

p∗

[

qi
k

pi
k

+
1

pi
k

∫ pi
k−qi

k

0

Pr(X ≥ t) dt

]

.

Simulated Annealing Algorithm
1 best = s = initial periodic schedule
2 Qbest = Qs = QoM(best)
3 for (i = 0; i < computation_budget; i++)
4 p1, p2 = random positions in s

subjected to selection criteria
5 new = s with p1, p2 swapped
6 if (new is physically infeasible)
7 continue
8 Qnew = QoM(new)
9 if (Qnew >= Qs)
10 s = new, Qs = Qnew
11 if (Qnew > Qbest)
10 best = new, Qbest = Qnew
12 else // simulated annealing
13 if (random < exp((Qnew - Qs) * i))
14 s = new, Qs = Qnew
15 return best

Fig. 2. Simulated annealing algorithm for optimal periodicschedule.

In particular, the QoM is a linear combination of the
QoM of each individual sub-linear periodic schedules
which constitute the overall nonlinear periodic schedule.

Proof: The proof follows the same line as Theo-
rem 2. The key observation that makes the proof go
through is that if an event arriving during the absent
period pi

k − qi
k is ever captured, then it must be first

captured in the next present periodqi
k.

C. Optimization of general periodic schedules

We now illustrate how the above Theorem is used to
optimize the general periodic schedule with Step utility.
Starting with any initial periodic schedule of lengthn,
there aren! straightforward permutations of the schedule
to obtain a general periodic schedule. An exhaustive
search for an optimal schedule is computationally in-
feasible for largen. To overcome the challenge, we use
simulated annealing [8] to guide the search and obtain a
close-to optimal solution with high probability.

The optimization algorithm is specified in Fig. 2. We
initialize the current search candidates to some initial
periodic schedule, and keep track of the current best
schedulebest seen so far. We then randomly select two
elements ins, say(Li, Ci) and (Lj , Cj), and swapkiδ
cover time fromCi with kjδ time from Cj , to obtain
a new schedule denoted bynew, whereδ = 2R/vmax,
ki and kj are randomly selected positive integers such
that kiδ ≤ Ci and kjδ ≤ Cj . To avoid a cover time
of less thanδ for any element, we have the additional
rule that any fractionalδ time left by itself after a
swap will be moved together with the associated whole
number multiple ofδ time moved. If two adjacent PoIs
in new have distance∞ between them,new is rejected
as physically infeasible. Otherwise, we evaluate theQ∗

of new. If new has a higherQ∗ thans, we selectnew
as shown. Otherwise,new is selected with a probability
(random in Line 13 is a random number in [0,1]). The
search terminates after a given time budget.

For general utility functions, the closed analytical
form of the QoM for a general (non-linear) periodic
schedule can be complicated. In particular, it may not
be a weighted sum of the QoMs of the linear periodic
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Fig. 3. Plot of Qi for Y ∼ Exp(λ) and Y ∼ Pareto(α, β) as a
function of the proportional share.

sub-schedules. Nevertheless, one can still write down
an analytical formula for it and resort to numerical
integration to compute its value.

Theorem 7 (General utility function):Let U i be the
utility function of the events at PoIi and f(x) be the
pdf of the event staying time. Then

Qi =
1

p∗

∫ p∗

0

∫ ∞

0

[U ]i(t, x)f(x) dx dt,

where [U ]i(t, x) = U i
(∫ t+x

t
pi(s) ds

)

and pi(s) is a
function which takes the value1 when the sensor is
present at PoIi at times, and 0 otherwise.

Proof: The proof is the same as Theorem 4 with
the following understanding. The variablet refers to the
event arrival time,x refers to the event staying time, and
∫ x+t

x
pi(s) ds is the total time the event is observed by

the sensor.
Note that by increasing the duration of the opti-

mization period, the algorithm will optimize over an
increasingly larger set of the candidate schedules, which
can be quite general when the period is sufficiently long.

VI. SIMULATION RESULTS

A. Single-PoI QoM

We present simulation results to illustrate the analyt-
ical results in Section IV. Recall the use ofX and Y
to denote the event staying and absent time variables,
respectively. The event utility functionU is one of the
functions shown in Fig. 1. We measure the QoMQi

achieved over 1,000,000 time units in a simulation run,
and report the averageQi of 10 different runs. The
different runs produce results that have extremely small
differences. Hence, we omit the error bars in the reported
results. Note that not all the events in a simulation
stay long enough to be captured at the full utility. The
maximum information available for capture is given by
∫ ∞

0
U(x)f(x) dx as explained in Section II-A.

1) Blip events: Figure 3 shows that the QoM is
directly proportional to the shareq/p, as predicted
by Theorem 1. A plot of the QoM againstpi, when
qi/pi is fixed, gives a constant function, as predicted
by Corollary 1, although the plot is omitted for space
limits. The same results hold for differentλ and (α, β)
parameters of the Exponential and Pareto distributions.

2) Staying events and Step utility:Each experiment
uses the same distribution for both the event staying and
absent times, which is either Exponential or Pareto. We
show results for differentλ of Exponential and different
β of Pareto, where a smallerλ or a largerβ corresponds
to events that stay longer on the average. Figures 4(a)
and 4(b) show the QoM as a function of the proportional
shareq/p for the Exponential and Pareto distributions,
respectively. The results agree with Theorem 2 and its
instantiations for the two distributions. Note that the
fraction of events captured can be significantly higher
than the proportional share. E.g., a QoM of close to 0.4 is
achieved for both Exp(λ = 0.25) and Pareto(β = 2) even
when the share is only slightly positive (see Corollary 2).
The observation time of the events increases as the
events stay longer, and so the QoM is higher whenλ
is smaller for Exponential andβ is larger for Pareto (see
Sec. IV-C(i)). In general, the QoM is not linear in the
proportional share.

Figures 4(c) and 4(d) show the QoM as a function
of the fairness granularity. As predicted by Corollary 3,
the QoM is a monotonically decreasing function ofp,
meaning that finer grained fairness will improve perfor-
mance. As explained before, the QoM increases asλ
decreases for Exponential and asβ increases for Pareto.
Furthermore, the QoM converges to the maximum value
one and the proportional shareγ = q/p asp converges
to 0 and∞ (see Corollary 3).

3) General utility function:This set of experiments
illustrates the achieved QoM for events that stay and
have a general utility function. Each experiment uses the
same distribution for both the event staying and absent
times, which is either Exponential with varyingλ, or
Pareto with varyingβ (but α is kept to be2).

We first present results for the Exponential utility
function UE (with A = 5). Figures 5(a) and 5(b) show
the achieved QoM as a function of the proportional
share, for Exponential and Pareto event dynamics, re-
spectively. Unlike Step utility, the achieved QoM is close
to zero when the share is only slightly positive. This is
due to the need to accumulate information for Expo-
nential utility. As the share increases initially, however,
there is a sharp gain in the QoM. This is because most
information is gained during the initial observation of an
event for Exponential utility. Moreover, the initial gain
is higher when the events stay longer (i.e., smallerλ or
largerβ), because longer staying events are more likely
to be captured even if they arrive when the sensor is
not present. As the share further increases, the marginal
gain in the QoM becomes smaller, again mimicking
the decreasing marginal gain of information with longer
observation time for the type of event. Note that for the
largerλ values (e.g.,λ = 2) or smallerβ values (e.g.,
β = 0.25), the QoM is significantly smaller than one
even for a large share. This is in part because at those
parameter values, the events do not stay long enough to
be captured at their full utility.
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Fig. 4. Achieved QoM for events that stay and have the Step utility function UI .
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Fig. 5. Achieved QoM for events that stay and have the Exponential utility function UE , A = 5.

Figures 5(c) and 5(d) show the achieved QoM as a
function of the fairness granularity. For the Exponential
utility, the results agree with Equations 6 and 7. (See also
Section IV-C(iv).) In particular, it shows that the QoM is
monotonically decreasing inp and gives the QoM limits
as p → 0 and p → ∞. In addition, the QoM increases
whenλ decreases. The results in Figures 5(d) show that
similar results hold for Pareto event dynamics.

We next present results for Delayed Step utilityUD

(D = 0.5 time units). Similar simulation results hold
for S-shaped utility, although they are not shown due
to space. Figures 6(a) and 6(b) show the achieved QoM
as a function of the proportional share, for Exponential
and Pareto event staying time distributions, respectively.
They show that the QoM is monotonically increasing

in the proportional share, and the QoM is higher when
the events stay longer (i.e., smallerλ or larger β).
Figures 6(c) and 6(d) show the achieved QoM as a
function of the fairness granularity. Note that in this
case, the QoM is no longer monotonically decreasing
in p, but the optimal fairness occurs at an intermediate
value. Note also that forλ = 2 = 1

D , the QoM is a
constant function ofp for largep. These properties are
all discussed in Section IV-C(v).

B. Optimization of nonlinear periodic coverage

We present simulation results to illustrate the perfor-
mance of the optimization algorithm in Section V for
periodic schedules. We use 3 PoIs, denoted as 1, 2, and
3, such thatd12 = d13 = d23 = 2R, whereR is the
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Fig. 6. Achieved QoM for Delayed Step utility with delay of 0.5 time unit.

sensing range. The maximum speed of the sensor is such
that it will take one time unit to cover a distance of2R.
In a coverage schedule, therefore, the minimum staying
time of the sensor at any PoI isδ = 1 time unit. For
each experiment, we report the average of 20 runs of
the algorithm. The differences in the measurements are
small. We will thus omit the error bars, although in the
case of the deployment QoM, we will also report the
maximumQ∗ achieved in the 20 runs.

1) Revisit of example (Section V-B):This example
motivates the use of optimized general periodic sched-
ules. The proportional shares of 1, 2, and 3 are in
ratios of 50 : 49 : 1. We show the optimizations
over schedules of periodm, and vary m to be 100
and 400 time units. The algorithm in Fig. 2 is run
with the initial schedule set to be the optimallinear
periodic schedule of the given length. Figures 7(a) and
7(c) plot the maximum and average deployment QoM
Q∗ achieved by the simulated annealing algorithm for
small computation budgets of up to 1000 iterations. The
optimal deployment QoM is also shown as the horizontal
green line in each figure. Figures 7(b) and 7(d) plot
the corresponding results for larger computation budgets
of up to 500000 iterations. From the smaller compu-
tation budget results, note that the simulated annealing
can produce schedules that rather quickly approach the
optimal as the number of iterations increases. However,
the performance increases more slowly for optimizations
over schedules of the longer period. This is because in
this particular experiment, the globally optimal schedule
can be found with a period length of 100 time units.
Increasing the optimization period to 400 time units will
not increase the potential to find a better solution, but
will increase the search space for the optimal solution.
From the larger computation budget results, however,
note that in all the cases, the simulated annealing can

find a solution extremely close to the optimal (within
2%) when the number of iterations is large enough.

We have measured the run time of the simulated
annealing, written in C#, on a Pentium-4 3.4 GHz PC
with L1/L2 cache sizes of 8 KB/512 KB and 2 GB of
RAM. The results (not shown due to space) indicate
that the run time is linear in the number of iterations,
and is less than 18 seconds for 500000 iterations and an
optimization period of 400 time units.

2) Other proportional shares:We now use propor-
tional share ratios of53 : 29 : 17 for the 3 PoIs. The
results are shown in Figures 8(a) and 8(b) for up to
1000 and up to 500000 iterations, respectively, when
the optimization period is 99 time units. The search
can approach the optimalQ∗ quickly and a solution
extremely close to the optimal is found within a few
thousand iterations. Increasing the optimization period
to 198 and 396 time units has similar effects as in
the 50:49:1 scenario, but we omit the detailed plots for
space. The algorithm takes about 10 s and less than 35 s
to complete 500000 iterations for an optimization period
of 99 and 396 time units, respectively.

VII. C ONCLUSIONS

We have presented extensive analysis to understand
the QoM properties of proportional-share mobile sensor
coverage. We show that (1) A higher share of the
coverage time generally increases the QoM, but the
relationship is not linear except for blip events. (2) For
staying events, the QoM can be much higher than the
proportional share, due to the observation of “extra”
events that arrive when the sensor is not present. This
justifies mobile coverage from an information-capture
point of view, i.e., the sensor gains by moving between
places to search for new information. (3) The event
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Fig. 7. Achieved deployment QoMQ∗ for staying events with Step utility and proportional shareratios of 50:49:1.X ∼ Y ∼ Exp(λ = 1).

0.44

0.49

0.54

0.59

D
e

p
lo

y
m

e
n

t 
Q

o
M

 Q
*

0.34

0.39

0.44

0 200 400 600 800 1000

D
e

p
lo

y
m

e
n

t 
Q

o
M

 Q

Number of iterations

mean Simulated Annealing

max Simulated Annealing

optimal solution

(a) period = 99 time units

0.44

0.49

0.54

0.59

D
e

p
lo

y
m

e
n

t 
Q

o
M

 Q
*

0.34

0.39

0.44

0 100000 200000 300000 400000 500000

D
e

p
lo

y
m

e
n

t 
Q

o
M

 Q

Number of iterations

mean Simulated Annealing

max Simulated Annealing

optimal solution

(b) period = 99 time units (long run)
Fig. 8. Achieved deployment QoM for proportional share ratios of
53:29:17.X ∼ Y ∼ Exp(λ = 1). Step utility function.

utility function is important in determining the opti-
mal fairness granularityp. For Step, Exponential, and
Linear utilities, the QoM monotonically decreases with
p (though for Linear, whose detailed results were not
shown, it is initially flat for some range ofp), whereas for
Delayed Step and S-Shaped utilities, the QoM generally
peaks at an intermediatep. Our analysis for Exponen-
tial/Pareto event dynamics and different forms of the
utility function is all supported by the simulation results.
We presented optimization algorithms for both linear
and general proportional-share periodic coverage. Im-
plementation results show that the simulated annealing
algorithm can efficiently compute a periodic schedule
that practically maximizes the total QoM, even for huge

search spaces implied by long scheduling periods.
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