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Abstract 

Anonymization based privacy protection ensures that data 
cannot be traced to an individual. Many anonymify algorithms 
proposed so far made use of d~fferent value generalization 
techniques to satisfy d~jferent privacy constraints. This pa- 
per presents pdf-generalization merhod that empowers data 
value generalizations with probability distribution functions 
enabling the publisher to have better control over the trade off 
between privacy and utilization. We evaluate the pdf approach 
for k-anonymity and 6-presence privacy models and show 
how to use pdf generalizations to utilize datasets even fur- 
ther without violating privacy constraints. Paper also shows 
theoretically and experimentally that information gained from 
pdfs increases the utilization of the anonymized data w.r.t. real 
world applications such as class$cation and association rule 
mining. 

Index Terms-Privacy, Security, integrity, and protection 

I. Introduction 

The tension between the value of using personal data 
for research and concern over individual privacy, is ever- 
increasing. Simply removing uniquely identifying informa- 
tion (SSN, name) from data is not sufficient to prevent 
identification because partially identifying information (quasi- 
identifiers such as age, gender . . .) can still be mapped to 
individuals by using external knowledge [18]. 

Table anonymization is one method used to prevent against 
identification. Many different privacy notions that make use of 
anonymization have been introduced for different adversary 
models. For sensitive information protection, k-anonymity 
[15], e-diversity [I I], t-closeness [9], anatomization [19]; for 
protecting the existence of individuals in shared datasets, 6- 
presence [12] have been proposed. Privacy preserving algo- 
rithms working on these models applied different general- 

This material is based upon work supported by the National Science 
Foundation under Grant No. 0428168. 

ization techniques (replacing data values with more general 
values) over data cells to satisfy privacy constraints. DGH 
based generalization technique used in [16], [5], [7], [2], 
[14], [13] requires user specified DGH structures (domain 
generalization hierarchies) to cany out generalizations. DGHs 
are tree structures defined over each attribute domain and are 
used to specify to what value a given data value can generalize 
to (in Figure 1, Peru + America). Moreover, works in [3], 
[8] assumed a total order between the values of each attribute 
domain and used interval based generalizations which are 
more flexible (in Figure 1, Peru + [America-USA]). Later 
in [I 31, NDGH based generalizations were introduced where 
data values can be replaced with any set of values from 
the associated domain to provide even more flexibility in 
generalizations (Peru + {Peru,USA}). In Section 11, we 
briefly explain the previously proposed methods and some 
of the privacy models that we will be referring to in future 
sections. 

The trend in the research literature has been to get rid of 
restrictions on generalization and to increase the amount of 
information stored in data cells. However, even NDGH based 
generalization, being the most flexible solution offered so far, 
has still limitations in expressing generalized information. 
From the point of view of a third party, a data cell with 
value {a, b} is equally likely to be a or b. However, in 
many cases, supplying the data cells with probability distri- 
bution information regarding how likely the data cell takes 
each specific value gives the publisher more control over 
the tradeoff between privacy and utility. In this paper, we 
present PDF-generalization method that empowers data value 
generalizations with probability distribution functions. Such 
generalizations can be used to better reflect the distribution 
of the original dataset. More importantly, pdf functions can 
be set according to different privacy constraints and thus 
produce anonymizations of variable utilization. In Section 111, 
we formally define PDF generalizations. 

The impact of generalization types on utilization is ex- 
plicit for k-anonymity, e-diversity, t-closeness, or &presence 
(where quasi-identifiers are generalized) but implicit for anat- 
omization (where e-diversity or t-closeness is used as an 
inner step). As for the privacy loss, the use of different 
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Abstract

Anonymization based privacy protection ensures that data
cannot be traced to an individual. Many anonymity algorithms
proposed so far made use of different value generalization
techniques to satisfy different privacy constraints. This pa­
per presents pdf-generalization method that empowers data
value generalizations with probability distribution functions
enabling the publisher to have better control over the trade off
between privacy and utilization. We evaluate the pdfapproach
for k-anonymity and o-presence privacy models and show
how to use pdf generalizations to utilize datasets even fur­
ther without violating privacy constraints. Paper also shows
theoretically and experimentally that information gained from
pdfs increases the utilization of the anonymized data W.r.t. real
world applications such as classification and association rule
mining.

Index Terms-Privacy, Security, integrity, and protection

I. Introduction

The tension between the value of using personal data
for research and concern over individual privacy, is ever­
increasing. Simply removing uniquely identifying informa­
tion (SSN, name) from data is not sufficient to prevent
identification because partially identifying information (quasi­
identifiers such as age, gender ... ) can still be mapped to
individuals by using external knowledge [18].

Table anonymization is one method used to prevent against
identification. Many different privacy notions that make use of
anonymization have been introduced for different adversary
models. For sensitive information protection, k-anonymity
[15], i-diversity [11], t-closeness [9], anatomization [19]; for
protecting the existence of individuals in shared datasets, 0­
presence [12] have been proposed. Privacy preserving algo­
rithms working on these models applied different general-

This material is based upon work supported by the National Science
Foundation under Grant No. 0428168.

ization techniques (replacing data values with more general
values) over data cells to satisfy privacy constraints. DGH
based generalization technique used in [16], [5], [7], [2],
[14], [13] requires user specified DGH structures (domain
generalization hierarchies) to carry out generalizations. DGHs
are tree structures defined over each attribute domain and are
used to specify to what value a given data value can generalize
to (in Figure I, Peru -> America). Moreover, works in [3],
[8] assumed a total order between the values of each attribute
domain and used interval based generalizations which are
more flexible (in Figure I, Peru -> [America-USA]). Later
in [13], NDGH based generalizations were introduced where
data values can be replaced with any set of values from
the associated domain to provide even more flexibility in
generalizations (Peru -> {Peru,USA}). In Section II, we
briefly explain the previously proposed methods and some
of the privacy models that we will be referring to in future
sections.

The trend in the research literature has been to get rid of
restrictions on generalization and to increase the amount of
information stored in data cells. However, even NDGH based
generalization, being the most flexible solution offered so far,
has still limitations in expressing generalized information.
From the point of view of a third party, a data cell with
value {a, b} is equally likely to be a or b. However, in
many cases, supplying the data cells with probability distri­
bution information regarding how likely the data cell takes
each specific value gives the publisher more control over
the tradeoff between privacy and utility. In this paper, we
present PDF-generalization method that empowers data value
generalizations with probability distribution functions. Such
generalizations can be used to better reflect the distribution
of the original dataset. More importantly, pdf functions can
be set according to different privacy constraints and thus
produce anonymizations of variable utilization. In Section III,
we formally define PDF generalizations.

The impact of generalization types on utilization is ex­
plicit for k-anonymity, i-diversity, t-closeness, or o-presence
(where quasi-identifiers are generalized) but implicit for anat­
omization (where i-diversity or t-closeness is used as an
inner step). As for the privacy loss, the use of different
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Fig. 1. DGH structures for T,* and total order- 
ing for T; in Table I I  
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generalization types does not introduce any privacy violation 
for k-anonymity, [-diversity, and t-closeness (privacy models 
in which existence of individuals in the released datasets 
is known by the adversaries). This implies that in terms 
of privacy loss, there is no shortcoming of using a more 
flexible generalization type such as PDF generalizations. In 
such privacy models, utilization gained by PDFs can always 
be maximized. In Section IV, we show how to use PDFs to 
increase utilization by assuming k-anonymity framework and 
discuss theoretically how third parties can make use of the 
extra information provided. 

For probabilistic privacy definitions such as &presence, 
when switching between generalization types, privacy loss is 
more observable. Thus for a better analysis of PDF generaliza- 
tion type in terms of utilization and privacy loss, in Section V, 
we use 6-presence privacy constraints. We show how to check 
for 6-presence constraint when non-uniform distributions are 
used for data cells and show how to post process output 
of optimal single dimensional 6-presence algorithm, SPALM 
[12], to make use of PDF generalizations. The final PDF algo- 
rithm, PPALM, is not optimal wrt. its domain but shows how 
PDFs can be used, even in a probabilistic adversary model, 
to increase utilization without violating privacy constraints. 

Section VI evaluates the effect of the new approach on 
the utilization of the output dataset by presenting rule mining 
and classification results on real world data and shows that 
extra pdf information can significantly reduce rule mining and 
classification error on anonymized datasets without violating 
the privacy constraints of k-anonymity and 6-presence. 

11. Background and Notation 

Given a dataset (table) T ,  T(:c][r] refers to the value of 
column c, row r of T .  T[c] refers to the projection of column 
c on T .  

2 
While publishing person specific sensitive data, simply 

removing uniquely identifying information (SSN, name) from 
data is not sufficient to prevent identification because partially 
identifying information, quasi-ident@ers, (age, gender . . 
. ) can still be mapped to individuals by using external 
knowledge. E.g., in Table I, Salary attribute of private table T 
can be considered as sensitive attribute. Sex, job and nation 
attributes are quasi-identifiers (&IT) since they can be used to 
identify an individual in the public table PT. Releasing T as 
it is does not prevent linkage even though it doesn't contain 
any uniquely identifying information [IS]. 

In most of the privacy models, adversary is assumed to 
know the QI attributes about an individual from some public 
dataset or background knowledge. While releasing private 
datasets, we also face two different scenarios according to 
adversary's knowledge on the existence of the individual: 

Existential Certainty:Adversary knows that the individ- 
ual is in the private dataset and tries to learn the sensitive 
information about the individual in the private dataset. 
Existential Uncertainty:Adversary doesn't know the 
individual is or is not in the private dataset. (IPT( > 
IT/) There are also two scenarios associated with this 
condition: 

- Existential Sensitivity:Disclosure of existence or 
absence of an individual in the private dataset is a 
privacy violation. (In this case, there need not even 
be sensitive attributes in the private dataset. E.g., 
releasing data about diabetic patients.) 

- Existential 1dentity:Existential disclosure is not 
considered as a privacy violation given that sensitive 
information is protected according to given privacy 
constraints. 

k-Anonymity provides (partial) privacy protection for both 
cases by limiting the linking of a record from a set of released 
records to a specific individual: 

Definition I (k-Anonyrnify [17]): A given table T* is said 
to satisfy k-anonymity if and only if each sequence of values 
in T*[QIT.] appears at least k times in T*. 

Definition 2 (Equivalence Class): The equivalence class 
of tuple t in dataset T* is the set of all tuples in T* with 
identical quasi-identifiers to t. 

Table I shows an example for the privacy risk in k- 
anonymity framework where adversary knows PT but wants 
to link salary information to individuals. Clearly releasing T 
will result in sensitive info disclosure. (e.g., Showman Padme 
has salary >50K) All datasets given in Table 11, respect 4- 
anonymity. The equivalence class of rowl in anonymized 
datasets is the set {rowl, row2, row3, row4). Note that by 
seeing one of the 4-anonymous tables, an adversary can only 
link, for instance, Padme into the set of salaries {>50K, < 
50K) as opposed to >50K only. 

It should be noted that use of different generalization 
types does not violate k-anonymity definition. This makes 
it difficult to evaluate the privacylutility relations for more 
flexible generalization types. Thus we need a probabilistic 

II. Background and Notation

Given a dataset (table) T, Tlc][r] refers to the value of
column c, row r of T. T[c] refers to the projection of column
con T.

generalization types does not introduce any privacy violation
for k-anonymity, e-diversity, and t-closeness (privacy models
in which existence of individuals in the released datasets
is known by the adversaries). This implies that in terms
of privacy loss, there is no shortcoming of using a more
flexible generalization type such as PDF generalizations. In
such privacy models, utilization gained by PDFs can always
be maximized. In Section IV, we show how to use PDFs to
increase utilization by assuming k-anonymity framework and
discuss theoretically how third parties can make use of the
extra information provided.

For probabilistic privacy definitions such as a-presence,
when switching between generalization types, privacy loss is
more observable. Thus for a better analysis of PDF generaliza­
tion type in terms of utilization and privacy loss, in Section V,
we use a-presence privacy constraints. We show how to check
for a-presence constraint when non-uniform distributions are
used for data cells and show how to post process output
of optimal single dimensional a-presence algorithm, SPALM
[12], to make use of PDF generalizations. The final PDF algo­
rithm, PPALM, is not optimal wrt. its domain but shows how
PDFs can be used, even in a probabilistic adversary model,
to increase utilization without Violating privacy constraints.

Section VI evaluates the effect of the new approach on
the utilization of the output dataset by presenting rule mining
and classification results on real world data and shows that
extra pdf information can significantly reduce rule mining and
classification error on anonymized datasets without violating
the privacy constraints of k-anonymity and a-presence.

2
While pUblishing person specific sensItIve data, simply

removing uniquely identifying information (SSN, name) from
data is not sufficient to prevent identification because partially
identifying information, quasi-identifiers, (age, gender . .
. ) can still be mapped to individuals by using external
knowledge. E.g., in Table I, Salary attribute of private table T
can be considered as sensitive attribute. Sex, job and nation
attributes are quasi-identifiers (QIT ) since they can be used to
identify an individual in the public table PT. Releasing T as
it is does not prevent linkage even though it doesn't contain
any uniquely identifying information [18].

In most of the privacy models, adversary is assumed to
know the QI attributes about an individual from some public
dataset or background knowledge. While releasing private
datasets, we also face two different scenarios according to
adversary's knowledge on the existence of the individual:

• Existential Certainty:Adversary knows that the individ­
ual is in the private dataset and tries to learn the sensitive
information about the individual in the private dataset.

• Existential Uncertainty:Adversary doesn't know the
individual is or is not in the private dataset. (IPTI >
ITI) There are also two scenarios associated with this
condition:

- Existential Sensitivity:Disclosure of existence or
absence of an individual in the private dataset is a
privacy violation. (In this case, there need not even
be sensitive attributes in the private dataset. E.g.,
releasing data about diabetic patients.)

- Existential Identity:Existential disclosure is not
considered as a privacy violation given that sensitive
information is protected according to given privacy
constraints.

k-Anonymity provides (partial) privacy protection for both
cases by limiting the linking of a record from a set of released
records to a specific individual:

Definition 1 (k-AnonymiLy [17J): A given table T* is said
to satisfy k-anonymity if and only if each sequence of values
in T*[QIT.J appears at least k times in T*.

Definition 2 (Equivalence Class): The equivalence class
of tuple t in dataset T* is the set of all tuples in T* with
identical quasi-identifiers to t.

Table I shows an example for the privacy risk in k­
anonymity framework where adversary knows PT but wants
to link salary information to individuals. Clearly releasing T
will result in sensitive info disclosure. (e.g., Showman Padme
has salary >SOK) All datasets given in Table II, respect 4­
anonymity. The equivalence class of row I in anonymized
datasets is the set {rowl, row2, row3, row4}. Note that by
seeing one of the 4-anonymous tables, an adversary can only
link, for instance, Padme into the set of salaries {>SOK, ::;
SOK} as opposed to >SOK only.

It should be noted that use of different generalization
types does not violate k-anonymity definition. This makes
it difficult to evaluate the privacy/utility relations for more
flexible generalization types. Thus we need a probabilistic
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TABLE I. k-Anonymity Framework: Public and Private Datasets. Private dataset has the same size as 
the Public dataset. 

table 
PT:Public Dataset T :  Private Dataset 

TABLE II. 4-anonymous generalizations ( 
table 

T2:DGH-anonymized Dataset T;:Interval-anonymized Dataset 

- - -  

F I * I Europe 1 > 50K ( I F I [Te-Si] 1 [Br-It] 1 > 50K 
F I * 1 E u r o ~ e  1 > 50K 1 F I ITe-Sil 1 TBr-It1 1 > 50K 

M 
M 
F 

< L A  7 1 F 1 [Te-Si] 1 [Br-It] 1 5 50K / 

~f T in Table II 

* 
* 
* 

TABLE Ill. &Presence Framework: Public and Private Datasets. Individuals in Private dataset is a 
subset of that of the Public dataset. Attribute "Ext" is not part of the public dataset but specifies 
which tuples are in the private dataset. 

table 
PT:Public Dataset T:Private Dataset 

America 
America 

Europe 

Sex 
M 
M 
M 
M 
F 
F 
F 
F 

< 50K 
5 50K 

> 50K 

I Job 
Student Canada 
Student USA 

M 
M 

F 

- 
Student 

Prof. 
Showman 

Singer 
Singer 

Teacher 

USA 
USA 
Italy 
Italy 
Italy 

Britain 

[Pr-St] 
[Pr-St] 

ITe-Sil 

[Ca-US] -- 
[Ca-US] 

IBr-It1 

< 50K 
< 50K 

> 50K 

TABLE I. k-Anonymity Framework: Public and Private Datasets. Private dataset has the same size as
the Public dataset.

table
PT:Public Dataset
Name Sex Job Nation
Chris M Student Canada
Luke M Student USA
Darth M Student USA

George M Prof. USA
Padme F Showman Italy
Laila F Singer Italy
Kim F Singer Italy
Ann F Teacher Britain

T:Private Dataset
Sex Job Nation Salary
M Student Canada < 50K
M Student USA ::; 50K
M Student USA ::; 50K
M Prof. USA < 50K
F Showman Italy > 50K
F Singer Italy > 50K
F Singer Italy > 50K
F Teacher Britain ::; 50K

TABLE II. 4-anonymous generalizations of T in Table II
table

T:t :DGH-anonymized Dataset
Sex Job Nation Salary ,

M * America ::; 50K
M * America < 50K
M * America < 50K
M * America ::; 50K

F * Europe > 50K
F * Europe > 50K
F * Europe > 50K
F * Europe < 50K

Tt :lnterval-anonymized Dataset
Sex Job Nation Salary
M [Pr-St] rCa-US] ::; 50K
M [Pr-St] rCa-US] < 50K
M [Pr-St] rCa-US] < 50K
M [Pr-St] rCa-US] ::; 50K

F [Te-Si] [Br-It] > 50K
F [Te-Si] [Br-It] > 50K
F [Te-Si] [Br-It] > 50K
F [Te-Si] [Br-It] ::; 50K

T;':NDGH-anonymized Dataset
Sex Job Nation Salary
M {Pr,St} {Ca,US} ::; 50K
M {Pr,St} {Ca,US} < 50K
M {Pr,St} {Ca,US} < 50K
M {Pr,St} {Ca,US} ::; 50K

F {Te,Sh,Si} {Br,It} > 50K
F {Te,Sh,Si} {Br,It} > 50K
F {Te,Sh,Si} {Br,It} > 50K
F {Te,Sh,Si} {Br,It} < 50K

TABLE III. o-Presence Framework: Public and Private Datasets. Individuals in Private dataset is a
subset of that of the Public dataset. Attribute "Ext" is not part of the public dataset but specifies
which tuples are in the private dataset.

table
PT:Public Dataset
Name Sex Job Nation Ext
Chris M Student Canada I
Luke M Student USA I

I

Darth M Student USA I
George M Prof. USA J

Obi M Prof Canada ()

Padme F Showman Italy I
Laila F Singer Italy I
Kim F Singer Italy I
Ann F Teacher Britain I

Marie F Teacher Britain 0

T:Private Dataset
Sex Job Nation
M Student Canada
M Student USA
M Student USA
M Prof. USA
F Showman Italy
F Singer Italy
F Singer Italy
F Teacher Britain
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TABLE IV. PT,' is a generalization of P T  and T,' is a (0-0.80)-present generalizations of T with respect 
to P T  in Table Ill. Both generalizations have the same generalization mapping. 

table 
PTi:DGH-anonymized Dataset I T [ F - a r ' z e d  Dataset 

Sex Job Nation 
America 
America 
America 

* 
=+ America 

Europe 
Europe 
Europe 

* Europe 

privacy notion: 6-Presence is defined in [I21 for existential 
sensitivity model and introduces a 6 metric to evaluate the 
probabilistic risk of identifying an individual in a private table 
based on publicly known data: 

Dejinition 3 (6-Presence): Given an external public table 
P T ,  and a private table T,  we say that 6 = {6,in,6,ax)- 
presence holds for a generalization T *  of T, if 

6 , i n < P ( t € T I ~ * , P ~ ) < 6 , a x  V ~ E P T  
In such a dataset, we say that each tuple t E P T  is 6-present in 
T. Therefore, P ( t  E T ( T*)  should be between hmin - hmaX 
(the probability that tuple exists in the private dataset should 
be between hmin - 6,,,). 

Table 111 shows an example for the privacy risk in 6- 
presence framework where adversary knows P T  and wants 
to identify the tuples in the private dataset T. (Attribute 'Ext' 
in Tables 111 and IV, is not part of the dataset but shown 
for ease in discussion. It basically states if the corresponding 
tuple exists in the private dataset. In other words, information 
in the private table is shown in the attribute 'Ext' of the public 
table.) Dataset T i  of Table IV satisfies (hmin, 0.8)-presence 
for any hmin < 0.8. Out of 5 people {Chris, Luke, Darth, 
George, Obi), 4 people is in T$. SO probability that Chris (or 
any others) is in T i  is 0.8. This is also true for females. 

A given table can be anonymized (for k-anonymity, 6- 
presence, . . .) by the use of generalizations: 

Dejinition 4 (Generalization Function): Given a data 
value v, a generalization function 4 returns the set of all 
generalizations of v. 

We will name DGH generalization function as inter- 
val generalization function as 4 i ,  and NDGH generalization 
function as 4n 

Dejinition 5 (Table Generalization): Given two tables T' 
and T ~ ,  we say T~ is a generalization of T' if and only if 
IT'I  = JT') and records in TI, T~ can be ordered in such 
a way that ~ ~ [ i ] b ]  E $ ( ~ l [ i ] [ j ] )  for every attribute i E Q I  
and for every possible index j. We say tuple t l  = Tl[.]b] is 

linked to tuple tz = Tz[.]b] and write (t2 E Tz) + (t l  E TI). 
In Table 11, all datasets are generalizations of table T .  

In each table, generalization function is defined according to 
generalization type being used. According to DGH structures 
given in Figure 1; *d(USA) = {USA, America, *). T,' in 
Table I1 shows one DGH based anonymization of T according 
to the same DGH structures. According to the total ordering 
given in Figure 1; q&(USA) = {[urnin - vmaX] I v,,in E 
{Canada,Peru,USA) urnax E {USA,Britain,France,Italy)). 
T: in Table I1 shows one interval based anonymization 
of T according to the same total ordering. &(USA) = 

{S, I {USA) S, {Canada, Peru, USA, Britain, France, 
Italy)). NDGH based anonymizations are the most flexible 
anonymizations proposed so far. T; in Table I1 shows one 
NDGH based anonymization of T .  Tables T i ,  T:, and T; 
use the same equivalence classes however the generalization 
type being used enables T,* to contain more specific values 
compared to other tables. 

Work in [lo] presents three more generalization types, 
however NDGH still stands as the most flexible. Due to 
limited space, we do not include the discussion on these 
and assume NDGH as the baseline for evaluations in coming 
sections unless noted otherwise. 

111. PDF Generalizations 

A. Formulation 

A pdf generalization is basically a distribution defined over 
the associated domain: 

Dejinition 6 (PDF Generalization Function): A PDF 
generalization function 4p is a function, when given a value 
v from a categorical attribute domain D = {vl, . . . , vn), 
returns the set of all distributions f defined over D of the 
form, If I f (vi)  2 OAf(v)  > O A C v , E o  f(vi)  = 1). 

We write a distribution function f in open form as {vl : 
f (vl), . . . , vn : f (vn)) and do not write value entries with 
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TABLE IV. PTJ is a generalization of PT and TJ is a (O-O.SO)-present generalizations of T with respect
to PT in Table III. Both generalizations have the same generalization mapping.

table
PTJ :DGH-anonymized Dataset
Sex Job Nation Ext
M * America I
M * America j

M * America 1
M * America j

M * America 0

F * Europe j

F * Europe j

F * Europe 1
F * Europe 1
F * Europe 0

privacy notion: o-Presence is defined in [12] for existential
sensitivity model and introduces a 0 metric to evaluate the
probabilistic risk of identifying an individual in a private table
based on publicly known data:

Definition 3 (o-Presence): Given an external public table
PT, and a private table T, we say that 0 = {Omin,Omax}­
presence holds for a generalization T* of T, if

Omin ::; P(t E T I T*, PT) ::; omax 'if t E PT
In such a dataset, we say that each tuple t E PT is o-present in
T. Therefore, P(t E T IT*) should be between Omin - Omax
(the probability that tuple exists in the private dataset should
be between Omin - omax).

Table III shows an example for the privacy risk in 0­
presence framework where adversary knows PT and wants
to identify the tuples in the private dataset T. (Attribute' Ext'
in Tables III and IV, is not part of the dataset but shown
for ease in discussion. It basically states if the corresponding
tuple exists in the private dataset. In other words, information
in the private table is shown in the attribute 'Ext' of the public
table.) Dataset TJ of Table IV satisfies (Omin, a.8)-presence
for any Omin ::; a.8. Out of 5 people {Chris, Luke, Darth,
George, Obi}, 4 people is in TJ. SO probability that Chris (or
any others) is in Td is 0.8. This is also true for females.

A given table can be anonymized (for k-anonymity, 0­
presence, ...) by the use of generalizations:

Definition 4 (Generalization Function): Given a data
value v, a generalization function 1/1 returns the set of all
generalizations of v.

We will name DGH generalization function as 1/1d, inter­
val generalization function as 1/1i, and NDGH generalization
function as 1/1n

Definition 5 (Table Generalization): Given two tables T I

and T 2, we say T 2 is a generalization of T I if and only if
ITII = IT21 and records in T I , T 2 can be ordered in such
a way that T 2[i] [j] E 1/1(TI [i][j]) for every attribute i E QI
and for every possible index j. We say tuple tl = TI[.][j] is

TJ:DGH-anonymized Dataset
Sex Job Nation
M * America
M * America
M * America
M * America

F * Europe
F * Europe
F * Europe
F * Europe

linked to tuple t2 = T2[.][j] and write (t2 E T2) ~ (tl E TI).
In Table II, all datasets are generalizations of table T.

In each table, generalization function is defined according to
generalization type being used. According to DGH structures
given in Figure I; 1/1d(USA) = {USA, America, *}. TJ in
Table II shows one DGH based anonymization of T according
to the same DGH structures. According to the total ordering
given in Figure I; 1/1i(USA) = {[Vmin - vmaxJ I Vmin E
{Canada,Peru,USA} 1\ Vmax E {USA,Britain,France,Italy}}.
T;* in Table II shows one interval based anonymization
of T according to the same total ordering. 1/1n(USA) =

{Sv I {USA} <;; Sv <;; {Canada, Peru, USA, Britain, France,
Italy}}. NDGH based anonymizations are the most flexible
anonymizations proposed so far. T';' in Table II shows one
NDGH based anonymization of T. Tables TJ, T;*, and T';'
use the same equivalence classes however the generalization
type being used enables T';' to contain more specific values
compared to other tables.

Work in [10] presents three more generalization types,
however NDGH still stands as the most flexible. Due to
limited space, we do not include the discussion on these
and assume NDGH as the baseline for evaluations in coming
sections unless noted otherwise.

III. PDF Generalizations

A. Formulation

A pdf generalization is basically a distribution defined over
the associated domain:

Definition 6 (PDF Generalization Function): A PDF
generalization function 1/1p is a function, when given a value
v from a categorical attribute domain D = {VI"",Vn},
returns the set of all distributions f defined over D of the
form, {f I f(Vi) 2: a1\ f(v) > a1\ LV'ED f(vil = l}.

We write a distribution function f in open form as {VI :
f(VI)'"'' Vn : f(vn)} and do not write value entries with
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TABLE V. PDF generalizations of T in Tables I and Ill. Tables serve as examples for both k-anonymity 
and &presence. Attribute Salary is part of the dataset in k-anonymity framework but not in &presence 
framework. 

table 
T,f:PDF-anonvmized Dataset 

M 
M 

zero probability. T,* and T$ in Table V shows different PDF 
anonymizations of T in Table I and 111. We assume for a 
generalized value v* in a pdf generalization, v* .  f returns the 
corresponding distribution function of v* (e.g., T,'[2][l]. f = 
{PT :0.25, St :0.75), T,* [2] [l]. f (PT) = 0.25). 

NDGH (and other generalization types) implies uniform 
distribution on possible data values the generalized data stands 
for. Pdf generalizations extend NDGH generalizations with 
probability distribution information. This makes the previous 
generalizations to be special cases of pdf generalizations. 
(for a DGH value 'Europe', corresponding pdf value is 
{Br:0.33,Fr:0.33,It:0.33)). Pdf generalization T,* (or T&) 

"- 

pdf generalizations since anatomization better utilizes QI 
attributes without disclosing sensitive attributes. However pdf 
generalizations can still be used as a subprocedure to further 
provide utilization for anatomizations. (Anatomization makes 
use of generalization algorithms to form groups that contains 
similar tuples. Pdfs can be used to better capture similarity.) 

There may be applications where k-anonymity can be 
classified as an existential uncertainty model. We do not 
defend the blind use of pdf generalizations for such scenarios 
since there might be privacy issues that need to be considered. 
We assume a k-anonymity model with existential certainty 
assumption in this section, because 

Job 
{Pr:0.25,St:O 75) 
{Pr:0.25,St:0.75] 

Sex I Job 

obviously contains more information compared to the DGH k~anonymity has a simple definition making it easy to un- 
generalization T;. In coming sections, we investigate how the derstand utility aspects of different pdf generalizations. 
extra distribution information can be exploited for the sake of (e.g., ordering different pdf anonymizations of the same 
data utilization. dataset in terms of utility) 

Nation 11 b:tt:try 

IV. PDF and Uti1ization:k-Anonymity 

Nation 
{Ca:0.25,US:O 75) 
{Ca:0.25,US:0.75] 

As mentioned before, for non-probabilistic existential cer- 
tainty privacy models different use of generalization types 
do not affect the amount of privacy provided. However this 
does not justify the release of pdf generalizations for such 
models. In fact, assuming total existential certainty, releasing 
anatomization [19] (where no QI attribute generalizations is 
done and a distribution for sensitive values is returned for 
groups of tuples) of datasets is a better approach than releasing 

Sa1ar.v 
;cIK 

:OK 

it is always possible to maximize utilization in k- 
anonymous datasets without violating its constraints by 
choosing correct distributions for pdf generalizations. 
This enables us to better reason about why and how 
extra information from pdfs can improve utilization of 
the data. 
when pdf utilization is maximized, it is easier to see 
the effects of pdfs on data-mining applications such as 
association rule mining and classification. 

The real use of more flexible generalization types like 
pdfs comes into play when we assume existential uncertainty 

TABLE V. PDF generalizations of T in Tables I and III. Tables serve as examples for both k-anonymity
and 6-presence. Attribute Salary is part of the dataset in k-anonymity framework but not in 6-presence
framework.

table
T;:PDF-anonymized Dataset
Sex Job Nation Salary
M {Pr:0.25,St:0.75} {Ca:0.25,US:0.75} :':,: :,01<
M {Pr:0.25,St:0.75} {Ca:0.25,US:O. 75} ~.:.;: GOK
M {Pr:0.25,St:0.75} {Ca:0.25,US:0.75} ~:':")UK

M {Pr:0.25,St:0.75} {Ca:0.25,US:0.75} <:: :>I)K

F {Te:0.25,Sh:0.25,Si:0.5} {Br:0.25,ltO.75} :> :;OK
F {Te:0.25,Sh:0.25,Si:0.5} {Br:0.25,lt:0.75} '> ;jOK
F {Te:0.25,Sh:0.25,Si:0.5} {Br:0.25,ItO.75} >- ,")Ul,

F {Te:0.25,Sh:0.25,Si:0.5} {Br:0.25,lt:0.75} ::: :)OK

T* 'PDF anonymized Dataset'v2' -
Sex Job Nation Salary
M {Pr:0.40,St:0.60} {Ca:0.40,US:0.60} :< 50K
M {Pr:0.40,St:0.60} {Ca:0.40,US:0.60} ,; 50h.

M {Pr:0.40,St:0.60} {Ca:0.40,US:0.60} ~:: F)OK

M {Pr:0.40,St:0.60} {Ca:0.40,US:0.60} ~:, ;"iOK

F {Te:0.3,Sh:0.3,Si:0.4} {Br:0.40,It:0.60} >- 50K
F {Te:0.3,Sh:0.3,Si:0.4} {Br:0.40,It:0.60} :> SOl\.
F {Te:0.3,Sh:0.3,Si:0.4} {Br:0.40,It:0.60} ···~)OK

F {Te:0.3,Sh:0.3,Si:0.4} {Br:0.40,It:0.60} ::: ;"iOK

zero probability. T; and T;2 in Table V shows different PDF
anonymizations of T in Table I and III. We assume for a
generalized value v* in a pdf generalization, v*.f returns the
corresponding distribution function of v* (e.g., T; [2][1].f =

{Pr :0.25, St :0.75}, T;[2][lJ.f(Pr) = 0.25).
NDGH (and other generalization types) implies uniform

distribution on possible data values the generalized data stands
for. Pdf generalizations extend NDGH generalizations with
probability distribution information. This makes the previous
generalizations to be special cases of pdf generalizations.
(for a DGH value 'Europe', corresponding pdf value is
{Br:0.33,Fr:0.33,ItO.33}). Pdf generalization T; (or T;2)
obviously contains more information compared to the DGH
generalization Tr:. In coming sections, we investigate how the
extra distribution information can be exploited for the sake of
data utilization.

IV. PDF and Utilization:k-Anonymity

As mentioned before, for non-probabilistic existential cer­
tainty privacy models different use of generalization types
do not affect the amount of privacy provided. However this
does not justify the release of pdf generalizations for such
models. In fact, assuming total existential certainty, releasing
anatomization [19] (where no QI attribute generalizations is
done and a distribution for sensitive values is returned for
groups of tuples) of datasets is a better approach than releasing

pdf generalizations since anatomization better utilizes QI
attributes without disclosing sensitive attributes. However pdf
generalizations can still be used as a subprocedure to further
provide utilization for anatomizations. (Anatomization makes
use of generalization algorithms to form groups that contains
similar tuples. Pdfs can be used to better capture similarity.)

There may be applications where k-anonymity can be
classified as an existential uncertainty model. We do not
defend the blind use of pdf generalizations for such scenarios
since there might be privacy issues that need to be considered.
We assume a k-anonymity model with existential certainty
assumption in this section, because

• k-anonymity has a simple definition making it easy to un­
derstand utility aspects of different pdf generalizations.
(e.g., ordering different pdf anonymizations of the same
dataset in terms of utility)

• it is always possible to maximize utilization in k­
anonymous datasets without violating its constraints by
choosing correct distributions for pdf generalizations.
This enables us to better reason about why and how
extra information from pdfs can improve utilization of
the data.

• when pdf utilization is maximized, it is easier to see
the effects of pdfs on data-mining applications such as
association rule mining and classification.

The real use of more flexible generalization types like
pdfs comes into play when we assume existential uncertainty



model where existence of individuals in the dataset is not 
a public information (and may be a sensitive information at 
times). In such models, use of different pdfs provide different 
levels of privacy. So to evaluate privacy aspects of pdfs, in 
Section V, we switch to &presence privacy model. Section V 
makes use of theorems on utility presented in this section. 

We begin by describing the methodology we use to prepare 
the anonymous dataset for any application. 

A. Data Reconstruction 

Many of the anonymizations initially are not suitable 
for most data mining applications. The reason is that such 
applications assume non overlapping, distinct data cell values. 
However for many anonymizations, data value generalizations 
may imply or intersect with each other. (E.g., for DGH 
anonymizations, USA, America, *; all may occur at the same 
time as distinct values in a given attribute column.) So we 
need a process that will convert the heterogeneous (multi- 
level) anonymizations to homogeneous (leaf-level, atomic) 
datasets. For this purpose, we adapt the methodology pro- 
posed in [I31 for pdf generalizations. Anonymized tables are 
first reconstructed before any data mining application is run. 

Dejinition 7 (Reconstruction Function): Reconstruction 
function R E C  is a function that when given some multi-level 
pdf anonymized dataset T *  respecting generalization function 
4, returns an atomic data set of the same size T", such that 

P(T"[c][~]  = v )  = T*[c][r] . f ( v )  
Informally reconstruction function converts generalized 

data entries to one of their atomic values probabilistically. 
Probabilistic conversion is done uniformly for DGH, interval 
and NDGH generalizations and according to pdf distributions 
for pdf generalizations. (For Table V, ~:[3][1]  will be US 
with 0.75 probability. For Table 11, ~ : [ 3 ] [ 1 ]  will be US with 
0.33 probability.) The reconstructed data will be suitable for 
all data mining applications. 

B. Effects of PDF on the Reconstructed Data 

Since data mining applications run on reconstructed data, 
effectiveness of the application application heavily depends 
on the similarity of the reconstructed data to the original 
data. Since anonymization process does not add any noise, 
there is always a non-zero probability that the reconstructed 
data will be the same as the original data. How big the 
matching probability is, depends on how much information 
is hidden in the anonymization. When we fix the equivalence 
classes ECis in a pdf anonymization, selection of data value 
distributions ( f  functions) plays the key role in the amount 
of information stored in the anonymization. (e.g., Tp* and 
T12 have different matching probabilities.) Next, we derive 
the global optimal distribution function G F  : {Fl, . . . , Fe) 
(where Fi : Uattribute a f a )  for the anonymization T* : 
{EC1,. . . , ECe) that will maximize the matching probability. 

6 
Since each equivalence class is independent from each 

other, matching probability of the anonymization T *  of T 
is the product of matching probabilities for each equivalence 
class in T * :  

So it is enough to maximize the matching probability for 
each equivalence class independently. 

We now focus on the equivalence class E C  and derive 
the optimal distribution function F : { f i , .  . . , f A ,  fA+1) for 
QI attributes 1 . .  . A and (if any) sensitive attribute A + 1  in 
E C  that will maximize the matching probability for a pdf 
anonymization T* of T .  

Let ch be the number of times an atomic data value vi 
from D, (domain of attribute a) appears in attribute a of 
T .  Note that for attribute a, the same distribution f a  is used 
in all tuples of EC.  (E.g., if we assume we have the pdf 
anonymization Tp* of T  in Table I11 and atomic value vi is 
'USA', then ch = 3  and fa(vi)  = 0.75) Then we have the 
following theorems: 

Theorem I: The matching probability for E C  is nega- 
tively correlated with the following equation defined over EC:  

to which we will refer as the KL cost of E C  

PROOF. See Appendix I 

Equation 1 is nothing but lECl multiplied with the negative 
cross-entropy between the initial value distribution and value 
distribution of the given anonymization. This is not surprising. 
As discussed in [6], anonymizations maximizing the nega- 
tive cross-entropy minimizes KL-divergence with the original 
value distribution. Statistically, such an anonymization better 
explains the original data. 

Theorem 2: The distribution function F : U fa defined as 
a,i 

for each value vi E Da, minimizes KL cost, thus maximizes 
the matching probability for EC.  

PROOF. See Appendix I 

Dejinition 8 (Utility Optimal): An anonymization T *  is 
utility optimal w.r.t. T  if probability distribution function for 
every equivalence class in T *  is defined as in Eqn 2. 
This means that the utility-optimal pdf probability for a data 
value v  E Da in an equivalence class E C  is the number of 
times v  appears in attribute a of E C  divided by the size of 
E C .  (e.g., weight of v  in E C )  By definition, utility optimal 
anonymizations maximize the matching probability. (e.g., Tp* 
of Table V is utility optimal w.r.t. T  of Tables 111. The first 

model where existence of individuals in the dataset is not
a public information (and may be a sensitive information at
times). In such models, use of different pdfs provide different
levels of privacy. So to evaluate privacy aspects of pdfs, in
Section V, we switch to 8-presence privacy model. Section V
makes use of theorems on utility presented in this section.

We begin by describing the methodology we use to prepare
the anonymous dataset for any application.

A. Data Reconstruction

Many of the anonymizations initially are not suitable
for most data mining applications. The reason is that such
applications assume non overlapping, distinct data cell values.
However for many anonymizations, data value generalizations
may imply or intersect with each other. (E.g., for DGH
anonymizations, USA, America, *; all may occur at the same
time as distinct values in a given attribute column.) So we
need a process that will convert the heterogeneous (multi­
level) anonymizations to homogeneous (leaf-level, atomic)
datasets. For this purpose, we adapt the methodology pro­
posed in [13] for pdf generalizations. Anonymized tables are
first reconstructed before any data mining application is run.

Definition 7 (Reconstruction Function): Reconstruction
function REG is a function that when given some multi-level
pdf anonymized dataset T* respecting generalization function
'1j;, returns an atomic data set of the same size T R , such that

P(TR[c][r] = v) = T*[c][r].f(v)
Informally reconstruction function converts generalized

data entries to one of their atomic values probabilistically.
Probabilistic conversion is done uniformly for DGH, interval
and NDGH generalizations and according to pdf distributions
for pdf generalizations. (For Table V, Tt[3][1] will be US
with 0.75 probability. For Table II, Tf[3][1] will be US with
0.33 probability.) The reconstructed data will be suitable for
all data mining applications.

B. Effects of PDF on the Reconstructed Data

Since data mining applications run on reconstructed data,
effectiveness of the application application heavily depends
on the similarity of the reconstructed data to the original
data. Since anonymization process does not add any noise,
there is always a non-zero probability that the reconstructed
data will be the same as the original data. How big the
matching probability is, depends on how much information
is hidden in the anonymization. When we fix the equivalence
classes EGiS in a pdf anonymization, selection of data value
distributions (f functions) plays the key role in the amount
of information stored in the anonymization. (e.g., T; and
T;2 have different matching probabilities.) Next, we derive
the global optimal distribution function GF : {Fl"'" Fe}
(where Fi : Uattribute a fa) for the anonymization T* :
{EGl , ... , EGt} that will maximize the matching probability.

6
Since each equivalence class is independent from each

other, matching probability of the anonymization T* of T
is the product of matching probabilities for each equivalence
class in T*:

PGP(T*) = II Pp,(EGi )

EC,ET"

SO it is enough to maximize the matching probability for
each equivalence class independently.

We now focus on the equivalence class EG and derive
the optimal distribution function F : {!I,. ", fA, f A+d for
QI attributes 1··· A and (if any) sensitive attribute A + 1 in
EG that will maximize the matching probability for a pdf
anonymization T* of T.

Let c~ be the number of times an atomic data value Vi

from D a (domain of attribute a) appears in attribute a of
T. Note that for attribute a, the same distribution fa is used
in all tuples of EG. (E.g., if we assume we have the pdf
anonymization T; of T in Table III and atomic value Vi is
'USA', then c~ = 3 and fa(v;) = 0.75) Then we have the
following theorems:

Theorem 1: The matching probability for EG is nega­
tively correlated with the follOWing equation defined over EG:

A

KL(EG) = - L L c~ . In fa (Vi) (1)
a=l viEDa

to which we will refer as the KL cost of EG

PROOF. See Appendix I D

Equation 1 is nothing but IEGI multiplied with the negative
cross-entropy between the initial value distribution and value
distribution of the given anonymization. This is not surprising.
As discussed in [6], anonymizations maximizing the nega­
tive cross-entropy minimizes KL-divergence with the original
value distribution. Statistically, such an anonymization better
explains the original data.

Theorem 2: The distribution function F : Ufa defined as
a,i

(2)

for each value Vi E D a , minimizes KL cost, thus maximizes
the matching probability for EG.

PROOF. See Appendix I D

Definition 8 (Utility Optimal): An anonymization T* is
utility optimal w.r.t. T if probability distribution function for
every equivalence class in T* is defined as in Eqn 2.
This means that the utility-optimal pdf probability for a data
value vEDa in an equivalence class EG is the number of
times v appears in attribute a of EG divided by the size of
EG. (e.g., weight of v in EG) By definition, utility optimal
anonymizations maximize the matching probability. (e.g., T;
of Table V is utility optimal w.r.t. T of Tables III. The first



four tuples contain 1 professor and 3 students, so fjob = 
{Pr : 0.25, St : 0.751.) 

The next theorem states that matching probability 
monotonically decreases as each f a  gets far away from the 
utility-optimal distribution; 

Theorem 3: For an equivalence class EC, let F(O)  : 

U f ( o ) ,  be the utility optimal distribution and let F(' )  and 
Fr2) be two other distribution functions with i f  ('),(vi) - 
f ("),(vi)~ < i f  (2)a(vi)  - f (o)a(vi )~ for all attribute a and for 
all vi E Da then PF(')  2 PF(z). 

PROOF. See Appendix I 

Theorem 3 gives a way to compare pdf generalizations in 
terms of utilization. In Tables I1 and V matching probability 
for T;2 is bigger than that of T;. This due to the fact that 
distributions in T;2 is closer to those of utility optimal T,*. 
(for the first equivalence class, fhb(Pr) is 0.25 for T,*, 0.4 
for T;2 and 0.5 for T;.) In Section V, we use the observation 
in Theorem 3 to increase utilization in a given anonymization. 

Since all other generalization types assume uniform dis- 
tribution on atomic values of a generalized value, (no mat- 
ter what the underlying original frequencies of the atomic 
values are) it is clear that utility-optimal pdf generalizations 
simulates original datasets at least as good as the other 
generalization types do. 

As the reconstructed data becomes similar to the original 
data, any application run on reconstructed data increase in 
accuracy. Next section, we observe the effects of utility- 
optimal pdf generalizations on data mining applications, rule 
mining and classification, by looking at example datasets 
in Table 11. Since NDGH approach is the most flexible 
one among previous generalization types, the comparison is 
carried out between datasets T; and T;. 

C. Effects on Rule Mining and Classification 

Association rule mining is a process of finding binary rules 
(e.g., 'M =+ USA') that hold frequently in a given dataset 
(e.g., T) .  Frequency is defined in terms of minimum support 
(percentage of tuples in T that contain M and USA together, 
P(M UUSA) = $) and conjdence (percentage of tuples in T 
containing M that also contain USA, ?(USA I M )  = g). In 
our methodology, an anonymization is assumed to be success- 
ful in terms of rule mining, if the associated reconstruction 
respects exactly the same frequent rules as the original dataset 
does. The success is obviously correlated with the probability 
that the reconstruction correctly simulates the original dataset. 

Let T* be a pdf generalization of T and b ( ~ ' )  is a boolean 
function that returns 1 iff dataset T' respects rule r with min 
support s and confidence c, then probability that T~ will also 
respect rule r is given by 

Since matching probabilities are higher for utility-optimal 
pdf anonyrnizations, expected rule mining success rate of 
such anonymizations should be at least as good as that of 
other anonyrnizations. (e.g., NDGH) Table VI lists the rules 
holding in T with minimum support 0.25 and minimum 
confidence 0.75 along with the probabilities that the rules 
apply for reconstructed NDGH anonymization T; and pdf 
anonymization T,*. As expected, TG has higher probabilities 
for creating original rules. 

It is also not desirable to have false rules (rules that does 
not hold frequently in the original dataset) in the reconstructed 
datasets. It is stated in [I31 that only higher level rules 
can be mined from overly generalized single dimensional 
anonymizations without significant errors. (e.g., '{Ca, US) 
+ M' will be mined from T; as opposed to 'US + M') The 
reason is that there is no probabilistic way of distinguishing 
between different atomic values of a given generalized value. 
(e.g, for T;, if probability of getting rule 'US + M' is 
0.68, then probability of getting false rule 'Canada + M' 
is also 0.68.) This is true for anonymizations that make use 
of DGH, interval, or NDGH generalizations. However, pdf 
anonymizations provide distributions to differentiate between 
atomic values. The same problem does not exist in such 
anonymizations. (e.g., probability that 'Canada + M' holds 
for T,* is 0.26, whereas 'USA + M' holds with 0.95 proba- 
bility.) 

Effects of pdfs on classification is very similar because 
many classification algorithms basically build models based 
on rules of the form {qil, . . . , qi,) =+ s where s is a class 
value (e.g., salary) and qii are non class values (e.g., sex, job, 
nation). The more actual class rules the reconstructed data 
supports, the more successful it is in terms of classification. 
pdfs will have the same probabilistic advantage over previous 
generalization types w.r.t. classification. (in T ,  rule 'Italy =+ 
>50K1 is a class rule holding with high confidence. Table 
VII shows the probabilities that reconstructed T; and T,* 
will respect this rule for different minimum support and 
confidence. T; has higher probabilities for each level.) 

In Section VI, we experiment the effect of pdf generaliza- 
tions on association and class rule mining and show that use 
of pdf generalization increase the effectiveness of data mining 
applications. 

V. PDF and Privacy:6-Presence 

In this section, we switch to a probabilistic existential 
uncertainty model, &presence. We focus on how privacy is af- 
fected in a &presence environment when PDF generalizations 
are used. We introduce a new &presence algorithm WPALM 
that will inject utilization into the datasets without violating 
the privacy constraints and next improve WPALM in terms 
of efficiency with a second algorithm, PPALM. 

four tuples contain 1 professor and 3 students, so fjob =
{Pr: 0.25, St : 0.75}.)

The next theorem states that matching probability
monotonically decreases as each fa gets far away from the
utility-optimal distribution;

Theorem 3: For an equivalence class EG, let p(o) :

U('/(o) a be the utilit~ o.pti~al distribution and let p(1) and
P\:) be two other dlstnbutlOn functions with If(l) (v·) -

(0) (2) ( ) a ,
f a(vi)l:'S If a(Vi) - f 0 a(vi)1 for all attribute a and for
all Vi E Da then PF(l) :::: P F (2).

PROOF. See Appendix I D

Theorem 3 gives a way to compare pdf generalizations in
terms of utilization. In Tables II and V matching probability
for T;2 is bigger than that of T~. This due to the fact that
distributions in r.;2 is closer to those of utility optimal T;.
(for the first eqUivalence class, !Job (Pr) is 0.25 for T;, 0.4
for T;2 and 0.5 for T~.) In Section V, we use the observation
in Theorem 3 to increase utilization in a given anonymization.

Since all other generalization types assume uniform dis­
tribution on atomic values of a generalized value, (no mat­
ter what the underlying original frequencies of the atomic
values are) it is clear that utility-optimal pdf generalizations
simulates original datasets at least as good as the other
generalization types do.

As the reconstructed data becomes similar to the original
data, any application run on reconstructed data increase in
acc~racy. Next section, we observe the effects of utility­
optimal pdf generalizations on data mining applications, rule
~ining and classification, by looking at example datasets
In Table II. Since NDGH approach is the most flexible
one among previous generalization types, the comparison is
carried out between datasets T~ and T;.

C. Effects on Rule Mining and Classification

Association rule mining is a process of finding binary rules
(e.g., 'M =>- USA') that hold frequently in a given dataset
(e.g., T). Frequency is defined in terms of minimum support
(percentage of tuples in T that contain M and USA together,
P(MUUSA) = ~) and confidence (percentage of tuples in T
containing M that also contain USA, P(USA I M) = ~). In
our methodology, an anonymization is assumed to be success­
ful in terms of rule mining, if the associated reconstruction
respects exactly the same frequent rules as the original dataset
does. The success is obviously correlated with the probability
that the reconstruction correctly simulates the original dataset.

Let T* be a pdf generalization of T and b(T') is a boolean
function that returns 1 iff dataset T' respects rule r with min
support s and confidence c, then probability that T R will also
respect rule r is given by

P(b(TR
) = 1)

L Pr(TR = T') . b(T')
T'

L IITR[il[j].f(T'[i][j]) . b(T')
T' i,j

Since matching probabilities are higher for utility-optimal
pdf anonymizations, expected rule mining success rate of
such anonymizations should be at least as good as that of
other anonymizations. (e.g., NDGH) Table VI lists the rules
holding in T with minimum support 0.25 and minimum
confidence 0.75 along with the probabilities that the rules
apply for reconstructed NDGH anonymization T~ and pdf
anonymization T;. As expected, T; has higher probabilities
for creating original rules.

It is also not desirable to have false rules (rules that does
not hold frequently in the original dataset) in the reconstructed
datasets. It is stated in [13] that only higher level rules
can be mined from overly generalized single dimensional
anonymizations without significant errors. (e.g., '{Ca, US}
=>- M' will be mined from T~ as opposed to 'US =>- M') The
reason is that there is no probabilistic way of distinguishing
between different atomic values of a given generalized value.
(e.g, for T~, if probability of getting rule 'US =>- M' is
0.68, then probability of getting false rule 'Canada =>- M'
is also 0.68.) This is true for anonymizations that make use
of DGH, interval, or NDGH generalizations. However, pdf
anonymizations provide distributions to differentiate between
atomic values. The same problem does not exist in such
anonymizations. (e.g., probability that 'Canada =>- M' holds
for T; is 0.26, whereas 'USA =>- M' holds with 0.95 proba­
bility.)

Effects of pdfs on classification is very similar because
many classification algorithms basically build models based
on rules of the form {qi 1, ... , qin } =>- s where s is a class
value (e.g., salary) and qii are non class values (e.g., sex, job,
nation). The more actual class rules the reconstructed data
supports, the more successful it is in terms of classification.
pdfs will have the same probabilistic advantage over previous
generalization types W.r.t. classification. (in T, rule 'Italy =>­
>50K' is a class rule holding with high confidence. Table
VII shows the probabilities that reconstructed T~ and T:
will respect this rule for different minimum support add
confidence. T; has higher probabilities for each level.)

In Section VI, we experiment the effect of pdf generaliza­
tions on association and class rule mining and show that use
of pdf generalization increase the effectiveness of data mining
applications.

v. PDF and Privacy:o-Presence

In this section, we switch to a probabilistic existential
uncertainty model, 8-presence. We focus on how privacy is af­
fected in a 8-presence environment when PDF generalizations
are used. We introduce a new 8-presence algorithm WPALM
that will inject utilization into the datasets without violating
the privacy constraints and next improve WPALM in terms
of efficiency with a second algorithm, PPALM.



TABLE VI. Rules holding in table T with s 2 
0 . 2 5 , ~  2 0.75 and holding probabilities of the 
same rules for T,' and T,' 

table 

TABLE VII. Probabilities that reconstructed T,' 
and T; will respect rule 'Italy + >50K' for 
different minimum support and confidence 

table 

A. PDF 6-Presence A1gori thms:WPALM & 
P P A L M  

In this section, we empower the previously proposed 
6-presence algorithm, SPALM [12], to make use of PDF 
generalizations. SPALM when given a public table PT and 
private table T ,  returns an anonymization T* of T which 
is 6-present wrt. PT and T .  Algorithms presented in this 
section WPALM and PPALM both attempt to increase the 
utilization of the output anonymization of SPALM further 
without violating 6-presence privacy constraints (so no privacy 
loss is encountered.). The difference between two pdf algo- 
rithms is covered in the next subsections, the discussion in this 
section applies for both of the algorithms, so we will use the 
name [W,P]PALM in place of both pdf algorithms. We show 
experimentally in Section VI that outputs of [W,P]PALM are 
better utilized w.r.t. KL-cost and data mining applications. 

[W,P]PALM operates on the SPALM output, which 
is already &present w.r.t. input datasets. Additionally, 
[W,P]PALM shifts pdfs within the output towards utility op- 
timal distribution as long as 6-presence property is preserved. 
Resulting anonymization is obviously not optimal w.r.t. space 
of all possible pdf outputs, but is statistically at least as good 
as the SPALM output. 

For each equivalence class EC of the SPALM output, 
[W,P]PALM shifts the value distributions (f s), from unifor- 
mity towards utility-optimal distribution step by step. The 
maximum no. of steps is set by input variable mxs.  (in other 
words, distribution of EC becomes utility optimal in m x s  
steps, if neither of the intermediate distributions violates 6- 
presence.) For value vi of attribute a in EC, let f(") be 
the initial (uniform) distribution function. (e.g., given that 
v* is the generalized value used in EC initially, f(")(vi) = 

Uniform Distribution 

0 
Italy Britain France 

Fig. 2. Shifting of the uniform distribution 
(inherited in data value 'Europe') in T,* of Table 
II to the utility optimal distribution in three 
steps. 

figure 

1 
I{v I v*Ed'd(u)~I if v* E Gd(vi) and zero otherwise.) Let f (o) 

be the utility optimal distribution function (e.g., f (O)(vi) = 
&). Then distribution function f k  being tried in step k is 
defined as 

f (Vi) = f (") (Vi) + k . f ("'(Vi) - f (") (Vi) 
m x s  (3) 

In Figure 2, f(")('~uro~e')={1tal~:0.33,~ritain:0.33, 
France:0.33), f (0)(c~urope')={~taly:0.75,~ritain:0.25, 
France:O). For m x s  = 3, f '('Europe3)= 
{Italy:0.47,Britain:0.30,France:0.22), and f 2( '~urope')= 
{Italy:0.6l,Britain:0.27,France:O. I I ) .  By Theorem 3, outputs 
with fi distribution is better utilized than those of with fj if 
i > j. So each shift injects utilization into the anonymization. 

In Algorithm 1, we show the pseudocode for [W,P]PALM. 
Algorithm, in line 2 calls SPALM to get optimal dgh &present 
anonymization of PT, PT* (note that T* c PT*). In lines 
4-10, distribution of each equivalence class of the anonymiza- 
tion are shifted towards the utility optimal distribution as long 
as presence property is not violated. 

Boolean function ispresent is called in line 8 to check for 
presence property. However checking for presence property 
for non-uniform pdfs is not as simple as in uniform pdfs.(e.g, 
dgh, interval, ndgh generalizations) Next two sections cover 
how checking process is carried out for pdf generalizations. 
WPALM and PPALM differs in their implementation of 
ispresent. 

Uniform Distribution....................................~ .0.3

0.25

f(v)

0.75

Rules NDGH:T';: PDF:T;
USA => M 0.68 0.95
Italy => F 0.68 0.95

Singer => Italy 0.09 0.36
Singer => F 0.41 0.68
M => USA 0.3l 0.74
F => Italy 0.31 0.74

TABLE VI. Rules holding in table T with s 2:
0.25, c 2: 0.75 and holding probabilities of the
same rules for T~ and T;

table

Attribute
1... """"'lllim.........;,V.lue v

TABLE VII. Probabilities that reconstructed T~

and T; will respect rule 'Italy => >SOK' for
different minimum support and confidence

table

o
Italy Britain France

s > 0.25 s > 0.375
c> 0.66 I c - 1 c> 0.75 I c - 1

T* 0.52 I 0.32 0.12 I 0.06nT; 0.84 I 0.52 0.42 I 0.1

A. PDF 8-Presence Algorithms:WPALM &
PPALM

Fig. 2. Shifting of the uniform distribution
(inherited in data value 'Europe') in T; ofTable
II to the utility optimal distribution in three
steps.

figure

In this section, we empower the previously proposed
8-presence algorithm, SPALM [12j, to make use of PDF
generalizations. SPALM when given a public table PT and
private table T, returns an anonymization T' of T which
is 8-present wrt. PT and T. Algorithms presented in this
section WPALM and PPALM both attempt to increase the
utilization of the output anonymization of SPALM further
without violating 8-presence privacy constraints (so no privacy
loss is encountered.). The difference between two pdf algo­
rithms is covered in the next subsections, the discussion in this
section applies for both of the algorithms, so we will use the
name [W,PjPALM in place of both pdf algorithms. We show
experimentally in Section VI that outputs of [W,PjPALM are
better utilized w.r.t. KL-cost and data mining applications.

[W,PjPALM operates on the SPALM output, which
is already 8-present w.r.t. input datasets. Additionally,
[W,PjPALM shifts pdfs within the output towards utility op­
timal distribution as long as 8-presence property is preserved.
Resulting anonymization is obviously not optimal w.r.t. space
of all possible pdf outputs, but is statistically at least as good
as the SPALM output.

For each equivalence class EG of the SPALM output,
[W,PjPALM shifts the value distributions (fs), from unifor­
mity towards utility-optimal distribution step by step. The
maximum no. of steps is set by input variable mxs. (in other
words, distribution of EG becomes utility optimal in mxs
steps, if neither of the intermediate distributions violates 8­
presence.) For value Vi of attribute a in EG, let j(11.) be
the initial (uniform) distribution function. (e.g., given that
v' is the generalized value used in EG initially, j(11.)(Vi) =

Ilv I v'~,pd(v)}1 if v' E 'lfJd(Vi) and zero otherwise.) Let j(o)

be the utility optimal distribution function (e.g., j(o)(Vi) =
I~bl)' Then distribution function jk being tried in step k is
defined as

(3)

In Figure 2, j(11.)('Europe')={Italy:O.33,Britain:O.33,
France:O.33}, j(o) ('Europe')={Italy:O.75,Britain:O.25,
France:O}. For mxs 3, jl('Europe')=
{Italy:0.47,Britain:O.30,France:O.22}, and j2('Europe')=
{Italy:O.61,Britain:O.27,France:O.II}. By Theorem 3, outputs
with ji distribution is better utilized than those of with jj if
i > j. So each shift injects utilization into the anonymization.

In Algorithm I, we show the pseudocode for [W,PjPALM.
Algorithm, in line 2 calls SPALM to get optimal dgh 8-present
anonymization of PT, PT' (note that T' CPT'). In lines
4-10, distribution of each equivalence class of the anonymiza­
tion are shifted towards the utility optimal distribution as long
as presence property is not violated.

Boolean function isPresent is called in line 8 to check for
presence property. However checking for presence property
for non-uniform pdfs is not as simple as in uniform pdfs.(e.g,
dgh, interval, ndgh generalizations) Next two sections cover
how checking process is carried out for pdf generalizations.
WPALM and PPALM differs in their implementation of
isPresent.



Algorithm 1 WPALM and PPALM - 
Require: public table P T ;  private table T,  parameter 6, 

maximum number of shift steps mxs. 
Ensure: return a pdf generalization of T respecting 

(6,in,brnax)-presence with cost at most that of the 
optimal full domain generalization. 

1: insert "Ext" attribute into P T  according to T as in Table 
111. 

2: run SPALM on P T ,  T ,  and 6, let P T *  be the output 
anonymization of P T  

3: k = 1. 
4: while k < m x s  do 
5: for all equivalence class E C  in P T *  do 
6: for all attribute a do 
7: update the distribution function of values as f k  

given in Eqn. 3 
8: if !i~Present(PT*,PT,6,~,, 6,,,) then 
9: undo last updates. 

10: return 

B. Checking for &-Presence P r o p e r t y  

We show in this section how to check if a given pdf 
anonymization T *  of T is &present w.r.t. a public dataset 
P T .  We first recall how it is done for uniform distributions. 

I )  Checking for Uniform Distributions: 
For a public dataset P T ,  private dataset T ,  and its non- 
overlapping anonymization T *  with some generalization map- 
ping p, let P T *  be the anonymization of P T  with the same 
mapping p. (see Table IV). For uniform and non-overlapping 
generalizations, the existence probabilities can simply be 
calculated by working on the anonymization PT* :  

Dejinition 9 (Projected Set): A set of tuples J  c P T  
is a projected set of P T  if their generalizations form an 
equivalence class in PT*.  We denote tuple j* to be their 
generalization in P T *  (or in T'). 

In Tables 111 and IV, {Chris,Luke,Darth,George,Obi) is 
a projected set with j *  = <M,*,America>. In non- 
overIapping generalizations, projected sets do not intersect. 

Let J  be a projected set in P T  and let nu = I{tuple ji E 
J  I j i [Ext] = u ) (  then existence probability for any ji E J  is 
given by 

In other words, existence probability for a tuple is the number 
of tuples with Ext=l ovir the total numbei of tuples in the 
equivalence class. This is because, given T *  and P T ,  among 
no +nl = I JI many tuples, n1 of them exists in T .  (Note that 
n1 is the cardinality of j *  in T*.) And every tuple is equally 
likely. Existence probabilities are the same for any tuple of 
the same projected set. 

2)  Checking for Arbitrary Distributions: 
When we introduce non-uniform probability distributions, the 
existence probabilities will be different for each tuple in a 

9 
given projected set. Adversary still knows n1 tuples is selected 
among I J (  tuples but likelihood of each tuple is different due 
to the distribution of the outcome: 

Dejinition 10 (Likelihood Probabiiity): Likelihood proba- 
bility for a tuple j E J  written as 6 , is the probability that 

j E J  and j* E T *  are the same entities. 6' = P ( ( j  E 
P T )  + ( j*  E T*)) = ITi j*[i].f(j[i]). 

Given P T  of Table I11 and T,' of Table V 
J  ={Chris,Luke,Darth,George,Obi) is a projected set 
with j* = <M, {Pr:0.25,St:0.75), {Ca:0.25,US:0.75)>. 
The likelihood probability for Chris (<M,St,US>) is 
pjdhTi, = 1 .0 .75 .  0.25 = &. 

Definition 11 (Likelihood Set and Existence Set): Let set 
of tuples J  = {jl ,  . . .j,) be a projected set in P T  w.r.t. 
some anonymization T*. Likelih~od set for J  is defined as 
P = {pl, . . . ,p,) where pi = 4i . We write Ps for a set of 

likelihoods S for n p (product of all the likelihoods in S )  
P E S  

Existence set for J  is defined as E X  = {exl, .  . . , ex,) where 
exi = P ( j i  E T ( T*,  PT).  

Likelihood set for J  in the examole above is P = 
(3 9 9 3 1) 16' 16'  16 1 16 1 16 ' 

It is very easy and efficient to create the likelihood set for 
a given projected set. Given the likelihood set and the number 
of existent tuples nl, each element in the existence set can 
be calculated one by one. Existential probability for any tuple 
jk E J takes the following conditional form: 

eXk = P ( j k  E T ( T * , P T )  

- - P ( j k  E T A T *  I P T )  
P(T '  1 P T )  

Following the above example, the existence probability for 
Chris is calculated as 

Similarly, existence probability for Luke and Darth 
is 0.94, for George 0.82 and for Obi 0.47. ( E X  = 
{0.82,0.94,0.94,0.82,0.47) implying this equivalence class 

L Ps
SCPAIS[=n'

Following the above example, the existence probability for
Chris is calculated as

P(Chris E T I T;,PT) =
3 (9 9 3 81 27 27 )

16 161616+16"+16"+16"

~+~+~+-&\-+-&\-

14 = 0.82
17

Similarly, existence probability for Luke and Darth
is 0.94, for George 0.82 and for Obi 0.47. (EX =
{0.82, 0.94, 0.94, 0.82, 0.47} implying this equivalence class
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given projected set. Adversary still knows n 1 tuples is selected
among IJI tuples but likelihood of each tuple is different due
to the distribution of the outcome:

Definition 10 (Likelihood Probability): Likelihood proba­
bility for a tuple j E J written as Pj', is the probability that

j E J and j* E T* are the same entities. Pj' = P((j E

PT);=, (j* E T*)) = ITij*[i].f(j[i]).
Given PT of Table III and T; of Table V

J ={Chris,Luke,Darth,George,Obi} is a projected set
with j* = <M, {Pr:0.25,StO.75}, {Ca:0.25,US:0.75}>.
The likelihood probability for Chris «M,St,US» is

., 3
pbris = 1· 0.75·0.25 = 16·

Definition 11 (Likelihood Set and Existence Set): Let set
of tuples J = {Ji, ... jn} be a projected set in PT w.r.t.
some anonymization T*. Likelihood set for J is defined as
P = {PI,··· ,Pn} where Pi = li}:. We write Ps for a set of

likelihoods S for II P (product of all the likelihoods in S)

pES
Existence set for J is defined as EX = {ex1,· .. ,exn } where
eXi = P(ji E T I T*, PT).

Likelihood set for J in the example above is P =

{lG, ft, ft, lG, ft}·
It is very easy and efficient to create the likelihood set for

a given projected set. Given the likelihood set and the number
of existent tuples n 1 , each element in the existence set can
be calculated one by one. Existential probability for any tuple
jk E J takes the following conditional fonn:

eXk P(jk E T I T*,PT)
P(jk E T AT* I PT)

P(T* I PT)

L Ps
SCPI\ISI=n1 /\

PkES
(4)

Ps

L Ps
SCPA!S[=n'

SCPI\ISI=n1-l/\

PkrtS

Pk·

Algorithm 1 WPALM and PPALM

We show in this section how to check if a given pdf
anonymization T* of T is Ii-present w.r.t. a public dataset
PT. We first recall how it is done for unifonn distributions.

1) Checking for Uniform Distributions:
For a public dataset PT, private dataset T, and its non­
overlapping anonymization T* with some generalization map­
ping J.L, let PT* be the anonymization of PT with the same
mapping J.L. (see Table IV). For unifonn and non-overlapping
generalizations, the existence probabilities can simply be
calculated by working on the anonymization PT*:

Definition 9 (Projected Set): A set of tuples J c PT
is a projected set of PT if their generalizations fonn an
equivalence class in PT*. We denote tuple j* to be their
generalization in PT* (or in T*).

In Tables III and IV, {Chris,Luke,Darth,George,Obi} is
a projected set with j* = <M,*,America>. In non-
overlapping generalizations, projected sets do not intersect.

Let J be a projected set in PT and let n" = I{tuple ji E

J I ji[Ext] = u}! then existence probability for any ji E J is
given by

B. Checking for Ii-Presence Property

Require: public table PT; private table T, parameter Ii,
maximum number of shift steps mxs.

Ensure: return a pdf generalization of T respecting
(limin,limax)-presence with cost at most that of the
optimal full domain generalization.

I: insert "Ext" attribute into PT according to T as in Table
III.

2: run SPALM on PT, T, and Ii, let PT* be the output
anonymization of PT

3: k = l.
4: while k :S mxs do
5: for all equivalence class EC in PT* do
6: for all attribute a do
7: update the distribution function of values as fk

given in Eqn. 3
8: if lisPresent(PT*,PT,limin,limax) then
9: undo last updates.

10: return

1

P(ji E T I T*,PT) = -on1
n +n

In other words, existence probability for a tuple is the number
of tuples with Ext=l over the total number of tuples in the
equivalence class. This is because, given T* and PT, among
nO +n1 = IJI many tuples, n 1 of them exists in T. (Note that
n 1 is the cardinality of j* in T*.) And every tuple is equally
likely. Existence probabilities are the same for any tuple of
the same projected set.

2) Checking for Arbitrary Distributions:
When we introduce non-unifonn probability distributions, the
existence probabilities will be different for each tuple in a



respects (0.47,0.94)-presence) Note that existence probabili- 
ties for the tuples of the same projected set are not necessarily 
the same when releasing pdfs. 

Algorithm 2 ispresent for WPALM 
Require: public table P T  with attribute Ext; one anonymiza- 

tion of P T ,  PT* ;  parameter 6. 
Ensure: return true iff P T *  satisfies (6,in, 6max)-presence. 

1: for all projected set J E P T  w.r.t. P T *  do 
2: for all tuples j E J do 
3: calculate existence probability ex for j as given in 

Eqn 4. 
4: if ex 5 hmin then 
5: return false 
6: if ex > 6max then 
7: return false 
8: return true; 

Algorithm 2 shows the implementation of the boolean 
function ispresent for WPALM that makes use of Eqn 4 to 
check for the presence property. Basically algorithm calculates 
the existence probabilities for all tuples and returns true iff all 
existence probabilities lies within the boundaries of presence 
constraints. 

The minimum and the maximum existence probability in 
all of the existence sets of P T  is sufficient to check for 
the presence property. However calculating exact existence 
probabilities by using Equation 4 is very costly. Many possible 
groupings of likelihood probabilities need to be multiplied. 
For a projected set of size m = no+nl with n1 present tuples, 
calculating existence probability of one tuple will require (2) 
summations on the denominator. For even moderate values of 
m (and with n1 = T), calculation of Eqn 4 is infeasible 
even if likelihood probabilities for the tuples fits into the 
memory. Next subsection shows how to weaken this problem 
by presenting an alternative algorithm. 

C. Speeding Up the Checking Process 

In this section, we improve the 6-presence checking 
process in terms of efficiency and introduce the algorithm 
PPALM that makes use of the speed up process. 

Checking 6-presence property can be speed up in two 
steps: 

1) Existence probability of only two tuples needs to be 
calculated for checking. 

2) Calculation of exact existence properties is not needed. 
Finding upper and lower bounds on the max and min 
existence probabilities also works given the bounds are 
tight enough. 

We first show the correctness of item 1. To check for 
the 6-presence property, it is sufficient to calculate just the 
maximum and minimum existence probabilities in a given 
projected set. Theorem 4 states that tuples with maximum and 
minimum likelihoods have maximum and minimum existence 
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probabilities and it is sufficient to check only these two 
boundary tuples for 6-presence property. 

Theorem 4: Given a likelihood set P = 

{Pmin ,pmax,pl ,  . . . ,pm) and the no. of present tuples 
n l ,  let pmin 5 pi 5 pmax for i E [I - m]. If exmin 2 hmin 
and exmax 5 6max then hmin 5 ex < 6max for any 
ex E E X .  

PROOF. See Appendix I1 

Following the example above, Luke and Obi have the max 
and min likelihood (&, A )  respectively. They also have the 
max and minimum existence probability (0.94,0.47). So it is 
sufficient to calculate the probabilities for Luke and Obi.' 

We next show the correctness of item 2. The checking 
process can be fastened by calculating boundaries on the 
existence probabilities other than calculating the exact proba- 
bilities. Lower and upper bound likelihood sets, defined below, 
are used to bound min and max existence probabilities: 

Definition 12: Given the no. of present tuples n l ,  let 
P ,= {pmin,pmax,pl, . . .  ,pm} be a likelihood set with 
pmZn < pi < pmax for all i E [l - m]. We say p1 = 
{ ( ~ l ) ~ ' ~ ,  (pl)max,pf,. . . , &) is a lower bound likelihood 
set of P if (pi)min = pmzn, = pmaX, and pf = 
pmax for all i E [ l  - m]. 
Similarly PT = {(pT)min I ( P ~ ) ~ ~ ~ , P ~ , . . . , P & )  is an upper 
bound likelihood set of P if (pT)mzn = pmzn, (pT)max = 

pmax, and p! = pmin for all i E [l - m]. 
~ollowiny! the example above, lower bound set of P = - 

( 3 9 2 3  16, 16,  ~ 6 '  W) 1 is p1 = {&, 2, 2, &,A) and upper 
bound set is pT = {A, A, A ,  A ,  &). 

The following theorem states that lower and upper bound- 
ary likelihood sets can be used to check if the original like- 
lihood set satisfies 6-presence. If lower and upper boundary 
sets satisfy the presence property over one of the 6 constraint, 
so does the original likelihood set. However the reverse is not 
true. 

Theorem 5: Given the no. of present tuples n l ,  likeli- 
hood sets P,  p l ,  p T ,  and their corresponding existence sets 
EX,  EX^, EXT; 
hmin 5 ex 5 hmaX for any ex E E X  if hmin 5 (exl)min 
and (exT)max 5 hmaX. 

PROOF. See Appendix 111. 

Following the example above, corresponding existence 
sets Ex1 = {0.92,0.92,0.92,0.92,0.31), ExT = 

{0.75,0.97,0.75,0.75,0.75). This implies that original like- 
lihood set P (and the original projected set) satis- 
fies (0.31,0.97)-presence. Precisely P satisfies (0.47,0.94)- 
presence. 

The advantage of working on the boundary sets is that to 
check for the presence property is much more efficient for the 
boundary sets due to the element repetition. Eqn 4 takes the 
following form for existence probability ( e ~ l ) ~ ~ ~ :  

'IF 6,in = 0 or 6,,, = 1, only one tuple needs to be checked as 
opposed to two. 

respects (0.47,0.94)-presence) Note that existence probabili­
ties for the tuples of the same projected set are not necessarily
the same when releasing pdfs.

Algorithm 2 isPresent for WPALM

Require: public table PT with attribute Ext; one anonymiza­
tion of PT, PT'; parameter O.

Ensure: return true iff PT' satisfies (Omin,Omax)-presence.
I: for all projected set J E PT w.r.t. PT' do
2: for all tuples j E J do
3: calculate existence probability ex for j as given in

Eqn 4.
4: if ex ::::: Omin then
5: return false
6: if ex 2': Omax then
7: return false
8: return true;

Algorithm 2 shows the implementation of the boolean
function isPresent for WPALM that makes use of Eqn 4 to
check for the presence property. Basically algorithm calculates
the existence probabilities for all tuples and returns true iff all
existence probabilities lies within the boundaries of presence
constraints.

The minimum and the maximum existence probability in
all of the existence sets of PT is sufficient to check for
the presence property. However calculating exact existence
probabilities by using Equation 4 is very costly. Many possible
groupings of likelihood probabilities need to be multiplied.
For a projected set of size m = n O+n1 with n 1 present tuples,
calculating existence probability of one tuple will require (;::)
summations on the denominator. For even moderate values of
m (and with n 1

>::J 7)' calculation of Eqn 4 is infeasible
even if likelihood probabilities for the tuples fits into the
memory. Next subsection shows how to weaken this problem
by presenting an alternative algorithm.

C. Speeding Up the Checking Process

In this section, we improve the o-presence checking
process in terms of efficiency and introduce the algorithm
PPALM that makes use of the speed up process.

Checking o-presence property can be speed up in two
steps:

I) Existence probability of only two tuples needs to be
calculated for checking.

2) Calculation of exact existence properties is not needed.
Finding upper and lower bounds on the max and min
existence probabilities also works given the bounds are
tight enough.

We first show the correctness of item 1. To check for
the o-presence property, it is sufficient to calculate just the
maximum and minimum existence probabilities in a given
projected set. Theorem 4 states that tuples with maximum and
minimum likelihoods have maximum and minimum existence
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probabilities and it is sufficient to check only these two
boundary tuples for o-presence property.

Theorem 4: Given a likelihood set P
{pmin,pmax,Pl,'" ,Pm} and the no. of present tuples
n1, let pmin ::::: Pi ::::: pmax for i E [1 - m]. If exmin 2': Omin
and exmax ::::: omax then Omin ::::: ex ::::: omax for any
ex E EX.

PROOF. See Appendix II 0

Following the example above, Luke and Obi have the max
and min likelihood (ft, 16) respectively. They also have the
max and minimum existence probability (0.94,0.47). So it is
sufficient to calculate the probabilities for Luke and Obi. I

We next show the correctness of item 2. The checking
process can be fastened by calculating boundaries on the
existence probabilities other than calculating the exact proba­
bilities. Lower and upper bound likelihood sets, defined below,
are used to bound min and max existence probabilities:

Definition 12: Given the no. of present tuples nl, let
P = {pmin,pmax,Pl,'" ,Pm} be a likelihood set with
pmin < Pi < pmax for all i E [1 - m]. We say pL =

{(pL)min,(pL)max,pL""p;,,} is a Lower bound likelihood
set of P if (pL) min = pmin, (pI)max = pmax, and pi =
pmax for all i E [1 - m].
Similarly pi = {(p'rin , (p,)max,pL .. · ,pIn} is an upper
bound likeLihood set of P if (pl)min = pmin, (pl)maX =

pmax, and pI = Pmin for all i E [1 - m].
Following the example above, lower bound set of P

{ 3 9 9 3 I}' pI _ {9 9 9 9 I} d
16' 16' 16' 16' 16 IS - 16' 16' 16' 16' 16 an upper

bound set is pi = {16, ft, 16, ft, 16}·
The following theorem states that lower and upper bound­

ary likelihood sets can be used to check if the original like­
lihood set satisfies o-presence. If lower and upper boundary
sets satisfy the presence property over one of the 0 constraint,
so does the original likelihood set. However the reverse is not
true.

Theorem 5: Given the no. of present tuples n 1 , likeli­
hood sets P, pL, pi, and their corresponding existence sets
EX, EXL,EX';
Omin ::::: ex ::::: omax for any ex E EX if Omin ::::: (exl)min
and (ex l)maX ::::: Omax.

PROOF. See Appendix Ill. 0

Following the example above, corresponding existence
sets EXL {0.92, 0.92, 0.92, 0.92, 0.31}, EX'
{0.75, 0.97, 0.75, 0.75, 0.75}. This implies that original like­
lihood set P (and the original projected set) satis­
fies (0.31,0.97)-presence. Precisely P satisfies (0.47,0.94)­
presence.

The advantage of working on the boundary sets is that to
check for the presence property is much more efficient for the
boundary sets due to the element repetition. Eqn 4 takes the
following form for existence probability (ex l r in:

Ilf Omin = 0 or omax = 1, only one tuple needs to be checked as
opposed to two.
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A. PDF for k-Anonymity  

Equation 5 does not require addition of many likelihood 
products so it is much faster to compute compared to Equation 
4. However boundary sets are useful if lower and upper 
bounds on the existence probabilities are tight enough. The 
more each likelihood probability is shifted in the boundary 
sets, the more existence probabilities deviate from the original 
probability. 

Algorithm 3 ispresent for PPALM 
Require: public table P T  with attribute Ext; one anonymiza- 

tion of P T ,  P T * ;  parameter 6. 
Ensure: return true iff N C  satisfies (6min,6max)-presence. 

1: for all projected set J E P T  do 
2: let n1 be the number of tuples in J with E z t  = 1 
3: create the likelihood set P for J 
4: create lower and upper bound likelihood sets pl, pT 

of P. 
5: calculate ex. probability [ ( e ~ ~ ) ~ ~ ~ ]  for the 

min [max] likelihood in P' [ p T ]  w.r.t. n' 
6: if (ezl)min 5 bmin then 
7: return false 
8: if 2 bmaX then 
9: return false 

10: return true; 

Algorithm 3 shows the implementation of the boolean 
function ispresent for PPALM that makes use of the speed up 
process. Basically algorithm creates upper and lower bound 
likelihood sets for the likelihood sets of each projected set in 
P T  w.r.t. the anonymization and returns true iff bound sets 
satisfy partial presence property. 

In Section VI, we show experimentally that PPALM and 
WPALM better utilizes the anonymizations compared to 
SPALM without violating the presence constraints. We also 
compare WPALM and PPALM in terms of efficiency and 
utilization and show that speeding up techniques given in this 
section work with great precision and efficiency in practice 
on real data. 

This section presents k-anonymity experiment to the eval- 
uate maximum utilization one can get from pdfs. We tried 
"real data" experiments by adapting the Adult dataset from 
the UCI Machine Learning Repository [4]. The dataset was 
prepared the same way as in [13]. Entries with missing 
values are removed and the 8 attributes that are potential 
identifiers are used. Continuous age column was discretized 
to ten nominal values to facilitate probability distribution 
calculations. The dataset is k-anonymized with DGH algo- 
rithm Incognito [7] and interval algorithm Mondrian [8]. 
Each output is then recreated by using different generalization 
types but equivalence classes were preserved. (Same process 
as shown in Tables I,II, and V) The generalization types 
compared are DGH (for Incognito), interval (for Mondrian), 
NDGH and utility-optimal PDF. We also used two additional 
PDF generalizations INTER1 and INTER2 that assigns value 
distributions between uniform (as in NDGH) and optimal 
distribution. Both distributions equally partitions the euclidean 
distance from uniform to optimal into three parts. INTER1 
is closer to optimal distribution. (More precisely, INTER1 
and INTER2 are the two intermediate distributions f 2  and 
f 1  defined in Eqn 3 with mxs = 3.) Each anonymization 
is reconstructed 5 times with different random seeds before 
mining applications are applied on each of them. We present 
in the graphs average results of these 5 executions. 

We first run association rule mining as the data mining 
application on the reconstructions. From each reconstruction, 
we extracted set of rules with confidence higher than 0.8. (0.8 
was used in [I31 and we observe 0.8 is a good minimum 
confidence level to get meaningful rules from the adult 
dataset.) As done in [13], before mining for association rules, 
to get meaningful rules, we removed the attributes workclass, 
race, and native-country since the majority of the entries in 
the database have the same value for these attributes. The 
set of rules R0 from original dataset and the set of rules RT 
from reconstructed datasets created with minimum confidence 
c were compared with the following distance metric: 

Let CT,R be the function that returns the confidence of rule 
T in R if T E R, and returns 0.8 if T @ R. 

Informally distance metric above sums up the absolute dif- 
ference of confidence levels of the same rule for two different 
sets of rules (assuming the minimum confidence for non- 

VI. Experiments existing rules). We will name the distance between the ruleset 
of a particular reconstruction and the ruleset of the original 
distribution as the absolute error of the reconstruction. 

In this section, we experimentally evaluate pdf generaliza- Figure 3(a) and 3(b) show absolute errors of PDF, IN- 
tions. We first experiment the maximum utilization we can TER1, INTER2, and NDGH reconstructions with respect to 
get from pdfs by assuming k-anonymity framework and next algorithms Incognito and Mondrian. As stated in Section 
explore the trade off between data utilization and privacy IV, utility-optimal PDF reconstruction is much closer to the 
when using pdf algorithms in a 6-presence framework. original dataset in terms of association rules supported. As 

Informally distance metric above sums up the absolute dif­
ference of confidence levels of the same rule for two different
sets of rules (assuming the minimum confidence for non­
existing rules). We will name the distance between the ruleset
of a particular reconstruction and the ruleset of the original
distribution as the absolute error of the reconstruction.

Figure 3(a) and 3(b) show absolute errors of PDF, IN­
TERl, INTER2, and NDGH reconstructions with respect to
algorithms Incognito and Mondrian. As stated in Section
IV, utility-optimal PDF reconstruction is much closer to the
original dataset in terms of association rules supported. As

This section presents k-anonymity experiment to the eval­
uate maximum utilization one can get from pdfs. We tried
"real data" experiments by adapting the Adult dataset from
the UCI Machine Learning Repository [4). The dataset was
prepared the same way as in [13). Entries with missing
values are removed and the 8 attributes that are potential
identifiers are used. Continuous age column was discretized
to ten nominal values to facilitate probability distribution
calculations. The dataset is k-anonymized with DGH algo­
rithm Incognito [7] and interval algorithm Mondrian [8).
Each output is then recreated by using different generalization
types but equivalence classes were preserved. (Same process
as shown in Tables I,ll, and V) The generalization types
compared are DGH (for Incognito), interval (for Mondrian),
NDGH and utility-optimal PDF. We also used two additional
PDF generalizations INTERI and INTER2 that assigns value
distributions between uniform (as in NDGH) and optimal
distribution. Both distributions equally partitions the euclidean
distance from uniform to optimal into three parts. INTER I
is closer to optimal distribution. (More precisely, INTER I
and INTER2 are the two intermediate distributions f2 and
fl defined in Eqn 3 with mxs = 3.) Each anonymization
is reconstructed 5 times with different random seeds before
mining applications are applied on each of them. We present
in the graphs average results of these 5 executions.

We first run association rule mining as the data mining
application on the reconstructions. From each reconstruction,
we extracted set of rules with confidence higher than 0.8. (0.8
was used in [13] and we observe 0.8 is a good minimum
confidence level to get meaningful rules from the adult
dataset.) As done in [13], before mining for association rules,
to get meaningful rules, we removed the attributes workclass,
race, and native-country since the majority of the entries in
the database have the same value for these attributes. The
set of rules RO from original dataset and the set of rules Rr

from reconstructed datasets created with minimum confidence
c were compared with the following distance metric:

Let Cr,R be the function that returns the confidence of rule
r in R if r E R, and returns 0.8 if r rf:- R.

Equation 5 does not require addition of many likelihood
products so it is much faster to compute compared to Equation
4. However boundary sets are useful if lower and upper
bounds on the existence probabilities are tight enough. The
more each likelihood probability is shifted in the boundary
sets, the more existence probabilities deviate from the original
probability.

Algorithm 3 isPresent for PPALM

Require: public table PT with attribute Ext; one anonymiza­
tion of PT, PT·; parameter 8.

Ensure: return true iff N· satisfies (8min,8max)-presence.
I: for all projected set J E PT do
2: let n 1 be the number of tuples in J with Ext = 1
3: create the likelihood set P for J
4: create lower and upper bound likelihood sets p!, pT

of P.
5: calculate ex. probability (exI)min [(exT)maX) for the

min [max] likelihood in pI [pT] w.r.t. n 1

6: if (ex!)min::; 8min then
7: return false
8: if (exT) max ~ 8max then
9: return false

10: return true;

Algorithm 3 shows the implementation of the boolean
function isPresent for PPALM that makes use of the speed up
process. Basically algorithm creates upper and lower bound
likelihood sets for the likelihood sets of each projected set in
PT w.r.t. the anonymization and returns true iff bound sets
satisfy partial presence property.

In Section VI, we show experimentally that PPALM and
WPALM better utilizes the anonymizations compared to
SPALM without violating the presence constraints. We also
compare WPALM and PPALM in terms of efficiency and
utilization and show that speeding up techniques given in this
section work with great precision and efficiency in practice
on real data.

VI. Experiments

In this section, we experimentally evaluate pdf generaliza­
tions. We first experiment the maximum utilization we can
get from pdfs by assuming k-anonymity framework and next
explore the trade off between data utilization and privacy
when using pdf algorithms in a 8-presence framework.

A. PDF for k-Anonymity

IRO - Rrl = L ICr,Ro - Cr,wl
rERouRr
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(5)
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PDF distributions get closer to uniform distribution, the error 
increases for nearly all k values. 

To measure classification accuracy, we conducted exper- 
iments by using decision tree classifiers. PDF reconstruc- 
tions were better in terms of classification errors but not 
significantly. Since decision tree algorithms are very resistant 
to outliers, we also measured the algorithms' confidence 
on the created classification models by mining the class 
rules. Figures 3(c) and 3(d) plot the absolute errors for such 
rules. Similar behavior as in the case of association rule 
graphs suggests that utility-optimal PDF shows the relation 
between class values and Q1 attributes better than the other 
generalization types. 

B. PDF for &Presence  

This section presents experiments regarding privacy - util- 
ity relations when using PDF generalizations in &presence 
framework. 3 different 6-presence algorithms are compared 
with respect to utilization of the output anonymizations and 
execution time: SPALM, previously proposed 6-presence al- 
gorithm [12]; PPALM, PDF &presence algorithm presented 

As mentioned in previous sections, both WPALM and 
PPALM tries to shift uniform distribution of data values 
given in the output of SPALM towards the utility optimal 
distribution without violating &presence. For WPALM and 
PPALM, we set the maximum no of steps (mas) to 10 for the 
experiments. Each shift triggers a check if presence property 
still holds. As described in Section V-B, the checking is 
very costly for WPALM (time required by the checking is 
exponential in the size of equivalence classes, see Section V- 
B). Thus WPALM has to ignore those equivalence classes that 
cannot be handled in a reasonable time. In our experiments, 
we ignore the ECs that require the computation of existence 
probabilities with more than 5 million combinations. We 
show, in the coming sections, that WPALM is still slower 
than PPALM even with this assumption. 

For the experiments in this section, we used the diabetes 
dataset prepared and used in [I21 which contains a public 
dataset of size 45222 tuples and a private table of size 1957. 
(bmi, < 0.043 < hmaX needs to hold on the constraints.) 6 
parameters were chosen so that the effect of bmi, and hmaX 
on the evaluation is observed. The experiments were designed 
to answer the following questions: - 

in Section V; and WPALM, weak version of PPALM without 1) How effective are the proposed WPALM & PPALM 
the speed up approach given in Section V-C. ' algorithms compared to the SPALM algorithm in terms 

'WPALM is included in the experiments to show the effectiveness of of data utilization? 
the speed up process of Section V-C. 2) How efficient are the proposed PPALM algorithm com- 
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PDF distributions get closer to uniform distribution, the error
increases for nearly all k values.

To measure classification accuracy, we conducted exper­
iments by using decision tree classifiers. PDF reconstruc­
tions were better in terms of classification errors but not
significantly. Since decision tree algorithms are very resistant
to outliers, we also measured the algorithms' confidence
on the created classification models by mining the class
rules. Figures 3(c) and 3(d) plot the absolute errors for such
rules. Similar behavior as in the case of association rule
graphs suggests that utility-optimal PDF shows the relation
between class values and QI attributes better than the other
generalization types.

B. PDF for o-Presence

This section presents experiments regarding privacy - util­
ity relations when using PDF generalizations in o-presence
framework. 3 different o-presence algorithms are compared
with respect to utilization of the output anonymizations and
execution time: SPALM, previously proposed o-presence al­
gorithm [12]; PPALM, PDF o-presence algorithm presented
in Section V; and WPALM, weak version ofPPALM without
the speed up approach given in Section V-C. 2

2WPALM is included in the experiments to show the effectiveness of
the speed up process of Section V-CO

As mentioned in previous sections, both WPALM and
PPALM tries to shift uniform distribution of data values
given in the output of SPALM towards the utility optimal
distribution without violating o-presence. For WPALM and
PPALM, we set the maximum no of steps (mxs) to 10 for the
experiments. Each shift triggers a check if presence property
still holds. As described in Section V-B, the checking is
very costly for WPALM (time required by the checking is
exponential in the size of equivalence classes, see Section V­
B). Thus WPALM has to ignore those equivalence classes that
cannot be handled in a reasonable time. In our experiments,
we ignore the ECs that require the computation of existence
probabilities with more than 5 million combinations. We
show, in the coming sections, that WPALM is still slower
than PPALM even with this assumption.

For the experiments in this section, we used the diabetes
dataset prepared and used in [12] which contains a public
dataset of size 45222 tuples and a private table of size 1957.
(Omin < 0.043 < omax needs to hold on the constraints.) 0

parameters were chosen so that the effect of Omin and omax

on the evaluation is observed. The experiments were designed
to answer the following questions:

I) How effective are the proposed WPALM & PPALM
algorithms compared to the SPALM algorithm in terms
of data utilization?

2) How efficient are the proposed PPALM algorithm com-
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SPALM in terms of data utilization: We conducted experi- 
ments to compare the output utilizations of SPALM, WPALM 
and PPALM w.r.t. both the KL cost metric (Theorem 1) and 
efficiency in data mining applications, association rule mining 
and classification rule mining. Data mining operations on the 
output were carried out as described in Section VI-A. 

Figure 4(a) shows the KL cost of the output anonymiza- 
tions for SPALM, WPALM, and PPALM for various bmi, & 
b,,, intervals. WPALM improves SPALM in terms of utility 
however improvement introduced is not significant due to the 
large number of ignored ECs. On the other hand, PPALM 
introduces a great increase in the utilization by a factor of 3 at 
times. Improvement is more observable for larger 6 intervals. 
The reason for this is that single dimensional assumption 
for algorithm SPALM is too strict and does not add enough 
information content into the output anonymization even when 

The data mining results given in Figures 4(b) and 4(c) 
justify cost metric results. Error rates in finding association 
rules and classification rules from output anonymizations 
correlates with the KL costs of the anonymizations. 

2)  The Eficiency of the WPALM, PPALM & SPALM: We 
conducted a set of experiments to compare the running times 
of SPALM, WPALM and PPALM on a Core2duo 3GHz Linux 
computer with 3GB of RAM. The running times for various 
dmi, & 6,,, configurations can be seen in Figure 4(d). As 
expected, SPALM is the algorithm with the shortest running 
time requirement, since it acts as a subroutine for the other 
two algorithms. PPALM requires more time than SPALM due 
to the post processing for shifting distribution towards utility 
optimal. However additional time cost is realistic and scales 
well with the length of the 6 intervals. In most experiments, 

700000

600000

600000

"8
u '00000
~

300000

200000

100000

~PALM IiIWPALM CPP~~

(a) KL Costs

0.000010.8 O.ooell 0.8 0.0010.8 0.010.8 00.5

(6mln,6maxj

(c) Association Rule Errors

00.7

3.5

1.5

0.5

(b) Class Rule Errors

(6mln,6max)

ICSPALM IIIIWPALM CPPALM I

(d) Execution Times

13

figure
Fig. 4. Comparison of SPALM,WPALM, and PPALM

TABLE VIII. Percentage of dataset processed
by WPALM for varying 0 values

table

0.7 0.8
9.4% 9.4%

pared to the WPALM & SPALM algorithms?

I) The Effectiveness of the WPALM & PPALM versus
SPALM in terms of data utilization: We conducted experi­
ments to compare the output utilizations of SPALM, WPALM
and PPALM w.r.t. both the KL cost metric (Theorem I) and
efficiency in data mining applications, association rule mining
and classification rule mining. Data mining operations on the
output were carried out as described in Section VI-A.

Figure 4(a) shows the KL cost of the output anonymiza­
tions for SPALM, WPALM, and PPALM for various Omin &
omax intervals. WPALM improves SPALM in terms of utility
however improvement introduced is not significant due to the
large number of ignored ECs. On the other hand, PPALM
introduces a great increase in the utilization by a factor of 3 at
times. Improvement is more observable for larger 0 intervals.
The reason for this is that single dimensional assumption
for algorithm SPALM is too strict and does not add enough
information content into the output anonymization even when

we lower the 0 constraints. This leaves room for PPALM
to inject utilization into the anonymization. Increasing omax

beyond 0.5 add little utilization into pdf anonymizations. This
is because anonymization mapping does not change after
omax = 0.5 and PPALM achieves (almost) utility optimal
distribution for omax = 0.5 meaning full distribution shifting
occurs in all ECs. This is one more indication that lower and
upper boundaries, calculated by PPALM, on exact existence
probabilities are tight enough to get the maximum utilization
out of pdf anonymizations.

The data mining results given in Figures 4(b) and 4(c)
justify cost metric results. Error rates in finding association
rules and classification rules from output anonymizations
correlates with the KL costs of the anonymizations.

2) The Efficiency of the WPALM, PPALM & SPALM: We
conducted a set of experiments to compare the running times
of SPALM, WPALM and PPALM on a Core2duo 3GHz Linux
computer with 3GB of RAM. The running times for various
Omin & omax configurations can be seen in Figure 4(d). As
expected, SPALM is the algorithm with the shortest running
time requirement, since it acts as a subroutine for the other
two algorithms. PPALM requires more time than SPALM due
to the post processing for shifting distribution towards utility
optimal. However additional time cost is realistic and scales
well with the length of the 0 intervals. In most experiments,



WPALM requires more execution time compared to PPALM 
even though it does not process most of the ECs. Table VIII 
shows the percentage of the database ignored by WPALM. 
Majority of the tuples (90+%) were ignored by WPALM. 
Besides as we force WPALM to process more equivalence 
classes, execution time for WPALM becomes intractable. As 
an example, for the experiment where 6 = (0.01,0.8), (in 
which WPALM seems to be slightly faster than PPALM) 
WPALM processes 9 equivalence classes (147 tuples) all 
of which require around 16000 likelihood multiplications in 
total. The smallest equivalence class which is not processed 
by WPALM is of size 38 tuples with 10 existent tuples. To 
process an equivalence class of this size will require WPALM 
to make around 472 million multiplications. Roughly speak- 
ing WPALM will run 1345 times slower to process an 
additional 0.084% of the whole data. 

Even though ideal WPALM acts as an upper bound for 
PPALM in terms of utilization, experiments in this section 
along with the previous section shows that WPALM is too 
inefficient to be practical compared to PPALM. For WPALM 
to be as utilized as PPALM, an extremely huge amount of 
execution time is required as the number of combinations 
that is taken into account during the calculation of existence 
probabilities grows exponentially with the size of EC groups. 
In reasonable settings PPALM is faster than WPALM with 
better utilization. So all of these explicitly demonstrates the 
power of the speed-up technique in reducing the execution 
time as well as increasing the utilization of the data. 

VII. Conclusions 

We presented pdf generalizations that embed probability 
distributions into generalizations enabling a better control over 
the trade off between privacy and utility. We proposed pdf 
algorithms to provide &-presence. The experiments showed 
that use of pdfs can increase utilization without violating 
privacy constraints. 

There remains issues that are not addressed in this paper. 
First is that WPALM and PPALM algorithms are vulnerable to 
reversibility attacks by an adversary that knows the algorithm. 
(Such an adversary can reverse engineer the execution of the 
algorithm to gain more knowledge about the data.) It should 
be noted that such an attack is also possible (if not as easy as 
in here) for most algorithms proposed so far on k-anonymity 
and &-presence. In [l], this problem was weakened by re- 
leasing reconstructions instead of anonymizations. Designing 
anonymization algorithms resistant to reversibility attacks is a 
nice research direction which is currently being studied by the 
authors. Authors also work on the evaluation of the PPALM 
w.r.t. varying input parameters and investigate new trade offs 
between the efficiency and accuracy. 
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WPALM requires more execution time compared to PPALM
even though it does not process most of the ECs. Table VIII
shows the percentage of the database ignored by WPALM.
Majority of the tuples (90+%) were ignored by WPALM.
Besides as we force WPALM to process more equivalence
classes, execution time for WPALM becomes intractable. As
an example, for the experiment where 8 = (0.01, 0.8), (in
which WPALM seems to be slightly faster than PPALM)
WPALM processes 9 equivalence classes (147 tuples) all
of which require around 16000 likelihood multiplications in
total. The smallest equivalence class which is not processed
by WPALM is of size 38 tuples with 10 existent tuples. To
process an equivalence class of this size will require WPALM
to make around 472 million multiplications. Roughly speak­
ing WPALM will run 1345 times slower to process an
additional 0.084% of the whole data.

Even though ideal WPALM acts as an upper bound for
PPALM in terms of utilization, experiments in this section
along with the previous section shows that WPALM is too
inefficient to be practical compared to PPALM. For WPALM
to be as utilized as PPALM, an extremely huge amount of
execution time is required as the number of combinations
that is taken into account during the calculation of existence
probabilities grows exponentially with the size of EC groups.
In reasonable settings PPALM is faster than WPALM with
better utilization. So all of these explicitly demonstrates the
power of the speed-up technique in reducing the execution
time as well as increasing the utilization of the data.

VII. Conclusions

We presented pdf generalizations that embed probability
distributions into generalizations enabling a better control over
the trade off between privacy and utility. We proposed pdf
algorithms to provide 8-presence. The experiments showed
that use of pdfs can increase utilization without violating
privacy constraints.

There remains issues that are not addressed in this paper.
First is that WPALM and PPALM algorithms are vulnerable to
reversibility attacks by an adversary that knows the algorithm.
(Such an adversary can reverse engineer the execution of the
algorithm to gain more knowledge about the data.) It should
be noted that such an attack is also possible (if not as easy as
in here) for most algorithms proposed so far on k-anonymity
and 8-presence. In [I], this problem was weakened by re­
leasing reconstructions instead of anonymizations. Designing
anonymization algorithms resistant to reversibility attacks is a
nice research direction which is currently being studied by the
authors. Authors also work on the evaluation of the PPALM
w.r.t. varying input parameters and investigate new trade offs
between the efficiency and accuracy.
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In this section, we prove Theorems 1, 2, and 3. 
We focus on the equivalence class EC and derive the 

optimal distribution function F : {f l , .  . .  , fA, fA+l) for Q1 
attributes 1. . . A and (if any) sensitive attribute A + 1 in 
EC that will maximize the matching probability for a pdf 
anonymization T* of T. Let again ch be the number of times 
an atomic data value vi from Da (domain of attribute a)  
appears in attribute a of T. Note that for attribute a, the same 
distribution fa is used in all tuples of EC. To compact the 
equations below, we use notation f i  in place of fa(vi). ; 

Theorem 2: The distribution function F : U fa defined as 
a 

for each value vi E Da, maximizes the matching probability 
for EC. 

PROOF. Given distribution function F : U fa for the 
a 

equivalence class EC, matching probability PF is given by 

Maximizing PF is the same as maximizing lnPF;  

This is nothing but the negative KL cost given in Eqn 1, 
so this proves Theorem 1. For a fixed equivalence class, the 
F function that maximizes Eqn 1: 

Since we assume attribute independence, maximizing 
matching probability for each attribute maximizes overall 
probability. Assuming na  is the size of the domain Da; 

15 
Taking the derivatives of the last equation with respect to 

each parameter f i  and setting them to 0; 

Summing up side by side; 

n,-1 no-1 no-1 n,-1 

C c : .  C fA+cEa C f: = C c:, 
i=l  i=l i=l i=l  

substituting fEn in Eqn 6, we get, for 1 5 i 5 n,; 

Above equality maximizes the matching probability. 

Since there is no other root that makes the derivatives in 
Eqn 6 zero, matching probability monotonically decreases as 
each f i  gets far away from the utility-optimal distribution. 
This proves the correctness of Theorem 3. 

15
Taking the derivatives of the last equation with respect to

each parameter f~ and setting them to 0;

substituting fi: a in Eqn 6, we get, for 1 ::; i ::; na;

i c~
fa = IECI

Above equality maximizes the matching probability. D

Since there is no other root that makes the derivatives in
Eqn 6 zero, matching probability monotonically decreases as
each f~ gets far away from the utility-optimal distribution.
This proves the correctness of Theorem 3.

ApPENDIX I
. UTILITY OPTIMAL DISTRIBUTION

In this section, we prove Theorems 1,2, and 3.
We focus on the equivalence class EC and derive the

optimal distribution function F : {fl, .. ·, fA, fA+d for QI
attributes 1··· A and (if any) sensitive attribute A + 1 in
EC that wil1 maximize the matching probability for a pdf
anonymization T* of T. Let again c~ be the number of times
an atomic data value Vi from D a (domain of attribute a)
appears in attribute a of T. Note that for attribute a, the same
distribution fa is used in all tuples of EC. To compact the
equations below, we use notation f~ in place of fa(Vi)' ;

Theorem 2: The distribution function F : Ufa defined as
a

i c~
fa = fECI

for each value Vi E Da , maximizes the matching probability
for EC.

PROOF. Given distribution function F : Ufa for the
a

equivalence class EC, matching probability PF is given by

A

PF II C~+I!)' (II II (f~)C~)
viEDA+l a=l viEDa

A

Cl . II II (f~)C~
a=l viEDa

Maximizing PF is the same as maximizing In PF;

InPF
A

C2 + L L C~' In f~
a= lViEDa

This is nothing but the negative KL cost given in Eqn I,
so this proves Theorem 1. For a fixed equivalence class, the
F function that maximizes Eqn I:

max(ln PF)
F

A

C2 + L max( L C~ .Inf~)
a=1 fa viEDa

Since we assume attribute independence, maxlmlzmg
matching probability for each attribute maximizes overall
probability. Assuming na is the size of the domain Da;

max( L c~, In f~)
fa viEDa

max(C~ . In fd+ ... + c~a -1 . In f;:a -1 + c~a . In f;:a)
fa

max(c~ . In f d+ ... + c~a -1 . In f;:a -1
fa

+ c~a ·In(1 - fd - ... - f;:a- 1
))

c~ c~a

fJ - 1 - fJ - ... - f;:a 1

c~a-l C~a

f;:a- 1 -1-fJ-"'-f;:a-1

na-l
1 ~ ~i n ~1

Ca' L..J Ja + CaJa

i=1

Summing up side by side;

na-l na-l na-l

L c~· L f~ + c~a L f~
i=1 i=1 i=1

no n o -l

LC~' L f~
i=1 i=1

IECI . (1 - f;;a)

o

o

1
Ca

na-l
Ca

na-l

L c~
i=1

na-l

L c~
i=1

IECI- c~a

c~a

IECI

(6)
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APPENDIX I1 and exmax < bmax then bmin 5 e x  < bmax for any 

. THE MAXIMUM AND MINIMUM EXISTENCE e x  E E X .  

In this section, we 
first prove that tuples 

IN A GIVEN PROJECTED SET PROOF. By Theorem 6,bmin 5 exmin 5 ex ,  5 exmax < 
prove Theorem 4. To do this, we bmaX for all i. 
with bigger likelihood probabilities 

have bigger existence probabilities. This is expected, since 
likelihood probability for a tuple t can be thought as the share 
o f t  on the sum of existence probabilities in a given projected 
set (which is equal to nl).  

Theorem 6: Given a likelihood set P = 

{plow , phigh, p l ,  . , , , pm} and the no. of present tuples 
n l ,  if pLoW < phigh, then exLow 5 exhigh. 

PROOF. Difference between two existence probabilities 
would be 

Since C ps = p C ps; 
pESAISI=nl p$SAISI=nl-1 

First component of the numerator is negative, the second 
component and the denominator is non-negative. So the 
difference between the existence probabilities is non-positive. 

Theorem 4: Given a likelihood set P = 
. fpmin , pmax,pl ,  . . . , pm) and the no. of present tuples 

nl, let pmin < pi < pmax for i E [l - m]. If exmin 2 bmin 

ApPENDIX II
. THE MAXIMUM AND MINIMUM EXISTENCE

PROBABILITIES IN A GIVEN PROJECTED SET

In this section, we prove Theorem 4. To do this, we
first prove that tuples with bigger likelihood probabilities
have bigger existence probabilities. This is expected, since
likelihood probability for a tuple t can be thought as the share
of t on the sum of existence probabilities in a given projected
set (which is equal to n 1).

Theorem 6: Given a likelihood set P
{plow, phigh, pI, ... ,Pm} and the no. of present tuples
n 1 , if plow < phigh, then exlow ~ exhigh .

PROOF. Difference between two existence probabilities
would be

16
and ex

max
~ Omax then Omin ~ ex ~ Omax for any

ex E EX.

PROOF. By Theorem 6, Omin ~ ex
min ~ eXi ~ ex

max ~

Omax for all i. 0

SCPt\ISI=n 1 ,.,
plowES

Ps

L Ps
SCPI\ISI=n '

L Ps+
SCPt\ISI=n 1 ,.,
plow ,pnigh ES

L Ps
SCPI\ISI=n '

L Ps
SCPt\ISI=n 1 ,.,

pLowESl\phi9hf/cS

L Ps
SCPI\ISj=n'

PS+ Ps
ScPt\ISI=n1 /\
pLow ,phigh ES

SCPI\!SI=n 1 /\
phighESl\plowf/cS

L Ps
SCPI\ISI=n'

Since L Ps = p L Ps;
PESI\ISI=n' pf/cSI\ISj=n'-l

ploW L Ps
phigh L Ps

SCPI\ISI=n1-l/\ SC P I\IS1=n 1 -l/\
plow,phigh¢S pLow,phigh¢,S

L Ps L Ps
SCPI\ISI=n' SCPI\ISI=n'

(ploW _ phigh) L Ps
SCPI\ISI=n1-l/\

plow ,phigh ¢ S

L Ps
SCPI\ISI=n'

First component of the numerator is negative, the second
component and the denominator is non-negative. So the
difference between the existence probabilities is non-positive.

D

Theorem 4: Given a likelihood set P
{pmin,pmax,pl, ... ,Pm} and the no. of present tuples
n 1

, let pmin ~ Pi ~ pmax for i E [1 - m]. If exmin ~ Omin



APPENDIX 111 
FINDING UPPER A N D  LOWER BOUND ON MAX A N D  MIN 
EXISTENCE P R O B A B ~ L ~ T ~ E S  IN A GIVEN PROJECTED SET 

In this section, we prove Theorem 5. We first show that if 
the likelihood probability of a tuple is increased, its existence 
probability also increases (or doesn't change) and existence 
probabilities for the rest of the tuples decrease (or do not 
change). 

Theorem 7: Given the no. of present tuples n l ,  let P' = 

{ p ' o w , p : ,  . . , , p L )  and P2 = { p h i g h , p ? , .  . . , p & )  be two 
likelihood sets with p'OW < phigh and p i  = p; for all 
i E [l - m], then we have the following relations between 
the existence probabilities; 

1) exLow 5 exhigh 
2) e x :  2 ex ;  for all i E [l - m]. 

PROOF. We first proof item 1. The difference between 
existence probabilities exLow and exhigh is as follows: 

Setting 

Since C1 and C2 are non-negative, we have; 

We now prove item 2. The difference between the existence 
probabilities e x :  and ex:  for any possible i is given by; 

Setting 

We have; 

Denominator is definitely positive.The first additive compo- 
nent of the numerator is positive by the assumption. We now 
prove the second component (C3C2 - C1C4) is also positive. 
Setting P' = p1 - phigh - p i ,  pl' = p 1  - phigh; C1C4 and 
CzC3 can be written as summation of likelihood products; 

APPENDIX III
. FINDING UPPER AND LOWER BOUND ON MAX AND MIN

EXISTENCE PROBABILITIES IN A GIVEN PROJECTED SET

In this section, we prove Theorem 5. We first show that if
the likelihood probability of a tuple is increased, its existence
probability also increases (or doesn't change) and existence
probabilities for the rest of the tuples decrease (or do not
change).

Theorem 7: Given the no. of present tuples n I, let pI =
{plow, pi, ... ,P;"J and p2 = {phigh, pI, ... , p;,} be two
likelihood sets with plOW < phigh and pi = p; for all
i E [1 - m], then we have the following relations between
the existence probabilities;

I) exlow < exhigh

2) ex} ::::: -;x; for all i E [1 - m].

PROOF. We first proof item I. The difference between
existence probabilities exlow and exhigh is as follows:

SCPlAISI=71.1-11\
p'owl/cS

n

SCP2/\ISI=n1A

p~ES

L Ps

L Ps

L Ps
Scp21\ISI=n'

L Ps
SCPlAISI=n1A
plOW I/cSl\p; ES

SCP1AISI=n11\
p'owl/cS

L Ps+ L Ps

SCP2 A [81=n 1 " SCP2/\ISI=n1 /\
phi9h,pfES phi9hl/cSl\p~ES

L P s + L P s

scP2 A ISI=n 1 1\ Sc p2A ISI=n 1 1\

phighES phi9hl/cS

L Ps+

L Ps
scpl"'ISI=n 1"

piES

L Ps

SCP'I\ISI=n '

L Ps +
SCPlAjSI=n1 /\

plow,p!ES

SCP1AISI=n1A
P'owES

Setting

CI L Ps = L Ps

Scpl"ISI:=n1-ll\ Sc P2A ISI=n1 _1/\

p'owl/cSI\P;ES phi9hl/cSl\p~ES

Cz L Ps= L Ps

Scp11\\SI=n1A Scp2AIS1=n 1 /\

p,owl/cSl\p;ES phi9hl/cSl\p~ES

C3 L Ps = L P s

sepl "181=711-1" SCP2/\ISI=n 1-l A

plowl/cS phighl/cS

C4 L P s = L P s

SCP1/\!SI=n1 /\ SCP2/\I S I=n 1 /\
plowl/cS phighl/cS

PS

Ps

Scp2 A ISI=n1 /\
phighES

L PS
Scp21\ISI=n

'

L PS

SCPlAISI=n1 /\
p'owl/cS

PS

PS+

Scp2AIS1=nl-ll\
phighl/cS

SCPlA\SI=n1A

plowES

SCPlAISI=n 1"
plowES

phigh

L PS

SCP'I\ISj=n '
plOW

PS+ PS

ScPl/\ISI=n!-lA ScP2AISI=nl-lA
plowl/cS phighl/cS

L P s = L Ps

Setting

CI

SCP2 A ISI=n1 /\
phighES

Scp2"ISI=n 1 /\
phighl/cS We have;

p10WCI + Cz phighCI + Cz

ploWC3 + C4 phighC3 + C4

(phigh _ plOW) (C3 C Z - CIC4)

(plowC3 + C4)(phighC3 + C4)

(pIOWCI + Cz)(phighCI + Cz)
S 0

We now prove item 2. The difference between the existence
probabilities ex} and ex; for any possible i is given by;

Since CI and Cz are non-negative, we have;

plowCI phighCI

plowCI + Cz phighCI + Cz
(ploW _ phigh)CICZ

Cz
scP1/\)SJ=n1 /\

p'owl/cS

PS=

Scp 2 A ISI=n1 1\

phighl/cS

Ps Denominator is definitely positive.The first additive compo­
nent of the numerator is positive by the assumption. We now
prove the second component (C3CZ - CI C4) is also positive.
Setting pi = pI _ phigh _ p}, pl/ = pI _ phigh; CI C4 and

CzC3 can be written as summation of likelihood products;

(prf ... pr~,-z) . (prf ... pr~,)

{prt,··· 'P7'~1 -2} cp'.
{prt 1···IPr~l}Cpll



Let, without loss of generality, in all the additive terms of 
C1C4, p~:l # pr; for all j E [1 . . .  n1 - 21 and pr:, # 
p,!. Any additive term (pr: . . . prkl -2) . (pr;' . . .prAl -l . 
pr$) of ClC4 also exist as an additive term in C2C3 as 

1 1 4 4 4 (prl . . ,prnl-2 . prnl) . (prl . . .PT,I-~). It can easily be 
proved that C2C3 has more addltlve terms than C1C4 SO 
C2C3 - C1C4 is also non-negative. 

Theorem 7 also implies that if the likelihood probability of 
a tuple is decreased, its existence probability also decreases 
(or does not change) and existence probabilities for the rest 
of the tuples increase (or do not change). 

Theorem 5: Given the no. of present tuples nl, likeli- 
hood sets P, pl, p T ,  and their corresponding existence sets 
E X ,   EX^,  EX^; 
Gmin _< ex < GmaX for any ex E EX if Gmin < (exl)min 
and (exT)max < Gmax. 

PROOF. By Theorem 4, Gmin < ex 5 &ax for any ex E 
E X ;  if Gmin _< exmZn and exmax < Gmax. By Theorem 7 
and the assumption, Gmin < (exllmin 5 exmin. Again by 
Theorem 7, exmax < (exT)max 1 GmaX. 

1
Pi .
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{prr,···,pr~1_1 }CP',

{pr~ 1"'IPr~1_1}CP"

Let, without loss of generality, in all the additive terms of
Cl C4, pr~, i- prj for all j E [1 ... n 1 - 2] and pr~, i­
pI. Any additive term (pd···pr~'_2)· (pri .. ·pr~'_1·
pr~,) of Cl C4 also exist as an additive term in C2C3 as
(pd· .. pr~'-2 .pr~,), (pri .. ·pr~'_1)· It can easily be
proved that C2C3 has more additive terms than Cl C4. So
C2C3 - Cl C4 is also non-negative. 0

Theorem 7 also implies that if the likelihood probability of
a tuple is decreased, its existence probability also decreases
(or does not change) and existence probabilities for the rest
of the tuples increase (or do not change).

Theorem 5: Given the no. of present tuples n 1 , likeli­
hood sets P, pl, P T, and their corresponding existence sets
EX EXl EXT.

Dmi~ :S e; :S D~ax for any ex E EX if Dmin :S (ex l )min
and (exT)max:s Dmax .

PROOF. By Theorem 4, Dmin :S ex :S Dmax for any ex E
EX; if Dmin :S exmin and exmax :S Dmax . By Theorem 7
and the assumption, Dmin :S (exl)min :S exmin . Again by
Theorem 7, exmax :S (ex T)max :S Dmax . 0


	Generalizations with Probability Distributions for Data Anonymization
	Report Number:
	

	tmp.1307986960.pdf.kY7tz

