
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2007

Memoizing Communication Memoizing Communication

Lukasz Ziarek
Purdue University, lziarek@cs.purdue.edu

Jeremy Orlow

Suresh Jagannathan
Purdue University, suresh@cs.purdue.edu

Report Number:
07-019

Ziarek, Lukasz; Orlow, Jeremy; and Jagannathan, Suresh, "Memoizing Communication" (2007).
Department of Computer Science Technical Reports. Paper 1683.
https://docs.lib.purdue.edu/cstech/1683

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

MEMOIZING COMMUNICATION

Lukasz Ziarek
Jeremy Orlow

Suresh Jagannathan

Department of Computer Science
Purdue University

West Lafayette, IN 47907

CSD TR #07-019
July 2007

MEMOIZING COMMUNICATION

Lukasz Ziarek
Jeremy Orlow

Suresh Jagannathan

Department of Computer Science
Purdue University

West Lafayette, IN 47907

CSD TR #07-019
July 2007

Memoizing Communication

Lukasz Ziarek Jeremy Orlow Suresh Jagannathan
Department of Computer Science

Purdue University
{ lz iarek , jorlow , suresh)@cs. purdue . edu

Abstract
Memoization is a well-known optimization technique used to elim-
inate redundant calls for pure functions. If a call to a function f with
argument v yields result r , a subsequent call to f with v can be im-
mediately reduced t o r without the need to re-evaluate f 's body if
the association between f , v, and r was previously recorded.

Understanding memoization in the presence of concurrency and
communication is significantly more challenging. For example, if
f communicates with other threads, it is not sufficient to simply
record its inpuVoutput behavior; we must also track inter-thread
dependencies induced by these communication events. Subsequent
calls to f can be avoided only if we can identify an interleaving
of actions from these call-sites that lead to states in which these
dependencies are satisfied. Formulating the issues necessary to
discover these iderlcavings is the focus of this paper.

Specifically, we consider the memoization problem for Con-
current ML (20), in which threads may communicate with one
another through synchronous message-based communication. Be-
sides formalizing the ideas underlying memoization in this con-
text, we also consider a realistic case study that uses memoiza-
tion to reduce re-execution overheads for aborted transactions in
a transaction-aware CML extension. Our benchmark results indi-
cate that memoization-based optimizations can lead to substantial
reduction in re-execution costs for long-lived transactions (up to
43% on some benchmarks), without incurring high memory over-
heads.

1. Introduction
Eliminating redundant computation is an important optimization
supported by many language implementations. One important in-
stance of this optimization class is memoization (15; 17; 3), a well-
known dynamic technique that can be used to avoid performing
a function application by recording the arguments and results of
previous calls. If a call is supplied an argument that has been pre-
viously cached, the execution of the function body can be avoided,
with the corresponding result immediately returned instead.

When functions perform effectful computations, leveraging
memoization becomes significantly more challenging. Two calls
to a function f that performs some stateful computation need not

generate the same result if the contents of the state f used to pro-
duce its result are different at the two call-sites.

Concurrency adds further complications. If a thread calls a func-
tion f that communicates with functions invoked in other threads,
then memo information recorded with f must include the outcome
of these actions. Iff is subsequently applied with a previously seen
argument, and its communication actions at this call-site are the
same as its effects at the original application, re-evaluation of the
pure computation in f's body can be avoided. Because of thread
interleavings and non-determinism introduced by scheduling deci-
sions, however, making such conclusions is non-trivial.

Nonetheless, we believe memoization can be an important
component in a concurrent programming language runtime. For
instance, memoization can allow the computation performed by
threads in stream or pipeline-based concurrent programs (8) to
be optimized to avoid re-computing outputs for previously seen
inputs. As another example, concurrency abstractions built using
transactions or speculation typically rely on efficient control and
state restoration mechanisms. When a speculation fails because a
previously available computation resource becomes unavailable,
or when a transaction aborts due to a serializability violation (9),
their effects are typically undone. Failure represents wasted work,
both in terms of the operations performed whose effects must now
be erased, and in terms of overheads incurred to implement state
restoration; these overheads include logging costs, read and write
barriers, contention management, etc. (13). One way to reduce this
overhead is to avoid subsequent re-execution of those function calls
previously executed by the failed computation whose results are
unchanged. The key issue is understanding when memoization',is
safe, given the possibility of internal concurrency, communication,
and synchronization among threads created by the transaction.

In this paper, we consider the memoization problem for pure
CML (20), a concurrent message-passing dialect of ML that sup-
ports first-class synchronous events. A synchronization event ac-
knowledges the existence of an external action performed by an-
other thread willing to send or receive data. If such events occur
within a function f whose applications are memoized, then avoid-
ing re-execution at a call-site c is only possible if these actions are
guaranteed to succeed at c. In other words, using memo informa-
tion for CML requires discovery of interleavings that satisfy the
communication constraints imposed by a previous call. If we can
identify a global state in which these constraints are satisfied, the
call to c can be avoided; if there exists no such state, then the call
must be performed.

Permission to make digital or hard copies of all or part of this work for personal or
~es ides providing a formal characterization of memoization in

classroom use is granted without fee provided that copies are not made or dishibuted this context, we also present a detailed performance valuation of
for profit or commercial advantage and that copies bear this notice and the full citation Our implementation. We use as a case study, a transaction-aware
on the first page. To copy otherwise, to republish, to post on servers or to redismbute
to lists, requires prior specific permission and/or a fee.

Copyright @ ACM [to be supplied]. . . $5.00

Memoizing Communication

Lukasz Ziarek Jeremy Orlow Suresh Jagannathan
Department of Computer Science

Purdue University
{lziarek,jorloy,suresh}@cs.purdue.edu

Abstract
~emoization is a well-known optimization technique used to elim­
mate redundant calls for pure functions. If a call to a function j with
argument v yields result r, a subsequent call to j with v can be im­
mediatel~ r~duced to r without the need to re-evaluate 1's body if
the assocIatIon between j, v, and r was previously recorded.

Understanding memoization in the presence of concurrency and
communic~tion is significantly more challenging. For example, if
j commUnIcates with other threads, it is not sufficient to simply
record its input/output behavior; we must also track inter-thread
dependencies induced by these communication events. Subsequent
calls t? j can be avoided only if we can identify an interleaving
of actIOns from these call-sites that lead to states in which these
d~pendencies are satisfied. Formulating the issues necessary to
dIscover these intericavings is the focus of this paper.

Specifically, we consider the memoization problem for Con­
current ML (20), in which threads may communicate with one
another through synchronous message-based communication. Be­
sides formalizing the ideas underlying memoization in this con­
text, we also consider a realistic case study that uses memoiza­
tion to reduce re-execution overheads for aborted transactions in
a transaction-aware CML extension. Our benchmark results indi­
cate that memoization-based optimizations can lead to substantial
reduction in re-execution costs for long-lived transactions (up to
43% on some benchmarks), without incurring high memory over­
heads.

1. Introduction
Eliminating redundant computation is an important optimization
supported by many language implementations. One important in­
stance of this optimization class is memoization (15; 17; 3), a well­
known dynamic technique that can be used to avoid performing
a function application by recording the arguments and results of
p~evious calls. If a call is supplied an argument that has been pre­
VI?usly cached, the execution of the function body can be avoided,
WIth the corresponding result immediately returned instead.

When functions perform effectful computations, leveraging
memoization becomes significantly more challenging. Two calls
to a function j that performs some stateful computation need not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish. to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright @ ACM [to be supplied]. .. $5.00.

generate the same result if the contents of the state j used to pro­
duce its result are different at the two call-sites.

Concurrency adds further complications. If a thread calls a func­
tion j that communicates with functions invoked in other threads
then memo information recorded with f must include the outcom~
of these actions. If j is subsequently applied with a previously seen
argument, and its communication actions at this call-site are the
same as its effects at the original application, re-evaluation of the
pure computation in 1's body can be avoided. Because of thread
i~terleavings and non-determinism introduced by scheduling deci­
stons, however, making such conclusions is non-trivial.

Nonetheless, we believe memoization can be an important
component in a concurrent programming language runtime. For
instance, memoization can allow the computation performed by
threads in stream or pipeline-based concurrent programs (8) to
be optimized to avoid re-computing outputs for previously seen
inputs. ~s another example, concurrency abstractions built using
transacttons or speculation typically rely on efficient control and
state restoration mechanisms. When a speculation fails because a
previously available computation resource becomes unavailable,
or when a transaction aborts due to a serializability violation (9),
their effects are typically undone. Failure represents wasted work,
both in terms of the operations performed whose effects must now
be erased, and in terms of overheads incurred to implement state
restoration; these overheads include logging costs, read and write
barriers, contention management, etc. (13). One way to reduce this
overhead is to avoid subsequent re-execution of those function calls
previously executed by the failed computation whose results are
unchanged. The key issue is understanding when memoization' is
safe, given the possibility of internal concurrency, communicatio~,
and synchronization among threads created by the transaction.

In this paper, we consider the memoization problem for pure
CML (20), a concurrent message-passing dialect of ML that sup­
ports first-class synchronous events. A synchronization event ac­
knowledges the existence of an external action performed by an­
other thread willing to send or receive data. If such events occur
within a function j whose applications are memoized, then avoid­
ing re-execution at a call-site c is only possible if these actions are
guaranteed to succeed at c. In other words, using memo informa­
tion for CML requires discovery of interieavings that satisfy the
communication constraints imposed by a previous call. If we can
identify. a global state in which these constraints are satisfied, the
call to c can be avoided; if there exists no such state, then the call
must be performed.

Besides providing a formal characterization of memoization in
this context, we also present a detailed performance evaluation of
our implementation. We use as a case study, a transaction-aware

extension of CML that supports multi-threaded transactions'. Our
benchmark is STMBench7 (lo), a highly tunable benchmark for
measuring transaction overheads, re-written to leverage CML syn-
chronous communication. Our results indicate that memoization
can lead to substantial performance gains, in some cases in ex-
cess of 43% improvement in execution time compared with an im-
plementation that performs no memoization, with only modest in-
creases in memory overhead (15% on average). To our knowledge,
this is the first attempt to formalize the memoization problem for
CML, and to provide an empirical evaluation of its impact on im-
proving performance for intensive multi-threaded workloads.

The paper is organized as follows. Motivation for the problem is
given in Section 2. The formalization of our approach, semantics,
and definition of partial memoization are presented in Section 3 and
Section 4. A detailed description of our implementation, bench-
marks, and results are given in Sections 5, 6, and 6.4. We discuss
previous work and provide conclusions in Section 7.

2. Programming Model and Motivation
Our programming model is pure CML (20), a message-passing di-
alect of ML with support for first-class synchronous events, and
dynamic thread creation. Threads communicate using dynamically
created channels through which they produce and consume values.
Since communication is synchronous, a thread wishing to commu-
nicate on a channel that has no ready recipient must block until
one exists, and all communication on channels is ordered. Our for-
mulation does not consider references, although they can be effec-
tively encoded using CML message-passing primitives. We also do
not consider selective memoization techniques (3) to record pre-
cise dependencies within memoized functions to reduce memoiza-
tion overheads; incorporating these mechanisms into our frame-
work pose no additional complications.

In this context, deciding whether a function application can be
avoided based on previously recorded memo information depends
upon the value of its arguments, its communication actions, threads
it spawns, and the return value it produces. Thus, the memoized
return value of a call to a function f can be used if (a) the argument
given matches the argument previously supplied; (b) recipients for
values sent by f on channels in an earlier memoized call are still
available on those channels; (c) a value that was consumed by f on
some channel in an earlier call is again ready to be sent by another
thread; and (d) threads created by f can be spawned with the same
arguments supplied in the memoized version. Ordering constraints
on all sends and receives performed by the procedure must also be
enforced.

To avoid making a call, a send action performed within the ap-
plied function, for example, will need to be paired with a receive
operation executed by some other thread. Unfortunately, there may
be no thread currently scheduled that is waiting to receive on this
channel. Consider an application that calls a memoized function f
which (a) creates a thread T that receives a value on channel c, and
(b) sends a value on c computed through values received on other
channels that is then consumed by T. To safely use the memoized
return value for f nonetheless still requires that T be instantiated,
and that communication events executed in the first call can still
be satisfied (e.g., the values f previously read on other channels
are still available on those channels). Ensuring these actions can
succeed involves a systematic exploration of the execution state
space to induce a schedule that allows us to consider the call in
the context of a global state in which these conditions are satisfied.
Because such an exploration may be infeasible in practice, our for-

' A multi-thread transaction is a transaction composed of multiple threads,
all of whose lifetimes are bounded by the transaction length. The transaction
is responsible for managing its component threads.

Figure 1. A CML program consists of a collection of threads that
may communicate with one another via synchronous message pass-
ing. In the figure, the first call to f by thread T3 results in a com-
munication action between T2 and T3 via channel c2, and T3
and T4 via channel ci . By memoizing this information, we can
avoid performing non-effectful computation in the second applica-
tion. Note that in the second call, threads Ti and T5 are avail-
able to satisfy f 's communication actions. Rather than performing
the second call in its entirety, we can immediately return the value
yielded by the first, producing a new global state in which value
v2 is removed from channel ch2 and value vi is deposited on
channel chi and consumed by T5, thus allowing threads T1, T3,
and T5 to proceed. The dashed lines indicate the communication
actions that must be satisfied to avoid the second call. Note that
the second call to f entails communication actions with threads
different from the first.

let val (ci, c2) = (mkCh0, mkCh0)
fun f () = (. . . ; send(c1, vi); . . .)
fun g() = (recv(c1) ; send(c2,v2) ; . . . ; g o)

in spawn(g1; f 0; recv(c2); f 0
end

Figure 2. By memoizing the first call to f , we can avoid evalu-
ating the pure computation abstracted by ". . ." in f 's body in the
second since there is only a single receiver on channel ci .

mulation also supports partial memoization. Rather than requiring
global execution to reach a state in which all constraints in a memo-
ized application are satisfied, partial memoization gives implemen-
tations the freedom to discharge some fraction of these constraints,
performing the rest of the application as normal.

2.1 Tracking Communication Actions

A key requirement for effective memoization of CML function ap-
plications is the ability to track communication actions performed
by memoized functions. Provided that the global state would per-
mit these same actions to succeed if a function is re-executed with
the same inputs, memoization can be employed to avoid

Consider the example code fragment, presented in Fig. 2, that
spawns a thread to execute function g and performs two calls to f .
The first call to f sends vl on channel cl ; the only receiver for
this message is g , which consumes vi , and sends v2 on channel
c2. If the global state at the point when the second call is performed
has g waiting to receive on cl , the pure computation performed
by the function (operations other than the send) can be avoided.
Instead of performing the call, we can simply return f 's result,
and deposit vl on channel ci , knowing that there is a waiting
receiver. Note, however, that at the point the call is performed, the
recursive invocation of g may not have taken place, and thus there
may be no waiting receiver on cl . To safely avoid re-evaluating
f 0 , we must delay the application at this call point until the thread
computing g can proceed to the receive action on cl . Indeed, if

Figure 2. By memoizing the first call to f, we can avoid evalu­
ating the pure computation abstracted by"... " in f 's body in the
second since there is only a single receiver on channel c1.

mulation also supports partial memoization. Rather than requiring
global execution to reach a state in which all constraints in a memo­
ized application are satisfied, partial memoization gives implemen­
tations the freedom to discharge some fraction of these constraints,
performing the rest of the application as normal.

Figure 1. A CML program consists of a collection of threads that
may communicate with one another via synchronous message pass­
ing. In the figure, the first call to f by thread T3 results in a com­
munication action between T2 and T3 via channel c2, and T3
and T4 via channel c1. By memoizing this information, we can
avoid performing non-effectful computation in the second applica­
tion. Note that in the second call, threads Ti and T5 are avail­
able to satisfy f 's communication actions. Rather than performing
the second call in its entirety, we can immediately return the value
yielded by the first, producing a new global state in which value
v2 is removed from channel ch2 and value vi is deposited on
channel chi and consumed by T5, thus allowing threads Ti, T3,
and T5 to proceed. The dashed lines indicate the communication
actions that must be satisfied to avoid the second call. Note that
the second call to f entails communication actions with threads
different from the first.

2.1 Tracking Communication Actions

A key requirement for effective memoization of CML function ap­
plications is the ability to track communication actions performed
by memoized functions. Provided that the global state would per­
mit these same actions to succeed if a function is re-executed with
the same inputs, memoization can be employed to avoid

Consider the example code fragment, presented in Fig. 2, that
spawns a thread to execute function g and performs two calls to f .
The first call to f sends vi on channel c1; the only receiver for
this message is g, which consumes vi, and sends v2 on channel
c2 . If the global state at the point when the second call is performed
has g waiting to receive on c1, the pure computation performed
by the function (operations other than the send) can be avoided.
Instead of performing the call, we can simply return f's result,
and deposit vi on channel c1, knowing that there is a waiting
receiver. Note, however, that at the point the call is performed, the
recursive invocation of g may not have taken place, and thus there
may be no waiting receiver on c1. To safely avoid re-evaluating
f 0 , we must delay the application at this call point until the thread
computing g can proceed to the receive action on c1. Indeed, if

gO)

TST4

v1

~ recv(ch1)

,/

recv(ch1)

T3

fly) !

,/

.... f(v)'/

T2

, ., .
': send(ch1,V1)

send(ch2,v2) ;

recV(ch2)

T1

send(ch2,V2) __

let val (ci, c2) = (mkCh(), mkCh())
fun fO=(. .. ;send(c1,vi); ...)
fun g() = (recv(ci); send(c2,v2);

in spawn(g); f(); recv(c2); f()
end

extension of CML that supports multi-threaded transactions l
. Our

benchmark is STMBench7 (10), a highly tunable benchmark for
measuring transaction overheads, re-written to leverage CML syn­
chronous communication. Our results indicate that memoization
can lead to substantial performance gains, in some cases in ex­
cess of 43% improvement in execution time compared with an im­
plementation that performs no memoization, with only modest in­
creases in memory overhead (15% on average). To our knowledge,
this is the first attempt to formalize the memoization problem for
CML, and to provide an empirical evaluation of its impact on im­
proving performance for intensive multi-threaded workloads.

The paper is organized as follows. Motivation for the problem is
given in Section 2. The formalization of our approach, semantics,
and definition of partial memoization are presented in Section 3 and
Section 4. A detailed description of our implementation, bench­
marks, and results are given in Sections 5, 6, and 6.4. We discuss
previous work and provide conclusions in Section 7.

1 A multi-thread transaction is a transaction composed of multiple threads,
all of whose lifetimes are bounded by the transaction length. The transaction
is responsible for managing its component threads.

2. Programming Model and Motivation
Our programming model is pure CML (20), a message-passing di­
alect of ML with support for first-class synchronous events, and
dynamic thread creation. Threads communicate using dynamically
created channels through which they produce and consume values.
Since communication is synchronous, a thread wishing to commu­
nicate on a channel that has no ready recipient must block until
one exists, and all communication on channels is ordered. Our for­
mulation does not consider references, although they can be effec­
tively encoded using CML message-passing primitives. We also do
not consider selective memoization techniques (3) to record pre­
cise dependencies within memoized functions to reduce memoiza­
tion overheads; incorporating these mechanisms into our frame­
work pose no additional complications.

In this context, deciding whether a function application can be
avoided based on previously recorded memo information depends
upon the value of its arguments, its communication actions, threads
it spawns, and the return value it produces. Thus, the memoized
return value of a call to a function f can be used if (a) the argument
given matches the argument previously supplied; (b) recipients for
values sent by f on channels in an earlier memoized call are still
available on those channels; (c) a value that was consumed by f on
some channel in an earlier call is again ready to be sent by another
thread; and (d) threads created by f can be spawned with the same
arguments supplied in the memoized version. Ordering constraints
on all sends and receives performed by the procedure must also be
enforced.

To avoid making a call, a send action performed within the ap­
plied function, for example, will need to be paired with a receive
operation executed by some other thread. Unfortunately, there may
be no thread currently scheduled that is waiting to receive on this
channel. Consider an application that calls a memoized function f
which (a) creates a thread T that receives a value on channel c, and
(b) sends a value on c computed through values received on other
channels that is then consumed by T. To safely use the memoized
return value for f nonetheless still requires that T be instantiated,
and that communication events executed in the first call can still
be satisfied (e.g., the values f previously read on other channels
are still available on those channels). Ensuring these actions can
succeed involves a systematic exploration of the execution state
space to induce a schedule that allows us to consider the call in
the context of a global state in which these conditions are satisfied.
Because such an exploration may be infeasible in practice, our for-

let val (cl, c2) = (mkCh0, mkCh0)
fun f () = (. . . ; send(c1,vi); recv(c2))
fun g 0 = (recv(c1) ; recv(c2) ; . . . ; g o)
fun h 0 = (send(c2,va);

send(c2 .v3) : . .
h 0)

in (spawn(g); spawn(h); f o ; . - . ; fo)
end

- -

Figure 3. Because there may be multiple possible interleaving~
that pair synchronous communication actions among concurrently
executing threads, leveraging memoization requires dynamically
tracking these events.

the recursive call never takes place, it would be incorrect to use
the memoized return value for f 0 since the second call would
normally have blocked on the send operation in the absence of an
accepting receiver.

Unfortunately, reasoning about whether an application can
leverage memoized information is usually more difficult. Fig. 3
presents a slightly modified version of the program shown in Fig. 2
that introduces an auxiliary function h . Procedure f communi-
cates with g via channel ci . It also either receives value v2 or
v3 from h depending upon its interleaving with g. Suppose that
in the first call to f 0 , f receives v3 on c2 because g consumed
v2. We can avoid performing the pure computation in the body of
f in the second call if the interleaving among these threads is such
that v2 is consumed by a subsequent recursive call of g , allowing
the send of v3 by h on channel c2 to be paired with the receive
by f . In this case, the value v3 can be (implicitly) consumed,
allowing h to proceed, and the memoized return value of f can
be used as the result of the call. Thus, deciding whether memoized
information can be used to avoid performing the second call to f
requires reasoning about the interactions between h and g, and
may involve identifying a specific schedule to ensure synchronous
operations in f can be satisfied at the second call, and mirror their
behavior under the memoized execution.

Notice that if v2 and v3 are equal, the receive in f can be
paired with either send in h. Thus, we can exploit memoization
under a different interleaving of threads, and need not require that
all communication actions within the function be paired identically
as in the original evaluation.

3. Semantics
Our semantics is defined in terms of a core call-by-value functional
language with threading and communication primitives (see Fig. 4).
For perspicuity, we first present a simple multi-threaded language
with synchronous channel based communication. We then extend
this core language with memoization primitives, and subsequently
consider refinements of this language.

In the following, we write ?i to denote a sequence of zero
or more elements, D.E to denote sequence concatenation, and qh
to denote an empty sequence. Metavariables x and y range over
variables, t ranges over threads, 1 ranges over channels, v ranges
over values, and a, denote tags that label individual actions
in a program's execution. We use P to denote a program state
comprised of a collection of threads, E for evaluation contexts, and
e for expressions.

Our communication model is a message-passing system with
synchronous send and receive operations. We do not impose a
strict ordering of communications on channels; communication ac-
tions on the same channel by different threads are paired non-
deterministically. To model asynchronous sends, we simply spawn

a thread to perform the send2. Spawning an expression (that evalu-
ates to a thunk) creates a new thread in which the application of the
thunk is performed.

3.1 Language

The syntax and semantics of the language are given in Fig. 4. Ex-
pressions are either variables, locations that represent channels, X-
abstractions, function applications, thread creation operations, or
communication actions that send and receive messages on chan-
nels. We do not consider references in this core language as they
can be modeled in terms of operations on channels (20).

A thread context (t p , E[e]) denotes an expression e available
for execution by thread t E P within context E. Local reductions
within a thread are specified by an auxiliary relation, e 4 el, that
evaluates expression e within some thread to a new expression el.
The local evaluation rules are standard: channel creation results in
the creation of a new location that acts as a container for message
transmission and receipt, and application substitutes the argument
value for free occurrences of the parameter in the body of the
abstraction.

Global evaluation is specified via a relation (H) that maps a
program state (P) to another program state. We write H * to de-
note the reflexive, transitive closure of this relation. An evaluation
step is marked with a tag (or sequence of tags) that indicates the
action (or sequence of actions) performed by that step.

The global actions of interest are those that involve spawn and
communication events. A spawn action, given by the SPAWN rule,
given an expression e that evaluates to a thunk changes the global
state to include a new thread in which the thunk is applied. A
communication event (given by rule COMM) synchronously pairs
a sender attempting to transmit a value along a specific channel in
one thread with a receiver waiting on the same channel in another
thread.

3.2 Memoization

The core language presented above provides no facilities for mem-
oization of the functions it executes. To support memoization,
we must record, in addition to argument and return values, syn-
chronous communication actions, thread spawns, channel creation
etc. as part of the memoized state. These actions define a set of
constraints that must be satisfied at subsequent applications of a
memoized function. To record constraints, we augment our seman-
tics to include a memo store, a map that given a function identifier
and an argument value, returns the set of constraints and result
value that was previously recorded for a call to that function with
that argument. If the set of constraints returned by the memo store
is satisfied in the current state, then the return value can be used
and the application elided.

The definition of the language augmented with memoization
support is given in Fig. 5. We now define evaluation using a new
relation (==+) that maps a program state (P) and a memo store
(a) to a new program state and a new memo store. A thread state is
augmented to hold two additional structures. The first (8) records
the sequence of constraints that are built during the evaluation of an
application being memoized; the second (c) holds the sequence of
constraints that must be discharged at an application of a previously
memoized function.

If function f calls function g, then actions performed by g
must be satisfiable in any memoization of f . For example, if g
performs a synchronous communication action s, and we encounter
an application of f after it has been memoized, then s must be
satisfiable at that state to avoid performing the call. We therefore
associate a call stack of constraints (8) with each thread that defines

Asynchronous receives are not feasible without a mailbox abstraction.

let val (cl, c2) = (mkCh(), mkCh())
fun f() (... ; send(cl,vl); recv(c2))
fun gO (recv(c1); recv(c2); ... ; gO)
fun hO (send(c2,v2);

send(c2,v3);
hO)

in (spa=(g); spa=(h); f 0; ... ; f 0)
end

Figure 3. Because there may be multiple possible interleavings
that pair synchronous communication actions among concurrently
executing threads, leveraging memoization requires dynamically
tracking these events.

the recursive call never takes place, it would be incorrect to use
the memoized return value for f 0 since the second call would
normally have blocked on the send operation in the absence of an
accepting receiver.

Unfortunately, reasoning about whether an application can
leverage memoized information is usually more difficult. Fig. 3
presents a slightly modified version of the program shown in Fig. 2
that introduces an auxiliary function h. Procedure f communi­
cates with g via channel c1. It also either receives value v2 or
v3 from h depending upon its interleaving with g. Suppose that
in the first call to f 0 , f receives v3 on c2 because g consumed
v2. We can avoid performing the pure computation in the body of
f in the second call if the interleaving among these threads is such
that v2 is consumed by a subsequent recursive call of g, allowing
the send of v3 by h on channel c2 to be paired with the receive
by f. In this case, the value v3 can be (implicitly) consumed,
allowing h to proceed, and the memoized return value of f can
be used as the result of the call. Thus, deciding whether memoized
information can be used to avoid performing the second call to f
requires reasoning about the interactions between h and g, and
may involve identifying a specific schedule to ensure synchronous
operations in f can be satisfied at the second call, and mirror their
behavior under the memoized execution.

Notice that if v2 and v3 are equal, the receive in f can be
paired with either send in h. Thus, we can exploit memoization
under a different interleaving of threads, and need not require that
all communication actions within the function be paired identically
as in the original evaluation.

3. Semantics
Our semantics is defined in terms of a core call-by-value functional
language with threading and communication primitives (see Fig. 4).
For perspicuity, we first present a simple multi-threaded language
with synchronous channel based communication. We then extend
this core language with memoization primitives, and subsequently
consider refinements of this language.

In the following, we write 0 to denote a sequence of zero
or more elements, 73.0 to denote sequence concatenation, and ¢
to denote an empty sequence. Metavariables x and y range over
variables, t ranges over threads, 1 ranges over channels, v ranges
over values, and a, (3 denote tags that label individual actions
in a program's execution. We use P to denote a program state
comprised of a collection of threads, E for evaluation contexts, and
e for expressions.

Our communication model is a message-passing system with
synchronous send and receive operations. We do not impose a
strict ordering of communications on channels; communication ac­
tions on the same channel by different threads are paired non­
deterministically. To model asynchronous sends, we simply spawn

a thread to perform the send2
• Spawning an expression (that evalu­

ates to a thunk) creates a new thread in which the application of the
thunk is performed.

3.1 Language

The syntax and semantics of the language are given in Fig. 4. Ex­
pressions are either variables, locations that represent channels, >..­
abstractions, function applications, thread creation operations, or
communication actions that send and receive messages on chan­
nels. We do not consider references in this core language as they
can be modeled in terms of operations on channels (20).

A thread context (tp, E[e]) denotes an expression e available
for execution by thread t E P within context E. Local reductions
within a thread are specified by an auxiliary relation, e --> e', that
evaluates expression e within some thread to a new expression e'.
The local evaluation rules are standard: channel creation results in
the creation of a new location that acts as a container for message
transmission and receipt, and application substitutes the argument
value for free occurrences of the parameter in the body of the
abstraction.

Global evaluation is specified via a relation (f---+) that maps a
program state (P) to another program state. We write f---+ * to de­
note the reflexive, transitive closure of this relation. An evaluation
step is marked with a tag (or sequence of tags) that indicates the
action (or sequence of actions) performed by that step.

The global actions of interest are those that involve spawn and
communication events. A spawn action, given by the SPAWN rule,
given an expression e that evaluates to a thunk changes the global
state to include a new thread in which the thunk is applied. A
communication event (given by rule COMM) synchronously pairs
a sender attempting to transmit a value along a specific channel in
one thread with a receiver waiting on the same channel in another
thread.

3.2 Memoization

The core language presented above provides no facilities for mem­
oization of the functions it executes. To support memoization,
we must record, in addition to argument and return values, syn­
chronous communication actions, thread spawns, channel creation
etc. as part of the memoized state. These actions define a set of
constraints that must be satisfied at subsequent applications of a
memoized function. To record constraints, we augment our seman­
tics to include a memo store, a map that given a function identifier
and an argument value, returns the set of constraints and result
value that was previously recorded for a call to that function with
that argument. If the set of constraints returned by the memo store
is satisfied in the current state, then the return value can be used
and the application elided.

The definition of the language augmented with memoization
support is given in Fig. 5. We now define evaluation using a new
relation (==;>) that maps a program state (P) and a memo store
(0-) to a new program state and a new memo store. A thread state is
augmented to hold two additional structures. The first (0) records
the sequence of constraints that are built during the evaluation of an
application being memoized; the second (0) holds the sequence of
constraints that must be discharged at an application of a previously
memoized function.

If function f calls function g, then actions performed by g
must be satisfiable in any memoization of f. For example, if g
performs a synchronous communication action s, and we encounter
an application of f after it has been memoized, then S must be
satisfiable at that state to avoid performing the call. We therefore
associate a call stack of constraints (0) with each thread that defines

2 Asynchronous receives are not feasible without a mailbox abstraction.

SYNTAX: PROGRAM STATES:
p ..- ..- PllP 1 t [e] P E Process

e E Exp ::= v 1 e (e) 1 spawn(e) t E Tid
I m k ~ h () (send(e,e) I recv(e) x , y E Var

v E Val ::= unit (Ax.e I 1 1 E Channel
a , P E Tag = {Spn, Corn, Local)

EVALUATION CONTEXTS:
LOCAL EVALUATION:

E ::= [I I E (e) I v (E) I spawn(E) I
e -+ e'

send(E, e) I send(1,E) 1 recv(E)
(t p , El:.]) "sl (t p , E[e l])

1 fresh (A x.e) v -+ e[v/x]
mkCh() -+ 1

GLOBAL EVALUATION:

(SPAWN) (COMM)
t'fresh t'fresh

(t p , E[spawn(Ax.e)]) Pllt[E[unit]]I(tl[e[unit/x]]
P = PIIlt[E[send(l , v):l:lIlt1[E'[recv(1)]]

P Ca P1llt[~[unitl](lt'[~'[v]]

Figure 4. A concurrent language with synchronous communication.

P ::= PIIP I (8,C,t l:e]) 6 E MemoId
e E Exp ::= ... I B(v,e) 1 ~ (e) C E Constraint = (Lac x Val x {R, S) x Exp) + (S p x E q))
v E Val ::= uni t I As x.e 1 1 (Ch x Channel)

a E Memostore= MemoId x Val -+ Constraint* x Val
EVALUATION CONTEXTS: 0 E Memostate= MemoId x Constraint*

a ,P E Tag = {Ch, Spn, Com, MCom, Fun, App, Ret, E ::= . . . I B (V , E) MCh, MSp, MRet, Mem, Fail, PMem)
(tp,e,c, ~ [e]) ::= P (I (~ , C , ~ [E [~]]) CONSTRAINT ADDITION:

- e' = ((6 , - c.C))(6, C) E 8)
e , c + F

6 fresh 8, (Ch, 1) + ei
pa = (t ~ , 8 , & E[mkCh()l)

P b = (t P , 0'7 4, E[1])
CIL

Pa,a * Pb,u

6 fresh
pa = (t ~ , 8 , 4, E[Ax.el)
pb = (tp ,e , 4 , E[AS x . ~ I)

Fun
Pa,a * Pb,a

- P = P ' I I (~ , ~ J , t [~ [s e n d (l , vlJ)ll (T, 4, t1[E'[recv(l)l l)
t'fresh 8, (S p , A6 x.e(unit)) + 8' 0, (1, v , S , E[send(l , v)]) + 8" e', (1, v , R, E1[recv(l)]) +

tk = (p , 4, t [E [u n i t]]) t s = ([(& 4)1,4, t l [B (~ i t , e [un i t / x])]) t , = (v, 4, t [E [u n i t]]) t , = (B"', 4, t l [~ ' [v]])

(t ~ , 8 , 4, E[spawn(Aa x.e)l), 0 2 plltkllt, P,u Cg P1lltsllt,

Figure 5. A concurrent language supporting memoization of synchronous communication and dynamic thread creation.

e ~ e'

(tp, Ele]) ~l (tp, E[e'])

SYNTAX:

]? ..-]?IW I t[e]
e E Exp 00- v I e(e) I spawn(e)

mkCh() I send(e,e) I recv(e)
v E Val 00- unit I Ax.e I 1

EVALUATION CONTEXTS:

E ::= [] I E(e) I v(E) I spawn(E) I
send(E, e) I send(l, E) I recv(E)

(tp, EI:e]) 00-]?llt[E[e]]

PROGRAM STATES:

]? E]?rocess
t E Tid

x,y E Var
1 E Channel

a,(3 E Tag

LOCAL EVALUATION:

1 fresh
mkChO -> 1

{Spn, Com, Local}

(A x.e) v -> e[v/x]

GLOBAL EVALUATION:

(tp, E[spawn(Ax.e)]) ~]?llt[E[unit]] lit' [e [unit/x]]

(COMM)(SPAWN)
t'fresh t'fresh

]? =]?'llt[E[send(l, v)lIllt'[E'[recv(l)]]

]?~]?'llt[E[unit]lIl t '[E'[v]]

Figure 4. A concurrent language with synchronous communication.

CONSTRAINT ADDITION:

SYNTAX:

]? 00-]?IW I (e, 0, tie])
e E Exp 00- ... I B(v,e) I U(e)
v E Val 00- unit I Aox.e I 1

EVALUATION CONTEXTS:

E ::= .,. I B(v,E)

(tp,e,O,E[e]) 00-]?11(e,O,t[E[eJ])

PROGRAM STATES:

8 E Memold
C E Constraint =

0" E MemoStore=
e E MemoState=

a, (3 E Tag

(Loc x Val x {R, S} x Exp) + (Sp x Exp})
(Ch x Channel)
Memold x Val -> Constraint* x Val
Memold x Constraint*
{Ch, Spn, Com, MCom, Fun, App, Ret,
MCh, MSp, MRet, Mem, Fail,]?Mem}

(CHANNEL)

8fresh e, (Ch, 1) >- 7F
pa = (tp, e, </>, E[mkChO])

Pb = (tp, 7F, </>, E[l])
Ch

Pa,O" ===} Pb,O"

(FUN)

8fresh
Pa = (tp,e,</>,E[Ax.e])
Pb = (tp, e, </>, E[Ao x.e])

Pun
Pa,O" ===} Pb,O"

7F = {(8, C.0)1(8, 0) E e}
e, C >- e'

(App)

(8, v) if- Dom(O")
Pa = (tp, e, </>, E[(Ao x.e) v])

Pb = (tp, (8, </».e, </>, E[B(v, e[v/x])])
App

Pa,O" ==? Pm,O"

(SPAWN) (COMM)

t'fresh e,(Sp,Aox.e(unit)) >-7F
tk = (7F,</>,t[E[unitJ]) t s = ([(8,</»],</>,t'[B(unit,e[unit/x])])

(tp,e,</>,E[spawn(Aox.e)]),O" ~]?lltkllts

]? =]?'II(e, </>, t[E[send(l, v)J]) II (7F, </>, t'[E'[recv(l)J])
e, (1, v, S, E[send(l, v)]) >- e" 7F, (1, v, R, E'[recv(l)]) >- elll

t s = (e",</>,t[E[unitJ]) tr = W",</>,t'[E'[vJ])

]?,O" ~]?'lltslltr

(tp,e.e,</>,E[B(v,v')]),O" ~ (tp,e,</>,E[v']),0"[(8,v) f-> (C,v')]

(RET)

e= (8,0)

(MEMO App)
(8,v) E Dom(O")

(tp, e, </>, E[(Aox.e) v]), 0" o..!:!Jm]?', 0"'

(tp, e, </>, E[(Ao x.e) v]), 0" o.~m]?', 0"'

Figure 5. A concurrent language supporting memoization of synchronous communication and dynamic thread creation.

the constraints seen thus far, requiring the constraints computed for
an inner application to be satisfiable for any memoization of an
outer one. The propagation of constraints to the memo states of all
active calls is given by the operation + shown in Fig. 5.

Channels created within a memoized function must be recorded
in the constraint sequence for that function (rule CHANNEL). Con-
sider a function that creates a channel and subsequently initiates
communication on that channel. If a call to this function was mem-
oized, later applications that attempt to avail of memo information
must still ensure that the generative effect of creating the channel
is not omitted.

Function evaluation now associates a label with function evalu-
ation that is used to index the memo store (rule FUN). In addition,
when a function f is applied to argument v, and there exists no
previous invocation o f f to v, the function's effects are tracked and
recorded (rule APP). A syntactic wrapper B (for build memo) is
used to identify such functions. Until an application of a function
being memoized is complete, the constraints induced by its evalu-
ation are not immediately added to the memo store. Instead, they
are maintained as part of the state (8) associated with the thread in
which the application occurs. Note that all the rules in this figure as-
sume an empty constraint sequence (b); these rules deal with ordi-
nary expresiidn evaluation, &d are not responsible for discharging
memoization constraints on applications of a previously memoized

A.

call. Thus, at any given point in its execution, a thread is either
building up memo constraints within an application for subsequent
calls to utilize, or attempting to discharge these constraints for ap-
plications indexed in the memo store.

Constraints built during a memoized function application define
actions that must be satisfied at subsequent call-sites in order to
avoid complete re-evaluation of the function body. For a communi-
cation action, a constraint records the location being operated upon,
the value sent or received, the action performed (R for receive and S
for send), and the continuation immediately prior to the action be-
ing performed. (The reason for this last component is explained in
Section 3.4.) For a spawn operation, the constraint records the ac-
tion (Sp) and the expression being spawned. For a channel creation
operation, the constraint records the location of the channel.

If a new thread is spawned within a memoized application, a
spawn constraint is added to the memo state, and a new global
state is created that starts memoization of the actions performed
by the newly spawned thread (rule SPAWN). A communication
action performed by two functions currently being memoized are
also appropriately recorded in the corresponding memo state of
the threads that are executing these functions. (rule COMM). When
a memoized application completes, its constraints, along with its
return value, are recorded in the memo store (rule RET).

The most interesting rule is the one that deals with determining
whether an application of a memoized function can be elided (rule
MEMO APP). If an application of function f with argument v
has been recorded in the memo store, then the application can be
potentially avoided; if not, its evaluation is memoized by rule APP.

To determine whether the global state permits the discharge of
all constraints associated with the call, we employ an auxiliary eval-
uation relation (-+) shown in Fig. 6. Our formulation attempts to
memoize any application whose evaluation with the supplied argu-
ment has already been recorded in the memo store. The --, relation
is well-defined only if all necessary memoization constraints are
satisfiable. It acts as an oracle that examines all possible transitions
from the current global state, attempting to find an execution path
in which all constraints necessary to ensure the call can be elided
are discharged.

The states examined may contain function expressions (%),
sin

spawn expressions ready to create new threads (-+), channel ex-

Clr
pressions that create new channels (Q), synchronous communi-

cation actions ready to be paired (%m), applications that can be
APP tracked for memoization (-+), applications of memoized functions

net
that can be elided (%m), and return values of applications (-+).
These rules are identical to the definitions defined in Fig. 5.

To utilize memo evaluation, the constraints associated with a
memoized function applied to the same argument found in the
memo store are added to the thread context (rule MEMO). Eval-
uation is complete when there are no more constraints left to exam-
ine. The application is tagged with a U wrapper (for use memo) to
identify it as a potential beneficiary of previously recorded memo
information. Since it leverages the definition of 3, memo evalu-
ation is also defined by non-deterministic interleaving of the actions
performed by different threads. Evaluation is well-defined provided
that there is at least one such interleaving in which all constraints
of the memoization candidate can be satisfied. Evaluation enters a
stuck state if no such interleaving exists.

A spawn constraint (rule MSPAWN) is always satisfied, and
leads to the creation of a new thread of control. Observe that the
application evaluated by the new thread is now a candidate for
memoization if the thunk was previously applied and its result is
recorded in the memo store.

A channel constraint of the form (Ch,l) (rule MCH) creates a
new channel location l ' , and replaces all occurrences of 1 found in
the remaining constraint sequence for this thread with 1'; the chan-
nel location may be embedded within send and receive constraints,
either as the target of the operation, or as the argument value be-
ing sent or received. Thus, discharging a channel constraint ensures
that the effect of creating a new channel performed within an earlier
memoized call is preserved on subsequent applications. The renam-
ing operation ensures that later send and receive constraints refer to
the new channel location.

MCom
There are three communication constraint matching rules (I.).

If the current constraint expects to receive value v on channel 1,
and there exists a thread able to send v on 1, evaluation proceeds
to a state in which the communication succeeds, and the constraint
is removed from the set of constraints that need to be matched
(rule MREcv). Note also that the sender records the fact that a
communication with a matching receive took place in the thread's
memo state, and the receiver does likewise. Any memoization of
the sender must consider the receive action that synchronized with
the send, and the application in which the memoized call is being
examined must record the successful discharge of the receive ac-
tion. In this way, the semantics permits consideration of multiple
nested memoization actions.

If the current constraint expects to send a value v on channel
1 , and there exists a thread waiting on 1, the constraint is also sat-
isfied (rule MSEND). A send operation can match with any wait-
ing receive action on that channel. The semantics of synchronous
communication allows us the freedom to consider pairings of sends
with receives other than the one it communicated with in the orig-
inal memoized execution. This is because a receive action places
no restriction on either the value it reads, or the specific sender that
provides that the value.

The global state may also contain threads that have match-
ing send and receive constraints (rule MCOM). Thus, we may en-
counter multiple applications whose arguments have been mem-
oized in the course of attempting to discharge memoization con-
straints. Specifically, there may exist two threads each performing
an application of a memoized function whose memo states define
matching send and receive constraints. In this case, the constraints
on both sender and receiver can be safely discharged.

In the course of determining whether an application can lever-
age a previous memo, expressions may be evaluated that lead to

the constraints seen thus far, requiring the constraints computed for
an inner application to be satisfiable for any memoization of an
outer one. The propagation of constraints to the memo states of all
active calls is given by the operation >- shown in Fig. 5.

Channels created within a memoized function must be recorded
in the constraint sequence for that function (rule CHANNEL). Con­
sider a function that creates a channel and subsequently initiates
communication on that channel. If a call to this function was mem­
oized, later applications that attempt to avail of memo information
must still ensure that the generative effect of creating the channel
is not omitted.

Function evaluation now associates a label with function evalu­
ation that is used to index the memo store (rule FUN). In addition,
when a function f is applied to argument v, and there exists no
previous invocation of f to v, the function's effects are tracked and
recorded (rule App). A syntactic wrapper B (for build memo) is
used to identify such functions. Until an application of a function
being memoized is complete, the constraints induced by its evalu­
ation are not immediately added to the memo store. Instead, they
are maintained as part of the state (e) associated with the thread in
which the appl ication occurs. Note that all the rules in this figure as­
sume an empty constraint sequence (1jJ); these rules deal with ordi­
nary expression evaluation, and are not responsible for discharging
memoization constraints on applications of a previously memoized
call. Thus, at any given point in its execution, a thread is either
building up memo constraints within an application for subsequent
calls to utilize, or attempting to discharge these constraints for ap­
plications indexed in the memo store.

Constraints built during a memoized function application define
actions that must be satisfied at subsequent call-sites in order to
avoid complete re-evaluation of the function body. For a communi­
cation action, a constraint records the location being operated upon,
the value sent or received, the action performed (R for receive and S
for send), and the continuation immediately prior to the action be­
ing performed. (The reason for this last component is explained in
Section 3.4.) For a spawn operation, the constraint records the ac­
tion (Sp) and the expression being spawned. For a channel creation
operation, the constraint records the location of the channel.

If a new thread is spawned within a memoized application, a
spawn constraint is added to the m~mo state, and a new global
state is created that starts memoization of the actions performed
by the newly spawned thread (rule SPAWN). A communication
action performed by two functions currently being memoized are
also appropriately recorded in the corresponding memo state of
the threads that are executing these functions. (rule COMM). When
a memoized application completes, its constraints, along with its
return value, are recorded in the memo store (rule RET).

The most interesting rule is the one that deals with determining
whether an application of a memoized function can be elided (rule
MEMO App). If an application of function f with argument v
has been recorded in the memo store, then the application can be
potentially avoided; if not, its evaluation is memoized by rule ApP.

To determine whether the global state permits the discharge of
all constraints associated with the call, we employ an auxiliary eval­
uation relation ("'--+) shown in Fig. 6. Our formulation attempts to
memoize any application whose evaluation with the supplied argu­
ment has already been recorded in the memo store. The"'--+ relation
is well-defined only if all necessary memoization constraints are
satisfiable. It acts as an oracle that examines all possible transitions
from the current global state, attempting to find an execution path
in which all constraints necessary to ensure the call can be elided
are discharged.

The states examined may contain function expressions (~n),
Spn

spawn expressions ready to create new threads ("'--+), channel ex-

Ch .
pressions that create new channels ("'--+), synchronous commUlll-

cation actions ready to be paired (~m), applications that can be

tracked for memoization (~), applications of memoized functions
Mem I f I' . (Ret)that can be elided ("'--+), and return va ues 0 app Ications "'--+ .

These rules are identical to the definitions defined in Fig. 5.
To utilize memo evaluation, the constraints associated with a

memoized function applied to the same argument found in the
memo store are added to the thread context (rule MEMO). Eval­
uation is complete when there are no more constraints left to exam­
ine. The application is tagged with a U wrapper (for use memo) to
identify it as a potential beneficiary of previously recorded memo
information. Since it leverages the definition of ==} , memo evalu­
ation is also defined by non-deterministic interleaving of the actions
performed by different threads. Evaluation is well-defined provided
that there is at least one such interleaving in which all constraints
of the memoization candidate can be satisfied. Evaluation enters a
stuck state if no such interleaving exists.

A spawn constraint (rule MSPAWN) is always satisfied, and
leads to the creation of a new thread of control. Observe that the
application evaluated by the new thread is now a candidate for
memoization if the thunk was previously applied and its result is
recorded in the memo store.

A channel constraint of the form (Ch,l) (rule MCH) creates a
new channel location 1', and replaces all occurrences of 1 found in
the remaining constraint sequence for this thread with I'; the chan­
nellocation may be embedded within send and receive constraints,
either as the target of the operation, or as the argument value be­
ing sent or received. Thus, discharging a channel constraint ensures
that the effect ofcreating a new channel performed within an earlier
memoized call is preserved on subsequent applications. The renam­
ing operation ensures that later send and receive constraints refer to
the new channel location.

There are three communication constraint matching rules (M!2;m).
If the current constraint expects to receive value v on channel 1,
and there exists a thread able to send v on 1, evaluation proceeds
to a state in which the communication succeeds, and the constraint
is removed from the set of constraints that need to be matched
(rule MRECV). Note also that the sender records the fact that a
communication with a matching receive took place in the thread's
memo state, and the receiver does likewise. Any memoization of
the sender must consider the receive action that synchronized with
the send, and the application in which the memoized call is being
examined must record the successful discharge of the receive ac­
tion. In this way, the semantics permits consideration of multiple
nested memoization actions.

If the current constraint expects to send a value v on channel
1, and there exists a thread waiting on 1, the constraint is also sat­
isfied (rule MSEND). A send operation can match with any wait­
ing receive action on that channel. The semantics of synchronous
communication allows us the freedom to consider pairings of sends
with receives other than the one it communicated with in the orig­
inal memoized execution. This is because a receive action places
no restriction on either the value it reads, or the specific sender that
provides that the value.

The global state may also contain threads that have match­
ing send and receive constraints (rule MCOM). Thus, we may en­
counter multiple applications whose arguments have been mem­
oized in the course of attempting to discharge memoization con­
straints. Specifically, there may exist two threads each performing
an application of a memoized function whose memo states define
matching send and receive constraints. In this case, the constraints
on both sender and receiver can be safely discharged.

In the course of determining whether an application can lever­
age a previous memo, expressions may be evaluated that lead to

a E {Ch, Spn, Ret, Com, Fun, Mem, A p p)
P,u 3 P1,a'
P, a 2 P', a'

MEMO:

4 6 , v) = (C, v') -

(t p , 8, C, E[u((Xa x.e) v)]) , - a z* P ' I I (~ , 4 , t [E [v l]]) , rr'

(tP ,8 , 4, E[(x& x.e) V]) , U p1ll(p, 4, ~ [E [V ~] I) , U ~

C = (~ h , 1) l'fresh - . , -
C1 = c[1' /1] C = (sp , e') t'fresh 8, c + eir

MCh - -
(3,c.C,tl:e]),0-(e,c1,t[e]),0 (t~,8,~.~,~[e]),a~~~ll(8,~,t[~[e]])ll(~,~,t'[~(e')]),a

C = (1, V , R, -) (7 = (1, v , S , -)
t S = - (8,$, t [E[send(l, - v)]]) t , = (B, C.c , t l [e ']) t , = - (e', C.c , t ' [e l]) - t , = (8,4, t [E[recv(l)]])

8', C + 8"' 8, (1 , v, S , E[send(l, -- v)]) + 8ii 8', C + e,,, 8, (1, v , R, E [recv(l)]) + 8ii --
t,, =(e" ,$, t [E[uni t]]) t,, = (O1",C,t[e']) t,, = (e''', C , t1[e ']) t,, = (e", 4, t [E [v]])

M C o m M C o m
Plltslltrl 0 --) Pllts/lltrlla Plltslltr,a - p l l t s~ l l t~~ , a

C = (l , v , S , -) C1=(l , v ,R , -)
ts = (8, C.2, - t [e]) t , - = (B, C1 .P , t ' [e l])

8 , C + i F 8',C1+B"'
- - --

t,, = (B" , C , t [e]) t,, = (B"', C', t1[e ']) u(6,v) = (C,v l)
M C o m M R e t

PlltslltT,a - Pllts~lltr~,a (t p , G , 4, E[U((Xs x.e) v)]) , a - (t p , s , 4, E[vll) , a

Figure 6. Memoization can be expressed via a set of constraints associated with different calls, and an exploration of possible interleavings
whose execution would allow these constraints to be satisfied.

new states in which existing constraints can be satisfied. If all con-
straints are satisfied, evaluation yields a new global state that safely
permits the result value previously recorded in the memo store to
be returned (rule MRET).

3.3 Example

To illustrate how memo evaluation works, consider the program
shown in Fig. 7. The program consists of two recursive functions,
f' and g', which exchange data over a shared channel 1. Although
calls to f' and g' cannot be memoized since their execution does
not terminate, calls to f and g can be memoized when both sends
and receives are suitably paired. When invoked, f may receive
any of four possible combinations of values on channel ch: (a)
1 followed by I , (b) 1 followed by 2 , (c) 2 followed by I , or
(d) 2 followed by 2 . These possibilities reflect the different thread
interleavings possible for the different thread instantiations of g by

the various threads evaluating g 0 that satisfies the constraints
for the original memoized version of f () for all its subsequent
calls. For example, suppose f initially received values 1 and 2
(in that order) on ch. Subsequent calls to g () can be memoized
by ensuring the global state has an application of f waiting to
receive 1 and 2 ; subsequent calls to f can be memoized by
ensuring the global state has an application of g willing to send
1 and 2 . These conditions can be satisfied through repeated use of
the MCOM rule to discharge the paired communication constraints
on recursive invocations of f 0 and g () based on their initial
memoized execution.

We depict this characterization in the evaluation tree shown in
Fig. 8. We omit unnecessary thread creation actions, and reason
only about the order of sends produced by various incarnations of
g. Although there could be many concurrent calls to f and g, the
evaluation tree represents the abstract interleavings of communica-
tions that could satisfy f's constraints. The evaluation tree itself is

g' . defined recursively, due to the recursive definition of the program.
Thus, there are four possible memoized versions of f, one for F~~ given call to there exist precisely four evaluation paths

each pair of values that the function may receive. Notice that for based on the of values it can receive.
every call to a memoized version of go, there exist a sequence of
evaluation steps that leads to a state in which its constraints can be
satisfied. This is due to the fact that there will always be a matching 3.4 Partial Memoization
receive (provided by the recursive calls of f ') for every send g The semantics defined thus far yields a global state in which mem-
performs. Thus, because memo evaluation performs an exhaustive oization constraints are satisfied, if possible, and is not well-defined
state space search, it is guaranteed to find an interleaving among otherwise. An implementation of the semantics is also not scalable

MEMO CORE EVALUATION

ex E {Gh, Spn, Ret, Gom, Fun, Mem, App}
P,a ~ P',a'
P,a~ P',a'

(MCH)

G = (Ch,l) l'fresh
G' = C[l'/l]

(B, G.G,tle]), a Af.5h (B,G',t[e]),a

(MRECV)

0'(0, v) = (C, v')

(tp, 8, C, E[U((Aox.e) v)]), a ~* P'II ({F, ¢, t[E[v'J]), a'

(tp, B, ¢, E[(Aox.e) v]), a "'-!:!Jffi P'II (B', ¢, t[E[v'J]), a'

(MSPAWN)

G = (Sp, e') t' fresh 8, G >- B"

(tp, B, G.G, E[e]), a ~p PII(B, G', t[E[eJ]) II (¢, ¢, t'[U(e')]), a

(MSENO)

G = (1, v, R,_)
t s = (8, ¢, t[E[send(l, v)J]) tT = ({F, G.C, t'[e'])

7F, G >- B'" 8, (1, v, S, E[send(l, v)]) >- B"
ts' = (B",¢,t[E[unitJ]) tT, = (B"',C,t[e'])

(MCOM)

G = (1, v, S,_)
t s = ({F, G.C, t'[e']) tT = (8, ¢, t[E[recv(l)J])

7F, G >- B'" 8, (1, v, R, E[recv(l)]) >- B"
ts' = (B"', C, t'[e']) tT, = (B", ¢, t[E[vJ])

(MRET)

G = (1, v, S, _) G' = (1, v, R,_)
ts = (8,G.G,t[e]) tT = ({F,G'.G',t'[e'])

8, G >- B" 7F, G' >- B'"
ts' = (7F', C, t[e]) tT, = (em, 0', t'[e'])

PlltslltT,a M52Jm Pllts,lltT"a

0'(0, v) = (C, v')

(tp, B, ¢, E[U((Aox.e) v)]), a M}5,et (tp, B, ¢, E[v']), a

Figure 6. Memoization can be expressed via a set of constraints associated with different calls, and an exploration of possible interleavings
whose execution would allow these constraints to be satisfied.

new states in which existing constraints can be satisfied. If all con­
straints are satisfied, evaluation yields a new global state that safely
permits the result value previously recorded in the memo store to
be returned (rule MRET).

3.3 Example

To illustrate how memo evaluation works, consider the program
shown in Fig. 7. The program consists of two recursive functions,
f' and g', which exchange data over a shared channell. Although
calls to f' and g' cannot be memoized since their execution does
not terminate, calls to f and g can be memoized when both sends
and receives are suitably paired. When invoked, f may receive
any of four possible combinations of values on channel ch: (a)
1 followed by 1, (b) 1 followed by 2, (c) 2 followed by 1, or
(d) 2 followed by 2. These possibilities reflect the different thread
interleavings possible for the different thread instantiations of g by
g' .

Thus, there are four possible memoized versions of f, one for
each pair of values that the function may receive. Notice that for
every call to a memoized version of gO, there exist a sequence of
evaluation steps that leads to a state in which its constraints can be
satisfied. This is due to the fact that there will always be a matching
receive (provided by the recursive calls of f') for every send g
performs. Thus, because memo evaluation performs an exhaustive
state space search, it is guaranteed to find an interleaving among

the various threads evaluating gO that satisfies the constraints
for the original memoized version of f 0 for all its subsequent
calls. For example, suppose f initially received values 1 and 2
(in that order) on ch. Subsequent calls to gO can be memoized
by ensuring the global state has an application of f waiting to
receive 1 and 2; subsequent calls to f can be memoized by
ensuring the global state has an application of g willing to send
1 and 2. These conditions can be satisfied through repeated use of
the MCOM rule to discharge the paired communication constraints
on recursive invocations of f 0 and gO based on their initial
memoized execution.

We depict this characterization in the evaluation tree shown in
Fig. 8. We omit unnecessary thread creation actions, and reason
only about the order of sends produced by various incarnations of
g. Although there could be many concurrent calls to f and g, the
evaluation tree represents the abstract interleavings of communica­
tions that could satisfy f's constraints. The evaluation tree itself is
defined recursively, due to the recursive definition of the program.
For any given call to f there exist precisely four evaluation paths
based on the combination of values it can receive.

3.4 Partial Memoization

The semantics defined thus far yields a global state in which mem­
oization constraints are satisfied, if possible, and is not well-defined
otherwise. An implementation of the semantics is also not scalable

a E {Ch, Fun, Spn, Ret, Com, MCh, MCom, MRet, MSp, Local) (8, v) 6 Dom(a) -

P , U ~ P',a'
a

(t ~ , (6, 4).8, 4,B(v, e[v/xl)) ==+ * (tp ,P , 4 , ~ (v , v ')) , a'

P, o z PI, a' A p p . 5

(t ~ , g , 4, E[(Xs x.e) vl) , a ==+ (t p , F , 4, E[B(v, v l) l) , a'

-
a. P M e m

(t p 1 8 , 4, E [(x ~ x.e) v]) ,u -+ P', - a.PMem
(~ P , ~ , ~ , E [(x ~ x . ~) v]) , u ==+ P1,a'

p E {Fail, MRet) a(&, v) = (c, v')

Y E {S,R) C = (-,-,Y, e')

(t p , e , C.Z, E [u ((x ~ x.e) v)]) , a z1 (tp ,8 ,4 , E [el]), a

l e t val 1 = mkCh0
fun f () = l e t val - = recv(ch)

val - = recv(ch)
i n 0
end

fun g () = l e t val - = send(ch, I)
val - = send(ch, 2)

i n 0
end

fun f J () = spawn(f); f ' 0
fun g ' 0 = spawn(g); g ' 0

i n spawn(f ') ; spawn(g')
end

Figure 7. Example evaluation for recursive functions f' and g'.

Figure 8. The memo evaluation tree for the example code pre-
sented in Fig. 7

as it must perform arbitrary state space exploration to determine
memoization feasibility.

We therefore wish to determine whether acall can be memoized
without performing a potentially unbounded number of evaluation
steps. Even if it is not readily possible to determine if all constraints
necessary to memoize an application can be satisfied, it may be pos-
sible to determine that some prefix of the constraint sequence can
be discharged. Partial memoization allows us to avoid re-executing
those actions associated with this prefix.

l e t val (c l , c 2) = (m k ~ h 0 , m k c h o)
fun f () = (send(c1,v l) ; . . . ; recv(c2))
fun g () = (recv(c1) ; . . . ; recv(c2) ; g o)
fun h 0 = (. . .

s e n d (c 2 , ~ 2) ;
send(c2,v3) ;
h 0) ;

fun i 0 = (recv(c2); i0)

- ,
send(c2, v 3) ; . . . ;
f 0

end

Figure 10. Determining if an application can be memoized may
require examining an arbitrary number of possible thread interleav-
ings.

Consider the example presented in Fig 10. The program frag-
ment applies functions f , g, h and i . The calls to g, h, and i are
evaluated within separate threads of control, while the applications
o f f takes place in the original thread. These different threads com-
municate with one other over shared channels c l and c2.

To determine whether the second call to f can be elided we
must examine the constraints that would be added to the thread
state of the threads in which these functions are applied. First,
spawn constraints would be added to the main thread for the threads
executing g, h, and i. Second, a send constraint followed by a
receive constraint, modeling the exchange of values v l and either
v2 or v3 on channels c l and c2 would be included as well.
For the sake of discussion, assume that the send of v2 by h was
consumed by g and the send of v3 was paired with the receive in
f when f 0 was originally executed.

Consider the memoizability constraints built during the first call
to f 0 . The send constraint on f 's application can be satisfied by
matching it with the corresponding receive constraint associated
with the application of g ; observe g 0 loops forever, consuming
values on channels c l and c2. Determining whether the receive
constraint associated with f can be matched requires more work.
To match constraints properly, we need to force a schedule that
causes g to receive the first send by h and f to receive the second,

(CORE)

a E {Ch, Fun, Spn, Ret, Com, MCh, MCom, MRet, MSp, Local}
P,O'~P',O"

(PARTIAL MEMO ApP)

(8, v) E Dom(O')

(
- [()]) Q.PMem , ,tp,(),¢,E Aox.e v,O' '--7 P ,0'

(tp,(),¢,E[(Aox.e)v]),O' (X.~m P',O"

(FAIL)

(App)

(8,v) 'I. Dom(O')
- Q-

(tp,(8,¢).(),¢,B(v,e[v/x])) ==* • (tp,()',¢,B(v,v')),O"
App.(X

(tp, e, ¢, E[(Aox.e) v]), 0' ==* • (tp, 0', ¢, E[B(v, v')]), 0"

(PARTIAL MEMO)

f3 E {Fail, MRet} 0'(8, v) = (e, v')
_ _ Q.{3_

(tp, (), C, E[U((A ox.e) v)]) '--7. P' II (()', ¢, t [E[e']]), 0"

(tp, e, ¢, E[(Ao x.e) v]), 0' (X.{3!...Mem P'II(O', ¢, t[E[e']]), 0"

- - Fail -
(tp, (), C.C, E[U((Ao x.e) v)]), 0' '--7 (tp, (), ¢, E[e']), 0'

FIGURE 9. PARTIAL MEMOIZATION.

let val 1 = mkChO
fun fO = let val recv(ch)

val recv(ch)
in 0
end

fun gO let val send(ch, 1)
val send(ch, 2)

in 0
end

fun f' 0 = spawn(f); f'O
fun g'() = spawn(g); g'O

in spawn(f'); spawn(g')
end

Figure 7. Example evaluation for recursive functions f' and g'.

Figure 8. The memo evaluation tree for the example code pre­
sented in Fig. 7

as it must perform arbitrary state space exploration to determine
memoization feasibility.

We therefore wish to determine whether a call can be memoized
without performing a potentially unbounded number of evaluation
steps. Even if it is not readily possible to determine if all constraints
necessary to memoize an application can be satisfied, it may be pos­
sible to determine that some prefix of the constraint sequence can
be discharged. Partial memoization allows us to avoid re-executing
those actions associated with this prefix.

let val (c1,c2) = (mkCh(),mkCh(»
fun f 0 (send(c1,v1); ... ; recv(c2»
fun g 0 (recv(c1); ... j recv(c2); gO)
fun h 0 (...

send(c2,v2)j
send(c2,v3);
hO) ;

fun i () = (recv(c2)j i(»
in spawn(g); spawn(h); spawn(i);

fO; ... j

send(c2, v3); ... j

fO
end

Figure 10. Determining if an application can be memoized may
require examining an arbitrary number of possible thread interleav­
ings.

Consider the example presented in Fig 10. The program frag­
ment applies functions f, g, h and i. The calls to g, h, and i are
evaluated within separate threads of control, while the applications
of f takes place in the original thread. These different threads com­
municate with one other over shared channels c1 and c2.

To determine whether the second call to f can be elided we
must examine the constraints that would be added to the thread
state of the threads in which these functions are applied. First,
spawn constraints would be added to the main thread for the threads
executing g, h, and i. Second, a send constraint followed by a
receive constraint, modeling the exchange of values vi and either
v2 or v3 on channels c1 and c2 would be included as well.
For the sake of discussion, assume that the send of v2 by h was
consumed by g and the send of v3 was paired with the receive in
f when f 0 was originally executed.

Consider the memoizability constraints built during the first call
to f 0 . The send constraint on f's application can be satisfied by
matching it with the corresponding receive constraint associated
with the application of g; observe gO loops forever, consuming
values on channels c1 and c2. Determining whether the receive
constraint associated with f can be matched requires more work.
To match constraints properly, we need to force a schedule that
causes g to receive the first send by h and f to receive the second,

causing execution of the thread executing i 0 to block until the
second call to f completes.

Fixing such a schedule is tantamount to examining an un-
bounded set of interleavings. Instead, we could leverage memo
information for f 0 to avoid performing the send, and all com-
putation upto the receive operation, and we could leverage memo
information for g () to avoid performing the matching receive and
all computation upto the receive on channel c2 ; these constraints
are guaranteed to be satisfied when the second call to f is per-
formed. Because the receive constraint for f 0 and g 0 on chan-
nel c2 may not be immediately satisfiable at f 's second call, we
can resume execution of f 0 and g 0 at their respective receive
operations on c2.

Our partial memoization extension to the memo evaluation rules
is presented in Fig. 9. These evaluation rules share much in com-
mon with the memo evaluation rules (see rule CORE). Channel and
thread creation, function return, and synchronous communication
operations behave as before; in particular, the constraints added to
the memo store are unchanged. Function and channel evaluation
are also unchanged.

The main difference arises in the way function application is
treated. If an application of a function f to argument v has not been
recorded in the memo store, it can be memoized (see Rule APP).
Since subsequent calls to f with v may not be able to discharge
all constraints, however, we need to record the program points
for all communication actions within f that represent potential
resumption points; these continuations are recorded as part of the
stored constraint. But, since the calling contexts at these other
call-sites are different than the original, we must be careful to
not include those outer contexts as part of the saved continuation.
Thus, the contexts recorded as part of the saved constraint during
memoization only define the continuation of the action upto the
return point of the function.

Rule PARTIAL MEMO determines whether an application of a
function f to an argument v that has already been recorded in
the memo store can utilize previously recorded memo information.
Its structure is similar to the structure of memo evaluation shown
in Fig. 6 except that it allows a non-deterministic failure action
to be taken. As communication constraints are being discharged,
the rules permit the installation of the partial continuation saved
in the constraint tuple for that communication (expression e ' in
rule FAIL); no further constraints are examined. Thus, the thread
performing this call will resume execution from the saved program
point.

4. Safety, Efficiency, and Correspondence
We can relate the states produced by memoized evaluation to the
states constructed by the non-memoizing evaluator using the fol-
lowing transformation operators.

where
e otherwise

F((X -.e) send(1, v), C) if C = (1, v, S, -)
F((X -.el recv(l) , if C = (1, -, R, -)
F((X -.e) spawn(ef), C) if C = (SP, ef)
F((X x.e) mk~h()), C[x/l) if C = (Ch, 1)

and x $! FV(e)

7 transforms process states (and terms) defined under memo
evaluation to process states (and terms) defined under non-memoized
evaluation. It uses an auxiliary transform F to translate constraints
found in the memo store to core language terms. Each constraint
defines an effectful action (e.g., sends, receives, channel creation,
and spawns).

These operators provide a translation from the memo state
defining constraints maintained by the memo evaluator to non-
memoized terms. Defining the expression corresponding to a con-
straint is straightforward; the complexity in F's definition is be-
cause we must maintain the order in which these effects occur. We
enforce ordering through nested function application, in which the
most deeply nested function in the synthesized expression yields
the memoized return value.

Given the ability to transform memoized states to non-memoized
ones, we can define a safety theorem that ensures memoization does
not yield states which could not be realized under non-memoized
evaluation:

Theorem[Safety] If

then

Pro05 The proof is by induction on the length of 5. Each of
the elements comprising 5 correspond to an action necesssary to
discharge previously recorded memoization constraints. We can
show that every a step taken under memoization corresponds to
zero or one step under non-memoized evaluation; zero steps for
returns and memo actions that strip or build context tags U and B,
and one step for core evaluation, and effectful actions (e.g., MCH,
MSPAWN, MRECV, MSEND, and MCOM).

If 151 is one, then a must be MRET, which is the only rule
that strips the U tag. The MRET rule simply installs the memoized
return value of the function being memoized. The value yielded by
MRET is the value previously recorded in the memo store. By the
definition of RET this value must be the same as the value yielded
by the application under core evaluation.

For the inductive step, we examine each memoizable action in
turn. A channel or thread creation action (i.e., MCH or MSPAWN)
correspond directly to their core evaluation counterparts modulo
renaming. The rules for MRECV and MSEND correspond to the
COMM rule, sending or receiving the memoized value on a spe-
cific channel. Similarly, MCOM also corresponds directly to the
COMM rule. From the definition of 7, we can split any COMM
rule into an MRECV or MSEND by transforming one half of the
communicaiton.

The rules for RET and MRET do not correspond to any core
evaluation rules. However, when paired with APP and MEMO APP,
the pairs correspond to a core evaluation application. Both RET and
MRET remove B's and U's respectively inserted by APP and MEMO
APP, and thus such pairing is always feasible. By the definition
of 7 and the induction hypothesis, the value yielded by RET or
MRET corresponds to the value yielded by application under core
evaluation.

Determining whether a function call can use previously con-
structed memo information is not free since every constraint match
is defined as an evaluation step under --t in Fig. 6. An application .r(e, []) e

4. Safety, Efficiency, and Correspondence
We can relate the states produced by memoized evaluation to the
states constructed by the non-memoizing evaluator using the fol­
lowing transformation operators.

ifC = (l,v,S,_)
if C = (1, _, R, _)
if C = (Sp, e')
ifC = (Ch,l)
and x?J- FV(e)

{

.r((A_.e)send(l,v),C)

.r((A _.e) recv(l), C)

.r((A _.e) spawn(e'), C)

.r((A x.e) mkCh()), C[x/1)
.r(e,C.C)

T transforms process states (and terms) defined under memo
evaluation to process states (and terms) defined under non-memoized
evaluation. It uses an auxiliary transform.r to translate constraints
found in the memo store to core language terms. Each constraint
defines an effectful action (e.g., sends, receives, channel creation,
and spawns).

These operators provide a translation from the memo state
defining constraints maintained by the memo evaluator to non­
memoized terms. Defining the expression corresponding to a con­
straint is straightforward; the complexity in .r's definition is be­
cause we must maintain the order in which these effects occur. We
enforce ordering through nested function application, in which the
most deeply nested function in the synthesized expression yields
the memoized return value.

Given the ability to transform memoized states to non-memoized
ones, we can define a safety theorem that ensures memoization does
not yield states which could not be realized under non-memoized
evaluation:

Theorem[Safety] If

(tp, 7J, ¢, E[(A8 x.e) v]), a Ci~m (tpl, 7F, ¢, E[v']), 0'

then

(tT(P,(T)' T(E[(A x.e) v])) 1---7 * (tT(PI ,(T/)' T(E[v'])

o
Proof The proof is by induction on the length of a. Each of

the elements comprising a correspond to an action necesssary to
discharge previously recorded memoization constraints. We can
show that every a step taken under memoization corresponds to
zero or one step under non-memoized evaluation; zero steps for
returns and memo actions that strip or build context tags U and B,
and one step for core evaluation, and effectful actions (e.g., MCH,
MSPAWN, MRECV, MSEND, and MCOM).

If lal is one, then a must be MRET, which is the only rule
that strips the U tag. The MRET rule simply installs the memoized
return value of the function being memoized. The value yielded by
MRET is the value previously recorded in the memo store. By the
definition of RET this value must be the same as the value yielded
by the application under core evaluation.

For the inductive step, we examine each memoizable action in
tum. A channel or thread creation action (i.e., MCH or MSPAWN)
correspond directly to their core evaluation counterparts modulo
renaming. The rules for MRECV and MSEND correspond to the
COMM rule, sending or receiving the memoized value on a spe­
cific channel. Similarly, MCOM also corresponds directly to the
COJ\:fM rule. From the definition of T, we can split any COMM
rule mto an MRECV or MSEND by transforming one half of the
communicaiton.

The rules for RET and MRET do not correspond to any core
evaluation rules. However, when paired with App and MEMO App
the pairs correspond to a core evaluation application. Both RET and
MRET remove B's and U's respectively inserted by App and MEMO
App, and thus such pairing is always feasible. By the definition
of T and the induction hypothesis, the value yielded by RET or
MRET corresponds to the value yielded by application under core
evaluation. 0

Determining whether a function call can use previously con­
structed memo information is not free since every constraint match
is defined as an evaluation step under '"'-+ in Fig. 6. An application

Ax.e
T(el)(T(e2))
spawn(T(e))
send(T(el), T(e2))
recv(T(e))
T(e)

.r(v', C) if 0(8, v) = C
otherwisee

where

causing execution of the thread executing i 0 to block until the
second call to f completes.

Fixing such a schedule is tantamount to examining an un­
bounded set of interleavings. Instead, we could leverage memo
information for f 0 to avoid performing the send, and all com­
putation upto the receive operation, and we could leverage memo
information for g () to avoid performing the matching receive and
all computation upto the receive on channel c2; these constraints
are guaranteed to be satisfied when the second call to f is per­
formed. Because the receive constraint for f 0 and gOon chan­
nel c2 may not be immediately satisfiable at f's second call, we
can resume execution of f 0 and gOat their respective receive
operations on c2.

Our partial memoization extension to the memo evaluation rules
is presented in Fig. 9. These evaluation rules share much in com­
mon with the memo evaluation rules (see rule CORE). Channel and
thread creation, function return, and synchronous communication
operations behave as before; in particular, the constraints added to
the memo store are unchanged. Function and channel evaluation
are also unchanged.

The main difference arises in the way function application is
treated. If an application of a function f to argument v has not been
recorded in the memo store, it can be memoized (see Rule App).
Since subsequent calls to f with v may not be able to discharge
all constraints, however, we need to record the program points
for all communication actions within f that represent potential
resumption points; these continuations are recorded as part of the
stored constraint. But, since the calling contexts at these other
call-sites are different than the original, we must be careful to
not include those outer contexts as part of the saved continuation.
Thus, the contexts recorded as part of the saved constraint during
memoization only define the continuation of the action upto the
return point of the function.

Rule PARTIAL MEMO determines whether an application of a
function f to an argument v that has already been recorded in
the memo store can utilize previously recorded memo information.
Its structure is similar to the structure of memo evaluation shown
in Fig. 6 except that it allows a non-deterministic failure action
to be taken. As communication constraints are being discharged,
the rules permit the installation of the partial continuation saved
in the constraint tuple for that communication (expression e' in
rule FAIL); no further constraints are examined. Thus, the thread
performing this call will resume execution from the saved program
point.

T((P1 1IP2),0') = T(P1 , 0')IIT(P2 , 0')
T((7J,C,e),o) = T(e,o)

T(A8 x.e)

T((el) e2)
T(spawn(e))

T(send(el, e2))
T(recv(e))
T(B(v, e))

T((U(A8 x.e)) v)

can be profitably memoized only if the work to determine if it is
memoizable is less than the work to evaluate it without employ-
ing memoization. Steps taken by the memo evaluator that match
constraints, or initiate other memoization actions define work that
would not be performed otherwise; conversely, memoization can
avoid performing local steps taken to fully evaluate an application,
although it may induce local actions in other threads to reach a
global state in which memoization constraints can be discharged.
We formalize this intuition thus:

Theorem[Efficiency] Let E be the smallest sequence such that

holds, and let

If there are m occurrences of Ref tags and n occurrences of Mern
tags in E, then \El 5 + m + n . 0

Prooj As before, the proof follows from the definition of 7 and
7, and proceeds by induction on the length of E.

Without loss of generality, let E be the smallest sequence for
which the relation holds. As before, we proceed with the proof by
induction on the length of E.

If lEl is one, then cu must be MRET, which is the only rule that
strips the U tag. Observe that MRET discharges no constraints,
and yields the value recorded in the memo store. The minimal
number of evaluation steps for an application under core evaluation
is one (for an application of an abstraction that immediately yields
a value).

For the inductive step, we consider each rule under memoized
evaluation in turn. By the structure of the rules and the safety the-
orem, evaluation steps taken by MCH and MSPAWN correspond
directly to their core evaluation rule counterparts. The rules for
MSEND and MRECV correspond to a single COMM step under
core evaluation. The MCOM rule discharges memoization con-
straints in two threads. It consumes a single step under memo eval-
uation.

The rules for RET and MRET do not correspond to any core
evaluation rules. However, when paired with APP and MEMO APP,
the pairs correspond to an application. Both RET and MRET re-
move U's and B's respectively inserted by APP and MEMO APP.
Thefore each sequence will contain one additional rule for each
APP and MEMO APP step.

The rest of the rules have direct correspondence to rules in core
evaluation. In a regular application each of the rules adds to the
length of the sequence; in a memo application these steps are either
skipped (in the case of an ordinary application), or contribute to the
length of Z. q

A memoization candidate that induces a Fail transition under
partial memoization may nonetheless be fully memoizable under
memo evaluation. Moreover, the global state yielded by the Fail
transition can be used by the non-memoizing evaluator to reach the
same global state reached by successful memoization.

Theorem[Correspondence] If
-
a. Fail

(t p , B , 4, E[(& x.e) v]), a -+ (t p l , G , 4, E[el]), a

and
-
8. Mem -

(t p , g, 4, E[(Xa x.e) vl), a -., (t p / / ,@, 4, E[vl]), a

then

q
Pro05 The proof follows the same structure as the proof of

safety, and is shown via induction on the length of p - E.

By the definition of Safety and 7, all program states created
by subsequences of p can be transformed into equivalent program
states yielded by core evaluation. Notice that a FAIL transition can
only occur when a memoization candidate has a non-empty set of
constraints.

The base case for the induction is when \p - E(is two. The
sequence p must contain an additional constraint (call it P") as
well as an MRET transition for the completion of the application,
neither of which are found in E. Therefore, the following must hold:

--
8'.8". Mem - (tp,8,4, E[(& x.e) v]), a -., (t ~ , Q,$, ~ [v ']) , o

where 7 = P 1 l l . M ~ ~ ~ . By the safety theorem, there exists a
transition under core evaluation which yields the effect of PI1.

For the inductive step, we examine each of the rules under -+.
Notice PARTIAL MEMO APP corresponds to MEMO APP and only
adds a different tag. Therefore, by induction all E sequences ending
in PMem satisfy the theorem. A similar argument holds for APP.
Partial memoization behaves identically to memoization in the case
when the sequence is not terminated by FAIL.

Thus, consider the FAIL rule. By the structure of the rules a
given thread can only take one FAIL transition for any given MEMO
APP. Therefore, by our induction hypothesis all sequences prior
to a FAIL transition result in a state which corresponds to a core
evaluation state. The FAIL rule installs a delimited continuation
which can be evaluated under core evaluation since it is a valid term
in the core language (the continuation has not yet been memoized).
Therefore, the state produced by the FAIL rule must have a valid
corresponding core evaluation state.0

5. Implementation
Our implementation is incorporated within MLton (16), a whole-
program optimizing compiler for Standard ML. The main changes
to the underlying compiler and library infrastructure are the inser-
tion of barriers to monitor function arguments and return values,
hooks to the Concurrent ML (20) library to monitor channel based
communication, and changes to the Concurrent ML scheduler to
determine memoization feasibility. The entire implementation is
roughly 2.5K lines of SML.

5.1 Memoization

Because it will not in general be readily apparent if a memoized
version of a CML function can be utilized at a call site, we delay
a function application to see if its constraints can be matched;
these constraints must be satisfied in the order in which they were
generated.

Constraint matching can certainly fail on a receive constraint.
A receive constraint obligates a receive operation to read a specific
value from a channel. Since channel communication is blocking, a
receive constraint that is being matched can choose from all values
whose senders are currently blocked on the channel. This does not
violate the semantics of CML since the values blocked on a channel
cannot be dependent on one another; in other words, a schedule
must exist where the matched communication occurs prior to the
first value blocked on the channel.

Unlike a receive constraint, a send constraint can only fail if
there are (a) no matching receive constraints on the sending channel
that expect the value being sent, or (b) no receive operations on that
same channel. A CML receive operation (not receive constraint) is
ambivalent to the value it removes from a channel; thus, any receive
on a matching channel will satisfy a send constraint.

If no receives or sends are enqueued on a constraint's target
channel, a memoized execution of the function will block. There-
fore, failure to fully discharge constraints by stalling memoization
on a presumed unsatisfiable constraint does not compromise global

can be profitably memoized only if the work to determine if it is
memoizable is less than the work to evaluate it without employ­
ing memoization. Steps taken by the memo evaluator that match
constraints, or initiate other memoization actions define work that
would not be performed otherwise; conversely, memoization can
avoid performing local steps taken to fully evaluate an application,
although it may induce local actions in other threads to reach a
global state in which memoization constraints can be discharged.
We formalize this intuition thus:

Theorem[Efficiency] Let a be the smallest sequence such that

(tp, e, ¢, E[(A6 x.e) v]), 0" Q~m (tpl, 8', ¢, E[v']), 0"'

holds, and let

/3
(tY(P,a), T(E[(h.e) v])) >-----> * (tY(PI ,a'), T(E[v'J)

If there are m occurrences of Ret tags and n occurrences of Mem
tags in a, then lal ::::: 1131 + m + n.D

Proof As before, the prooffollows from the definition of T and
Y, and proceeds by induction on the length ofa.

Without loss of generality, let a be the smallest sequence for
which the relation holds. As before, we proceed with the proof by
induction on the length of a.

If lal is one, then Q must be MRET, which is the only rule that
strips the U tag. Observe that MRET discharges no constraints,
and yields the value recorded in the memo store. The minimal
number of evaluation steps for an application under core evaluation
is one (for an application of an abstraction that immediately yields
a value).

For the inductive step, we consider each rule under memoized
evaluation in tum. By the structure of the rules and the safety the­
orem, evaluation steps taken by MCH and MSPAWN correspond
directly to their core evaluation rule counterparts. The rules for
MSEND and MRECV correspond to a single COMM step under
core evaluation. The MCOM rule discharges memoization con­
straints in two threads. It consumes a single step under memo eval­
uation.

The rules for RET and MRET do not correspond to any core
evaluation rules. However, when paired with App and MEMO App,
the pairs correspond to an application. Both RET and MRET re­
move U's and B's respectively inserted by App and MEMO ApP.
Thefore each sequence will contain one additional rule for each
App and MEMO App step.

The rest of the rules have direct correspondence to rules in core
evaluation. In a regular application each of the rules adds to the
length of the sequence; in a memo application these steps are either
skipped (in the case of an ordinary application), or contribute to the
length of a. D

A memoization candidate that induces a Fail transition under
partial memoization may nonetheless be fully memoizable under
memo evaluation. Moreover, the global state yielded by the Fail
transition can be used by the non-memoizing evaluator to reach the
same global state reached by successful memoization.

Theorem[Correspondence] If

- a Fail - I

(tp,B,¢,E[(A6x.e)V]),0" ~ (tpl,B,¢,E[e]),O"

and
- /3 Mem - ,

(tp,B,¢,E[(A6x.e)V]),0" '",-> (tplI,B,¢,E[v]),O"

then

(tY(PI ,a), T(E[e'])) >-----> * (ty(P" ,a), T(E[v/]))

D
Proof The proof follows the same structure as the proof of

safety, and is shown via induction on the length of:B - a.

By the definition of Safety and T, all program states created
by subsequences of:B can be transformed into equivalent program
states yielded by core evaluation. Notice that a FAIL transition can
only occur when a memoization candidate has a non-empty set of
constraints.

The base case for the induction is when 113 - al is two. The
sequence 13 must contain an additional constraint (call it (3") as
well as an MRET transition for the completion of the application,
neither of which are found in a. Therefore, the following must hold:

- {3' {3" Mem - ,
(tp,B,¢,E[(A6x.e)Vj),0" . ~ (tplI,B,¢,E[v]),O"

where (3" = (3111.MRET. By the safety theorem, there exists a
transition under core evaluation which yields the effect of (3".

For the inductive step, we examine each of the rules under '--->.

Notice PARTIAL MEMO App corresponds to MEMO App and only
adds a different tag. Therefore, by induction all a sequences ending
in PMem satisfy the theorem. A similar argument holds for ApP.
Partial memoization behaves identically to memoization in the case
when the sequence is not terminated by FAIL.

Thus, consider the FAIL rule. By the structure of the rules a
given thread can only take one FAIL transition for any given MEMO
ApP. Therefore, by our induction hypothesis all sequences prior
to a FAIL transition result in a state which corresponds to a core
evaluation state. The FAIL rule installs a delimited continuation
which can be evaluated under core evaluation since it is a valid term
in the core language (the continuation has not yet been memoized).
Therefore, the state produced by the FAIL rule must have a valid
corresponding core evaluation stateD

5. Implementation
Our implementation is incorporated within MLton (16), a whole­
program optimizing compiler for Standard ML. The main changes
to the underlying compiler and library infrastructure are the inser­
tion of barriers to monitor function arguments and return values,
hooks to the Concurrent ML (20) library to monitor channel based
communication, and changes to the Concurrent ML scheduler to
determine memoization feasibility. The entire implementation is
roughly 2.5K lines of SML.

5.1 Memoization

Because it will not in general be readily apparent if a memoized
version of a CML function can be utilized at a call site, we delay
a function application to see if its constraints can be matched;
these constraints must be satisfied in the order in which they were
generated.

Constraint matching can certainly fail on a receive constraint.
A receive constraint obligates a receive operation to read a specific
value from a channel. Since channel communication is blocking, a
receive constraint that is being matched can choose from all values
whose senders are currently blocked on the channel. This does not
violate the semantics of CML since the values blocked on a channel
cannot be dependent on one another; in other words, a schedule
must exist where the matched communication occurs prior to the
first value blocked on the channel.

Unlike a receive constraint, a send constraint can only fail if
there are (a) no matching receive constraints on the sending channel
that expect the value being sent, or (b) no receive operations on that
same channel. A CML receive operation (not receive constraint) is
ambivalent to the value it removes from a channel; thus, any receive
on a matching channel will satisfy a send constraint.

If no receives or sends are enqueued on a constraint's target
channel, a memoized execution of the function will block. There­
fore, failure to fully discharge constraints by stalling memoization
on a presumed unsatisfiable constraint does not compromise global

progress. This observation is critical to keeping memoization over-
heads low.

Thus, in the case that a constraint is blocked on a channel that
contains no other pending communication events or constraints,
memoization induces no overheads, since the thread would have
blocked regardless. However, if there exist communications or con-
straints that simply do not match the value the constraints expects,
we can fail, and allow the thread to resume execution from the con-
tinuation stored within the constraint. To trigger such situations,
we implement a simple heuristic. Our implementation records the
number of context switches to a thread attempting to discharge a
communication constraint. If this number exceeds a small constant
(three in the benchmarks presented in the next section), memoiza-
tion stops, and the thread continues execution within the function
body immediately prior to that communication point.

Our memoization technique relies on efficient equality tests. We
extend MLton's poly-equal function to support equality on reals
and closures. Although equality on values of type real is not alge-
braic, built-in compiler equality functions were sufficient for our
needs. To support efficient equality on functions, we approximate
function equality as closure equality. Unique identifiers are associ-
ated with every closure and recorded within their environment; run-
time equality tests on these identifiers are performed during mem-
oization.

Memoization data is discarded during garbage collection. This
prevents unnecessary build up of memoization meta-data during
execution. As a heuristic, we also enforce an upper bound for
the amount of memo-data stored for each function, and the space
that each memo entry can take. A function that generates a set of
constraints whose size exceeds the memo entry space bound is not
memoized. For each memoized function, we store a list of memo
meta-data. When the length of the list reaches the upper limit but
new memo data is acquired upon an application of the function to
previously unseen arguments, one entry from the list is removed at
random.

5.2 CML hooks

The underlying CML library was also modified to make memoiza-
tion efficient. The bulk of the changes were hooks to monitor chan-
nel communication and spawns, and to support constraint match-
ing on synchronous operations. Successful communications occur-
ring within memoized functions were added to the log maintained
in the memo table in the form of a constraints, as described pre-
viously. Selective communication and complex composed events
were also logged upon completion. A complex composed event, on
the other hand, simply reduces to a sequence of communications
that are logged separately.

The constraint matching engine also required a modification
to the channel structure. Each channel is augmented with two
additional queues to hold send and receive constraints. When a
constraint is being tested for satisfiability, the opposite queue is first
checked (e.g. a send constraint would check the receive constraint
queue). If no match is found, the regular queues are checked for
satisfiability. If the constraint cannot be satisfied immediately it is
added to the appropriate queue.

6. Benchmarks

STMBench7 (10) is a comprehensive, tunable multi-threaded
benchmark designed to compare different software transactional
memory (STM) implementations and designs. Based on the well-
known 007 database benchmark (3, STMBench7 simulates data
storage and access patterns of CADICAM applications that oper-
ate over complex geometric structures. At its core, STMBench7

builds a tree of assemblies whose leaves contain bags of compo-
nents; these components are composed of a highly connected graph
of atomic parts and design documents. Indices allow components,
parts, and documents to be accessed via their properties and IDS.
Traversals of this graph can begin from the assembly root or any
index and sometimes manipulate multiple pieces of data.

STMBench7 was originally written in Java. We have imple-
mented a parallel port to Concurrent ML (roughly 1.5K lines of
CML). In our implementation, nodes in the input graph are rep-
resented as message-passing servers with one receiving channel
and output channels to all other adjacent nodes. Each server thread
waits for a message to be received, performs the requested com-
putation, and then asynchronously sends the subsequent part of the
traversal to its adjacent nodes. A transaction can thus be imple-
mented as a series of channel based communications with various
server nodes.

6.2 STM Implementation

Our STM implements an eager versioning, lazy conflict detection
protocol (4; 21). Shared references in the original Java program
are implemented in terms of channel-based communication in the
CML port as described above. Since channels are simply heap-
allocated data structures, they require no special runtime treat-
ment to guarantee isolation and atomicity. However, all basic syn-
chronous operations in CML involve some side-effect on a chan-
nel, through the deposition and removal of values. Since these side-
effects would confound the serializability check performed by the
STM, we also provide a non-side-effecting version of recv that
does not remove the contents of the channel on which it is synchro-
nized. Our encoding of shared-memory writes clears the contents
of the appropriate channel, and provides a new synchronous value
available to subsequent readers. We thereby allow the STM to track
accesses to channels in the same way it would track accesses to lo-
cations in a shared-memory system.

The STM supports nested, multi-threaded transactions. A multi-
threaded transaction is defined as a transaction whose processing is
split among a number of threads created by the parent starting the
transaction. The threads which comprise a multi-threaded transac-
tion must synchronize at the transaction's commit point.

6.3 Example

Fig. 11 shows a code snippet that is responsible for modifying the
height parameters of a building's structural component. A change
made by the function Traversal affects two components of a
design, but the specific changes to each component are disjoint
and amenable for concurrent execution. Thus, the modification
can easily be expressed as disjoint traversals, expressed by the
function f indAtomicPart. The sclHgt function shown in Fig. 11
changes the height parameter of distinct structural parts. Observe
that although the height parameter of pidz depends on the new
height of pidl, the traversal to find the part can be executed in
parallel. Once pidl is updated, the traversal for pidz can complete.

The atomic keyword brackets an expression that is to be ex-
ecuted atomically, and also serves to identify memoization can-
didates. In this example, the transaction created by Traversal
may fail to commit if parts of the underlying graph referenced
by sclHgt and f indAtomicPart changes. Such changes are re-
flected as modifications to shared channels that hold values of dif-
ferent nodes in the graph.

Observe that much of the computation performed within the
transaction is expressed as simple (read-only) graph traversals.
Given that most changes are likely to take place on atomic parts
and not on higher-level graph components such as complex or base
assemblies, the traversal performed by the re-execution is likely to
overlap substantially with the original traversal. Of course, when

progress. This observation is critical to keeping memoization over­
heads low.

Thus, in the case that a constraint is blocked on a channel that
contains no other pending communication events or constraints,
memoization induces no overheads, since the thread would have
blocked regardless. However, if there exist communications or con­
straints that simply do not match the value the constraints expects,
we can fail, and allow the thread to resume execution from the con­
tinuation stored within the constraint. To trigger such situations,
we implement a simple heuristic. Our implementation records the
number of context switches to a thread attempting to discharge a
communication constraint. If this number exceeds a small constant
(three in the benchmarks presented in the next section), memoiza­
tion stops, and the thread continues execution within the function
body immediately prior to that communication point.

Our memoization technique relies on efficient equality tests. We
extend MUon's poly-equal function to support equality on reals
and closures. Although equality on values of type real is not alge­
braic, built-in compiler equality functions were sufficient for our
needs. To support efficient equality on functions, we approximate
function equality as closure equality. Unique identifiers are associ­
ated with every closure and recorded within their environment; run­
time equality tests on these identifiers are performed during mem­
oization.

Memoization data is discarded during garbage collection. This
prevents unnecessary build up of memoization meta-data during
execution. As a heuristic, we also enforce an upper bound for
the amount of memo-data stored for each function, and the space
that each memo entry can take. A function that generates a set of
constraints whose size exceeds the memo entry space bound is not
memoized. For each memoized function, we store a list of memo
meta-data. When the length of the list reaches the upper limit but
new memo data is acquired upon an application of the function to
previously unseen arguments, one entry from the list is removed at
random.

5.2 CML hooks

The underlying CML library was also modified to make memoiza­
tion efficient. The bulk of the changes were hooks to monitor chan­
nel communication and spawns, and to support constraint match­
ing on synchronous operations. Successful communications occur­
ring within memoized functions were added to the log maintained
in the memo table in the form of a constraints, as described pre­
viously. Selective communication and complex composed events
were also logged upon completion. A complex composed event, on
the other hand, simply reduces to a sequence of communications
that are logged separately.

The constraint matching engine also required a modification
to the channel structure. Each channel is augmented with two
additional queues to hold send and receive constraints. When a
constraint is being tested for satisfiability, the opposite queue is first
checked (e.g. a send constraint would check the receive constraint
queue). If no match is found, the regular queues are checked for
satisfiability. If the constraint cannot be satisfied immediately it is
added to the appropriate queue.

6. Benchmarks
6.1 STMBench7

STMBench7 (10) is a comprehensive, tunable multi-threaded
benchmark designed to compare different software transactional
memory (STM) implementations and designs. Based on the well­
known 007 database benchmark (5), STMBench7 simulates data
storage and access patterns of CAD/CAM applications that oper­
ate over complex geometric structures. At its core, STMBench7

builds a tree of assemblies whose leaves contain bags of compo­
nents; these components are composed of a highly connected graph
of atomic parts and design documents. Indices allow components,
parts, and documents to be accessed via their properties and IDs.
Traversals of this graph can begin from the assembly root or any
index and sometimes manipulate multiple pieces of data.

STMBench7 was originally written in Java. We have imple­
mented a parallel port to Concurrent ML (roughly 15K lines of
CML). In our implementation, nodes in the input graph are rep­
resented as message-passing servers with one receiving channel
and output channels to all other adjacent nodes. Each server thread
waits for a message to be received, performs the requested com­
putation, and then asynchronously sends the subsequent part of the
traversal to its adjacent nodes. A transaction can thus be imple­
mented as a series of channel based communications with various
server nodes.

6.2 STM Implementation

Our STM implements an eager versioning, lazy conflict detection
protocol (4; 21). Shared references in the original Java program
are implemented in terms of channel-based communication in the
CML port as described above. Since channels are simply heap­
allocated data structures, they require no special runtime treat­
ment to guarantee isolation and atomicity. However, all basic syn­
chronous operations in CML involve some side-effect on a chan­
nel, through the deposition and removal of values. Since these side­
effects would confound the serializability check performed by the
STM, we also provide a non-side-effecting version of recv that
does not remove the contents of the channel on which it is synchro­
nized. Our encoding of shared-memory writes clears the contents
of the appropriate channel, and provides a new synchronous value
available to subsequent readers. We thereby allow the STM to track
accesses to channels in the same way it would track accesses to lo­
cations in a shared-memory system.

The STM supports nested, multi-threaded transactions. A multi­
threaded transaction is defined as a transaction whose processing is
split among a number of threads created by the parent starting the
transaction. The threads which comprise a multi-threaded transac­
tion must synchronize at the transaction's commit point.

6.3 Example

Fig. 11 shows a code snippet that is responsible for modifying the
height parameters of a building's structural component. A change
made by the function Traversal affects two components of a
design, but the specific changes to each component are disjoint
and amenable for concurrent execution. Thus, the modification
can easily be expressed as disjoint traversals, expressed by the
function f indAtomicPart. The sclHgt function shown in Fig. 11
changes the height parameter of distinct structural parts. Observe
that although the height parameter of pid2 depends on the new
height of pid1 , the traversal to find the part can be executed in
parallel. Once pid1 is updated, the traversal for pid2 can complete.

The atomic keyword brackets an expression that is to be ex­
ecuted atomically, and also serves to identify memoization can­
didates. In this example, the transaction created by Traversal
may fail to commit if parts of the underlying graph referenced
by sclHgt and findAtomicPart changes. Such changes are re­
flected as modifications to shared channels that hold values of dif­
ferent nodes in the graph.

Observe that much of the computation performed within the
transaction is expressed as simple (read-only) graph traversals.
Given that most changes are likely to take place on atomic parts
and not on higher-level graph components such as complex or base
assemblies, the traversal performed by the re-execution is likely to
overlap substantially with the original traversal. Of course, when

let fun f indAtomicPart (object, pid) =
let val assembly =

travCAssembly(object, pid)
val bag = travAssembly(assembly, pid)
val component = travBag(bag, pid)
val part = traveComp(component, pid)

in part
end

fun sclHgt(object, pid, c) =
let val part = findAtomicPart(object, pid)

val newHeight = height(part) *recv(c)
val - = changeHeight(part, newHeight)

in send(c ,newHeight)
end

fun Traversal (object, pidl, pid2, height) =
atomic(fn () =>

let val cl = channel0
val c2 = channel0
val - = spawn(sc1Hgt (object,

pi&,
c1))

val - = spawn(sclHgt(object,
pidz,
c2)

in send(c1, height) ;
send(c2, recv(c1)) ;
recv(c2)

end)
in Traversal 0
end

Figure 11. Example program illustrating a multi-threaded transac-
tion that traverses a CADICAM object.

the transaction executes, it may be that some portion of the graph
has changed. Without knowing exactly which part of the graph has
been modified by other transactions, the only obvious safe point for
re-execution is the beginning of the traversal.

Memoization helps avoid unnecessary re-traversal of the graph
when the Traversal procedure is re-executed. If (a) the argu-
ments to the first call to sclHgt remain the same, (b) the same
value is read by the function height, (c) there is a value waiting
to be received on channel cl that is the same as in the original ex-
ecution, and (d) there is a recipient waiting to consume the value
sent along cl, then the call can be memoized. Notice a receipt of
the send of the newly calculated height is guaranteed to complete
since the parent thread will always receive on the channel cl .

The second execution of sclHgt is more complex. Although it
requires the same constraints as the previous execution, the value
it receives on channel c2 is dependent on the parent's execution
of Traversal (which sends a value on c2), which in turn depends
on the first execution of sclHgt . As we have discussed earlier,
memoization decisions that depend on synchronous actions, there-
fore, cannot necessarily be made at a call site without inspecting
the state of other threads. Moreover, these decisions may depend
on communication actions other threads may perform in the future;
deciding whether the second invocation of sclHgt can be mem-
oized depends upon whether the first invocation can be, which in
turn depends upon the global state changes that may have occurred
between the original (aborted) execution of Traversal, and its
re-execution.

6.4 Results

To measure the effectiveness of our memoization technique, we
executed two configurations of the benchmark, and measured over-
heads and performance by averaging results over ten executions.
The transactional configuration uses our STM implementation

without any memoization. The memoized transactional configura-
tion implements partial memoization of aborted transactions. When
a transaction aborts and is re-executed, the applications it originally
performed may have initiated new threads of control, and have had
these threads communicate with one another using CML primi-
tives. Our memoization techniques can be used to ameliorate the
overhead of re-execution.

The benchmark was run on an Intel P4 2.4 GHz machine with
one GByte of memory running Gentoo Linux, compiled and exe-
cuted using MLton release 20051202. Our experiments are not ex-
ecuted on a multiprocessor because the utility of memoization for
this benchmark is determined by performance improvement as a
function of transaction aborts, and not on raw wallclock speedups.

All tests were measured against a graph of about one million
nodes. In this graph, there were approximately 280k complex as-
semblies and 140K assemblies whose bags referenced one of 100
components; by default, each component contained a parts graph of
100 nodes. Each transaction was re~resented as a seDarate thread of
control. Each node in the graph was represented as a server, con-
structed from a lightweight CML thread that communicated on two
channels. Therefore, our benchmark utilized roughly 500K threads
and 1M channels. Transactions, themselves, were composed of at
least 7 channel operations to traverse the depth of the tree. On av-
erage about 20 nodes of the parts graph were traversed by each
transaction.

Our tests varied two independent variables: the read-onlylread-
write transaction ratio (see Fig. 12) and part graph size (see
Fig. 13). The former is significant because only transactions that
modify values can cause aborts. Thus, an execution where all trans-
actions are read-only or which never abort cannot be accelerated,
but one in which transactions can frequently abort offers potential
opportunities for memoization. The latter test is significant because
the size of the graph directly correlates to the transaction length.
By varying the size of the graph, we alter the number of nodes that
each transaction accesses, and thus lengthen or shorten transaction
times.

For each test, we also varied the maximum number of memo
entries (labeled cache size in the graphs) stored for each function.
Tests with a small number experienced less memo utilization than
those with a large one. Naturally, the larger the size of the cache
used to hold memo information, the greater the overhead. In the
case of read-only non-aborting transactions (shown in Fig. 12),
performance slowdown is correlated to the maximum memo cache
size.

Our experiments consider four different performance facets: (a)
runtime improvements for transactions with different read-write ra-
tios across different memo cache sizes (Fig. 12(a)); (b) the amount
of memoization exhibited by transactions, again across different
memo cache sizes (Fig. 12(b)); (c) runtime improvements as a func-
tion of transaction length and memo cache size (Fig. 13(a)); and, (d)
the degree of memoization utilization as a function of transaction
length and memo cache size (Fig. 13(b). Memory overheads are
proportional to cache sizes and averaged roughly 15% for caches
with 16 entries. Runs with 32 entry caches had overheads of ap-
proximately 18%.

Memoization leads to substantial performance improvements
when aborts are likely to be more frequent. For example, even when
the percentage of read-only transactions is 60%, we see a 20% im-
provement in runtime performance compared to a non-memoizing
implementation. The percentage of transactions that utilize memo
information is related to the size of the memo cache and the likeli-
hood of the transaction aborting; recall only functions within trans-
actions are candidates for memoization. In cases where abort rates
are low, for example when there is a sizable fraction of read-only
transactions, memo utilization decreases. This is because a func-

6.4 Results

Figure 11. Example program illustrating a multi-threaded transac­
tion that traverses a CAD/CAM object.

To measure the effectiveness of our memoization technique, we
executed two configurations of the benchmark, and measured over­
heads and performance by averaging results over ten executions.
The transactional configuration uses our STM implementation

in send(cl, height);
send(c2, recv(cl));
recv(c2)

end)
in TraversalO
end

without any memoization. The memoized transactional configura­
tion implements partial memoization of aborted transactions. When
a transaction aborts and is re-executed, the applications it originally
performed may have initiated new threads of control, and have had
these threads communicate with one another using CML primi­
tives. Our memoization techniques can be used to ameliorate the
overhead of re-execution.

The benchmark was run on an Intel P4 2.4 GHz machine with
one GByte of memory running Gentoo Linux, compiled and exe­
cuted using MLton release 20051202. Our experiments are not ex­
ecuted on a multiprocessor because the utility of memoization for
this benchmark is determined by performance improvement as a
function of transaction aborts, and not on raw wallclock speedups.

All tests were measured against a graph of about one million
nodes. In this graph, there were approximately 280k complex as­
semblies and l40K assemblies whose bags referenced one of 100
components; by default, each component contained a parts graph of
100 nodes. Each transaction was represented as a separate thread of
control. Each node in the graph was represented as a server, con­
structed from a lightweight CML thread that communicated on two
channels. Therefore, our benchmark utilized roughly 500K threads
and 1M channels. Transactions, themselves, were composed of at
least 7 channel operations to traverse the depth of the tree. On av­
erage about 20 nodes of the parts graph were traversed by each
transaction.

Our tests varied two independent variables: the read-only/read­
write transaction ratio (see Fig. 12) and part graph size (see
Fig. 13). The former is significant because only transactions that
modify values can cause aborts. Thus, an execution where all trans­
actions are read-only or which never abort carmot be accelerated,
but one in which transactions can frequently abort offers potential
opportunities for memoization. The latter test is significant because
the size of the graph directly correlates to the transaction length.
By varying the size of the graph, we alter the number of nodes that
each transaction accesses, and thus lengthen or shorten transaction
times.

For each test, we also varied the maximum number of memo
entries (labeled cache size in the graphs) stored for each function.
Tests with a small number experienced less memo utilization than
those with a large one. Naturally, the larger the size of the cache
used to hold memo information, the greater the overhead. In the
case of read-only non-aborting transactions (shown in Fig. 12),
performance slowdown is correlated to the maximum memo cache
size.

Our experiments consider four different performance facets: (a)
runtime improvements for transactions with different read-write ra­
tios across different memo cache sizes (Fig. I2(a)); (b) the amount
of memoization exhibited by transactions, again across different
memo cache sizes (Fig. 12(b)); (c) runtime improvements as a func­
tionoftransaction length and memo cache size (Fig. 13(a)); and, (d)
the degree of memoization utilization as a function of transaction
length and memo cache size (Fig. 13(b). Memory overheads are
proportional to cache sizes and averaged roughly 15% for caches
with 16 entries. Runs with 32 entry caches had overheads of ap­
proximately 18%.

Memoization leads to substantial performance improvements
when aborts are likely to be more frequent. For example, even when
the percentage of read-only transactions is 60%, we see a 20% im­
provement in runtime performance compared to a non-memoizing
implementation. The percentage of transactions that utilize memo
information is related to the size of the memo cache and the likeli­
hood of the transaction aborting; recall only functions within trans­
actions are candidates for memoization. In cases where abort rates
are low, for example when there is a sizable fraction of read-only
transactions, memo utilization decreases. This is because a func-

Cl = channel 0
C2 = channel 0

spawn (sclHgt (object ,
pidl,
q))

spawn(sclHgt(object,
p id2,
C2))

val _

fun findAtomicPart(object, pid) =
let val assembly =

travCAssembly(object, pid)
bag = travAssembly (assembly , pid)
component = travBag(bag, pid)
part = traveComp(component, pid)

val
val
val

in part
end

fun sclHgt(object, pid, c) =
let val part = findAtomicPart(object, pid)

val newHeight = height(part)*recv(c)
val _ = changeHeight(part, newHeight)

in send(c,newHeight)
end

fun Traversal(object, pidl, pid2, height) =
atomic (fn 0 =>

let val
val
val

let

the transaction executes, it may be that some portion of the graph
has changed. Without knowing exactly which part of the graph has
been modified by other transactions, the only obvious safe point for
re-execution is the beginning of the traversal.

Memoization helps avoid unnecessary re-traversal of the graph
when the Traversal procedure is re-executed. If (a) the argu­
ments to the first call to sclHgt remain the same, (b) the same
value is read by the function height, (c) there is a value waiting
to be received on channel Cl that is the same as in the original ex­
ecution, and (d) there is a recipient waiting to consume the value
sent along Ct, then the call can be memoized. Notice a receipt of
the send of the newly calculated height is guaranteed to complete
since the parent thread will always receive on the channel Cl .

The second execution of sclHgt is more complex. Although it
requires the same constraints as the previous execution, the value
it receives on channel C2 is dependent on the parent's execution
of Traversal (which sends a value on C2), which in turn depends
on the first execution of sclHgt. As we have discussed earlier,
memoization decisions that depend on synchronous actions, there­
fore, cannot necessarily be made at a call site without inspecting
the state of other threads. Moreover, these decisions may depend
on communication actions other threads may perform in the future;
deciding whether the second invocation of sclHgt can be mem­
oized depends upon whether the first invocation can be, which in
turn depends upon the global state changes that may have occurred
between the original (aborted) execution of Traversal, and its
re-execution.

0 Cache Sue 1 . Cache Slza 1
d Cadle Sire 4
14 a c h e Slre 8
I a c h e Slrc 16
I, Cadle Sue 31

0 Cache Slle 1
61 Cachc Sllr 2
A Cachc Size 4
M Cache Slze 8
I Cache Slre 16
P Cadlc Sue 31

Figure 12. Figure (a) presents normalized runtime speedup with
transactions which are memoizable as readwrite ratios change.

tion can be applied potentially many times, with the majority of
applications not leveraging memoization because they were not in
aborted transactions. Therefore, memo utilization for these func-
tions will be much lower than a memoized function applied within
an aborted transaction.

To measure the impact of transaction size on performance and
utilization, we varied the length of the random traversals in the
atomic parts graph. As Fig. 13(a) illustrates, smaller transactions
offer a smaller chance for memoization (they are more likely to
complete), and thus provide less opportunities for performance
gains; longer-lived transactions have a greater chance of taking
advantage of memo information. This is precisely the motivation
for considering memoization in this benchmark. Indeed, we see a -
roughly 30% performance improvement once the part size contains
more than 80 nodes and when the memo cache size is 16 or 32.

7. Related Work and Conclusions
Memoization, or function caching (15; 18; 14), is a well understood
method to reduce the overheads of redundant function execution.
Memoization of functions in a concurrent setting is significantly
more difficult and usually highly constrained (6). We are unaware
of any existing techniques or implementations that apply memo-
ization to the problem of optimizing execution for languages that
support first-class channels and dynamic thread creation.

Self adjusting mechanisms (2; 3; 1) leverage memoization along
with change propagation to automatically alter a program's execu-
tion to a change of inputs given an existing execution run. Selective
memoization is used to identify parts of the program which have
not changed from the previous execution while change propagation
is harnessed to install changed values where memoization cannot
be applied. The combination of these techniques has provided an
efficient execution model for programs which are executed a num-
ber of times in succession with only small variations in their inputs.
However, such techniques require an initial and complete run of the
program to gather needed memoization and dependency informa-
tion before they can adjust to input changes.

New proposals (1 1) have been presented for self adjusting tech-
niques to be applied in a multi-threaded context. However, these
proposals impose significant constraints on the programs consid-
ered. References and shared data can only be written to once, forc-
ing self adjusting concurrent programs to be meticulously hand
crafted. Additionally such techniques provide no support for syn-
chronization between threads nor do they provide the ability to re-
store to any control point other than the start of the program.

Reppy and Xiao (19) present a program analysis for CML that
analyzes communication patterns to optimize message-passing op-
erations. A type-sensitive interprocedural control-flow analysis is

a varying read to write ratio. Figure (b) shows the average percent of

used to specialize communication actions to improve performance.
While we also use CML as the underlying subject of interest, our
memoization formulation is orthogonal to their techniques.

Our memoization technique shares some similarity with trans-
actional events (7). Transactional events require arbitrary look-
ahead in evaluation to determine if a complex composed event can
commit. We utilize a similar approach to formalize memo evalu-
ation. Unlike transactional events, which are atomic and must ei-
ther complete entirely or abort, we are not obligated to discover if
an application is completely memoizable. If a memoization con-
straint cannot be discharged, we can continue normal execution of
the function body from the failure point.

References
[l] Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tang-

wongsan. An Experimental Analysis of Self-Adjusting Computation.
In ACM SIGPLA N Conference on Programming Language Design and
Implementation, pages 96-107,2006.

[2] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive func-
tional programming. In ACM SIGPLAN-SIGACTSymposium on Prin-
ciples of Programming Languages, pages 247-259,2002,

[3] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective Memo-
ization. In ACM SIGPLAN-SIGACTSymposium on Principles of Pro-
gramming Languages, pages 1425,2003.

[4] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Mur-
phy, Bratin Saha, and Tatiana Shpeisman. Compiler and Runtime Sup-
port for Efficient Sofhvare Transactional Memory. In ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 26-37.2006.

[5] Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. The 007
benchmark. SIGMODRecord, 22(2):12-21, 1993.

[6] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins.
A Concurrent Logical Framework 11: Examples and Applications.
Technical Report CMU-CS-02-102, Department of Computer Sci-
ence, Camegie Mellon University, 2002. Revised May 2003.

[7] Kevin Donnelly and Matthew Fluet. Transactional Events. In Proceed-
ings of the ACM SIGPLAN International Conference on Functional
Programming, pages 124135,2006.

[8] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploit-
ing Coarse-Grained Task, Data, and Pipeline Parallelism in Stream
Programs. In ACM Conference on Architectural Support for Program-
ming Languages and Systems, pages 15 1-162,2006.

[9] Jim Gray and Andreas Reuter. Transaction Processing. Morgan-
Kaufmann, 1993.

[lo] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. STMBench7: a
Benchmark For Software Transactional Memory. In Proceedings of

so ._...._.-

40

30

10

10 ~ ~ ~ ~ ~ ~ ~ ~ ~

R61d-Gn1y y,.M8ctkuw '\Ib

(a)

o Cache Size 1

• ClIche SIze 2

lJ. Cache Size 4
ll<l ClIche Size 8

1: Cache SIze 16
po Cache Size 32

30

2S

'0

/-"---~ !w--- lJ.-. lJ. .--lJ. ~~

': ~_-<>-__.o--<>._-~ <>_~
o+-~-~~-~~~~-~~--i

o 10 W 30 ~ SO ~ ~ ~ 90
R••doOnly y,.IIACtIOM '\Ib

(b)

¢ Cache Size 1

i!lI Cache Size 2

lJ. Cache Size 4
M Cache Size 8

1: Cache Size 16
po Cache Size 32

Figure 12. Figure (a) presents normalized runtime speedup with a varying read to write ratio. Figure (b) shows the average percent of
transactions which are memoizable as read/write ratios change.

tion can be applied potentially many times, with the majority of
applications not leveraging memoization because they were not in
aborted transactions. Therefore, memo utilization for these func­
tions will be much lower than a memoized function applied within
an aborted transaction.

To measure the impact of transaction size on performance and
utilization, we varied the length of the random traversals in the
atomic parts graph. As Fig. 13(a) illustrates, smaller transactions
offer a smaller chance for memoization (they are more likely to
complete), and thus provide less opportunities for performance
gains; longer-lived transactions have a greater chance of taking
advantage of memo information. This is precisely the motivation
for considering memoization in this benchmark. Indeed, we see a
roughly 30% performance improvement once the part size contains
more than 80 nodes and when the memo cache size is 16 or 32.

7. Related Work and Conclusions
Memoization, or function caching (15; 18; 14), is a well understood
method to reduce the overheads of redundant function execution.
Memoization of functions in a concurrent setting is significantly
more difficult and usually highly constrained (6). We are unaware
of any existing techniques or implementations that apply memo­
ization to the problem of optimizing execution for languages that
support first-class channels and dynamic thread creation.

Self adjusting mechanisms (2; 3; 1) leverage memoization along
with change propagation to automatically alter a program's execu­
tion to a change of inputs given an existing execution run. Selective
memoization is used to identify parts of the program which have
not changed from the previous execution while change propagation
is harnessed to install changed values where memoization cannot
be applied. The combination of these techniques has provided an
efficient execution model for programs which are executed a num­
ber of times in succession with only small variations in their inputs.
However, such techniques require an initial and complete run of the
program to gather needed memoization and dependency informa­
tion before they can adjust to input changes.

New proposals (11) have been presented for self adjusting tech­
niques to be applied in a multi-threaded context. However, these
proposals impose significant constraints on the programs consid­
ered. References and shared data can only be written to once, forc­
ing self adjusting concurrent programs to be meticulously hand
crafted. Additionally such techniques provide no support for syn­
chronization between threads nor do they provide the ability to re­
store to any control point other than the start of the program.

Reppy and Xiao (19) present a program analysis for CML that
analyzes communication patterns to optimize message-passing op­
erations. A type-sensitive interprocedural control-flow analysis is

used to specialize communication actions to improve performance.
While we also use CML as the underlying subject of interest, our
memoization formulation is orthogonal to their techniques.

Our memoization technique shares some similarity with trans­
actional events (7). Transactional events require arbitrary look­
ahead in evaluation to determine if a complex composed event can
commit. We utilize a similar approach to formalize memo evalu­
ation. Unlike transactional events, which are atomic and must ei­
ther complete entirely or abort, we are not obligated to discover if
an application is completely memoizable. If a memoization con­
straint cannot be discharged, we can continue normal execution of
the function body from the failure point.

References
[I] Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tang­

wongsan. An Experimental Analysis of Self-Adjusting Computation.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 96-107, 2006.

[2] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive func­
tional programming. InACM SIGPLAN-SIGACT Symposium on Prin­
ciples ofProgramming Languages, pages 247-259, 2002.

[3] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective Memo­
ization. In ACM SIGPLAN-SIGACT Symposium on Principles ofPro­
gramming Languages, pages 14-25,2003.

[4] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Mur­
phy, Bratin Saha, and Tatiana Shpeisman. Compiler and Runtime Sup­
port for Efficient Software Transactional Memory. InACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 26-37, 2006.

[5] Michael 1. Carey, David J. DeWitt, and Jeffrey F. Naughton. The 007
benchmark. SIGMODRecord, 22(2):12-21,1993.

[6] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins.
A Concurrent Logical Framework II: Examples and Applications.
Technical Report CMU-CS-02-102, Department of Computer Sci­
ence, Camegie Mellon University, 2002. Revised May 2003.

[7] Kevin Donnelly and Matthew Fluet. Transactional Events. In Proceed­
ings of the ACM SIGPLAN International Conference on Functional
Programming, pages 124-135,2006.

[8] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploit­
ing Coarse-Grained Task, Data, and Pipeline Parallelism in Stream
Programs. InACM Conference on Architectural Supportfor Program­
ming Languages and Systems, pages 151-162,2006.

[9] Jim Gray and Andreas Reuter. Transaction Processing. Morgan­
Kaufmann, 1993.

[10] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. STMBench7: a
Benchmark For Software Transactional Memory. In Proceedings of

(a) (b)

Figure 13. Figure (a) shows normalized runtime speedup compared to varying transactional length. Figure (b) shows the percentage of
aborted transactions which are memoizable as transaction duration changes.

the European Conference on Operating Systems, 2007.

[I I] Matthew Hammer, Umut A. Acar, Mohan Rajagopalan, and Anwar
Ghuloum. A Proposal for Parallel Self-Adjusting Computation. In
Workshop on Declarative Aspects of Multicore Programming, 2007.

[I21 Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Her-
lihy. Composable Memory Transactions. In ACM Conference on Prin-
ciples and Practice of Parallel Programming, pages 4840, 2005.

[I31 Maurice Herlihy, Victor Luchangco, Mark Moir, and William N.
Scherer, 111. Software Transactional Memory for Dynamic-Sized Data
Structures. In ACM Conference on Principles of Distributed Comput-
ing, pages 92-10 1, 2003.

[I41 Allan Heydon, Roy Levin, and Yuan Yu. Caching Function Calls Us-
ing Precise Dependencies. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 3 1 1-320,
2000.

[I51 Yanhong A. Liu and Tim Teitelbaum. Caching Intermediate Results
for Program Improvement. In ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages 19G
201, 1995.

[16] MLton. http://www.mlton.org.

[I71 W. Pugh and T. Teitelbaum. Incremental Computation via Function
Caching. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 3 15-328, 1989.

[I81 William Pugh. An Improved Replacement Strategy for Function
Caching. In Proceedings of the ACM conference on LISP and Func-
tional Programming, pages 269-276, 1988.

[I91 John Reppy and Yingqi Xiao. Specialization of CML Message-
Passing Primitives. In ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 3 15-326.2007.

[20] John H. Reppy. Concurrent Programming in ML. Cambridge Univer-
sity Press, 1999.

[21] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao
Minh, and Benjamin Hertzberg. McRT-STM: a High-Performance
Software Transactional Memory system for a Multi-Core Runtime.
In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 187-197.2006.

50

o
w ~ ~ ~ 100 1~ ~ l~ 1~ ~O

Pelts G..-ph Size

Q Came Size 1
&. Cad'Le Size 2

: A Cad'le Size 4
1:. M Cache Size 8

"'-_---.. :z: Cad'Le SIlt! 16

~~""",~,,<)....,_ ¢."~~..¢""... ,,..-....<r•.~.~.,,'¢>"'_N'...¢..-...'~"""1 t> Cache Size 32

5'

o -r--i
W ~ ~ ~ 100 W ~ l~ 1~ 200

P.rts Graph Sin

20

115

i
Z 10

.b ~ Cache Size 1
: IlIII Came SIze 2

f)" Cache Sin 4
M Cache Size 8
1 Cacne Size 16

I> Cache Size 32

10

'0

30

L

(a) (b)

Figure 13. Figure (a) shows normalized runtime speedup compared to varying transactional length. Figure (b) shows the percentage of
aborted transactions which are memoizable as transaction duration changes.

the European Coriference on Operating Systems, 2007.

[II] Matthew Hammer, Umut A. Acar, Mohan Rajagopalan, and Anwar
GhulolUU. A Proposal for Parallel Self-Adjusting Computation. In
Workshop on Declarative Aspects ofMulticore Programming, 2007.

[12] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Her­
lihy. Composable Memory Transactions. In ACM Coriference on Prin­
ciples and Practice ofParallel Programming, pages 48--60, 2005.

[13] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N.
Scherer, III. Software Transactional Memory for Dynamic-Sized Data
Structures. In ACM Coriference on Principles ofDistributed Comput­
ing, pages 92-101, 2003.

[14] Allan Heydon, Roy Levin, and Yuan Yu. Caching Function Calls Us­
ing Precise Dependencies. In ACM SIGPLAN Conference on Pro­
gramming Language Design and Implementation, pages 311-320,
2000.

[15] Yanhong A. Uu and Tim Teitelbaum. Caching Intermediate Results
for Program Improvement. In ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages 190­
201, 1995.

[16] MLton. http://www.mlton.org.

[17] W. Pugh and T. Teitelbaum. Incremental Computation via Function
Caching. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 315-328,1989.

[18] William Pugh. An Improved Replacement Strategy for Function
Caching. In Proceedings of the ACM coriference on LISP and Func­
tional Programming, pages 269-276, 1988.

[19] John Reppy and Yingqi Xiao. Specialization of CML Message­
Passing Primitives. In ACM SIGPLAN-SIGACT Symposium on Prin­
ciples of Programming Languages, pages 315-326, 2007.

[20] John H. Reppy. Concurrent Programming in ML. Cambridge Univer­
sity Press, 1999.

[21] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao
Minh, and Benjamin Hertzberg. McRT-STM: a High-Performance
Software Transactional Memory system for a Multi-Core Runtime.
In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 187-197,2006.

	Memoizing Communication
	Report Number:
	

	tmp.1307986960.pdf.rGunY

