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Quality of Monitoring of Stochastic Events by
Proportional-Share Mobile Sensor Coverage

David K. Y. Yau*, Nung Kwan Yig, Chris Y. T. Ma, Nageswara S. Raand Mallikarjun Shankar
*Purdue University, West Lafayette, INDak Ridge National Lab, TN

Abstract—There is significant interest in using mobile etc [7], [9]. In CPU scheduling, for example, a scheduler
sensors to protect geographical regions against hazards, may give one task twice the CPU share as another task.
't” e’k‘]’h'Ch the sen5|ntg resm:tr;:hes arbe distributed zra]ccort(:]mg In this case, the performance impact is more or less clear:
o the varying importance of the sub-regions, such as their . ; X
numbers of residents exposed to the hazards. The quality of The first task gets twice as much Cor_nputatlon done as the
monitoring (QoM) resulting from such proportional-share other task over the same real-time |nterval, if both tasks
allocation of the coverage time, in terms of the amount of run the same application. In the case of sensor coverage,
information captured, is not well understood. In this paper,  proportional sharing must be evaluated in terms of its
we analyze the QoM properties of proportional-share impact on thequality of monitoring(QoM), which can

mobile sensor coverage, at different fairness time scales, . .
as a function of a wide range of event types, stochastic be expressed, for example, as the number of interesting

event staying times, and stochastic event arrival/depare ~€vents captured, or the total amount of information
dynamics. Based on the QoM analysis, we optimize a classcaptured about these events.
of periodic mobile coverage schedules that achieve accumat  |n this paper, we target the problem of information
proportional sharing while maximizing the QoM of the  caniyre about interesting events (e.g., a chemical leak)
total system. that dynamically appear and disappear at a given set of
locations callegoints of interes{Pol). These Pols have
different importance levels, such as numbers of residents
as motivated above. The events are detected by a mobile
There is considerable interest in using sensors &ensor (e.g., a chemical sensor carried by a robot) whose
protect populated areas against physical hazards, sucls@issing range is sufficient to cover only one Pol at a
chemical, biological, and radiation leaks/attacks. Reaime. Hence, the sensor must move between the Pols in
world chemical, biological, and radiation sensors hawsrder to give them service. In our problem, we argue
limited ranges of tens to hundreds of feet. If the area that the QoM of proportional-share sensor coverage
be protected is large, such as entire metropolitan citiggay not have a simple interpretation thattimes the
it is difficult to deploy a sufficient number of sensors t@esource allocation to a Pol will result intimes better
cover the entire area. This leads to strong interest in therformance for the Pol. Rather, the achieved QoM
use of mobile sensors to expand the area of coverédgean interesting function of several important system
while keeping the number of sensors low. parameters, including the time scale of the proportional
At the same time, it is recognized that the protectesharing, the event dynamics, and the type of event.
region may not be homogeneous, but different sub- Our contributions are two foldFirst, we provide
regions may vary in terms of their importance. Foextensive analysis to answer the following questions: (1)
example, some parts are densely populated while oth&that is the meaning of allocating to one Ppltimes
parts are sparsely populated, so that an undetected hazaode coverage time than another Pol? How will such an
in the former will result in more casualties than in thallocation impact the QoM of the first Pol relative to the
latter. In this case, simple area of coverage is no longse#cond? (2) Does a fixed share of the coverage time for
sufficient. An arguably more suitable goal is to allocata Pol imply the same QoM for that Pol? Is the QoM also
sensing resources to the different parts in proportion &ffected by the time scale of the proportional sharing?
their importance levels. Note that in the casestdtic Under what situations is finer/coarser time-scale sharing
sensors, their placement to best protect people has beegferred over the other? (3) What is the scaling law of
considered in the Memphis Port deployment [11]. Therejobile coverage, i.e., when a mobile sensor is allocated
Smith APD2000 chemical sensors are used to deteshong k£ out of n Pols, how is the average QoM
toxic chemical leaks. Because the sensors are expensawgr all the Pols affected dsincreases? Can mobility
they cannot cover the whole area. A search methddndamentally improve the sensing by increasing the
is used to best place the next sensor to maximize thehievable QoM?
marginal increase in the number of people protected. Secong based on the QoM analysis, we will ana-
Proportional sharing of resources is not a new cotyze the performance of a class of periodic coverage
cept. The notion has been extensively employed in tlaégorithms considering the travel time overhead between
scheduling of CPU time, network bandwidth, buffersPols. We first optimize &near periodicsensor schedule

I. INTRODUCTION
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Il. PROBLEM STATEMENT

We assume that events appear and disappear at given
points of interest (Pols) and are to be monitored by g 1. The utility functions.
sensor of sensing range. The Pols are located on a
2D plane. A pair of Pols, sayandj, are connected by > L. Information obtained increases linearly with the
a road, given byf;;, of distanced,;. If there is no road observation time until the full information is achieved.
that directly connects$ and j, E;; = co. Otherwise, the (d) S-shaped functiori/s(x). The initial observation
sensor traveling at speedfrom i to j takes timed;; /v gains little information until a critical observation tinie
to complete the trip. reached, at which point there is a large marginal gain of
The next set of assumptions concerns the event dyformation in a short time, and afterwards the marginal
namics. The events appear at Robne after another. gain drops sharply as the full information is approached.
After appearing, each event stays for a duration @&) Delayed step functio/p(z) = U;(x — D). No
time, which we call theevent staying timeand then information is gained until the total time of observation
disappears. The next event appears after another duraég@eeds a threshold value, after which the full infor-
of time, which we call theevent absent timéVe denote mation is captured instantaneously. We view (a) and (e)
the sequential staying and absent timeg(B§/ },>1 and as extreme cases. All of the above, excepting (d), are
{Y }k>1 The event inter-arrival timeis then denoted qu|te amenable to analyucal formulations.
by Z, = X}, + Y. We assume that (for each) the  when Poli falls within the range of the sensor,
{(X[,Y{)}r>1 are iid. random variables drawn fromwe say that the sensor jesentat i. Otherwise, the
a common distribution X*,Y"), even though theX} sensor isabsentfrom i. Since we are interested in the
andY;’ may be dependent. However, the event dynarfésource competition between different Pols, we make
ics at different Pols are assumed to be independetife following assumption.
Lastly theevent arrival timesare denoted by, = 0,  Assumption 1:The Pols and the roads between them
Ty =Tik—1+ Zy for k > 1. are separated such that (1) no two Pols fall within the
We further classify the events as follows. When thgange of the sensor at the same time; (2) for the sensor
staying time drawn fronX* is always an infinitesimally traveling from Poli to Pol j on E;; at speedv, i will
small e amount of time, the corresponding events arge within range of the sensor fdt/v time before the
like “blips”, i.e. they do not stay but disappear instantasensor leaveg and; will be within range of the sensor
neously after arrival. Another type of events are thoger R /v time until the sensor reachgsand (3) no Pol
which stay, i.e. there is af < ¢ < 1 such that other thani and j falls within the range of the sensor
P(X > ¢€) = 1. An event at a Pol is captured by theduring the trip onE;;. In general, however, the sensor

sensor provided that the Pol is within range of the sensg#n vary its speed while traveling on a road.
during the event’s lifetime. We assume that different

events aradentifiable i.e. when the sensor that sees a Definition of QoM
event at a Pol, leaves the Pol, but comes back later to see
the same event, it will know that it is the same event. We now define the quantitative measurement of the
We assume that as the sensor observes an event, @ at a Pol or for the whole protected area. In
information it accumulates about the event increases #¢ course of a deployment, denote &y . .., e;,. the
the observation time increases. We quantify the sensifgduence of events appearing at Poler the duration
quality as a utility function that increases monotonically, 7] of the deployment. For the even}, assume that
from zero to one as a function of the total observatiohis Wlthln range of the sensor for a total (but not neces-
time. Fig. 1 illustrates the following five examples of thésarily contiguous) amount of timg, wheret’ > 0. The
utility function: sensor will then gain a certain amount of information,
(a) Step functionU;(z) = 1 for > 1. Full infor- Uj(t;), aboute;, whereU(-) is the utility function of
mation about an event is obtained instantaneously eh The total mformatlon gained by the sensoriaits
detection. (b)Exponential functionUg(z) = 1 —e~4*. defined byE;(T) = do1<j<m, Ui(t}), and the average
Much of the information about an event is obta|ned1format|on gained per event atdurmg the whole de-
at the beginning but the marginal gain decreases p®yment period is thet;(T) = E;(T)/m;. Similarly,
the observation time gets longer. (tjnear function the total information gained by the sensor in the whole
Ur(z) = Mz for 0 < o < & andUL(z) = 1 for deployment isE.(T) = > i<i<n Ei(T), wheren is

0 0.2 0.4 0.6 0.8 1
Observation time (time unit)



the number of Pols in the protected area. The averageiles among a number of data sources, to optimize com-
information gained per event in the whole deploymemhunication of the source data to the data sink [14], [18].
is then E.(T) = (Xy<ich, miEi(T)? S cicy i) In a hybrid mobile/static sensor netw_ork, s_imil_ar data
By means of the strong law of farge numbers anf@iules are useful for collecting and disseminating data

renewal theory,E;(T) and E.(T) will converge to a reports from the static sensors to a control center [15].
. - Route optimization of ferries/mules is in general NP

deterministic number a8 — oo. Hence we define the hard
QoM of Poli and the whole covered area as: ard. .
o L The dynamics of real-world events are frequently
Qi = lim E,(T), and Q. = lim E(T). (1) modeled as stochastic processes. Poisson arrivals are
generally accurate characterizations of a large number
1 of independent event occurrences, whose event inter-
Q.= — Z 1iQi (2) arrival times are Exponentially distributed. Real-world
P 1 Sz network/computing workloads have properties that are
wherep; = g7 is the mean event arrival rate at Pol found to be long-range dependent [3], [12], which fol-
du. — _ low the Pareto distribution. In a sensor network, the
and . =30 i<, Hi- tar P ; ;
Stsmw il . . get events may have similar dynamic behaviors. For
Note that in defining the QoM, we should in prin- . . ; I : "

. - example, radioactive particles arriving at a Geiger-Mdiill
ciple divide not by the number of events, but by ounter follow a Poisson process [10]; a chemical leak
the maximum possible utility achievable for an evenf: o P !

at a facility may occur with a probability, and the leak
may persist for a random duration until the chemical has

f0°° U(zx)f(z)dx, where f(x) is the pdf of the event
staying time distribution. The latter may be less thaHeen dispersed. Our analysis applies to a wide range of
vent inter-arrival and staying time distributions.

1 if the events do not stay infinitely long. However,
The impact of mobile coverage on the capture of

the difference is by a proportionality constant only, and

will not affect our comparison results. Unless otherwisg . A

stated, we will further assume that all the eventg at>.0cnastic events has been studied in [1]. They analyze
the minimum sensor speed or the minimum number of

have the same utility function, and denote this functioh X ; .
by U*(). sensors to capture a given fraction of the events in the

case of Exponential event present/absent periods. They
do not provide proportional sharing, whereas our main
[1l. RELATED WORK concern is the use of proportional sharing to differen-

Quality of monitoring metrics in a sensor networ ially cover regions of varying importance. They focus on

have been proposed, e.g., the rate of false positives [ e number of detected events, which is equivalent to our

Area coverage in a sensor network has been we ep utility function. More general utility functions are
studied [4], [13]. Protocols have been proposed Also interesting as explained above. For capturing more

task subsets of sensors in a dense network to pr%\(ents, they show that a faster sensor is always preferred,

vide maximum lifetime area coverage [16]. Simple are\é(h'(.:h agrees W'th our results for Step utility. However,
coverage does not consider the varying importance gynimizing the fairness granularity can result |r.1.greatly
different sub-regions. Our work addresses the hetefi)qupt'mal performance u_nder more general_ut|l|ty func-
geneity of sub-regions by proportional-share covera qns..They analyze a Ioop_lng coverage algorithm among
Proportional-share resource allocation has been propogé g gven PO'.S‘ The Iooplng. algorithm corresponds to
for CPU/network scheduling [7], [9]. Mobile coverageour linear pen_odlc schedule; our work analyzes more
has the additional challenge that the sensor schedules Egﬂeral pgrlqdlc schedules that can perform better than
be severely constrained by the adjacencies and distan fagar periodic schedules.
between the Pols.

The importance of the sensing time in accurately IV. SINGLE-POI ANALYSIS OF QOM
assessing various physical phenomena has been weM/e explain the impact on the QoM by the coverage
documented [10]. The need for non-negligible sensirgchedule of a sensor at a given Pol. The schedule
durations to obtain useful information is due to noisespecifies the time intervals over which the sensor is
in the measurement process and the probabilistic natymesent at or absent from the Pol. A given schedule is
of the phenomena under observation. The impact of thehieved by how the sensor moves between the Pols
sensing time is captured by the event utility functions iaccording to some movement algorithm. The problem
our problem statement. of the algorithm design and the feasibility of a set of

Mobility has been discussed extensively in delayPol schedules are the subject of Section V.
tolerant networks and vehicular networks. Passive mo-We can illustrate some interesting QoM properties of
bility has been analyzed for its effects on providingproportional-share mobile coverage by considering only
communication opportunities [6], [17], and carry-andperiodic schedules at individual Pols. Specifically, we
forward network protocols have been proposed [2]. M@assume that the sensor is alternately present and absent at
bility control has been used to deploy ferries and dataPol, sayi, for ¢; andp; —g; time units, respectively. For

Furthermore, they are related by:



example, letS; be the following the coverage scheduleffect on the QoM by a periodic sensor schedule with
of i: parameterg andgq at a fixed Pol.

S1={PAAAPAAA. .} Theorem 1:For independent arrivals of events that
for ¢; = 1 andp; = 4. In the scheduleP denotes one have the step utility function and do not stay, i.e. “blip
time unit of the sensor’s presence arddenotes one events”, the QoM at any Pol is directly proportional to
time unit of the sensor’s absence. The Pol is covered hig share of coverage timg/p.
the sensor for one out of every 4 time units, for a share  Proof: In this case, an event is captured if and only
of ¢;/p; = 25% of the sensor’s coverage time. if it arrives when the sensor is present. Hence the QoM is

Clearly, a given proportional share far can be simply the ratio between the expected number of arrivals
achieved in many different ways. For exampje,= 2 per unit time during a sensor present period and the total
andp; = 8 give the following schedul§, with the same expected number of arrivals per unit time. I@.= ﬁ,
25% share fou: which gives the claimed result.

Sy = {PPAAAAAAPPAAAAAA. .} Corollary 1: For independent arrivals of events that

; ; ; have the step utility function and do not stay, the
While S; and S, are equivalent from the proportional- " .
share ploint of 2view, tﬁley differ in termspofpthe timeachleved QoM at a Pol does not depend on the fairness

scale over which the proportional share is achievegranularityp. : .
Specifically, 5; achieves the 25% share over a time The above scenario shows that only the proportional

period of 4 time units, wherea$, achieves the Samesharing information determines the QoM. On the other
share over a period of 8 time units. We say thathas hand_, for events that do stay, the Q.OM _deper_lds_ on_the
a finerfairess granularitythan S,, and will usep; to relationship between the event staying time distribution

guantify this fairness granularity. Notice that for a fixe nd the parameters and ¢. Specifically, we have the

roportional share, a smallgy implies a proportionatel ollowing result. . ,
gmapllerq- srimp brop y Theorem 2:For independent arrivals of events that
i

The main purpose of this section is to analyze thgay_ and have the step utility function, the QoM at a
dependence of the QoM on the utility function and th ol is given by
fairness granularity. In this section, as we will focus on a g 1 [P74
single Pol, the subscrigtwill be omitted where there is Q= » + ];/ Pr(X = t)dt. 3)
no confusion. We will frequently denote the proportional o o _
sharel by ~. For simplicity, we useP; = [(j—1)p, (j — Proof: As the utility function is a step function,
1)p +pq] andA; = [(j — 15p+ q jp]J to denote 7th@'— the overall utility is given by the total number of events

J ’ f
th sensor present and absent periods, respectively. E8) tured when the sensor is present. Note that an event

many of the proofs, it is sufficient to consider just th"! I_be captured_ i (a_) it arrivgs during the sensor present
casej = 1, i.e. P, = [0,q] and A; = [q, ] period|0, ¢; (b) it arrives during the sensor absent period

The problem as formulated in Section Il fits perfectl ¢,p], but stays long enough to be captured during the
well in the realm of renewal theory. Recall thay is nextsensor present perid, p +4]. The contribution of
the k-th event arrival time ang — 1/E(Z). One of the (@) 0 the QoM is given by}, while that of (b) is given

conclusions of renewal theory is that in the long run, thY 5 J; Pr(X +¢ > p) dt, which is the second term of
expected number of arrivals in an intervlequalsu d¢.  Equation 3 after a simple change of variable. =
The following two types of event staying time distri- Theorem 2 implies that the sensor that stays at a Pol

bution will be considered in this paper, wheféz) is for ¢/p of the time may be able to capture a significantly
the pdf of X: larger fraction of events thag/p. The following two

« Exponential Distribution X > 0): coro!lanes give further statements due to this extra
fraction of events.
Corollary 2: Under the setting of Theorem 2, with the
fairness granularity kept constant, we have:

f(z) =Xe ™™, >0, mean=

1
3
« Pareto Distribution, 3 > 0): et |
Oéﬂa aﬁ li _z Pr(X > #) di.
f(x):m, x> f, mean:a_l, V%Q p/o .r( >t)
Now we proceed to present our results. All of the Proof: The proof is a direct consequence of Equa-
proofs will only be outlined due to space constraintdion (3), upon taking the limity — 0. (Note that

but can be made fully rigorous. g=~p—10) o u
This result clearly indicates that no matter how small

" ) the proportional share is, there is always some definite,
A. Step utility function positive gain of information. This is due to the fact that
We begin our discussion with events that have the stépe events stay.
utility function (see Fig. 1). In this case, since the uilit Corollary 3: Under the setting of Theorem 2, the
reaches one instantaneously, the QoM is equivalent to teM of a given fixed proportional share is a monotoni-
fraction of events captured. The next result illustrates titally decreasing function of the fairness granularity, i.e




@ decreases gs increases. Furthermore, Theorem 3 provides a formal justification for mobile
limQ(p) =1, and lim Q(p) = g coverage, namely that the amount of information cap-
p—0 p—oo D tured increases as the sensor moves among more Pols to
Proof: Using% = ~, the QoM can be written as: search for interesting information.

v+ (1 - 7)# /(1 r Pr(X >t)dt. B. General utility function
(I=7)p 0 _ We now turn our attention to events that have a general
Note that the second term in the above is the average Oygfity function U/(-). In this case, we have the following
the interval[0, (1 —~)p] of the monotonically decreasmngM result.
function oft, Pr(X > t). Furthermorelim; .o Pr(X > Theorem 4:For independent arrivals of events at a
t) =1 andlim;_,., Pr(X > ¢) = 0. Hence, Pol that have the utility functiod/(-) and whose event
staying time pdf is given byf(x), the achieved QoM

(1=)p g — g n — 1)
1 / Pr(X > t)dt — equals § =iq—t, n, =z +ip—1):
)P Jo
(1=7)p
and lim 7/ Pr(X >t)dt
p Jo

lim ———
p—0 (1 —~

1
0,

/Oq l/oqt U(:C)f(m)dx—ki/oq U(& +2)f(n;) do
PN

e 0
which leads to the stated result. n + : U(&)/ f("i)dx] dt “)

In contrast to Corollary 1 for blip events, Corollary 3 ! .
implies that finer-grained fairnesdoes generally im- i e _
prove the QoM for staying events having Step utility. In z_: 0 Ulg —a)f () dz
particular, no matter how small the proportional share is, - = )
an arbitrarily high QoM can be achieved by an extremely U(E: +t / x| ar 5
fine fairness granularity. N z_; &+ . flm)do) d. ®)

The following are some explicit examples to illustrate
Theorem 2 and Corollary 3.

(i) Exponential Distribution.

1 — e~ MI=7p

Proof: The above formula follows from the fact
that the overall utility available for any particular event
depends on theotal length of the intersecting region

Q = ~+ : (which might be discontinuous) during which both the
Ap event and sensor are present. The two integrals (4)
which converges td and~ asp — 0 and oc. and (5) and the varioug summands represent the different
(i) Pareto Distribution. cases for the event arrival and departure times. These are

When (1 — v)p < 8, then@ = 1 because any event€xplained as follows. .
will always be captured as its duration is at ledgime If an event arrives at € [0, g, i.e. when the sensor

its lona. When(1 — _th | is present, then the total utility available from this event
units c;ng er;a ~¥)p T G, then@ i\quas is given by €; — ig — 1):
+ =B+ - . -t
v+ o oy (- ) | v@r@a

The QoM also converges tp asp — oo.

o .
We now consider a scaling result for mobile sensor 4 /H“pﬂ Ue + o+t —ip)f(z) de

coverage among out of n Pols, whose event arrival and — Jutt=ip >

departure processes are i.i.d. kascreases. Assume that o att—ip

initially, the sensor achieves periodic schedules among Z/ U(&) f(z) da.

k of the n Pols such that;, = ¢ andp; = ké, for = Jatt=ip—(p—q)

1 <4 < k, wheres is a unit of time. The following In the above, the different integrals correspond to the

theorem holds. . ases when the event departure titnez falls in [¢, ¢,
Theorem 3:The expected fraction of events captureTCJZ.p ip+ql, and[ip — (p — q), ip] respectively. A change
is an increasing function of, the number of Pols ¢’ i : .

of variable gives (4). Similarly, if an event arrives at
covered.

. t € [¢,p], i.e. when the sensor is absent, then the total
Proof: The expected fraction of the events capturegt”ity available from this event is given by:

in the schedule is 00

z+t=ip+q
1 11 [0 / U((i — 1)q + +t —ip) f(x) dx
Q. = - —+—/ P(X > t)dt 2 ey, T p)f (@)
n - k ko 0 i=1
1<5<k o0 r+t=ip
(k=1)s + / U((i—1)q)f(x)du.
= l 1+ % / P(X > t) dt‘| ; z+t=ip—(p—q)
0

A change of formula variable then gives the form of (5).
which is clearly an increasing function &f ] ]



The formula above can have a complicated analytical« For the Exponential utility functiod/g,

form in general, but it is certainly amenable to numerical 0o ,—Ayfz
computation. Nevertheless, we first present two exact Qo = 1—0</ de-
analytical results. (Recalj = %.) N ! _
(1) Exponential utility functionUz and Exponential « For the Delayed utility functioi/p,
staying time:f(z) = /\e—Aj. e 0 1 for 2 < g,
_ (At _ N
0 = A _l-e A el ") 0 (£8)" for &>p.
A+ Ap (A+A)2p - ,
(M —1)? AW+ N _ )2 (4+N)a _(|||) In thg limit of p — oo, ea_ch event, if captured,
+ oo — T T (ATl Ai e 1 will essentially be observed for its whole duration. On
e (f) —D A+l -1 the other hand, onlyy fraction of the events will be
G captured. Hence the QoM is given by:
p oo
M q e(A+Na _ Qoo = 7/ U(z)f(z)dx, (12)
- 0
A —1)  (A+ A (eAarrn) —1) which is also consistent with the explicit results (7) and
(e — Der(erPme) —1)? ©) (10). For Pareto event staying time distribution, we have:
Ap(er — 1)(e(Aatrr —1) « Exponential utility function:
Note that the abovE1 leads to A 0 [1 /°° e~ AB 4 ]
1 2 1 2 o = 7 - a+1 x
| =— 1 =—. 7 x
MO= iy =g O N _
(2) Delayed utility functionl/, and Exponential stay- + Delayed utility function:
ing time: f(z) = Ae~ 2. v for D < 3,
When p is very small such thatD is an integral Qoo = B8\“ for D
X . 4 v 5 or D> f.
multiple of ¢, i.e. D = kq for k =1,2,..., we have: ) ) )
N A=1p _ 1 The next two discussion points concern the two most
e v {7 + T} . (8) important qualitative descriptions of the QoM function.

(iv) For the step and exponential utility functions, the
QoMs are monotonically decreasing functiongof his
is because both utility functions ammncavefunctions

On the other hand, whep is very large, specifically,
wheng > D, then

Q=P {7+ (l - D 1A q)] . (9) of the observation time. Hence it is advantageous to
A D capture as manyew events as possible rather than to
Combining Equations (8) and (9), we have: gain information for the same event. A finer fairness
lim Q = e—k%, lim Q = ~ve P, (10) granularity exactly achieves this. (This is consistentwit
p—0 p—o0 the analytical formula (6).)

The.above analytical r_esults can be mtunwely under- (v) However, the key feature is that for certain utility
stood in many ways, which are instructive to d'scuss-functions, themaximumQoM is only achieved at some
optimal fairness granularity. We spend a moment to
C. Implications and discussion of theoretical results explain this important phenomenon.
The first three discussion points concern various lim- The above observation is easiest to explain for the
iting cases. delayed step utilityUp. In the limit of p — 0, any
(i) Let the fairness granularity and the proportional event can always be captured. This is essentially the
sharev be fixed. Then as the event staying time goestatement of Corollary 3. However, in order to gain
to infinity, every event will always be captured and thenough information about the event, it is necessary
maximum valuel for the utility can be achieved. Fur-that the event staying time be at Iea%’,t long. This
thermore, the QoM is an increasing function of the megsrobability is given byPr(X > £). However, when
event staying time. Note that this scenario correspongsis positive (no matter how small it is), this is not
to A — 0 for the exponential staying time distribution,absolutely necessary. In fact, if the event arrives right at
and 3 — oo for the Pareto distribution. the beginning of a sensor present period, then the event
(i) In the limit of p — 0, every event which stays staying time just needs to be at ledst- (1 —~)p long.
will always be captured. However, the total observatiof s this saving that increases the QoM. Hence initially,
time is only~ fraction of the event's duration. Hence thehe QoM is arincreasingfunction ofp for smallp. (This
average utility achieved is: can also be seen analytically from Equation (8).)
_ The behavior of QoM whem is large is also inter-
o _/0 Ulya)f(z) de. (11) esting and quite intricate. From Equation (9), observe
This result is consistent with the explicit results (7) anthat the QoM is adecreasing constant or increasing
(10). We further compute this quantity for the Paretéunction of p for A less than equal tq or greater than

event staying time distribution. %, respectively. This is due to the competitive effect



for p large) of theloss of utility for events arriving the proportional share for Pois given b S The result

g y g prop g VP,
near the end of a sensor present period andgdi@ thus follows from:y" . 4 — G 1Y g, m

o e "Laj p; i P, e
of utility for events arriving before the sensor present Theorem 5 shows that 100% sensor uiilization is

X 1 g .

period. Hence forA < 7, the QoM initially increases feagiple if and only if each adjacent pair of PolsSrare
and then decreases as a functiopoThus itis optimal gyxactly2 R apart. In actual application, we would like to
at someintermediatep value. maximizeU. (S). As its form is a decreasing function of

_AII of the abovg impligations are supported by thenq sumy_,_._a;, we would indeed want to minimize
simulation results in Section VI. the travel overhead.

V. COVERAGE ALGORITHMS A. Optimization of linear periodic schedules

The previous section discussed the QoM of periodic fere we discuss the optimization of the Qofyl,
schedules at a specific single Pol. We now addreggsfined in Section I1) for the overall system in the realm
the problem of covering: Pols by the sensor. This iS ot jinear periodic schedules. The solution must satisfy a
achieved by a visit schedule of the sensor to all the PQlgen proportional fairness objective, i.e., for each pair
under a coverage algorithm to be designed. of Pols, sayi andj, we must achieve a given ratig;;,

We will analyze the QoM operiodic coverage ofn  of their shares of coverage time. l.e., for the periodic
Pols. By this we mean that the schedule is realized by, 2hedules induced by ati andj, we haveZ/Pi — Y.
periodic visit schedule of the sensor to the Pols, in whic A linear periodic schedule e>'<ists if there'is a I—:Za\mil-

a the visit schedule in the smallest period is denoted t?éfnian circuit of the Pols. An optimization approach for

S ={(L1,C1)s. . (Lm,Cm)}, (13) linear periodic schedules works as follows. We first de-
termine the visit order of the Pols $ithat will minimize

Y 1<icm @;- The problem is the Traveling Salesman
Problem and is NP hard, but practical approaches exist
that give solutions within a few percent of the optimal
R problem sizes of up to 100,000 [8]. Once the visit
order is determined;;, j = 1,...,m, is known, and it

where L; denotes thejth Pol visited for a time of
C; in the sensor scheduld,; # L ; mod )41+ @nd
each of then distinct Pols appears at least oncedn
Recall from Assumption 1 on Page 2 that the sens
cannot be present at more than one Pol at a time.
Call S & near periodis scheduietiowever 1 is clear [SMAINS 10 determine {hg,.j = 1.....m. Notce that
that not all periodic schedules are linear. For exampllg, ilmear periodic schedulen = n, C; = g;, and

: : =...=pp =>..(C; +a;) = P.. We first select
S ={(1,6),(2,38), (1,5), (3,25)}, wheres is a unit of 2! Pn = 2;(C5 + a;
time,{i(s nczt.(ln th()e ((jefirziti(on (12), ifn. > n, we call the eachC; to satisfyC; = 4,1C1 SO that all the coverage

T ; X : times can be expressed in terms(gf only. This greatly
Bg::gg:g zgnigﬂ:gg?g?i‘zsze restrict our attention to si_mplifigs the prolblem as it becomes a purely one-
Given a sensor schedulé we define itsmaximum dlm_er?smnal optimization probIem.The_ phmce@fthat
feasible utilizationas ' optlml_zesQ* depends on the event ut|I|ty.funct|cm.
_ We illustrate the above approach by a simple example.
U.(S) = sup Z kil Consider first blip events and the step utility functidp
1<i<n Pi If > .a; =0, then any choice of’; is optimal as the
where thesup is taken over all possible sensor moveQoM is simply the fraction of events captured at the
ments that realize5. The utilization is affected by the Pols. More precisely,

travel time overhead between two adjacent PolsSin 1 1

during which the sensor is not present at any Pol. Using Qs = P Z Cj = e

d(i,j) as an equivalent notation t; for the distance Y

between a”dﬂl’ we define forj =1,....m: On the other hand, ¥~ a; > 0, then there is no optimal
a; = - {d(Lj, L(j mod m)+1) _ 23} ch_0|ce, b_ut_ we can get _arb|trar|Iy close to the optimal by

~ Umax . using a finite but sufficiently large value ¢f;.

as the minimum travel time overhead froth; to For general event utility functions, we need to com-

L mod m)+1 for the sensor moving at maximum speegute the corresponding Qok); for eag:hz‘ using Theo—

vmax. Then the following statement holds. rem 4. Recall thaC; = ;1 C1, andQ. is expressible as

Theorem 5:The maximum feasible utilization &f is a weighted sum of the individug);’s (from Equation 2):
Z1§j§m a;

1 v;1C1
U.(S) =sup |1 — , Q*—_ZﬂjQi<—>.
) [ Sieyem(Cs 03] e P.

where thesup is taken over all possible sensor moveThereforeq. is a function ofC'; only. The value ofCy
ments realizings. that optimizes QoMY can be computed by solving

Proof: Completing one period of the sensor sched- dQ). d*Q. 0
ule requiresP, = >, _,,,,(C; +a;) time units. Hence dCy dC? e

=0, and



Note that@. can possibly have multiple local maximas'mm"’lted Annealing Algorithm

. 4 . best = s = initial periodic schedule

as eacl); has its own optimal’;’s. But the issue canbe 2  qest = & = @M begt)

easily resolved by a numerical search since the problef for (i =0; i < conputation_budget; i++)

. . L pl, p2 = randompositions in s

is one-dimensional. subjected to selection criteria
5 new = s with pl, p2 swapped
6 if (newis physically infeasible)

B. General periodic coverage : Qnew oM now

The previous section discussed the optimizatiof T ew

of linear periodic sensor schedules. However, @ if (@gw > Cpest) @ @

H H H H H H est = new, est = ew

linear periodic schedule does not exist if there is ng else  // simulated anneal i ng

Hamiltonian circuit of the Pols. Even if it exists, a13 if (random < exp((Quew - &) * i))

linear schedule is in general sub-optimal as the QoM | . best & o & T @ew

_dePe”dS on the fairness 9fanU|a“ty (Corollar_y 3). Thﬁg. 2. Simulated annealing algorithm for optimal periodahedule.

is illustrated by the following example. Consider three

Pols, located such that;s = di3 = daz3 = 2R, and

the proportional fairness objective f> = n/(n — 1) In particular, the QoM is a linear combination of the

andyi13 = n. For events that stay and have the steQoM of each individual sub-linear periodic schedules
utility function, the optimal linear periodic sensohwhich constitute the overall nonlinear periodic schedule.
schedule is {(1,n4),(2,(n — 1)§),(3,6)}, where Proof: The proof follows the same line as Theo-

§ = 2R/vmax is the minimum presence time of therem 2. The key observation that makes the proof go
sensor arriving at and then leaving a Pol — recathrough is that if an event arriving during the absent

Assumption 1. From Theorem 2, however, we knoWeriod pi — ¢i is ever captured, then it must be first
that the QoM ati increases as the fairness granularitgaptured in the next present perigfl u

decreases. Hence, the optimal non-linear periodic
schedule {(1,6),(2,9),..-,(1,9),(2,0),(1,9),(3,9)} C. Optimization of general periodic schedules

. n—1times . . We now illustrate how the above Theorem is used to
increases the QoM at 1 and 2 without affecting eithefimize the general periodic schedule with Step utility.

the travel overhead or the QoM at 3. Wheris large, - giarting with any initial periodic schedule of length

the performance loss of the optimal linear scheduigere arey! straightforward permutations of the schedule

can _be ;lgn|f|cant for certain distributions of _the evenh obtain a general periodic schedule. An exhaustive
staying time, e.g., when the mean event staying time {3,rch for an optimal schedule is computationally in-
on the order ob. feasible for larger. To overcome the challenge, we use

The above argues for the need to search for geneggl, jated annealing [8] to guide the search and obtain a
periodic schedules with better performance. A beginning,se-to optimal solution with high probability.

observation is that a new and potentially better periodic 1, optimization algorithm is specified in Fig. 2. We

schedule can be obtained by rearranging the Pol ordgfialize the current search candidateto some initial
in an original schedule. Changing the Pol order aﬁecb’%riodic schedule, and keep track of the current best

the fairness granularity as discussed above,_ but it alsPhedulevest seen so far. We then randomly select two
affects the travel overhead between the adjacent Plsments ins say(L;, C;) and (L;,C;), and swapk;o

visited. Since the travel time overhead is known givefyer time fromc: with .8 time from C.. to obtain
2 vl 7

a Pol visit order, the achieve@.. measure of the new 5 naw schedule denoted byw, wheres = 2R /vpax

schedule can be computed by applying Theorem 4 wifll 5 %, are randomly selected positive integers such

a modification for non-linear periodic schedules. that k6 < C; and k;6 < C,. To avoid a cover time
_ Forthe case of the step utility functidry, the QOM is o a5 thang for any element, we have the additional
in fact simply a weighted sum of the QoMs for the linéag,je that any fractionab time left by itself after a
periodic sub-schedules which constitute the whole scheg,vap will be moved together with the associated whole
ule (see the next Theorem). For simplicity, we ignore the, mper multiple of time moved. If two adjacent Pols
travel overhead .(WhICh can be easny_lnqorporated). TR new have distanceo between thempew is rejected
set up the notation, for a general periodic schedule, Ig¢ hhysically infeasible. Otherwise, we evaluate the
{pi — qkaqk}gkgm be the consecutive sensor absenjs ey, If new has a higher), thans, we selectiew
and present times for Pol Note thatp. = >, ., x, P, as shown. Otherwiseiew is selected with a probability
is the total period of the schedule (which is the same f@fandom in Line 13 is a random number in [0,1]). The
all i's). Then we have the following result. search terminates after a given time budget.
Theorem 6 (Step utility function)The QoM of Pols For general utility functions, the closed analytical
Ki 4 T 4 | prhedh form of the QoM for a general (non-linear) periodic
Q; = Pk q_,; +— Pr(X >t)dt| . schedule can be complicated. In particular, it may not
—1 P* [P PrJo be a weighted sum of the QoMs of the linear periodic
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2) Staying events and Step utilitfach experiment
*” Exol) / uses the same distribution for both the event staying and
04 absent times, which is either Exponential or Pareto. We
g o show results for differenk of Exponential and different
° pareto(a.p) B of Pareto, where a smalléror a largers corresponds
/ to events that stay longer on the average. Figures 4(a)
* and 4(b) show the QoM as a function of the proportional
0 shareq/p for the Exponential and Pareto distributions,
0 0.1 0.2 03 0.4 0.5 0.6 . . .
/b, (with p fixed to be 10 time units) respectively. The results agree with Theorem 2 and its
Fig. 3. Plot of @; for Y ~ Exp(\) andY ~ Paretda, 3) as a instantiations for the two distributions. Note that the
function of the proportional share. fraction of events captured can be significantly higher

than the proportional share. E.g., a QoM of close to 0.4 is
sub-schedules. Nevertheless, one can still write dovéghieved for both Exp(= 0.25) and Pareta{ = 2) even
an analytical formula for it and resort to numericajyhen the share is only slightly positive (see Corollary 2).
integration to compute its value. ‘ The observation time of the events increases as the
Theorem 7 (General utility function)-et U* be the events stay longer, and so the QoM is higher when
utility function of the events at Pol and f(z) be the is smaller for Exponential and is larger for Pareto (see

pdf of the event staying time. Then Sec. IV-C(i)). In general, the QoM is not linear in the
1 [P oo proportional share.
Qi = P_*/o /0 [U]"(t,2) f(z) dz dt, Figures 4(c) and 4(d) show the QoM as a function

of the fairness granularity. As predicted by Corollary 3,
where [U]i(t,z) = U* ttﬂpi(s) ds) andpi(s) is a the QoM is a monotonically decreasing function yof
function which takes the valué when the sensor is Meaning that finer grained fairness will improve perfor-
present at Pol at time s, and O otherwise. mance. As explained before, the QoM increases\as

ilecreases for Exponential and @éncreases for Pareto.

Proof: The proof is the same as Theorem 4 wit :
the following understanding. The variatfleefers to the Furthermore, the QoM converges to the maximum value
ne and the proportional shate= ¢/p asp converges

event arrival timeg refers to the event staying time, and’

f;“ pi(s)ds is the total time the event is observed b)5° 0 andco (see Forollary_ 3)- ) )
the sensor. u 3) General utility function: This set of experiments

Note that by increasing the duration of the Optij.llustrates the aCh.ieved QOM fOI’ events that Stay and
mization period’ the a|gorithm will Optimize over anhave a gen.era.-l Ut|||ty function. Each exper_‘lment uses the
increasingly larger set of the candidate schedules, whiggme distribution for both the event staying and absent
can be quite general when the period is sufficiently long§mes, which is either Exponential with varying or

areto with varyings (but « is kept to be2).
VI. SIMULATION RESULTS We first present results for the Exponential utility
_ function Ug (with A = 5). Figures 5(a) and 5(b) show
A. Single-Pol QoM the achieved QoM as a function of the proportional

We present simulation results to illustrate the analyshare, for Exponential and Pareto event dynamics, re-
ical results in Section IV. Recall the use &f andY  spectively. Unlike Step utility, the achieved QoM is close
to denote the event staying and absent time variablés,zero when the share is only slightly positive. This is
respectively. The event utility functiotr is one of the due to the need to accumulate information for Expo-
functions shown in Fig. 1. We measure the Qa}j nential utility. As the share increases initially, however
achieved over 1,000,000 time units in a simulation rumhere is a sharp gain in the QoM. This is because most
and report the averag€, of 10 different runs. The information is gained during the initial observation of an
different runs produce results that have extremely smatent for Exponential utility. Moreover, the initial gain
differences. Hence, we omit the error bars in the reportélhigher when the events stay longer (i.e., small@r
results. Note that not all the events in a simulatiolarger3), because longer staying events are more likely
stay long enough to be captured at the full utility. Théo be captured even if they arrive when the sensor is
maximum information available for capture is given byot present. As the share further increases, the marginal
f0°° U(z)f(z)dx as explained in Section II-A. gain in the QoM becomes smaller, again mimicking

1) Blip events: Figure 3 shows that the QoM isthe decreasing marginal gain of information with longer
directly proportional to the share/p, as predicted observation time for the type of event. Note that for the
by Theorem 1. A plot of the QoM againgt, when larger A values (e.g.A = 2) or smallers values (e.g.,
qi/p: is fixed, gives a constant function, as predicted = 0.25), the QoM is significantly smaller than one
by Corollary 1, although the plot is omitted for spaceven for a large share. This is in part because at those
limits. The same results hold for differeatand (o, 3) parameter values, the events do not stay long enough to
parameters of the Exponential and Pareto distributionbe captured at their full utility.
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Fig. 5. Achieved QoM for events that stay and have the Expimadeutility function Ug, A = 5.

Figures 5(c) and 5(d) show the achieved QoM asia the proportional share, and the QoM is higher when
function of the fairness granularity. For the Exponentidhe events stay longer (i.e., smaller or larger j3).
utility, the results agree with Equations 6 and 7. (See alsagures 6(c) and 6(d) show the achieved QoM as a
Section IV-C(iv).) In particular, it shows that the QoM isfunction of the fairness granularity. Note that in this
monotonically decreasing im and gives the QoM limits case, the QoM is no longer monotonically decreasing
asp — 0 andp — oo. In addition, the QoM increasesin p, but the optimal fairness occurs at an intermediate
when\ decreases. The results in Figures 5(d) show thetlue. Note also that fon = 2 = %, the QoM is a
similar results hold for Pareto event dynamics. constant function op for large p. These properties are

We next present results for Delayed Step utilify, all discussed in Section IV-C(v).

(D = 0.5 time units). Similar simulation results hold o ] o

for S-shaped utility, although they are not shown duB- Optimization of nonlinear periodic coverage

to space. Figures 6(a) and 6(b) show the achieved QoMWe present simulation results to illustrate the perfor-
as a function of the proportional share, for Exponentiahance of the optimization algorithm in Section V for
and Pareto event staying time distributions, respectiveferiodic schedules. We use 3 Pols, denoted as 1, 2, and
They show that the QoM is monotonically increasin@®, such thatdio = di3 = dos = 2R, where R is the
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Fig. 6. Achieved QoM for Delayed Step utility with delay o5Qtime unit.

sensing range. The maximum speed of the sensor is stickl a solution extremely close to the optimal (within
that it will take one time unit to cover a distance2®. 2%) when the number of iterations is large enough.

In a coverage schedule, therefore, the minimum stayingWe have measured the run time of the simulated
time of the sensor at any Pol 5= 1 time unit. For annealing, written in C#, on a Pentium-4 3.4 GHz PC
each experiment, we report the average of 20 runs wfth L1/L2 cache sizes of 8 KB/512 KB and 2 GB of
the algorithm. The differences in the measurements &R&AM. The results (not shown due to space) indicate
small. We will thus omit the error bars, although in thehat the run time is linear in the number of iterations,
case of the deployment QoM, we will also report thend is less than 18 seconds for 500000 iterations and an
maximum@,. achieved in the 20 runs. optimization period of 400 time units.

1) Revisit of example (Section V-BYhis example  2) Other proportional sharesWe now use propor-
motivates the use of optimized general periodic schetional share ratios 063 : 29 : 17 for the 3 Pols. The
ules. The proportional shares of 1, 2, and 3 are #gsults are shown in Figures 8(a) and 8(b) for up to
ratios of 50 : 49 : 1. We show the optimizations 1000 and up to 500000 iterations, respectively, when
over schedules of periogh, and varym to be 100 the optimization period is 99 time units. The search
and 400 time units. The algorithm in Fig. 2 is rurcan approach the optima). quickly and a solution
with the initial schedule set to be the optimiear extremely close to the optimal is found within a few
periodic schedule of the given length. Figures 7(a) arilousand iterations. Increasing the optimization period
7(c) plot the maximum and average deployment Qoo 198 and 396 time units has similar effects as in
Q. achieved by the simulated annealing algorithm fdhe 50:49:1 scenario, but we omit the detailed plots for
small computation budgets of up to 1000 iterations. Trepace. The algorithm takes about 10 s and less than 35 s
optimal deployment QoM is also shown as the horizonté® complete 500000 iterations for an optimization period
green line in each figure. Figures 7(b) and 7(d) pl@f 99 and 396 time units, respectively.
the corresponding results for larger computation budgets
of up to 500000 iterations. From the smaller compu-
tation budget results, note that the simulated annealing
can produce schedules that rather quickly approach thee have presented extensive analysis to understand
optimal as the number of iterations increases. Howevéne QoM properties of proportional-share mobile sensor
the performance increases more slowly for optimizatiom®verage. We show that (1) A higher share of the
over schedules of the longer period. This is because éoverage time generally increases the QoM, but the
this particular experiment, the globally optimal scheduleelationship is not linear except for blip events. (2) For
can be found with a period length of 100 time unitsstaying events, the QoM can be much higher than the
Increasing the optimization period to 400 time units wilproportional share, due to the observation of “extra”
not increase the potential to find a better solution, betsents that arrive when the sensor is not present. This
will increase the search space for the optimal solutiojustifies mobile coverage from an information-capture
From the larger computation budget results, howevearpint of view, i.e., the sensor gains by moving between
note that in all the cases, the simulated annealing cplaces to search for new information. (3) The event

VII. CONCLUSIONS
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utility function is important in determining the opti-
mal fairness granularitp. For Step, Exponential, and
Linear utilities, the QoM monotonically decreases witht©
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search spaces implied by long scheduling periods.
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