
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2007

Supporting annotated Relations Supporting annotated Relations

M. Y. Eltabakh

M. Ouzzani

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Y. Laura-Silva

Report Number:
07-025

Eltabakh, M. Y.; Ouzzani, M.; Aref, Walid G.; Elmagarmid, Ahmed K.; and Laura-Silva, Y., "Supporting
annotated Relations" (2007). Department of Computer Science Technical Reports. Paper 1689.
https://docs.lib.purdue.edu/cstech/1689

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SUPPORTING ANNOTATED RELATIONS

M.Y. Eltabakh
M. Ouzzani
W.G. Aref

A.K. Elmagarmid
Y. Laura-Silva

Department of Computer Science
Purdue University

West Lafayette, IN 47907

CSD TR #07-025
November 2007

SUPPORTING ANNOTATED RELAnONS

M.Y. Eltabakh
M.Ouzzani
W.G. Aref

A.K. Elmagarmid
Y. Laura-Silva

Department of Computer Science
Purdue University

West Lafayette, IN 47907

CSD TR #07-025
November 2007

Supporting Annotated Relations

M.Y. Eltabakh, M. Ouzzani, W.G. Aref, A.K. Elmagarmid, Y. Laura-Silva
Computer Science Department, Purdue University

{meltabak, mourad, aref, ake, ylaurasi)@cs.purdue.edu

ABSTRACT
Annotations and provenance data play a key role in under-
standing and curating scientific databases. However, cur-
rent database management systems lack adequate support
for managing annotations and provenance data including:
(1) handling annotations at multiple granularities, i.e., at
the table, tuple, column and cell levels, (2) propagating an-
notations along with query answers, (3) querying data based
on their annotations, and (4) providing declarative ways to
add, archive, and restore annotations. In this paper, we
propose to treat multi-granular annotations and provenance
as first class objects inside the database. We introduce the
concept of "Annotated Relations" along with new operators
and extended semantics for the standard relational oDera-
tors in support of annotated relations. We present an ex-
pressive and declarative extension to SQL to support the
processing and querying of annotated tables. We study sev-
eral schemes for storing and indexing annotations based on
annotation granularity and annotation size. Extensions to
PostgreSQL are introduced to support annotated relations
and implementation challenges are discussed. Performance
analysis illustrates the potential of annotated relations as
they achieve up to an order-of-magnitude reduction in stor-
age and I/O costs.

1 INTRODUCTION
The growth in scientific information has made databases in-
tegral to many scientific discipline~ including physics, earth
and atmospheric sciences, chemistry, and biology. These
disciplines pose new data management challenges to current
DBMSs. One of the key challenges is to overcome the limited
ability of database systems in manipulating annotations and
provenance data. Annotations and provenance data play a
key role in understanding and curating scientific databases.
Annotations allow users to better understand how a piece
of data is obtained, why some values are being added or
modified, and which experiment or analysis was performed
t o obtain a set of values. Moreover. Drovenance allows users , A

to track the source of their data and to assess the credibility
of the data based on its source.

In [lo], we introduced bdbms as a database management
system to support biological data and its emerging re-
quirements. bdbms extends the functionalities of current
database management systems t o include: (1) annotation
management, (2) tracking dependencies that involve exter-
nal modules among data items, (3) authorizing database
operations based on the content of the data, and (4) sup-
porting novel and non-traditional access methods. [lo] pre-
sented the overall system and challenges involved in each
of the proposed functionalities. In this paper, we focus on
the annotation management component. We study the ex-
tended SQL language, storage alternatives, implementation,
and performance analysis.

Annotation management involves several challenges includ-
ing: (1) Handling multi-granularity annotations. An-
notations can be large in size and attached to the data at var-
ious granularities, e.g., at the level of cell, tuple, column, or
table. Therefore, we need efficient storage schemes to avoid
replicating the annotations. For example, annotations A1
(Figure 1) is attached to one tuple whereas annotation A5 is
attached to four independent cells. The storage overhead be-
comes more critical in the context of provenance where one
provenance record can be attached to many tuples or even
entire columns or tables. (2) Propagating annotations
seamlessly. Users want to propagate the annotations with-
out complicating their queries. If annotation propagation
is delegated to users (or applications) without any database
system support, e.g., new querying capabilities, then users'
queries may become complex and user-unfriendly. In ad-
dition to supporting the propagation of annotations with
queries answers, the system needs also to support querying
the data based on the annotation values. (3) Adding an-
notations i n a declarative way. The goal is to annotate
the data in an easy and declarative way, e.g., as if tables are
visualized in grids and users are adding post-it notes. For
example, how to select a group of cells to which the anno-
tation will be attached. Without a declarative mechanism,
adding annotations may not be an easy task.

In this paper, we propose to treat annotations as first class
objects inside the database. We provide mechanisms for
adding annotations at multiple granularities, i.e., at the ta-
ble, tuple, column, and cell levels, archiving and restoring
annotations, and querying the data based on the annotation
values. We introduce the concept of "Annotated Relations"
along with new operators and extended semantics for the
standard relational operators to support annotations. We

Supporting Annotated Relations

M.Y. Eltabakh, M. Ouzzani, W.G. Aref, A.K. Elmagarmid, Y. Laura-Silva
Computer Science Department, Purdue University

{meltabak, mourad, aref, ake, ylaurasi}@cs.purdue.edu

ABSTRACT
Annotations and provenance data playa key role in under
standing and curating scientific databases. However, cur
rent database management systems lack adequate support
for managing annotations and provenance data including:
(1) handling annotations at multiple granularities, Le., at
the table, tuple, column and cell levels, (2) propagating an
notations along with query answers, (3) querying data based
on their annotations, and (4) providing declarative ways to
add, archive, and restore annotations. In this paper, we
propose to treat multi-granular annotations and provenance
as first class objects inside the database. We introduce the
concept of "Annotated Relations" along with new operators
and extended semantics for the standard relational opera
tors in support of annotated relations. We present an ex
pressive and declarative extension to SQL to support the
processing and querying of annotated tables. We study sev
eral schemes for storing and indexing annotations based on
annotation granularity and annotation size. Extensions to
PostgreSQL are introduced to support annotated relations
and implementation challenges are discussed. Performance
analysis illustrates the potential of annotated relations as
they achieve up to an order-of-magnitude reduction in stor
age and I/O costs.

1. INTRODUCTION
The growth in scientific information has made databases in
tegral to many scientific disciplines including physics, earth
and atmospheric sciences, chemistry, and biology. These
disciplines pose new data management challenges to current
DBMSs. One of the key challenges is to overcome the limited
ability of database systems in manipulating annotations and
provenance data. Annotations and provenance data play a
key role in understanding and curating scientific databases.
Annotations allow users to better understand how a piece
of data is obtained, why some values are being added or
modified, and which experiment or analysis was performed
to obtain a set of values. Moreover, provenance allows users
to track the source of their data and to assess the credibility
of the data based on its source.

In [10], we introduced bdbms as a database management
system to support biological data and its emerging re
quirements. bdbms extends the functionalities of current
database management systems to include: (1) annotation
management, (2) tracking dependencies that involve exter
nal modules among data items, (3) authorizing database
operations based on the content of the data, and (4) sup
porting novel and non-traditional access methods. [10] pre
sented the overall system and challenges involved in each
of the proposed functionalities. In this paper, we focus on
the annotation management component. We study the ex
tended SQL language, storage alternatives, implementation,
and performance analysis.

Annotation management involves several challenges includ
ing: (1) Handling multi-granularity annotations. An
notations can be large in size and attached to the data at var
ious granularities, e.g., at the level of cell, tuple, column, or
table. Therefore, we need efficient storage schemes to avoid
replicating the annotations. For example, annotations Al
(Figure 1) is attached to one tuple whereas annotation A5 is
attached to four independent cells. The storage overhead be
comes more critical in the context of provenance where one
provenance record can be attached to many tuples or even
entire columns or tables. (2) Propagating annotations
seamlessly. Users want to propagate the annotations with
out complicating their queries. If annotation propagation
is delegated to users (or applications) without any database
system support, e.g., new querying capabilities, then users'
queries may become complex and user-unfriendly. In ad
dition to supporting the propagation of annotations with
queries answers, the system needs also to support querying
the data based on the annotation values. (3) Adding an
notations in a declarative way. The goal is to annotate
the data in an easy and declarative way, e.g., as if tables are
visualized in grids and users are adding post-it notes. For
example, how to select a group of cells to which the anno
tation will be attached. Without a declarative mechanism,
adding annotations may not be an easy task.

In this paper, we propose to treat annotations as first class
objects inside the database. We provide mechanisms for
adding annotations at multiple granularities, Le., at the ta
ble, tuple, column, and cell levels, archiving and restoring
annotations, and querying the data based on the annotation
values. We introduce the concept of "Annotated Relations"
along with new operators and extended semantics for the
standard relational operators to support annotations. We

I ~ ~ 0 3 3 5 ' 1 LacZ ' I ATGACCATGA ... \ I

(a) GENE table (b) Annotations details

(c) Graphical User Interface

Figure 1: Annotating GENE table

present an extension to SQL to support the processing and
querying of annotated relations. Since most scientists prefer
to use graphical interfaces over using direct SQL commands,
we need to provide an easy to use and intuitive ways to cre-
ate and manipulate annotations. For this purpose, a graph-
ical tool will be built on top of the proposed framework.
Figure l(c) shows an example of such a tool that would al-
low the end-user to browse the data and the annotations
attached to it. The end-user can select the data of interest
by highlighting specific table names and columns or writing
a database query. The tool would then retrieve and display
the data specified by the user and all the annotations at-
tached to it. The tool also allows the user to filter, add,
restore, or archive the annotations graphically.

The contributions of this paper are summarized as follows:

1. We propose to support annotations as first class ob-
jects in relational databases. We address several as-
pects in annotation management, e.g., adding, storing,
archiving, restoring, and querying annotations.

2. We propose a declarative language based on SQL along
with new operators and extended semantics for the
standard operators to operate over the annotations.

3. We propose and study several storage schemes based
on the granularity and size of annotations. Perfor-
mance analysis illustrates that the proposed schemes
can achieve up to an order-of-magnitude reduction in
storage and 110 costs.

The rest of the paper is organized as follows. Section 2
overviews the related work. In Section 3, we present the
proposed functionalities to manage annotations. The query
re-writing and execution techniques are presented in Sec-
tion 4. The performance analysis is presented in Section 5.
Section 6 contains concluding remarks. The algebraic defi-
nition of the query operators is presented in Appendix A.

2. RELATED WORK
Managing annotations and provenance data is a key require-
ment in supporting scientific databases [12, 14, 151. Com-
mercial databases, e.g., Oracle and DB2, have added new
features and functionalities inside the database engine to

support life science applications [I , 131, e.g., accessing data
stored in heterogeneous data sources via wrappers, integrat-
ing varieties of data types, and embeddinglintegrating data
mining and analysis techniques inside the database engine.
However, managing annotations has not been addressed by
these systems.

Managing annotations in the context of relational databases
has been addressed in previous works, e.g., [2, 5, 6, 11,
161. An extension to SQL, termed pSQL, is proposed in [2,
61. pSQL adds a PROPAGATE clause to SQL that allows
users to specify how to propagate the annotations along with
the query answers. The storage mechanism proposed in [2]
simply assume that each cell in the database has a corre-
sponding cell to hold the annotations. There are several
key distinctions between our framework and the technique
proposed in [2]: (i) our approach has a broader range of
functionalities such as adding, archiving, and restoring the
annotations, (ii) the querying capabilities proposed by our
framework are more powerful where users can apply con-
ditions to specify which annotations to propagate and also
select the data based on the annotation values, (iii) we also
study several storage optimizations to efficiently store the
annotations. The technique in [2], however, can generate all
queries that are equivalent to a given user query and prop-
agate the annotations with those queries, which is not part
of our framework.

Propagating annotations through views has been addressed
in [5, 161. MONDRIAN [ll] proposes an algebra, termed
color algebra, that extends annotating single values to an-
notating multiple related values with the same annotation.
The color algebra also allows querying the data based on its
annotation values. MONDRIAN, however, does not allow
users to apply conditions to specify which annotations to
propagate. MONDRIAN does not also address the issue of
handling multi-granularity annotations. It does not address
how to add or store annotations at various granularities. Al-
though, a normalized storage is proposed by MONDRIAN
to avoid repeating a tuple with each of its annotations, still
an annotation that is attached to N tuples will be stored N
times. Moreover, we present mechanisms to add and store
annotations efficiently.

Extensive research has been conducted to track and compute

ID Annotation text Curator Timestamp

A1 gene has three mutations Tom Oct-10-06

A2 Retrieved from genobase Mary Jan-20-07

A3 inner membrane protein Mary Jan-02-06

A4 Sequence needs revision Jack Sep-07-07

AS genes are published in ... ADMIN Mar-01-07

A9 Verified by experiment ... ADMIN Nov-11-0B

A10 Has unstable mutation ADMIN Feb-20-07

(b) Annotations details

-------.--_. ---------_. ----]f---

GenelD\ GeneName/ Sequence \
JW033S' LacZ ATGACCATGA... \

JW3778 cyaA TTGTACCTCT...

JW0374 phoA / GTGAAACAAA...

I ~W1266 topA/ ATGGGTAAAG...

_t____, ___i ___ ,
--- ---, --------1r A10 :

,--------,

(a) GENE table

(c) Graphical User Interface

Figure 1: Annotating GENE table

present an extension to SQL to support the processing and
querying of annotated relations. Since most scientists prefer
to use graphical interfaces over using direct SQL commands,
we need to provide an easy to use and intuitive ways to cre
ate and manipulate annotations. For this purpose, a graph
ical tool will be built on top of the proposed framework.
Figure 1(c) shows an exampIe of such a tool that would al
low the end-user to browse the data and the annotations
attached to it. The end-user can select the data of interest
by highlighting specific table names and columns or writing
a database query. The tool would then retrieve and display
the data specified by the user and all the annotations at
tached to it. The tool also allows the user to filter, add,
restore, or archive the annotations graphically.

The contributions of this paper are summarized as follows:

1. We propose to support annotations as first class ob
jects in relational databases. We address several as
pects in annotation management, e.g., adding, storing,
archiving, restoring, and querying annotations.

2, We propose a declarative language based on SQL along
with new operators and extended semantics for the
standard operators to operate over the annotations.

3. We propose and study several storage schemes based
on the granularity and size of annotations. Perfor
mance analysis illustrates that the proposed schemes
can achieve up to an order-of-magnitude reduction in
storage and I/O costs.

The rest of the paper is organized as follows. Section 2
overviews the related work. In Section 3, we present the
proposed functionalities to manage annotations. The query
re-writing and execution techniques are presented in Sec
tion 4, The performance analysis is presented in Section 5.
Section 6 contains concluding remarks. The algebraic defi
nition of the query operators is presented in Appendix A.

2. RELATED WORK
Managing annotations and provenance data is a key require
ment in supporting scientific databases [12, 14, 15]. Com
mercial databases, e.g., Oracle and DB2, have added new
features and functionalities inside the database engine to

support life science applications [1, 13], e.g., accessing data
stored in heterogeneous data sources via wrappers, integrat
ing varieties of data types, and embedding/integrating data
mining and analysis techniques inside the database engine.
However, managing annotations has not been addressed by
these systems.

Managing annotations in the context of relational databases
has been addressed in previous works, e.g., [2, 5, 6, 11,
16], An extension to SQL, termed pSQL, is proposed in [2,
6]. pSQL adds a PROPAGATE clause to SQL that allows
users to specify how to propagate the annotations along with
the query answers. The storage mechanism proposed in [2]
simply assume that each cell in the database has a corre
sponding cell to hold the annotations. There are several
key distinctions between our framework and the technique
proposed in [2]: (i) our approach has a broader range of
functionalities such as adding, archiving, and restoring the
annotations, (ii) the querying capabilities proposed by our
framework are more powerful where users can apply con
ditions to specify which annotations to propagate and also
select the data based on the annotation values, (iii) we also
study several storage optimizations to efficiently store the
annotations. The technique in [2], however, can generate all
queries that are equivalent to a given user query and prop
agate the annotations with those queries, which is not part
of our framework.

Propagating annotations through views has been addressed
in [5, 16]. MONDRIAN [11] proposes an algebra, termed
color algebra, that extends annotating single values to an
notating multiple related values with the same annotation.
The color algebra also allows querying the data based on its
annotation values. MONDRIAN, however, does not allow
users to apply conditions to specify which annotations to
propagate. MONDRIAN does not also address the issue of
handling multi-granularity annotations. It does not address
how to add or store annotations at various granularities. Al
though, a normalized storage is proposed by MONDRIAN
to avoid repeating a tuple with each of its annotations, still
an annotation that is attached to N tuples will be stored N
times. Moreover, we present mechanisms to add and store
annotations efficiently.

Extensive research has been conducted to track and compute

the provenance (lineage) of data. Provenance management
techniques are divided into two main categories, annotation-
based and inversion-based techniques. Annotation-based
techniques, e.g., [2, 3, 6, 161, treat provenance data as
a kind of annotations, i.e., provenance information are
pre-computed and stored as annotations with the data.
Inversion-based techniques, e.g., [4, 5, 8, 9, 17, 181, use
derivation properties such as inverted functions and query
operators properties, to derive the provenance of the data
at run-time.

3. ANNOTATION MANAGMENT
We provides several functionalities to support the manage-
ment of annotations. These functionalities include:

Modeling a n d s tor ing annota t ions
Providing storage schemes for efficient manipulation
and querying of annotations.

Add ing annota t ions at multiple granulari t ies
Allowing users t o add annotations a t multiple granu-
larities in a declarative way.

Archiving a n d restoring annota t ions
Annotation archival is used to isolate outdated, in-
valid, or worthless annotations from recent and valu-
able annotations. Archived annotations will not be
propagated to end-users along with the query an-
swers. Restoring annotations is the inverse operation
of archiving annotations.

Propagat ing annota t ions wi th que ry answers
Users have the flexibility of propagating or not the
annotations and selecting which annotations to prop-
agate along with the query answer.

Annotation-based querying
Users are able to query the data not only by specifying
conditions on the actual data but also on the annota-
tion values themselves.

Annotations usually contain important information that
users want to retrieve and query. For example, annotations
may refer t o certain publications, reference other objects in
the database, specify the experiments that triggered the an-
notation, or specify how confident the annotator is about the
annotation, etc. While in some cases, users will be satisfied
with having their annotations represented as simple string
data, they may be interested in representing and organiz-
ing their annotations in a more flexible way. We support
XML-formatted annotations where annotations are stored
as XML documents inside the relational database. The use
of XML has the advantages of allowing a better organization
of the annotation content, and using the XML querying ca-
pabilities offered by the database to retrieve and query the
annot a t ions.

3.1 Annotation Data Model
We extend the concept of a relation to an annotated re-
lation, i.e., a relation that has annotations attached to it.
The annotations attached to a relation are organized and
stored in one or more annotation tables. For example, in

(a) Standard relation R (b) ~nnotaied relation AR

Figure 2: Anno ta ted relat ions

Figure 3: Ex tended SQL command C R E A T E

Figure 2, a standard relation R is extended to an anno-
tated relation A R that has three annotation tables AR.lab,
AR.public, and AR.provenance. To create an annotation
table over a given user relation, the command CREATE
ANNOTATION TABLE (Figure 3) is used. The CREATE
command creates an annotation table anv-tablename and
inserts into the catalog table annotation_catalog a record
that links the annotation table anctable-name to the user
table user-table-name. The SCHEME clause specifies how
the annotations in ann~tablcname are actually stored. The
Off-table option means that the annotations will be stored
in a separate table with name annitablename, whereas the
In-table option means that the annotations will be stored
in the user table in an additional attribute with name
anxtablename. This choice is made by the user based on
the granularity and size of the annotations as we will explain
in Section 3.2.

Having multiple annotation tables attached to a user rela-
tion has several advantages such as: (1) Different types of
annotations can be stored separately, e.g., AR.lab may store
the annotations from lab members, AR.public may store an-
notations from the public, and AR.provenance may store
the provenance of R's data. (2) Different annotation tables
can have different permissions and privileges. For example,
adding annotations to AR.lab can be limited to lab mem-
bers, adding annotations to AR.public can be open to the
public, while adding annotations to AR.provenance can be
limited to the integration tools.

3.2 Annotation Storage Schemes
Annotations can be attached to the data at multiple gran-
ularities, hence efficient storage and indexing schemes are
needed. We propose three storage schemes based on the
granularity of the annotations, namely Off-table, In-table,
and Hybrid schemes. Each scheme has its pros and cons
w.r.t. the storage and query processing overheads.

Off-table Storage Scheme:
In this scheme, the SCHEME clause in the CREATE AN-
NOTATION TABLE command is always set to Off-table,
i.e., the annotations over a given relation are stored in sep-
arate annotation tables. The off-table scheme is based on
viewing a user relation as a two-dimensional space, e.g.,
columns represent the X-axis and tuple identifiers repre-
sent the Y-axis. Since annotations are associated with time,
Time is the third dimension in the proposed scheme. Anno-
tations can then be attached to multiple rectangles in this

the provenance (lineage) of data. Provenance management
techniques are divided into two main categories, annotation
based and inversion-based techniques. Annotation-based
techniques, e.g., [2, 3, 6, 16], treat provenance data as
a kind of annotations, i.e., provenance information are
pre-computed and stored as annotations with the data.
Inversion-based techniques, e.g., [4, 5, 8, 9, 17, 18], use
derivation properties such as inverted functions and query
operators properties, to derive the provenance of the data
at run-time.

3. ANNOTATION MANAGMENT
We provides several functionalities to support the manage
ment of annotations. These functionalities include:

• Modeling and storing annotations
Providing storage schemes for efficient manipulation
and querying of annotations.

• Adding annotations at multiple granularities
Allowing users to add annotations at multiple granu
larities in a declarative way.

• Archiving and restoring annotations
Annotation archival is used to isolate outdated, in
valid, or worthless annotations from recent and valu
able annotations. Archived annotations will not be
propagated to end-users along with the query an
swers. Restoring annotations is the inverse operation
of archiving annotations.

• Propagating annotations with query answers
Users have the flexibility of propagating or not the
annotations and selecting which annotations to prop
agate along with the query answer.

• Annotation-based querying
Users are able to query the data not only by specifying
conditions on the actual data but also on the annota
tion values themselves.

Annotations usually contain important information that
users want to retrieve and query. For example, annotations
may refer to certain publications, reference other objects in
the database, specify the experiments that triggered the an
notation, or specify how confident the annotator is about the
annotation, etc. While in some cases, users will be satisfied
with having their annotations represented as simple string
data, they may be interested in representing and organiz
ing their annotations in a more flexible way. We support
XML-formatted annotations where annotations are stored
as XML documents inside the relational database. The use
of XML has the advantages of allowing a better organization
of the annotation content, and using the XML querying ca
pabilities offered by the database to retrieve and query the
annotations.

3.1 Annotation Data Model
We extend the concept of a relation to an annotated re
lation, i.e., a relation that has annotations attached to it.
The annotations attached to a relation are organized and
stored in one or more annotation tables. For example, in

-1Ijij
(a) Standard relation R (b) Annotated relation AR

Figure 2: Annotated relations

CREATE ANNOTATION TABLE <ann_table_name>
ON <useUable_name>
SCHEME [Off-tablelln-table]

Figure 3: Extended SQL command CREATE

Figure 2, a standard relation R is extended to an anno
tated relation AR that has three annotation tables AR.lab,
AR. public, and AR.provenance. To create an annotation
table over a given user relation, the command CREATE
ANNOTATION TABLE (Figure 3) is used. The CREATE
command creates an annotation table an'TLtable-name and
inserts into the catalog table annotatio'TLcatalog a record
that links the annotation table an'TLtable_name to the user
table user-table_name. The SCHEME clause specifies how
the annotations in an'TLtable-name are actually stored. The
Off-table option means that the annotations will be stored
in a separate table with name an'TLtable-name, whereas the
In-table option means that the annotations will be stored
in the user table in an additional attribute with name
an'TLtable-name. This choice is made by the user based on
the granularity and size of the annotations as we will explain
in Section 3.2.

Having multiple annotation tables attached to a user rela
tion has several advantages such as: (1) Different types of
annotations can be stored separately, e.g., AR.lab may store
the annotations from lab members, AR.public may store an
notations from the public, and AR.provenance may store
the provenance of R's data. (2) Different annotation tables
can have different permissions and privileges. For example,
adding annotations to AR.lab can be limited to lab mem
bers, adding annotations to AR.public can be open to the
public, while adding annotations to AR.provenance can be
limited to the integration tools.

3.2 Annotation Storage Schemes
Annotations can be attached to the data at multiple gran
ularities, hence efficient storage and indexing schemes are
needed. We propose three storage schemes based on the
granularity of the annotations, namely Off-table, In-table,
and Hybrid schemes. Each scheme has its pros and cons
w.r.t. the storage and query processing overheads.

Off-table Storage Scheme:
In this scheme, the SCHEME clause in the CREATE AN
NOTATION TABLE command is always set to Off-table,
i.e., the annotations over a given relation are stored in sep
arate annotation tables. The off-table scheme is based on
viewing a user relation as a two-dimensional space, e.g.,
columns represent the X-axis and tuple identifiers repre
sent the Y-axis. Since annotations are associated with time,
Time is the third dimension in the proposed scheme. Anno
tations can then be attached to multiple rectangles in this

3-D space. These rectangles may represent a cell, tuple,
column, table, or any set of contiguous cells in the table.
Rectangles are allowed to overlap. For example, annota-
tions A1 and A4 (Figure l(a)) each will be attached to a
single rectangle that covers the annotated cells. Annotation
A5, on the other hand, will be attached to two rectangles.
The construction of the rectangles will be described in Sec-
tion 3.3.

The structure of an annotation table is: (TupleCol BOX,
AnnotationBody XMLText), where TupleCol represents a set
of cells (rectangle) to which the annotation is attached, and
AnnotationBody is an XML formatted text that contains the
annotation information. For a given annotation, the annota-
tion table will have as many tuples as required rectangles to
cover the annotated region. These tuples are inserted by the
ADD ANNOTATION command as described in Section 3.3.

The advantage of the Off-table scheme is that it allows com-
pact representation of annotations a t various granularities.
For example, an annotation over any group of contiguous
cells is represented by a single record in the annotation ta-
ble. Moreover, the Off-table scheme does not require any
change in the structure of the user relations. The annota-
tion tables can even be stored in a separate database. The
only requirements that need to be maintained by the user
database are: (1) each relation has a unique sequential iden-
tifier for each tuple, e.g., OID in PostgreSQL tables and (2)
the structures of the user relations do not change. One dis-
advantage is that at query execution time, we need to join
the data relation with the annotation relation(s) to form the
annotated relation. This join operation can be I/O intensive
as it joins each data tuple with all its annotation tuples.

In-table Storage Scheme:
In this scheme, the SCHEME clause in the CREATE AN-
NOTATION TABLE command is always set to In-table, i.e.,
the annotations over a given user relation, say R , are stored
in R in additional annotation attributes created by the C R E
ATE ANNOTATION TABLE command. No separate anno-
tation tables are created.

To insert an annotation, we identify the data tuples to which
the annotation will be attached (See Section 3.3). Then, a
copy of the added annotation will be inserted into each of
these tuples in the annotation attributes.

The advantage of the In-table scheme is that the user re-
lation has all the annotations stored in it. Therefore, at
query execution time, we directly select the desired data tu-
ples along with their annotations. The disadvantage of the
In-table scheme is in the storage overhead. The storage over-
head can be very high because a single annotation can be
replicated over many of the table's tuples. Moreover, hav-
ing one huge table that stores the user's data as well as all
the annotations over that table will result in performance
degradation of that table's operations.

Hybrid Storage Scheme:
The Hybrid scheme combines the off-table and In-table
schemes. It allows users t o store some annotations in sep-
arate tables and other annotations in additional attributes
in the users' tables. This decision is made based on the

TO <annotation-table-names
VALUE <annotation-body>
ON <select-statemenb ;

(a)

Figure 4: Commands: ADD, ARCHIVE, RE-
STORE

ARCHIVE ANNOTATION
FROM <annotabn-table-names
[BETWEEN <timeb AND <time2>]
ON <select_statemenb ;

Procedure CellGrou~inq
Inouts:

List Aof sorted attributes' identifiers (X-axis integer values)
List Tof sorted tuples' identifiers (Y-axis integer values)

OutDuts:
List of rectangles representing groups of contiguous points (cells)

RESTORE ANNOTATION
FROM <annotation-table-names
[BETWEEN <timer> AND <time2>]
ON <select_statemenb ;

?Scan list Aand identifv the maximal intervals of contiouous values. ~
Each interval Xis defined by X.minand X.ma

"

2- Scan list Tand identify the maximal intervals of contiguous values.
Each interval Yis defined by Y.minand Y.ma

3- For each pair of X and Y construct rectangle ((X.min, Y.min) , (X.ma, Y.ma))

Figure 5: Constructing groups of contiguous cells

granularity and size of the annotations. Annotations can
be categorized into two types based on their granularities,
fine-granularity and coarse-granularity annotations. Fine-
granularity annotations are attached to a specific cell, tu-
ple, or few related cells or tuples in the user relation. For
example, users' comments and annotations are usually fine-
granularity annotations. Coarse-granularity annotations are
attached to a large number of cells or tuples or even to en-
tire tables or columns. For example, provenance is usually
a coarse-granularity annotation. Coarse-granularity anno-
tations are best stored in separate tables, i.e., the off-table
scheme, while Fine-granularity annotations are best stored
in the same user relation in additional annotation attributes,
i.e., the In-table scheme. Currently, the user specifies either
to store the annotations In-table or Off-table. In our future
work, we plan to make this decision systematic, i.e., based
on the size of the annotation and the number of tuples it is
attached to, the system decides how to store the annotation.

The Hybrid scheme combines the advantages of both the off-
table and In-table schemes. It allows compact representation
of the coarse-granularity annotations and, at the same time,
allows fast querying for the fine-granularity annotations.

3.3 Adding Annotations at Multiple Granu-
larities

The new command ADD ANNOTATION (Figure 4(a)) is
used to add annotations to the database. Users can also
use the graphical tool (Figure l(c)) to add the annotations,
where the ADD ANNOTATION command will be automat-
ically generated based on the user selection. The annota-
tioxbody parameter is an XML-formatted text that specifies
the annotation value. The annotatioxtable_names parame-

Figure 5: Constructing groups of contiguous cells

Figure 4: Commands: ADD, ARCHIVE, RE
STORE

ADD ANNOTATION
TO <annotation_table_names>
VALUE <annotation_body>
ON <seiecLstatement> ;

The Hybrid scheme combines the advantages of both the off
table and In-table schemes. It allows compact representation
of the coarse-granularity annotations and, at the same time,
allows fast querying for the fine-granularity annotations.

(c)

RESTORE ANNOTATION
FROM <annotation_table_names>
[BE1WEEN <lime1> AND <time2>1
ON <seleclsta.tement> ;

(a)

(b)

ARCHIVE ANNOTATION
FROM <annotation_table_names>
[BE1WEEN <time I> AND <lime2>J
ON <select statement> ;

granularity and size of the annotations. Annotations can
be categorized into two types based on their granularities,
fine-granularity and coarse-granularity annotations. Fine
granularity annotations are attached to a specific cell, tu
ple, or few related cells or tuples in the user relation. For
example, users' comments and annotations are usually fine
granularity annotations. Coarse-granularity annotations are
attached to a large number of cells or tuples or even to en
tire tables or columns. For example, provenance is usually
a coarse-granularity annotation. Coarse-granularity anno
tations are best stored in separate tables, i.e., the off-table
scheme, while Fine-granularity annotations are best stored
in the same user relation in additional annotation attributes,
i.e., the In-table scheme. Currently, the user specifies either
to store the annotations In-table or Off-table. In our future
work, we plan to make this decision systematic, i.e., based
on the size of the annotation and the number of tuples it is
attached to, the system decides how to store the annotation.

Procedure CeliGrouping
Inputs:

List Aof sorted attributes' identiliers (X-axis integer values)
List Tof sorted tuples' identifiers (V-axis integer values)

Outputs:
List of rectangles representing groups of contiguous points (cells)

Steps:
1- Scan list Aand identify the maximal intervals of contiguous values.

Each interval Xis defined by Xmin and Xmax
2- Scan list Tand identify the maximal intervals of contiguous values.

Each interval Yis defined by Y.minand Y.max
3- For each pair of Xand Yconstruct rectangle ((Xmin, Y.min) , (Xmax, Y.max))

3.3 Adding Annotations at Multiple Granu-
larities

The new command ADD ANNOTATION (Figure 4(a)) is
used to add annotations to the database. Users can also
use the graphical tool (Figure 1(c)) to add the annotations,
where the ADD ANNOTATION command will be automat
ically generated based on the user selection. The annota
tion....body parameter is an XML-formatted text that specifies
the annotation value. The annotation....table...names parame-

3-D space. These rectangles may represent a cell, tuple,
column, table, or any set of contiguous cells in the table.
Rectangles are allowed to overlap. For example, annota
tions Al and A4 (Figure l(a)) each will be attached to a
single rectangle that covers the annotated cells. Annotation
A5, on the other hand, will be attached to two rectangles.
The construction of the rectangles will be described in Sec
tion 3.3.

To insert an annotation, we identify the data tuples to which
the annotation will be attached (See Section 3.3). Then, a
copy of the added annotation will be inserted into each of
these tuples in the annotation attributes.

The advantage of the Off-table scheme is that it allows com
pact representation of annotations at various granularities.
For example, an annotation over any group of contiguous
cells is represented by a single record in the annotation ta
ble. Moreover, the Off-table scheme does not require any
change in the structure of the user relations. The annota
tion tables can even be stored in a separate database. The
only requirements that need to be maintained by the user
database are: (1) each relation has a unique sequential iden
tifier for each tuple, e.g., OlD in PostgreSQL tables and (2)
the structures of the user relations do not change. One dis
advantage is that at query execution time, we need to join
the data relation with the annotation relation(s) to form the
annotated relation. This join operation can be I/O intensive
as it joins each data tuple with all its annotation tuples.

In-table Storage Scheme:
In this scheme, the SCHEME clause in the CREATE AN
NOTATION TABLE command is always set to In-table, i.e.,
the annotations over a given user relation, say R, are stored
in R in additional annotation attributes created by the CRE
ATE ANNOTATION TABLE command. No separate anno
tation tables are created.

The structure of an annotation table is: (Tuple Col BOX,
AnnotationBody XMLText), where TupleCol represents a set
of cells (rectangle) to which the annotation is attached, and
AnnotationBody is an XML formatted text that contains the
annotation information. For a given annotation, the annota
tion table will have as many tuples as required rectangles to
cover the annotated region. These tuples are inserted by the
ADD ANNOTATION command as described in Section 3.3.

Hybrid Storage Scheme:
The Hybrid scheme combines the off-table and In-table
schemes. It allows users to store some annotations in sep
arate tables and other annotations in additional attributes
in the users' tables. This decision is made based on the

The advantage of the In-table scheme is that the user re
lation has all the annotations stored in it. Therefore, at
query execution time, we directly select the desired data tu
ples along with their annotations. The disadvantage of the
In-table scheme is in the storage overhead. The storage over
head can be very high because a single annotation can be
replicated over many of the table's tuples. Moreover, hav
ing one huge table that stores the user's data as well as all
the annotations over that table will result in performance
degradation of that table's operations.

ter specifies the annotation tables(s) in which the annotation
will be stored. The select-statement parameter is a simple
SELECT-FROM-WHERE SQL query that does not contain
any aggregation or nested sub-queries. The projection list
in selectstatement is limited only to column names, i.e., no
functions are allowed in the projection list. The annotation
will be attached to the data in the base tables, the SQL
query is only used as a powerful mechanism to specify the
regions, i.e., groups of cells in the base tables, over which the
annotation will be created. These regions can specify cer-
tain cells, entire tuples or columns, or even entire tables. For
example, an entire table can be annotated using SELECT
* FROM TableName query, while an entire column can be
annotated using SELECT ColumnName FROM TableName
query. The ADD ANNOTATION command allows users to
also annotate multiple relations simultaneously.

The following ADD command illustrates adding annotation
A1 to gene Lac2 (Figure l(a)) .

ADD ANNOTATION
TO Gene.Glab
VALUE '< Annotation >

< Comment >
gene has three mutations

< /Comment >
< /Annotation >'

ON (Select G. *
From Gene G
WHERE G. GeneID = JW0335);

The command stores the annotation in the annotation tables
Glab that is linked to table GENE. The annotation will be
attached t o the entire tuple because all the attributes in the
table are selected.

Notice that an annotation table, e.g., Glab, is allowed to
appear in the annotation-tablenames list, only if the cor-
responding user relation, e.g., GENE, appears in the se-
lectstatement.

The annotated region is in general a set of disjoint cells in the
base table. However, contiguous cells within a region can be
grouped together as one unit (rectangle). The ADD ANNO-
TATION command generates as many insert statements as
the number of rectangles for each annotations. The proce-
dure for translating the ADD ANNOTATION command to
the corresponding insert statements (based on the Off-table
scheme) is as follows:

1. Identify the user relations in the select-statement and
their attributes in the projection list.

2. Map the attributes of each relation to integer values
over the X-axis of a conceptual two-dimensional space.
The mapping is based on the order of the attributes
in the relation. For example, columns GeneID, Gene-
Name, and Sequence in table GENE (Figure l(a)) map
t o values 1, 2, and 3, respectively.

3. Execute the select-statement to retrieve the identifiers
of tuples to which the annotation will be attached.
These identifiers are mapped to integer values over the

Y-axis in the two-dimensional space. The identifiers
can be the system auto-generated identifiers for each
tuple in the relation. Consecutive tuples should have
consecutive identifiers.

4. Group the points in the two-dimensional space to form
rectangles, i.e., a group of contiguous cells form one
rectangle. The algorithm for constructing these rect-
angles is illustrated in Figure 5.

5. For each identified rectangle, form and execute an in-
sert statement on the corresponding annotation table.

The insertion procedure in the case of the In-table scheme
is more straightforward. The select statement is first exe-
cuted to determine the output tuples, then the annotation is
inserted into the annotation attributes specified in the TO
clause of those tuples.

For each inserted annotation, the system adds automatically
the following XML elements < User >, < Timestamp >
, < ArchiveFlag >, and < Columns >, where element
User contains the name of the user inserting the annotation,
Timestamp contains the annotation insertion time, Archiue-
Flag indicates whether the annotation is archived or not,
initially set to FALSE, and Columns lists the columns to
which the annotation is attached. These elements are ac-
cessible t o end-users, e.g., users can query the annotations
based on the User or Timestamp values.

If using the graphical tool to add the annotations, the
tool would track the column names and tuple identifiers of
the displayed data. Then, when the users selects or high-
lights certain cells to annotate, these cells will be mapped
to the corresponding column names and tuple identifiers.
Then, the tool generates an ADD ANNOTATION com-
mand, where the selectstatement parameter will select the
specified column names and tuple identifiers. The command
will then be passed to the database engine to be executed
according to the procedure above, except that Step 3 will
be skipped since the tuple identifiers are already part of the
selectstatement.

3.4 Archiving and Restoring Annotations
Archival of annotations allows users to isolate outdated, in-
valid, or worthless annotations from recent and valuable
ones. The archival operation changes the status of an a n n e
tation from active to inactive. Inactive annotations will not
be propagated with the query results. Archival is useful in
many scenarios, for example, when the data associated to
the annotation is modified or when the the lab administra-
tor decides that certain annotations are no longer correct or
relevant.

We propose the ARCHIVE ANNOTATIONcommand (Fig-
ure 4(b)) to archive annotations. The annotations will be
archived only from the annotation tables specified in anno-
tation-tablenames. The cells over which the annotations
will be archived are specified through the select-statement
parameter. If the optional clause BETWEEN is specified,
only the annotations created between time1 and time2 will
be archived.

ter specifies the annotation tables(s) in which the annotation
will be stored. The selecLstatement parameter is a simple
SELECT-FROM-WHERE SQL query that does not contain
any aggregation or nested sub-queries. The projection list
in selecLstatement is limited only to column names, i.e., no
functions are allowed in the projection list. The annotation
will be attached to the data in the base tables, the SQL
query is only used as a powerful mechanism to specify the
regions, Le., groups of cells in the base tables, over which the
annotation will be created. These regions can specify cer
tain cells, entire tuples or columns, or even entire tables. For
example, an entire table can be annotated using SELECT
* FROM TableName query, while an entire column can be
annotated using SELECT ColumnName FROM TableName
query. The ADD ANNOTATION command allows users to
also annotate multiple relations simultaneously.

The following ADD command illustrates adding annotation
Al to gene LacZ (Figure lea)).

ADD ANNOTATION
TO Gene. Glab
VALUE '< Annotation>

< Comment>
gene has three mutations

< /Comment >
< / Annotation> '

ON (Select G. *
From Gene G
WHERE G. GeneID = JW0335)i

The command stores the annotation in the annotation tables
Clab that is linked to table GENE. The annotation will be
attached to the entire tuple because all the attributes in the
table are selected.

Notice that an annotation table, e.g., Clab, is allowed to
appear in the annotation-table-names list, only if the cor
responding user relation, e.g., GENE, appears in the se
lecLstatement.

The annotated region is in general a set of disjoint cells in the
base table. However, contiguous cells within a region can be
grouped together as one unit (rectangle). The ADD ANNO
TATION command generates as many insert statements as
the number of rectangles for each annotations. The proce
dure for translating the ADD ANNOTATION command to
the corresponding insert statements (based on the Off-table
scheme) is as follows:

1. Identify the user relations in the selecLstatement and
their attributes in the projection list.

2. Map the attributes of each relation to integer values
over the X-axis of a conceptual two-dimensional space.
The mapping is based on the order of the attributes
in the relation. For example, columns GeneID, Gene
Name, and Sequence in table GENE (Figure lea)) map
to values 1, 2, and 3, respectively.

3. Execute the selecLstatement to retrieve the identifiers
of tuples to which the annotation will be attached.
These identifiers are mapped to integer values over the

Y-axis in the two-dimensional space. The identifiers
can be the system auto-generated identifiers for each
tuple in the relation. Consecutive tuples should have
consecutive identifiers.

4. Group the points in the two-dimensional space to form
rectangles, Le., a group of contiguous cells form one
rectangle. The algorithm for constructing these rect
angles is illustrated in Figure 5.

5. For each identified rectangle, form and execute an in
sert statement on the corresponding annotation table.

The insertion procedure in the case of the In-table scheme
is more straightforward. The select statement is first exe
cuted to determine the output tuples, then the annotation is
inserted into the annotation attributes specified in the TO
clause of those tuples.

For each inserted annotation, the system adds automatically
the following XML elements < User >, < Timestamp>
, < ArchiveFlag >, and < Columns >, where element
User contains the name of the user inserting the annotation,
Timestamp contains the annotation insertion time, Archive
Flag indicates whether the annotation is archived or not,
initially set to FALSE, and Columns lists the columns to
which the annotation is attached. These elements are ac
cessible to end-users, e.g., users can query the annotations
based on the User or Timestamp values.

If using the graphical tool to add the annotations, the
tool would track the column names and tuple identifiers of
the displayed data. Then, when the users selects or high
lights certain cells to annotate, these cells will be mapped
to the corresponding column names and tuple identifiers.
Then, the tool generates an ADD ANNOTATION com
mand, where the selecLstatement parameter will select the
specified column names and tuple identifiers. The command
will then be passed to the database engine to be executed
according to the procedure above, except that Step 3 will
be skipped since the tuple identifiers are already part of the
selecLstatement.

3.4 Archiving and Restoring Annotations
Archival of annotations allows users to isolate outdated, in
valid, or worthless annotations from recent and valuable
ones. The archival operation changes the status of an anno
tation from active to inactive. Inactive annotations will not
be propagated with the query results. Archival is useful in
many scenarios, for example, when the data associated to
the annotation is modified or when the the lab administra
tor decides that certain annotations are no longer correct or
relevant.

We propose the ARCHIVE ANNOTATION command (Fig
ure 4(b)) to archive annotations. The annotations will be
archived only from the annotation tables specified in anno
tation-table-names. The cells over which the annotations
will be archived are specified through the selecLstatement
parameter. If the optional clause BETWEEN is specified,
only the annotations created between timet and time2 will
be archived.

Restoring annotations is the inverse operation to archiving
annotations. We propose the RESTORE ANNOTATION
command (Figure 4(c)) to restore archived annotations. RE-
STORE ANNOTATION has the same clauses as ARCHIVE
ANNOTATION. Restored annotations will be propagated
again to end-users along with query answers.

The procedures for executing the ARCHIVE/RESTORE
ANNOTATION commands are similar to that of ADD AN-
NOTATION, where the selectstatement is first executed to
identify the query results, and then the annotations attached
to the identified cells are marked as inactive or active.

In case the users' data gets updated, the annotations at-
tached to the updated cells may or may not remain valid
based on the annotations' semantics. Moreover, after a se-
quence of updates, it may become confusing which annota-
tions are attached to which data values. In the proposed
mechanis, we do not automatically archive the existing an-
notations when there is an update on the data since they
may still be valid for the new values. Instead, we provide a
mechanism that allows users to track which annotations are
added to which values. When a cell that already has an an-
notation added to it gets updated, the system automatically
generates an annotation specifying that the cell value has
been updated by user user-name at timestamp updatetime
with old value oldvalue. These annotations will be stored
in a separate annotation table (maintained by the system),
and will be propagated automatically to end-users whenever
a query involves annotation propagation. As a result, users
can track which annotations are added to which values. If
users want to actually archive certain undesired annotations,
they can manually issue an ARCHIVE command. This ap-
proach works well for databases that do not involve frequent
updates. In our future work, we plan to study other alter-
natives and techniques that suits databases with frequent
updates.

3.5 Data- and Annotation-based Querying
To propagate annotations along with query answers or to
query data based on annotation values, we introduce an ex-
tended SELECT statement (Figure 6) that operates over
annotated relations. We extended the semanitcs of the
standard operators and introduced the new operators PRO-
MOTE, ANNOTATION, AWHERE, AHAVING, and FIL-
TER that allow users t o perform operations and apply con-
ditions over the annotations.

The main motivation behind extending the semantics of ex-
isting operators and introducing new operators is that a n n e
tations are metadata and should receive special processing in
the query pipeline, otherwise users' queries will become very
complex. For example, assume identical tuples TI , T2, ...,
Tn with different annotations in the query pipeline. Exist-
ing operators that group tuples, e.g., DISTINCT, UNION,
GROUP BY, INTERSECT, will produce all TI , T2, ..., T n
tuples because they cannot detect that these tuples are iden-
tical. Thus many duplicates are produced in the output and
these operators will lose their functionalities. The other way
of processing is to apply these operators before attaching the
annotations to the tuples. In this case, the operators will
produce one copy of the identical tuples. However, the other
identical tuples will be lost and tracking them to retrieve

SELECT [DISTINCT] C, [PROMOTE (C,, C,, ...)], ...
FROM Relation-name[ANNOTATION(S,, S,, ...)I, ...
[WHERE <data-conditions>]
[AW H E RE tannotation-condition>]
[GROUP BY <data-columns>

[HAVING <data-condition>]
[AHAVI NG <annotation-condition>]]

[FILTER < fi/ter_annotation-condition>]

[ORDER BY <data-columns>]

I [UNION I UNION ALL I INTERSECT I EXCEPT] 1
Figure 6: The Extended SELECT

their annotations is very complex. Another scenario that
motivates the need for new operators is the following query:
retrieve each tuple T along with all its annotations only if T
has an annotation inserted by user LLAdmin". The standard
join operator will join T with its annotation tuples. Adding
the condition User = "Admin" will result in generating T
only with the annotations inserted by Admin. The other
annotations will be dropped. To retrieve the other annota-
tions on T , more join operations are needed. In contrast,
the proposed extended query operators allow the database
engine to natively and efficiently support the processing and
retrieval of annotations.

The semantics of the new clauses are as follows. PRO-
MOTE, which may follow a column's name in the projec-
tion list, copies annotations from some columns, possibly
not in the projection list, to a specific column. As a result,
annotations over non-projected attributes can be kept and
propagated in the query pipeline. ANNOTATION, which
may follow a relation's name in the FROM clause, specifies
which annotation tables to consider in the query, i.e., which
annotations to propagate. For example, a user may want to
only propagate the annotations stored in annotation table
AR.Prouenance. The selection operator AWHERE selects
tuples based on conditions applied to the tuples' annota-
tions, i.e., if the annotations attached to the tuple satisfy
annotation~wndition, then the tuple is selected along with
its annotations. AHAVING is analogous to AWHERE ex-
cept that the former is applied after the grouping is per-
formed. Unlike AWHERE and AHAVING which may drop
entire user tuples, the FILTER operator passes all tuples of
the input relation after filtering the annotations attached to
each tuple based on the filtering condition(s). For example,
users may want to propagate only the annotations added in
the last month with each tuple. In this case, FILTER will
filter out any annotation with a timestamp before the last
month.

Since annotations are XML documents, then the new op-
erators, AWHERE, AHAVING, FILTER, and PROMOTE
operate on XML data. The AWHERE, AHAVING, and
FILTER operators apply XPath boolean expressions over
a given annotation document. The PROMOTE operator
concatenates two annotation documents into one document.

Example: Consider the following query Q1:

Q1: SELECT GeneID, GeneName [PROMOTE(Sequence)]
FROM GENE[A NNOTATION(Glab)]

Restoring annotations is the inverse operation to archiving
annotations. We propose the RESTORE ANNOTATION
command (Figure 4(c)) to restore archived annotations. RE
STORE ANNOTATION has the same clauses as ARCHIVE
ANNOTATION. Restored annotations will be propagated
again to end-users along with query answers.

The procedures for executing the ARCHIVE/RESTORE
ANNOTATION commands are similar to that of ADD AN
NOTATION, where the select-statement is first executed to
identify the query results, and then the annotations attached
to the identified cells are marked as inactive or active.

In case the users' data gets updated, the annotations at
tached to the updated cells mayor may not remain valid
based on the annotations' semantics. Moreover, after a se
quence of updates, it may become confusing which annota
tions are attached to which data values. In the proposed
mechanis, we do not automatically archive the existing an
notations when there is an update on the data since they
may still be valid for the new values. Instead, we provide a
mechanism that allows users to track which annotations are
added to which values. When a cell that already has an an
notation added to it gets updated, the system automatically
generates an annotation specifying that the cell value has
been updated by user user_name at timestamp update-time
with old value old...value. These annotations will be stored
in a separate annotation table (maintained by the system),
and will be propagated automatically to end-users whenever
a query involves annotation propagation. As a result, users
can track which annotations are added to which values. If
users want to actually archive certain undesired annotations,
they can manually issue an ARCHIVE command. This ap
proach works well for databases that do not involve frequent
updates. In our future work, we plan to study other alter
natives and techniques that suits databases with frequent
updates.

3.5 Data- and Annotation-based Querying
To propagate annotations along with query answers or to
query data based on annotation values, we introduce an ex
tended SELECT statement (Figure 6) that operates over
annotated relations. We extended the semanitcs of the
standard operators and introduced the new operators PRO
MOTE, ANNOTATION, AWHERE, AHAVING, and FIL
TER that allow users to perform operations and apply con
ditions over the annotations.

The main motivation behind extending the semantics of ex
isting operators and introducing new operators is that anno
tations are metadata and should receive special processing in
the query pipeline, otherwise users' queries will become very
complex. For example, assume identical tuples TI, T2, ... ,
Tn with different annotations in the query pipeline. Exist
ing operators that group tuples, e.g., DISTINCT, UNION,
GROUP BY, INTERSECT, will produce all TI, T2, ... , Tn
tuples because they cannot detect that these tuples are iden
tical. Thus many duplicates are produced in the output and
these operators will lose their functionalities. The other way
of processing is to apply these operators before attaching the
annotations to the tuples. In this case, the operators will
produce one copy of the identical tuples. However, the other
identical tuples will be lost and tracking them to retrieve

SELECT [DISTINCT] C!fPROMOTE (Cj , Ck , •••)], •••

FROM Relation_name [ANNOTATION(8" 8 2 , •••)], •••

[WHERE <data_conditions>]

[AWHERE <annotation_condition>]

[GROUP BY <data_columns>

[HAVING <data_condition>]

[AHAVI NG <annotation_condition>]]

[FILTER <filter_annotation_condition>]

[ORDER BY <data_columns>]

[UNION I UNION ALL I INTERSECT I EXCEPT]

Figure 6: The Extended SELECT

their annotations is very complex. Another scenario that
motivates the need for new operators is the following query:
retrieve each tuple T along with all its annotations only if T
has an annotation inserted by user "Admin". The standard
join operator will join T with its annotation tuples. Adding
the condition User = "Admin" will result in generating T
only with the annotations inserted by Admin. The other
annotations will be dropped. To retrieve the other annota
tions on T, more join operations are needed. In contrast,
the proposed extended query operators allow the database
engine to natively and efficiently support the processing and
retrieval of annotations.

The semantics of the new clauses are as follows. PRO
MOTE, which may follow a column's name in the projec
tion list, copies annotations from some columns, possibly
not in the projection list, to a specific column. As a result,
annotations over non-projected attributes can be kept and
propagated in the query pipeline. ANNOTATION, which
may follow a relation's name in the FROM clause, specifies
which annotation tables to consider in the query, i.e., which
annotations to propagate. For example, a user may want to
only propagate the annotations stored in annotation table
AR.Provenance. The selection operator AWHERE selects
tuples based on conditions applied to the tuples' annota
tions, i.e., if the annotations attached to the tuple satisfy
annotatiorLcondition, then the tuple is selected along with
its annotations. AHAVING is analogous to AWHERE ex
cept that the former is applied after the grouping is per
formed. Unlike AWHERE and AHAVING which may drop
entire user tuples, the FILTER operator passes all tuples of
the input relation after filtering the annotations attached to
each tuple based on the filtering condition(s). For example,
users may want to propagate only the annotations added in
the last month with each tuple. In this case, FILTER will
filter out any annotation with a timestamp before the last
month.

Since annotations are XML documents, then the new op
erators, AWHERE, AHAVING, FILTER, and PROMOTE
operate on XML data. The AWHERE, AHAVING, and
FILTER operators apply XPath boolean expressions over
a given annotation document. The PROMOTE operator
concatenates two annotation documents into one document.

Example: Consider the following query QI:

Q1: SELECT GeneID, GeneName [PROMOTE(Sequence)}
FROM GENE[ANNOTATION(Glab)}

- -.

I The structure of AR in the query pipeline is independent
genesars..,dComment> i of the underlying annotations' storage scheme. This sepa-

<nrchiNen~'Fa'mJArc~BFIaP' ration between the underlying annotations' storage scheme <UseoADMINciUseo
zmri-oi-2007~rlrnestam~> j and the query processor is achieved through the ANNOTA-

1 TION operator, i.e., the implementation of the ANNOTA-
I TION operator varies based on the underlying annotations'

scheme to generate the same structure in the query pipeline.

The general structure of AR in the query pipeline
is: ({user-attrzbutes), {annotatzoxattrzbutes)), where
user-attnbutes is a set of user attributes and annota-
tzoxattnbutes is a set of attributes that hold the annotations

1 over each tuple of AR. annotatzoxattnbutes are special at-
<Col>Sequsnce<~Cob
<Col>GeneNamdCal> : tributes and hence receive special processing in the query

pipeline. The various query operators identify the annota-
I tion attributes by their data type, i.e., XMLText. XMLText

is a new data type that we added to PostgreSQL to store
the annotations.

F igure 7: Resul ts f rom query Q1

Figure 8: Annota ted re la t ion i n t h e que ry pipeline
(Single anno ta t ion document a t t ached t o each tuple)

WHERE GeneID IN ('JW3778', 'JW037d1, 'JW1266')
AWHERE xpathbool(Glab, 'Root/Annotation/User ="ADMIN"')
FILTER xpathbool(Glab,'Root/Annotation/TzmeStamp >"Jan-
01 -2007"');

The query selects the GeneID and GeneName from table
GENE (Figure l(a)) where (1) GeneID equals 'JW377g1,
'JW0374', or 'JW1266', and (2) the gene entry has annota-
tions inserted by user 'ADMIN' in Glab. For each output tu-
ple, report only the annotations inserted after 'Jan-01-2007'
and copy the annotations on column Sequence to column
GeneName.

The output of Q1 is given in Figure 7. The WHERE clause
passes only the three tuples corresponding to genes JW3778,
JW0374, and JW1266. the AWHERE clause passes only
the two tuples corresponding to genes JW0374 and JW1266
since they have annotations entered by 'ADMIN'. The FIL-
TER clause drops annotation A9 from tuple JW0374 be-
cause A9 is entered before 'Jan-01-2007'. The PROMOTE
clause copies annotation A10 from column Sequence to col-
umn GeneName. Finally, the projection selects columns
GeneID and GeneNarne along with their annotations A5 and
A10.

4. QUERY REWRITE AND EXECUTION
A user relation R is transformed to an annotated relation
AR by the ANNOTATION operator in the FROM clause.

In AR, an annotation attribute is added for each Off-table
annotation table specified in the ANNOTATION clause. For
example, G E N E [ANNOTATION (Glab)] produces table
A-GENE with an additional annotation attributes Glab (See
Figure 8) that holds the annotations from Glab annotation
table. A-GENE table corresponds to the conceptual struc-
ture given in Figure l(a). The annotations over each tuple
are concatenated and stored in a single XML document a s
illustrated in the figure. For example, the tuple correspond-
ing to gene JWO374 has two annotations attached to it, A5
that is attached to columns GeneID and GeneName and A9
that is attached to column GeneName.

The semantics of the standard query operators are modified
to support the processing of annotatioxattributes as follows
(the algebraic definition of the operators is presented in Ap-
pendix A):

DISTINCT, UNION, I N T E R S E C T , a n d E X C E P T :
These operators do not take annotatioxattributes into ac-
count while comparing the columns to identify the identical
tuples. That is, tuples T 1 and T2 are considered identicals
if the user-attributes are identicals. A generated tuple T
will have the same annotatioxattributes as the input tuples.
Each annotation attribute A is the union of A's annotations
over T's identical copies.

Projection: Projects the annotatioxattributes in addition
to the user-attributes in the projection list. The annotations
in each annotation attribute are filtered to drop off the an-
notations over the non-projected user attributes.

Car tes ian product: Cartesian product joins two an-
notated relations AR and AS and produces another an-
notated relation AT with attributes ({AR-attributes),
{AS-attributes)). Hence, the number of annotation at-
tributes in AT is the sum of the number of the annotation
attributes in AR and AS.

The new clauses ANNOTATION, AWHERE, AHAVING,
FILTER, and PROMOTE, are re-written using the existing
operators a s well as database stored functions according to
the following rules:

The general structure of AR in the query pipeline
is: ({ user-attributes}, {annotation-attributes}), where
user-attributes is a set of user attributes and annota
tion-attributes is a set of attributes that hold the annotations
over each tuple of AR. annotation-attributes are special at
tributes and hence receive special processing in the query
pipeline. The various query operators identify the annota
tion attributes by their data type, Le., XMLText. XMLText
is a new data type that we added to PostgreSQL to store
the annotations.

The structure of AR in the query pipeline is independent
of the underlying annotations' storage scheme. This sepa
ration between the underlying annotations' storage scheme
and the query processor is achieved through the ANNOTA
TION operator, Le., the implementation of the ANNOTA
TION operator varies based on the underlying annotations'
scheme to generate the same structure in the query pipeline.

Figure 7: Results from query Ql

t"': -, ':' ,~':-:~ .. - - - ---..~:- - -,-'.- -.-- ~ - - - _ .. -- ---,

: ~<A~\:::....::. . ' :
I.,•. <Annotatibr'i> I
I>; , I, ,, ,, ,
, :,

<CQlu'nfns> :
<Gol,Genellk/Col, . .:
<Col,GeneName<JCOI, :

dCoIUnins> I

GenelD GeneNameGlabannotatiOflS'> "'Annotation> :
f-

JW
-

03
-74-+-Ph-OA--+--·Po--(G--.--n'--JD--,G--en--.--Ne--ni"'ej--"d-'ri, c~9!~I:'c __c.C _ c c...c_c__:

f-j-W-12-66-+-to-PA--+--M-,O{cc§il<l--..•. u~.ccl\C~"i-G.•-n.~N,-'am--·~-'-I)' [~<R~--_··_--·_·_--·-------_·_-··---l
L--.....L. J;.;.;.;;;.-;.;;;.-.....;.;;;.-;.;;;.-.;;".U' nol~tiq~.., .., .".,.• ' .' .•.. :

I ",Comfl:letJ~.,h8$ UnsJabl~••• 4CQmmenb 1

<A,chlv~Fiag'Fal!'$"'Archiv.Flag, :
<Us.f>AD~IN<J1,Js~,> ,. :
<1im~SlamP>Fe!l-2o·29!J7<1Tlm.Slamp, :
",Colum,ns?'.':>..:::::?::,' "'>:':'> ::, :', I

.. ~G9!~sequence<lCoI> ,, ~
<Col,GeneName<JCoI,. :

<leolumns, ,
1 ,Annotatidn> " :
:_~~~j:~:~'~'_ ~ __ ~ ~~_~~.~~:~.~~:~ i:~J

GenelD GeneName Sequence

jW0335 LecZ ATGACCATGA...

jW3778 cyaA TTGTACCTCL

JW0374 phoA GTGAAACAAA... A5[11,,,,,iD..l1eneNam,1
~S(l1erieNam,)

JW1266 topA ATGGGTAAAG...Ai9(&iqu""~)

GENE [ANNOTATION(Glab)] =A_GENE

,,,
.. ,<1COmment> :,:

,,
I~~t~p> .. :

':"",<CO!UfTUiS> ,,' . :::':"" I

'<CoI>GenelD<lC~I~ ;
.' <CoI>GenaNamadCOI:>'" I

. <IColumns> :
%motalion> :

notation> .. ",-:.": ,,'.,": I

<Commen~veml~~ ~Y-:••~ <';CornmeOt; :
~rchiveFfag>~lS~4AJ:c~yeAag> [
.~User>ADMIN<JtJsel'> ' : '::' ,: >'. , :
~J1meStllmP>~~.1k.2P~e~1amp> 1

<OQlWlll]!».,.':"':::-:::,',:,:::/:"::,, :

<~~~E!Na~<lC.ol> :
4:09I,Urnos>;~ : :

I,e', ',', Anriota.tkl:Ii>'::-::-'·· 1

L~_~~~ ~ ~,__'';'; J

In AR, an annotation attribute is added for each Off-table
annotation table specified in the ANNOTATION clause. For
example, CENE[ANNOTATION(Clab)] produces table
A_GENE with an additional annotation attributes Clab (See
Figure 8) that holds the annotations from Glab annotation
table. A_GENE table corresponds to the conceptual struc
ture given in Figure l(a). The annotations over each tuple
are concatenated and stored in a single XML document as
illustrated in the figure. For example, the tuple correspond
ing to gene JW0374 has two annotations attached to it, A5
that is attached to columns GeneID and GeneName and A9
that is attached to column GeneName.

Figure 8: Annotated relation in the query pipeline
(Single annotation document attached to each tuple)

WHERE GeneID IN ('JW3778', 'JW0374', 'JW1266')
AWHERE xpatlLbool(Glab, 'Root/Annotation/User = "ADMIN"')
FILTER xpatlLbool(Glab, 'Root/Annotation/TimeStamp> "Jan
01-2007''');

The query selects the GeneID and GeneName from table
GENE (Figure l(a)) where (1) GeneID equals 'JW3778',
'JW0374', or 'JW1266', and (2) the gene entry has annota
tions inserted by user 'ADMIN' in Glab. For each output tu
ple, report only the annotations inserted after' Jan-Ol-200T
and copy the annotations on column Sequence to column
GeneName.

The output of Q1 is given in Figure 7. The WHERE clause
passes only the three tuples corresponding to genes JW3778,
JW0374, and JW1266. the AWHERE clause passes only
the two tuples corresponding to genes JW0374 and JW1266
since they have annotations entered by 'ADMIN'. The FIL
TER clause drops annotation A9 from tuple JW0374 be
cause A9 is entered before 'Jan-Ol-200T. The PROMOTE
clause copies annotation AlO from column Sequence to col
umn GeneName. Finally, the projection selects columns
GeneID and GeneNarne along with their annotations A5 and
AlO.

4. QUERY REWRITE AND EXECUTION
A user relation R is transformed to an annotated relation
AR by the ANNOTATION operator in the FROM clause.

The semantics of the standard query operators are modified
to support the processing of annotation-attributes as follows
(the algebraic definition of the operators is presented in Ap
pendix A):

DISTINCT, UNION, INTERSECT, and EXCEPT:
These operators do not take annotation-attributes into ac
count while comparing the columns to identify the identical
tuples. That is, tuples T1 and T2 are considered identicals
if the user-attributes are identicals. A generated tuple T
will have the same annotation-attributes as the input tuples.
Each annotation attribute A is the union of A's annotations
over T's identical copies.

Projection: Projects the annotation-attributes in addition
to the user-attributes in the projection list. The annotations
in each annotation attribute are filtered to drop off the an
notations over the non-projected user attributes.

Cartesian product: Cartesian product joins two an
notated relations AR and AS and produces another an
notated relation AT with attributes ({ AR_attributes},
{AS_attributes}}. Hence, the number of annotation at
tributes in AT is the sum of the number of the annotation
attributes in AR and AS.

The new clauses ANNOTATION, AWHERE, AHAVING,
FILTER, and PROMOTE, are re-written using the existing
operators as well as database stored functions according to
the following rules:

ANNOTATION: The re-writing rule for clause
R [A N N O T A T I O N (A l , A2, ..., An)] depends on which
storage scheme is used.

- In-table: Project from R the annotation attributes Al ,
A2, . . ., An. Initially, R has all the annotation attributes.

- Off-table: Left join R with the annotation tables A l , A2,
..., An. Project the user attributes from R and the Annota-
tionBody column from each of the annotation tables. Group
the tuples based o n the user attributes of R and apply a union
aggregation operator over the annotation attributes. Notice
that each annotation table A i adds an annotation attribute
with name A i to the projection list.

- Hybrid: Apply the In-table rule, Off-table rule, or both
as required.

AWHERE: Move the A W H E R E conditions to the W H E R E
clause (create a new W H E R E clause i f needed). The
AWHERE conditions are applied over the annotation at-
tributes. Since the annotation attributes are materialized
using the ANNOTATION operator, then AWHERE condi-
tions can be added as regular WHERE conditions.

AHAVING: Move the A H A V I N G conditions to the H A V-
ING clause (create a new HAVING clause i f needed).
AHAVING is analogous to AWHERE.

FILTER: FILTER is implemented as a database scalar
function F I L T E R A N N O T A T I O N () that is applied to
the annotation attributes in the projection list. FIL-
TERANNOTATION() takes an annotation attribute and
filter-annotation-conditions as arguments. Each annotation
that does not satisfy filter-annotation-conditions is removed.

PROMOTE: P R O M O T E is implemented as a database
scalar function P R O M O T E A N N O T A T I O N () that is ap-
plied to the annotation attributes in the projection list. PRO-
MOTE-ANNOTATION() takes an annotation attribute and
a list of source and destination user attributes as arguments.
An annotation over any of the source attributes is copied to
the destination attribute.

Example: Consider re-writing query Q 1 in the case of the
In-table storage scheme:

SELECT GeneID, GeneName, PROMOTE-ANNOTATION(
FILTERANNOTATION(Glab, 'Root/Annotation/TzmeStamp
>"Jan-01-2007"'), 'Sequence', 'GeneName') AS Glab

FROM GENE
WHERE GeneID IN ('JW3778', 'JW0374 : 'JW1266')
AND xpathbool(Glab, 'Root/Annotation/User ="ADMINn');

In the case of an Off-table storage scheme, the re-writing is
the same except in the FROM clause, which will be:

FROM (SELECT GeneID, GeneName, Sequence,
AnnConcat(AnnotationBody) AS Glab

FROM GENE Left Join Glab
ON ((GENE.OID,O), (GENE. OID,MmCol)) @@ Glab. TupleCc
GROUP BY GeneID, GeneName, Sequence) AS GENE

Figure 9: Storage analysis parameters

Figure 10: Storage analysis

We left-join table GENE with annotation table Glab such
that each data tuple (represented by the line segment
((GENE. OID,O), (GENE.OID,MaxCol)) in the two dimen-
sional space) joins with all its annotations (represented by
the rectangles in Glab.TupleCo1) where @@ is the intersec-
tion operator between a line segment and a rectangle. Then
we concatenate all the annotations of each tuple using the
aggregate function AnnConcat.

5. PERFORMANCE ANALYSIS
We focus our performance analysis on studying and compar-
ing the storage overhead of the three storage schemes and the
I/O cost introduced by the new annotation-specific opera-
tors. The set of parameters that affect our analysis are listed
in 9. Parameters C and F represent the number of coarse-
and fine-granularity annotations, respectively, i.e., C + F is
the total number of annotations in the database. The aver-
age size of a single coarse- and fine-granularity annotation
is represented by Z c and Z F , respectively. Although we set
Z c and Z F to the same value in the experiments, we use two
different parameters to provide a more accurate analytical
analysis. Another important parameter is the average num-
ber of tuples associated with a single annotation, which is
represented by N c and N F for a coarse- and fine-granularity
annotation, respectively. The last parameter that affects the
comparison among the various storage schemes is how much
an annotation can be compressed in the Off-table scheme,
i.e., the average number of rectangles associated with a sin-
gle annotation. This parameter is represented by N & and
N$ for a coarse- and fine-granularity annotation, respec-
tively. For example, N c - N & / N c represents the average
compression of a single coarse-granularity annotation.

1 1

In our analysis, instead of randomly generating annotations
and then measuring the storage and I/O costs, we provide

- In-table: Project from R the annotation attributes AI,
A2, ... , An. Initially, R has all the annotation attributes.

- Off-table: Left join R with the annotation tables AI, A2,
... , An. Project the user attributes from R and the Annota
tionBody column from each of the annotation tables. Group
the tuples based on the user attributes of R and apply a union
aggregation operator over the annotation attributes. Notice
that each annotation table Ai adds an annotation attribute
with name Ai to the projection list.

ANNOTATION: The re-writing rule
R[ANNOTATION(A1, A2, ... , An)] depends
storage scheme is used.

for clause
on which

Parameter Definition

C Number ot coarse-granularity annotations

Zc Average size of a coarse-granularity annotation

Nc Average number of tuples of a single coarse-granularity annotation
(In-table scheme)

N'c Average number of tuples ot a single coarse-granularity annotation
(Off-table scheme), N'cS Nc

F Number of fine-granularity annotations

ZF Average size of a tine-granularity annotation

NF Average number ot tuples of a single fine-granularity annotaUon (In-
table scheme)

N'F Average number of tuples of a single fine-granularity annotaUon (Off-
table scheme), N'F s NF

M Memory block size

R User relation

- Hybrid: Apply the In-table rule, Off-table rule, or both
as required.

AWHERE: Move the AWHERE conditions to the WHERE
clause (create a new WHERE clause if needed). The
AWHERE conditions are applied over the annotation at
tributes. Since the annotation attributes are materialized
using the ANNOTATION operator, then AWHERE condi
tions can be added as regular WHERE conditions.

AHAVING: Move the AHAVING conditions to the HAV
ING clause (create a new HA VING clause if needed).
AHAVING is analogous to AWHERE.

FILTER: FILTER is implemented as a database scalar
function FILTER-ANNOTATION() that is applied to
the annotation attributes in the projection list. FIL
TER....ANNOTATIONO takes an annotation attribute and
jilter_annotatiorLconditions as arguments. Each annotation
that does not satisfy jilter-annotatiorLconditions is removed.

PROMOTE: PROMOTE is implemented as a database
scalar function PROMOTKANNOTATION() that is ap
plied to the annotation attributes in the projection list. PRO
MOTKANNOTATIONO takes an annotation attribute and
a list of source and destination user attributes as arguments.
An annotation over any of the source attributes is copied to
the destination attribute.

Example: Consider re-writing query Q1 in the case of the
In-table storage scheme:

SELECT GeneID, GeneName, PROMOTKANNOTATION(
FILTER-ANNO TA TION(Glab, 'Root/Annotation/TimeStamp
>"Jan-Ol-2007'''), 'Sequence', 'GeneName') AS Glab

FROM GENE
WHERE GeneID IN ('JW3778', 'JW0374', 'JW1266')
AND xpatlLbool(Glab, 'Root/Annotation/User ="ADMIN"');

In the case of an Off-table storage scheme, the re-writing is
the same except in the FROM clause, which will be:

FROM (SELECT GeneID, GeneName, Sequence,
AnnConcat(AnnotationBody) AS Glab

FROM GENE Left Join Glab
ON ((GENE. OID,O), (GENE. OID,MaxCol)) @@ Glab. Tuple Col
GROUP BY GeneID, GeneName, Sequence) AS GENE

Figure 9: Storage analysis parameters

Variable Value Definition

B(Coff) (Zc'C'N'c)/M Number of blocks of the coarse-granulariy annotations (Off-table scheme)

B(Cin) (Zc'C'Nc)/M Number of blocks of the coarse-granulariy annotations (In-table scheme)

B(Foll) (Z(F'N'Fl/M Number of blocks of the fine-granularity annotations (Off-table scheme)

B(Finl (ZF'F'NF)/M Number of blocks of the fine-granularity annotations (In-table scheme)

Figure 10: Storage analysis

We left-join table GENE with annotation table Glab such
that each data tuple (represented by the line segment
((GENE,OID,O), (GENE.OID,MaxCol)) in the two dimen
sional space) joins with all its annotations (represented by
the rectangles in Glab.TupleCol) where @@ is the intersec
tion operator between a line segment and a rectangle, Then
we concatenate all the annotations of each tuple using the
aggregate function AnnConcat.

5. PERFORMANCE ANALYSIS
We focus our performance analysis on studying and compar
ing the storage overhead of the three storage schemes and the
I/O cost introduced by the new annotation-specific opera
tors. The set of parameters that affect our analysis are listed
in 9, Parameters C and F represent the number of coarse
and fine-granularity annotations, respectively, Le., C + F is
the total number of annotations in the database. The aver
age size of a single coarse- and fine-granularity annotation
is represented by Zc and ZF, respectively. Although we set
Zc and ZF to the same value in the experiments, we use two
different parameters to provide a more accurate analytical
analysis. Another important parameter is the average num
ber of tuples associated with a single annotation, which is
represented by Nc and NF for a coarse- and fine-granularity
annotation, respectively. The last parameter that affects the
comparison among the various storage schemes is how much
an annotation can be compressed in the Off-table scheme,
Le., the average number of rectangles associated with a sin
gle annotation. This parameter is represented by Ncand
N'p. for a coarse- and fine-granularity annotation, respec
tively. For example, Nc - Nc/Nc represents the average
compression of a single coarse-granularity annotation.

In our analysis, instead of randomly generating annotations
and then measuring the storage and I/O costs, we provide

* T(R): Number of tuples in R

Scheme ANNOTATION Size of input relation(s) Algorithm I/O cost
operator maps to

In-table

Off-table Join Block-based nested loop join B(R) + B(Coff)

(R join Calf) Nested loop with index on B(R) + [T(R) * c*N,/T(R)] =

COII B(R) + C'Nc

Figure 11: 1 /0 cost analysis

* For lR join F,II),
replace C with F

Hybrid

(Fin)

Hybrid

(R join C,,,)

Storage overhead Storage overhead

Scan

Join

Group By

Storage overhead I 2 5 ~ I

1 Coarse-granularity percentage (CIC+F)S/~A L Coarse-granularityaverage tuples (Nc) A L Coarsegranularity compression (Nc-N'c/Nc)% 1
*Nc=l 000, Nc-N1JN,=80% *C/C+F=40%, N,-N'JNc=80% *C/C+F=40%, Nc=l 000

3 [B(R) ' C*NcTT(R)] +
B(Ci,,)

B(R) + B(Fin)

B(R)+ B(Fi,), B(COf,)

l(B(R)+B(F;d) *
C*Ncn(R)I + B(Cin)

Figure 12: Storage overhead of various schemes

Number of 110 operations
700 - In-table
600 --

+Off-table (corn

-. -x-- - Off-table (Foff-NFM)

- ----Hybrid (Cow
300 -

In-memory processing
(Input relation in order)

Two-pass algorithm
(input relation not ordered)

Table scan

Block-based nested loop join

Nested loop with index on
cot!

In-memory processing
(Input relation in order)

Two-pass algorithm
(input relation not ordered)

Number of I10 operations

350 o

0

3 ' ([B(R) ' C*Ncn(R)]+ B(cin))

B(R) + B(F;,)

B(R) + B(Fi,) + B(Cof,)

(B(R)+B(Fi,)) + [T(R) * C'NCn(R)] =

B(R) + B(Fi,) + C*Nc

0

3 * ([(B(R)+B(Fi,)) * C*Ncn(R)l +
B(Cin))

250 Lx,<: -Off-table (Foff-FM)
200 - - .x- - Off-table (Foff-NFM

- - -0- - - Hybrid (Fin)
150 - -- -- c- . . Hybrid (Corn

100 -- -7

I 1 5 10 20 40 60 80 ' 1 20 30 40 50 60 70 80 90
Coarsegranularity percentage (CIC+F)% I Coarsegranularity compression (Nc-N%INc)%

*N,=1000, Nc-N1JNC=80% *Nc=l 000, Nc-lV'JNc=8O0/o

Number of I/O operations I 10000 o, 1

- - - w - - Hybrid (Fin)

1 5 10 20 40 60 80
Coarse-granularity percentage (WC+F)%

*C/C+F=40%, N,=1000

(a) I10 cost: Block-based joins (b) Compression of coarse-granularity annotations (c) 110 cost: Index-based joins

Figure 13: 1 /0 cost of the ANNOTATION operator

Scheme ANNOTATION Size of input relation(s) Algorithm I/O cost
operator maps to

In-table Scan B(R) + B(C;n) + B(F;n) Table scan B(R) + B(C;n) + B(F;n)

Off-table Join B(R), B(ColI) Block-based nested loop join B(R) + B(ColI)

(R join Call) Nested loop with index on B(R) + [T(R) * C*NclT(R)] =
Coff B(R) + C*Nc

* For (R join Foff)' Group By [B(R) * C*NclT(R)] + In-memory processing 0replace C with F
B(C;n) (Input relation in order)

Two-pass algorithm 3 * ([B(R) * C*NclT(R)] + B(C;n»
(input relation not ordered)

Hybrid Scan B(R) + B(F;n) Table scan B(R) + B(F;n)
(F;n)

Hybrid Join B(R)+ B(F;n), B(ColI) Block-based nested loop join B(R) + B(F;n) + B(Coff)

(R join C off)
Nested loop with index on (B(R)+B(F;n» + [T(R) * C*NclT(R)) =

COH B(R) + B(F;n) + C*Nc

Group By [(B(R)+B(F;n» * In-memory processing 0
C*NclT(R)] + B(C;n) (Input relation in order)

Two-pass algorithm 3 * ([(B(R)+B(F;n» * C*NclT(R)] +
(input relation not ordered) B(C;n))

* T(R): Number of tuples in R

Figure 11: I/O cost analysis

~ ~ ~ ~ 60 ro 60 00 I
Coarseilranularity compression (Nc-N'cINc)%

----- -------------

--+-- In-table

~15 +---.....-=-- --0-- Off-table-

1l, ----<r- Hybrid

~ 10 -I-------~~=:;_--':=====~
iii

*C/C+F=40%, Nc=1000

(C)

------------""cn---

20

25 -,------------------,
Storage overheadStorage overhead

200

180

~
--

~ Hybrid t--=160
I:':J In-table [J Off-table

140

~120
1l, 100

~ 80 -- I--

iii 60

40 ~-------.-

20 ~ m0 ~ m. Lh ,-m
100 200 500 1000 2000 4000 8000

L Coarse-granularity average tuples(N~~

*C/C+F=40%, Nc-N'.!Nc=80%

(b)

Storage overhead
50

{ I:':J In-table ~ HYbrtd]--~--45 DOff-table
40

35

~30 --
,

1l,25

~20
iii 15

10 1---
~5

0 ~ m L ::Nl ~ II
I v ~1 5 10 20 40 60 80 I

~ Coarse-granularity percentage(CIC+F)%---.J

*Nc=1000, Nc-N'.!Nc=80%

(a)

Figure 12: Storage overhead of various schemes

,.-lL.. _

5 10 20 40 60 80
Coarse-granularity percentage (ClC+F)%

Number of 110 operations
10000,----------'-----."....,="""--r

81000 -\----
0;

)(..
g 100

~
8-
o
g 10 ;t====="====..~...o....o....Q.'O ·o·.···--IJ::::::.:

-tr-In-table __Off-table (Coff)
Off-table (Foff·FM) "·X·· Off-table (Foff-NFM)
.. ·e· .. Hybrid (Fin) - -0- - - Hybrid (Coff)

Number of 110 operations ,I

350

300 " " .. " " =-
0 ----<r-In-table0
0_ 250

~.
__Off·table (Coff)

~ _Off-table (Foff-FM)
: 200 - -·x· - - Off-table (Foff-NFM)
c
~ -. '0" - Hybrid (Fin)0

.~ 150 -- - 0- .. Hybrid (Coff)

"
~---_.-

D-
o 100 c-----
g

~=~"'M""'~--''''50 """il

0 • • • • • • • •
20 30 ~ 50 60 70 80 00

Coarseilranularity compression (Nc-N'cINc)%

,

Number of 110 operations
700

----<r-In·table
600 __Off-table (Coff)

/0
0 _Off-table (Foff-FM)"!. 500
~ _"X-" Off-table (Foff-NFM) /: 400 - - -0-·· Hybrid (Fin)
c

- - 0- -. Hybrid (Coff) /0

~ 300

/"D-o 200 --

g / -0.100 "....~..._-~~._* ... -._'"
0

1 5 10 20 40 60 80
Coarseilranularity percentage (CIC+F)%

*Nc=1000, Nc-N'.!Nc=80%

(a) I/O cost: Block-based joins

*Nc=1000, Nc·I\I'.!Nc=80% *C/C+F=40%, Nc=1000

(b) Compression of coarse-granularity annotations (c) I/O cost: Index-based joins

Figure 13: I/O cost of the ANNOTATION operator

an analytical model for the storage and I/O costs, and then
vary the values of the analysis parameters to illustrate their
effect on the performance. We present the analytical models
in Figures 10 and 11. Figure 10 gives the storage require-
ments (in memory blocks) of the coarse- and fine-granularity
annotations when using the In-table and Off-table schemes.
The overall storage overhead of the In-table, Off-table, and
Hybrid schemes is then computed as: B(C,,) + B(F,,),
B(Coff) + B(Foff) , and B(Coff) + B(Fi,), respectively.
Notice that for the Hybrid scheme, the coarse-granularity
annotations are stored Off-table while the fine-granularity
annotations are stored In-table.

In the I/O cost analysis, the ANNOTATION operator is the
only operator that involves I/O operations. The AWHERE,
AHAVING, FILTER, and PROMOTE operators do not in-
volve additional 110 operations as they operate on a tuple-
by-tuple basis as tuples pass in the pipeline. Figure 11 illus-
trates the I/O cost model of the ANNOTATION operator
under the three storage schemes along with other conditions
including the use of indexes and whether the annotation ta-
ble fits into memory or not.

In the In-table scheme, the annotations, i.e., Ci, and Fin,
are stored in the user relation. Therefore, the size of the user
relation is the sum of B(R), B(Cin), and B(Fin). In this
scheme, the ANNOTATION operator involves only a scan
over the user table (110 cost = B(R) + B(C,,) + B(Fin)).

In the Off-table scheme, we join the user relation R with the
annotation table, i.e., Cof or Fof f , to retrieve the anno-
tations. We consider two methods for performing the join
operation: (1) block-based nested loops join, and (2) nested
loops join with an index on the annotation table. In the
latter method, we build an R-tree index over the rectangles
to which the annotations are attached. The I/O costs of
these two methods are given in Figure 11. Following the
join operation, a group-by operation is performed to group
each user tuple with all its annotations into a single tuple.
The 110 cost of the group-by operation depends on whether
the input tuples are ordered. For example, if the join is per-
formed using an index over the annotation table, then each
user tuple will join with all its annotations at once. Then,
the group-by operator will group these tuples into one tu-
ple using main memory processing, i.e., no 110 operations
are involved. The same case applies if the join is performed
using block-based nested loops join where the annotation
table can fit entirely into memory. If the annotation table is
large and cannot fit into memory, then input to the group-by
operator is not ordered and a two-pass algorithm is needed
to sort and group the input tuples, which will require 110
operations as in Figure 11.

In the Hybrid scheme, the fine-granularity annotations are
stored in the user table, i.e., Fin. Therefore, the size of the
user table is the sum of B(R) and B(F,,). In this scheme,
retrieving the fine-granularity annotations involves only a
scan1 operation over the user table with 110 cost B(R) +
B(Fin). Whereas retrieving the coarse-granularity annota-
tions (i.e., Cof f) involves join and group-by operations. The
cost of these two operations is similar to that of the Off-table
scheme with the difference of having the user table of size
B(R) + B(Fin) instead of B(R) (See Figure 11).

We study the effect of various parameters on the storage
and I/O requirements as follows. Our database consists of
a Swiss-Prot [7] protein table that stores 200,000 tuples and
occupies 600MB of disk space approximately. We define
three annotation datasets Dl , D2, and D3, that correspond
to annotating 25%, 50%, and 100% of the protein tuples,
respectively. That is, the number of annotations (C + F) in
Dl , D2, and D3 is 50K, loOK, and 2UOK annotations, respec-
tively. In each dataset, we vary the following parameters:
(1) the percentage of the coarse-granularity annotations to
the total annotations, i.e., C/(C + F) , (2) the average num-
ber of tuples associated with a single coarse-granularity an-
notation, i.e., Nc, and (3) the compression of the coarse-
granularity annotations, i.e., Nc - NA/Nc. The variation
in the remaining parameters is usually very small, therefore
we fixed their values. The size of an annotation (Zc or ZF)
is usually few hundred bytes, so we fix it to 500 bytes. Also,
according to our definition, a fine-granularity annotations is
attached to very few tuples, and hence we fix this value (NF)
to 5. Since NF is very small, then the probability that two
tuples be adjacent and merged togather in one rectangle is
very low. Hence, we set N& to the same value as NF, i.e.,
no compression occurs for the fine-granularity annotations.
The result that will be presented in the following figures is
the average over the three datasets Dl , D2, and D3.

In Figure 12, we present the effect of varying the parame-
ters' values on the storage overhead. The figure illustrates
that the In-table scheme involves the highest storage over-
head due to storing each coarse-granularity annotation with
every tuple it is attached to. The overheads of the Off-table
and Hybrid schemes are the same because storing the fine-
granularity annotation in the user table or in a separate table
does not make a difference in this case. Notice that chang-
ing the compression percentage of the coarse-granularity an-
notation N c - N,&/Nc does not affect the In-table scheme
because the coarse-granularity annotations are stored in the
user table.

In Figure 13(a), we illustrate the I/O cost of the vari-
ous schemes where join operations are performed using the
block-based nested loops join. We consider two cases for the
off-table fine-granularity annotations Fof since their num-
ber and size can be large: (1) Fo -FM Fo can fit entirely
into memory, and (2) Fo -NFM Fo cannot fit entirely
into memory. For example, the curve labeled with Fof -FM
corresponds to the 110 cost of retrieving the finegranularity
annotations from a separate annotation table that can fit
into memory. The figure illustrates that if the annotation
table can fit entirely into memory, then the Off-table scheme
involves the least 110 cost and the Hybrid scheme involves a
slightly higher cost (See Cof and Fof -FM in Figure 13(a)).
If the annotation table cannot fit into memory, then the I/O
cost of the Off-table scheme increases significantly because
the group-by operator will perform an 110-intensive two-
pass algorithm to sort and group the tuples (See Fof -NFM
in Figure 13(a)). In this case, the Hybrid scheme outper-
forms the Off-table scheme because the fine-granularity an-
notations are stored in the user relation. The figure illus-
trates also that the I/O cost of the In-table scheme is very
high and that the cost increases dramatically with the in-
crease in C. The reason is that the size of the user relation
is very large (See Figure 12), and hence a scan over the table

an analytical model for the storage and I/O costs, and then
vary the values of the analysis parameters to illustrate their
effect on the performance. We present the analytical models
in Figures 10 and 11. Figure 10 gives the storage require
ments (in memory blocks) of the coarse- and fine-granularity
annotations when using the In-table and Off-table schemes.
The overall storage overhead of the In-table, Off-table, and
Hybrid schemes is then computed as: B(Gin) + B(Fin),
B(Goff) + B(Foff), and B(Goff) + B(Fin), respectively.
Notice that for the Hybrid scheme, the coarse-granularity
annotations are stored Off-table while the fine-granularity
annotations are stored In-table.

In the I/O cost analysis, the ANNOTATION operator is the
only operator that involves I/O operations. The AWHERE,
AHAVING, FILTER, and PROMOTE operators do not in
volve additional I/O operations as they operate on a tuple
by-tuple basis as tuples pass in the pipeline. Figure 11 illus
trates the I/O cost model of the ANNOTATION operator
under the three storage schemes along with other conditions
including the use of indexes and whether the annotation ta
ble fits into memory or not.

In the In-table scheme, the annotations, Le., Gin and Fin,
are stored in the user relation. Therefore, the size of the user
relation is the sum of B(R), B(Gin), and B(Fin). In this
scheme, the ANNOTATION operator involves only a scan
over the user table (I/O cost = B(R) + B(Gin) + B(Fin)).

In the Off-table scheme, we join the user relation R with the
annotation table, Le., Goff or Foff' to retrieve the anno
tations. We consider two methods for performing the join
operation: (1) block-based nested loops join, and (2) nested
loops join with an index on the annotation table. In the
latter method, we build an R-tree index over the rectangles
to which the annotations are attached. The I/O costs of
these two methods are given in Figure 11. Following the
join operation, a group-by operation is performed to group
each user tuple with all its annotations into a single tuple.
The I/O cost of the group-by operation depends on whether
the input tuples are ordered. For example, if the join is per
formed using an index over the annotation table, then each
user tuple will join with all its annotations at once. Then,
the group-by operator will group these tuples into one tu
ple using main memory processing, Le., no I/O operations
are involved. The same case applies if the join is performed
using block-based nested loops join where the annotation
table can fit entirely into memory. If the annotation table is
large and cannot fit into memory, then input to the group-by
operator is not ordered and a two-pass algorithm is needed
to sort and group the input tuples, which will require I/O
operations as in Figure 11.

In the Hybrid scheme, the fine-granularity annotations are
stored in the user table, i.e., Fin. Therefore, the size of the
user table is the sum of B(R) and B(Fin). In this scheme,
retrieving the fine-granularity annotations involves only a
scan' operation over the user table with I/O cost B(R) +
B(Fin). Whereas retrieving the coarse-granularity annota
tions (Le., Goff) involves join and group-by operations. The
cost of these two operations is similar to that of the Off-table
scheme with the difference of having the user table of size
B(R) + B(Fin) instead of B(R) (See Figure 11).

We study the effect of various parameters on the storage
and I/O requirements as follows. Our database consists of
a Swiss-Prot [7] protein table that stores 200,000 tuples and
occupies 600MB of disk space approximately. We define
three annotation datasets D1, D2, and D3, that correspond
to annotating 25%, 50%, and 100% of the protein tuples,
respectively. That is, the number of annotations (G + F) in
D1, D2, and D3 is 50K, lOOK, and 200K annotations, respec
tively. In each dataset, we vary the following parameters:
(1) the percentage of the coarse-granularity annotations to
the total annotations, i.e., G/(G + F), (2) the average num
ber of tuples associated with a single coarse-granularity an
notation, Le., Nc, and (3) the compression of the coarse
granularity annotations, Le., N c - N~/Nc. The variation
in the remaining parameters is usually very small, therefore
we fixed their values. The size of an annotation (Zc or ZF)
is usually few hundred bytes, so we fix it to 500 bytes. Also,
according to our definition, a fine-granularity annotations is
attached to very few tuples, and hence we fix this value (NF)
to 5. Since N F is very small, then the probability that two
tuples be adjacent and merged togather in one rectangle is
very low. Hence, we set N;" to the same value as NF, i.e.,
no compression occurs for the fine-granularity annotations.
The result that will be presented in the following figures is
the average over the three datasets D1, D2, and D3.

In Figure 12, we present the effect of varying the parame
ters' values on the storage overhead. The figure illustrates
that the In-table scheme involves the highest storage over
head due to storing each coarse-granularity annotation with
every tuple it is attached to. The overheads of the Off-table
and Hybrid schemes are the same because storing the fine
granularity annotation in the user table or in a separate table
does not make a difference in this case. Notice that chang
ing the compression percentage of the coarse-granularity an
notation Nc - N~/Nc does not affect the In-table scheme
because the coarse-granularity annotations are stored in the
user table.

In Figure 13(a), we illustrate the I/O cost of the vari
ous schemes where join operations are performed using the
block-based nested loops join. We consider two cases for the
off-table fine-granularity annotations Foff since their num
ber and size can be large: (1) Foff-FM: Foff can fit entirely
into memory, and (2) FOff-NFM: Foff cannot fit entirely
into memory. For example, the curve labeled with Foff - FM
corresponds to the I/O cost of retrieving the fine-granularity
annotations from a separate annotation table that can fit
into memory. The figure illustrates that if the annotation
table can fit entirely into memory, then the Off-table scheme
involves the least I/O cost and the Hybrid scheme involves a
slightly higher cost (See Goff and Foff -FM in Figure 13(a)).
If the annotation table cannot fit into memory, then the I/O
cost of the Off-table scheme increases significantly because
the group-by operator will perform an I/O-intensive two
pass algorithm to sort and group the tuples (See Foff-NFM
in Figure 13(a)). In this case, the Hybrid scheme outper
forms the Off-table scheme because the fine-granularity an
notations are stored in the user relation. The figure illus
trates also that the I/O cost of the In-table scheme is very
high and that the cost increases dramatically with the in
crease in G. The reason is that the size of the user relation
is very large (See Figure 12), and hence a scan over the table

In Figure 13(b), we vary the compression percentage of the
coarse-granularity annotations by varying N&. The change
in the compression percentage affects only the retrieval of
Cof in the Off-table and Hybrid schemes. The figure illus-
trates that even with low compression percentage, e.g., 30%
or 40%, the Off-table and Hybrid schemes still outperform
the In-table scheme.

In Figure 13(c), we study the use of an index, namely an
R-tree index on the annotation table, in the join opera-
tions. The advantage of the index is that independently from
whether the annotation table fits into memory, the group-by
operator can group the input tuples using in-memory pro-
cessing, i.e., without performing I/O operations. Despite
this advantage, performing the join operations using the in-
dex is I/O intensive and dominates the I/O saving of the
group-by operator. The cost of the Off-table scheme and
the Hybrid scheme over Cof increase dramatically when the
join operation uses the R-tree index. The reason is that, in
this case, the R-tree index is a non-clustered index and hence
the I/O cost becomes a function of the number of joined tu-
ples instead of the number of blocks of the joined relations.
Figure 13(b) indicates that building an index over the anno-
tation tables is worthless and that the use of a block-based
nested loops join performs much better.

In conclusion, our performance analysis illustrates clearly
that the Off-table and Hybrid schemes achieve significant
storage saving over the In-table scheme due to the compres-
sion of the coarse-granularity annotations. With respect to
the I/O cost, the Off-table scheme performs the best if the
annotation tables can fit into memory. Otherwise, the Hy-
brid scheme performs the best.

6. CONCLUSION
We presented a framework for supporting annotations as
first-class objects in the database. We provided a declarative
and expressive mechanism to operate over the annotations,
e.g., adding, archiving, restoring, and propagating annota-
tions, as well as querying the data based on the annotation
values. We presented an extension to SQL, along with new
operators and extended semantics for the standard relational
operators to support the processing and querying of anno-
tations. We introduced three annotation storage schemes to
accommodate different granularities and sizes of the anno-
tations. The performance analysis illustrates that effective
compression of coarse-granularity annotations leads to a sig-
nificant saving in the storage requirements and in the 110
cost of the queries.

APPENDIX
A. EXTENDED QLERY ALGEBRA
We provide the algebraic definitions of the extended query
operators over annotated relations.

Standard relation (R): R = {ri =< C1, CZ , ..., Cm >) is
defined as a set of tuples ri with attributes C1, C2, ..., Cm.

Annotated relation (AR): AR = {ari =<
(C1, ACl), (C2,AC2), ..., (C,, AC,) >) is the anno-
tated version of R. AR is defined as a set of tuples ari

with attributes C1, Cz, ..., Cm. Each attribute Ci has a
list of annotations ACi attached to it. This definition is
conceptual, i.e., annotations at various granularities are
broken down into the cell level and attached to each cell in
the table.

ANNOTATION: The ANNOTATION operator
T (R , S1, S z , ..., S,) specifies which annotations to propagate
with a relation R from the set of annotation tables that
have been created for that relation R. The output of
the ANNOTATION operator is the annotated relation
AR = {ari =< (Ci ,ACl) , (Cz,ACz), ..., (Cm, ACm) >),
where ACi is the list of annotations over Ci in Sl ,Sz , ..., S,.

Projection (Figure 14 (a)): the projection
T & , , ~ ,,,,., c,(AR) over annotated relation AR selects a
set of attributes C1, Cz , ..., C,, along with their annota-
tions AC1, AC2, ..., AC,. Other attributes and annotations
are dropped.

Annotation copying (PROMOTE) (Figure 14 (b)):
copies the annotations of some attributes of AR, e.g., Cz,
C3, ..., C,, to a another attribute of AR, e.g., C1.

P(AR, C1, {Cz, C3, ..., C,)) = {ari =< (CI, ACi + AC2 + AC3 +
... + AC,), (Cz,AC2), (Cs,AC3) ..., (Cx,ACx), ..., (Cm,ACm) >)

where '+' is the annotation union operator.

Data-based selection (WHERE, HAVING) (Fig-
ure 14(c)): selects tuples from AR based on conditions
P applied over attributes C1, C2, ..., Cm.

Annotation-based selection (AWHERE, AHAV-
ING)(Figure l4(d)): selects tuples from AR based
on conditions P applied over the annotation lists
AC1, ACz, ..., ACm.

eP(AR) = { a ~ i =< (C1, ACl), (CZ, AC2), ..., (Crn, ACrn) >
JP(ACl+ AC2 + ... + ACm) = true)

Annotation filtering (FILTER)(Figure 14(e)): selects
all tuples of AR aker filtering the annotations of each tu-
ple based on conditions P applied over the annotation lists
AC1, AC2, ..., AC,. Annotations that satisfy P are the only
annotations to pass.

Fp(ACk) selects the annotations that satisfy P from the
ACk list.

Duplicate elimination (DISTINCT): reports one tuple
per group of identical tuples of AR. The matching of tuples
is based only on attributes C1, C2, ..., Cm, i.e., annotations
are not considered while matching tuples. The annotations
of the resulting tuple represent the union of the annotations
of that tuple's identical copies.

is I/O-intensive.

In Figure 13(b), we vary the compression percentage of the
coarse-granularity annotations by varying N/:;. The change
in the compression percentage affects only the retrieval of
Cof f in the Off-table and Hybrid schemes. The figure illus
trates that even with low compression percentage, e.g., 30%
or 40%, the Off-table and Hybrid schemes still outperform
the In-table scheme.

In Figure 13(c), we study the use of an index, namely an
R-tree index on the annotation table, in the join opera
tions. The advantage of the index is that independently from
whether the annotation table fits into memory, the group-by
operator can group the input tuples using in-memory pro
cessing, i.e., without performing I/O operations. Despite
this advantage, performing the join operations using the in
dex is I/O intensive and dominates the I/O saving of the
group-by operator. The cost of the Off-table scheme and
the Hybrid scheme over Cof f increase dramatically when the
join operation uses the R-tree index. The reason is that, in
this case, the R-tree index is a non-clustered index and hence
the I/O cost becomes a function of the number of joined tu
ples instead of the number of blocks of the joined relations.
Figure 13(b) indicates that building an index over the anno
tation tables is worthless and that the use of a block-based
nested loops join performs much better.

In conclusion, our performance analysis illustrates clearly
that the Off-table and Hybrid schemes achieve significant
storage saving over the In-table scheme due to the compres
sion of the coarse-granularity annotations. With respect to
the I/O cost, the Off-table scheme performs the best if the
annotation tables can fit into memory. Otherwise, the Hy
brid scheme performs the best.

6. CONCLUSION
We presented a framework for supporting annotations as
first-class objects in the database. We provided a declarative
and expressive mechanism to operate over the annotations,
e.g., adding, archiving, restoring, and propagating annota
tions, as well as querying the data based on the annotation
values. We presented an extension to SQL, along with new
operators and extended semantics for the standard relational
operators to support the processing and querying of anno
tations. We introduced three annotation storage schemes to
accommodate different granularities and sizes of the anno
tations. The performance analysis illustrates that effective
compression of coarse-granularity annotations leads to a sig
nificant saving in the storage requirements and in the I/O
cost of the queries.

APPENDIX
A. EXTENDED QUERY ALGEBRA
We provide the algebraic definitions of the extended query
operators over annotated relations.

Standard relation (R): R = {ri =< Cl ,C2 , ... ,Cm >} is
defined as a set of tuples n with attributes C l , C2, ... , Cm.

Annotated relation (AR): AR {ari =<
(Cl,ACI), (C2,AC2), ... , (Cm,ACm) >} is the anno
tated version of R. AR is defined as a set of tuples ari

with attributes C l , C2, ... , Cm' Each attribute Ci has a
list of annotations ACi attached to it. This definition is
conceptual, i.e., annotations at various granularities are
broken down into the cell level and attached to each cell in
the table.

ANNOTATION: The ANNOTATION operator
Y(R, 8 1 ,82 , ... , 8n) specifies which annotations to propagate
with a relation R from the set of annotation tables that
have been created for that relation R. The output of
the ANNOTATION operator is the annotated relation
AR = {ari =< (Cl,ACl),(C2,AC2), ... ,(Cm,ACm) >},
where ACi is the list of annotations over Ci in 8 1 ,82 , ... , 8 n .

Projection (Figure 14 (a)): the projection
7fCl,C2, ... ,cx(AR) over annotated relation AR selects a
set of attributes Cl , C2, ... , Cx, along with their annota
tions ACl , AC2, ... , ACx. Other attributes and annotations
are dropped.

Annotation copying (PROMOTE) (Figure 14 (b)):
copies the annotations of some attributes of AR, e.g., C2 ,

C3, ... , Cx, to a another attribute of AR, e.g., Cl.

(3(AR, Cl, {C2, C3, ... ,Cx}) = {ari =< (Cl, ACI + AC2 + AC3 +
... + ACx), (C2, AC2), (C3, AC3) ... , (Cx , ACx), ... , (Cm , ACm) >}

where '+' is the annotation union operator.

Data-based selection (WHERE, HAVING) (Fig
ure 14{c)): selects tuples from AR based on conditions
P applied over attributes Cl , C2, ... , Cm.

a~(AR) = {ari =< (Cl, ACl), (C2, AC2), ... , (Cm , ACm) >
IP(Cl, C2, ... ,Cm) = true}

A nnotation-based selection (A WHERE, AHAV
ING)(Figure 14 (d)): selects tuples from AR based
on conditions P applied over the annotation lists
ACl , AC2, ... , ACm.

(}p(AR) = {ari =< (Cl, ACIl, (C2, AC2), ... , (Cm, ACm) >
IP(ACI + AC2 + ... + ACm) = true}

Annotation filtering (FILTER)(Figure 14{e)): selects
all tuples of AR after filtering the annotations of each tu
ple based on conditions P applied over the annotation lists
ACl , AC2, ... , ACm. Annotations that satisfy P are the only
annotations to pass.

(p(AR) = {ari =<
(Cl, Fp(ACIl) , (C2, Fp(AC2)), ... , (Cm,Fp(ACm)) >}

Fp(ACk) selects the annotations that satisfy P from the
ACk list.

Duplicate elimination (DISTINCT): reports one tuple
per group of identical tuples of AR. The matching of tuples
is based only on attributes Cl , C2, ... , Cm, i.e., annotations
are not considered while matching tuples. The annotations
of the resulting tuple represent the union of the annotations
of that tuple's identical copies.

ol(AR) = {ari =< (Cl,ACD,(C2,AC~),... ,(Cm,AC:n) >
Iri =< Cl, C2, ... ,Cm >E oCR), AC~ = +(ACk)'v'j : rj = rd

.........

. ,
.,.A.9.? i-.!!?..! 1

(a) Projection

Select GenelD, GeneName
From GENE [ANNOTATION(Glab)]

..... ,...., -......
iL\!?.E.P.5.i ;..AI..A3-./ ;..AI..?.J

i.n3.n?j
(c) data-based selection (d) annotation-based selection

JW0374

: A5 1
(b) Promote

Select GenelD. GeneNarne
[PROMOTE(Sequence)]

From GENE IANNOTATIONiGlabll

(e) Filter

Select GenelD, GeneName
From GENE [ANNOTATION(Glab)l
Filter xpath-bool(Glab,'RooVAnnotation/User ='Mary')

phoA

. .
Select GenelD. GeneName

Select GenelD, GeneName From GENE [ANNOTATION(Glab)]
From GENE [ANNOTATION(Glab)l Awhere xpath~baal(Glab:Ra~VAnn~tat~onlUser='Mav'~
Where GeneName in ('LacZ', 'cyaA')

GTGAAAC AAA...

JW1266 I topA

(f) Relation B-GENE

... ATGGGTAAAG

-...... H.;

- - (g) GENE UNION 6-GENE

Select GenelD, GeneName, Sequence
From GENE [ANNOTATION(Glab)l
Union
Select GenelD. GeneName, Sequence
From B-GENE [ANNOTATION(B-Glab)]

Figure 14: Extended SQL Operators

We illustrate the duplicate elimination example along with
the union operator.

Set union (UNION)(Figure 14(g)): the union of AR
and AS produces one copy of each tuple that appears in AR
or AS or both. Identical copies of the same tuple are elim-
inated. The matching of tuples is based only on attributes
C1, Cz, Cm and not on the associated annotations. The
annotations of a resulted tuple represent the union of the
annotations of the tuple's identical copies.

.... AR U' AS = {ati =< (CI, AC;), (Cz, AC;), (Cm, ACL) >
.... Iti =< C I , C2, Cm > E (R U S) , ACL = +(ACk)Vj : rrj =

ti, s j = ti)

The other set operations, e.g., INTERSECT and set dif-
ference (EXCEPT) have similar semantics. For example,
the intersection between A-GENE and AA-GENE produces
the first two rows of the relation illustrated .in Figure 14(g).
The difference between A-GENE and AA-GENE produces
the third and fourth rows of the relation illustrated in Fig-
ure 14(g).

Cartesian product (AR x AS): produces another anno-
ta ted relation AT, where the annotations attached t o a re-
sulted tuple in AT are the annotations from both joined
tuples in AR and AS.

B. REFERENCES
[I] Oracle life sciences platform, www.oracle.com/.

technology/industries/lif~sciences/index. html.
[2] D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya.

An annotation management system for relational
databases. In VLDB, pages 900-911, 2004.

[3] P. Buneman, A. P. Chapman, and J. Cheney. Provenance
management in curated databases. In SIGOMD, 2006.

[4] P. Buneman, S. Khanna, and W.-C. Tan. Why and where:
A characterization of data provenance. Lecture Notes in
Computer Science, 1973:316-333, 2001.

[5] P. Buneman, S. Khanna, and W.-C. Tan. On propagation
of deletions and annotations through views. In PODS,
pages 150-158, 2002.

[6] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. Dbnotes: a
post-it system for relational databases based on
provenance. In SIGMOD, pages 942-944, 2005.

[7] T. U. Consortium. The Universal Protein Resource
(UniProt). Nucl. Acids Res., 35(supplLl):D193-197, 2007.

[8] Y. Cui and J . Widom. Practical lineage tracing in data
warehouses. In ICDE, pages 367-378, 2000.

[9] Y. Cui and J. Widom. Lineage tracing for general data
warehouse transformations. In VLDB, pages 471-480, 2001.

[lo] M. Eltabakh, M. Ouzzani, and W. Aref. bdbms: A
database management system for biological data. In CIDR,
pages 196-206, 2007.

[ll] I?. Geerts, A. Kementsietsidis, and D. Milano. Mondrian:
Annotating and querying databases through colors and
blocks. In ICDE, page 82, 2006.

[12] J . Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J .
DeWitt, and G. Heber. Scientific data management in the
coming decade. SIGMOD Record, 34(4):34-41, 2005.

[13] L. Haas, P. Schwarz, P. Kodali, E. Kotlar, J. Rice, and
W. Swope. Discoverylink: A system for integrated access to
life sciences data sources. IBM System Journal,
40(2):489-511, 2001.

[14] H. V. Jagadish and I?. Olken. Database management for life
sciences research. SIGMOD Record, 33(2):15-20, 2004.

[15] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data
provenance in e-science. SIGMOD Record, 34(3):31-36,
2005.

[16] W.-C. Tan. Containment of relational queries with
annotation propagation. In DBPL, 2003.

[17] J . Widom. Trio: A system for integrated management of
data, accuracy, and lineage. CIDR, pages 262-276, 2005.

[la] A. Woodruff and M. Stonebraker. Supporting fine-grained
data lineage in a database visualization environment. In
ICDE, pages 91-102, 1997.

Select GenelO, GeneName
From GENE [ANNOTATION(Glab)]
Filter xpath_bool(Glab,'RooVAnnotation/User ='Mary')

GTGAAACAAA. ..

ATGGGTAAAG... - ""i~~~!~~~1
ATGGCGAGAC ..

ATGACCATGA... I : ,

TTGTACCTCT... _ --.; A3. A4, i
L~~:.~~j

GName

(g) GENE UNION B_GENE

LaeZ I

cyaA

phoA

topA

phoB

f~j~~~~~A~~~ l_-_~3_:)_~-_-J l_-_~_~:_~~~~j

'GenelD GName/ Sequence \ I
I JW0335 LacZ I ATGACCATGA I
I JW3778 cyaA TTGTACCTCT 1

r~~~~~~~J
(d) annotationMbased selection

Select GenelD, GeneName
From GENE [ANNOTATION(Glab)]
Awhere xpath_bool(Grab,'AooVAnno1a1ion/User='Mary')

Select GenelD, GeneName. Sequence
From GENE [ANNOTATION(Glab)]
Union
Select GenelD. GeneName, Sequence
From B_GENE [ANNOTATION(B_Glab)]

[if~f~~~-j
GenelO\

[~~'~~~~J JW1266
JW0389

Select GenelD, GeneName
From GENE (ANNOTATION(Glab)}
Where GeneName in ('LacZ', 'cyaA')

[~i~~~~~~! L-_~_~~~_~-J [~~_~~~~-J

I GenelO I GName A Sequence \ I
I JW0335 LacZ ATGACCATGA... I
I JW3778 cyaA TTGTACCTCT../ I

L-_~_~:_-~_~-_j
(c) dataMbased selection

L-_ij~~_-~_~~-J

(f) Relation B_GENE

[~~~~i;?~-~~] 1~~~~~~~~~~!

GenelO GName I

~::;;: ~::; ~ ft~~~J
JW0374 phoA - ~~~:s,~~~J

\JW1266 ,opA - ~~~~!~~~J
.-,,---,
L~~_]

(b) Promote

Select GenelO, GeneName
(PAOMOTE(Sequence)]

From GENE (ANNOTATION(Glab)]

Sequence \

TTGTACCTCT...

ATGGGTAAAG...

ATGACCATGA.. \

GTGAAACAAA...

I
GName I

[~~~~~~-~~] i~~~1~,~~-~J

GenelD

(e) Filter

JW0335 LaCZ

JW3778 cyaA

GenelO GName

JW0335 LacZ

JW3778 cyaA

JW0374 phoA

JW1266 topA

Select GenelD, GeneName
From GENE [ANNOTATrON(Glab)]

JW0374 phoA /

I \JW1266 topA /

r~-_-A~-_~J [~~~~~J
(a) Projection

Figure 14: Extended SQL Operators

We illustrate the duplicate elimination example along with
the union operator.

Set union (UNION)(Figure 14-(g)): the union of AR
and AS produces one copy of each tuple that appears in AR
or AS or both. Identical copies of the same tuple are elim
inated. The matching of tuples is based only on attributes
C l , C2 , ... , C m and not on the associated annotations. The
annotations of a resulted tuple represent the union of the
annotations of the tuple's identical copies.

AR u' AS = {at; =< (Cl, ACn, (C2, AC~), ... , (Cm , AC:") >
It; =< Cj, C2, ... , Cm >E (R US), Aq = +(ACk)Vj : rj =

t;, Sj = t;}

The other set operations, e.g., INTERSECT and set dif
ference (EXCEPT) have similar semantics. For example,
the intersection between A_GENE and AA_GENE produces
the first two rows of the relation illustrated .in Figure 14(g).
The difference between A_GENE and AA_GENE produces
the third and fourth rows of the relation illustrated in Fig
ure 14(g).

Cartesian product (AR x AS): produces another anno
tated relation AT, where the annotations attached to a re
sulted tuple in AT are the annotations from both joined
tuples in AR and AS.

AR x' AS = {at; =<
(Cj,ACl), ... , (Cm , ACm), (Sl, ASl), ... , (Sn, ASn) > It; =<

Cj, ... ,Cm,Sl, ... ,Sn >E (Rx S)}

B. REFERENCES
[1] Oracle life sciences platform, www.oracle.com/.

technology/industries/life...sciences/index. html.
[2] D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya.

An annotation management system for relational
databases. In VLDB, pages 900-911, 2004.

[3] P. Buneman, A. P. Chapman, and J. Cheney. Provenance
management in curated databases. In SIGOMD, 2006.

[4] P. Buneman, S. Khanna, and W.-C. Tan. Why and where:
A characterization of data provenance. Lecture Notes in
Computer Science, 1973:316-333, 200l.

[5] P. Buneman, S. Khanna, and W.-C. Tan. On propagation
of deletions and annotations through views. In PODS,
pages 150-158, 2002.

[6] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. Dbnotes: a
post-it system for relational databases based on
provenance. In SIGMOD, pages 942-944, 2005.

[7] T. U. Consortium. The Universal Protein Resource
(UniProt). Nucl. Acids Res., 35(suppLl):DI93-197, 2007.

[8] Y. Cui and J. Widom. Practical lineage tracing in data
warehouses. In ICDE, pages 367-378, 2000.

[9] Y. Cui and J. Widom. Lineage tracing for general data
warehouse transformations. In VLDB, pages 471-480, 2001.

[10] M. Eltabakh, M. Ouzzani, and W. Aref. bdbms: A
database management system for biological data. In CIDR,
pages 196-206, 2007.

[11] F. Geerts, A. Kementsietsidis, and D. Milano. Mondrian:
Annotating and querying databases through colors and
blocks. In ICDE, page 82, 2006.

[12] J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J.
DeWitt, and G. Heber. Scientific data management in the
coming decade. SIGMOD Record, 34(4):34-41, 2005.

[13] L. Haas, P. Schwarz, P. Kodali, E. Kotlar, J. Rice, and
W. Swope. Discoverylink: A system for integrated access to
life sciences data sources. IBM System Journal,
40(2):489-511, 200l.

[14] H. V. Jagadish and F. Olken. Database management for life
sciences research. SIGMOD Record, 33(2):15-20, 2004.

[15] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data
provenance in e-science. SIGMOD Record, 34(3):31-36,
2005.

[16] W.-C. Tan. Containment of relational queries with
annotation propagation. In DBPL, 2003.

[17] J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. CIDR, pages 262-276, 2005.

[18] A. Woodruff and M. Stonebraker. Supporting fine-grained
data lineage in a database visualization environment. In
ICDE, pages 91-102, 1997.

	Supporting annotated Relations
	Report Number:
	

	tmp.1307986960.pdf.JYVXN

