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Abstract- 
Applications of sensor networks often necessitate fine-grained 

data collection, requiring dense deployment of sensors, with asso- 
ciated high data rates. Such deployment and application scenarios 
impose significant constraints on aggregate network data rate, re- 
source utilization, and robustness. Effective protocols for support- 
ing such data transfers are critical for dense sensing applications. 
These protocols often rely on spatio-temporal correlations in 
sensor data to achieve in-network data compression. The message 
complexity of these schemes is generally lower bounded by n, 
for a network with n sensors, since correlation is not collocated 
with sensing. Consequently, as the number of nodes and network 
density increase, these protocols become increasingly inefficient. 
We present here a novel protocol, called SNP, for fine-grained 
data collection, which requires approximately O(n- R) messages, 
where R, a measure of redundancy in sensed data generally 
increases with density. SNP uses spatio-temporal correlations to 
near-optimally compress data at the source, reducing network 
traffic and power consumption. We present a comprehensive 
information theoretic basis for SNP and establish its superior 
performance in comparison to existing approaches. We support 
our results with a comprehensive experimental evaluation of the 
performance of SNP in a real-world sensor network testbed. 

With the goal of building a comprehensive systems infras- 
tructure for scalable sensor networks, we have developed a 
distributed data-driven processing runtime and an associated 
flexible programming environment [I]. Using this system, we 
have deployed a large-scale sensornet testbed for structural 
monitoring at the Bowen Labs for Structural Engineering [l], 
[2]. Our experience with this testbed, and the experience re- 
ported by other real-world deployments [I], [3]-[6] reveal that 
fine-grained data collection is critical to several applications. 

Fine-grained data collection typically requires data from all 
sensors in the network. This is motivated by the fact that data 
processing operations on sensor data are often too computa- 
tionally intensive for resource constrained sensor nodes. For 
example, in structural engineering time domain sensor data 
needs to be converted to frequency domain spectrograms', 
which requires Fourier Transform over long data sequences. 
Sensor nodes do not have the processing or memory ca- 
pabilities to perform such operations. Furthermore, physical 
phenomenon models, which provide the basis for in-network 
processing, are often not known a-priori. In fact, a key use of 

' ~ ~ e c t r o ~ r a m s  are used to observe vibration modes of building structures 
over the passage of time. 

sensornets is to provide empirical measurements that are used 
to build or verify scientific models [7]. 

Supporting fine-grained data collection in dense sensornets 
is rendered challenging by the scarce network and energy 
resources at sensor nodes. Increasing network density, and 
hence data rate, results in rapid degradation in wireless 
neighborhood network capacity [a]. Similarly, increasing data 
rate results in high energy consumption [9]. Consequently, 
reducing data traffic is critical to both throughput and longevity 
of the network. In-network compression using spatio-temporal 
correlations is a viable application-independent technique for 
fine-grained data collection. 

Several existing protocols (e.g., [7], [lo]) exploit spatio- 
temporal correlations by partitioning the network into disjoint 
clusters. Data from each node in the cluster is routed to a 
cluster representative, which then performs correlation driven 
compression. Compressed data from cluster representatives is 
then relayed to the sink. The resulting message overhead of 
such protocols is typically: 

Here, n is the number of nodes in the network, kc is 
the average number of hops from a source to the cluster 
representative, nc  is the average number of messages with 
compressed data, and k, is the average number of hops from 
the cluster representatives to the sink. The first term in this 
overhead results from data sharing for correlation and the 
second term is the actual compressed data. As the density 
and number of nodes in the network increase, the first term 
dominates overhead. Furthermore, while such protocols reduce 
network congestion near the sink, congestion near the sources 
increases rapidly. Figure I ,  illustrates the decrease in network 
throughput as the number of nodes generating data at a 
constant rate in a wireless neighborhood near the sources 
increases. Improvements to this approach are presented in [lo], 
where data is compressed along tree routing paths to the 
cluster representative, thus reducing the number of messages. 
However, the O(n )  term still exists because over half the nodes 
in a tree are leaves. .Pattern et al. [ l l ]  provide an excellent 
analysis of data compression using the network partitioning 
approach. However, in their analysis they assume that the 
routing topology within a partition is linear. Compression 
along a linear topology overcomes the O(n )  lower bound on 
overhead. However, this increases the path length offsetting 
the benefits and increasing load imbalance (nodes near the 
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Abstract-
Applications of sensor networks often necessitate fine-grained

data collection, requiring dense deployment of sensors, with asso­
ciated high data rates. Such deployment and application scenarios
impose significant constraints on aggregate network data rate, re­
source utilization, and robustness. Effective protocols for support­
ing such data transfers are critical for dense sensing applications.
These protocols often rely on spatio-temporal correlations in
sensor data to achieve in-network data compression. The message
complexity of these schemes is generally lower bounded by n,
for a network with n sensors, since correlation is not collocated
with sensing. Consequently, as the number of nodes and network
density increase, these protocols become increasingly inefficient.
We present here a novel protocol, called SNP, for fine-grained
data collection, which requires approximately O(n-R) messages,
where R, a measure of redundancy in sensed data generally
increases with density. SNP uses spatio-temporal correlations to
near-optimally compress data at the source, reducing network
traffic and power consumption. We present a comprehensive
information theoretic basis for SNP and establish its superior
performance in comparison to existing approaches. We support
our results with a comprehensive experimental evaluation of the
performance of SNP in a real-world sensor network testbed.

I. INTRODUCTION

With the goal of building a comprehensive systems infras­
tructure for scalable sensor networks, we have developed a
distributed data-driven processing runtime and an associated
flexible programming environment [I]. Using this system, we
have deployed a large-scale sensomet testbed for structural
monitoring at the Bowen Labs for Structural Engineering [I],
[2]. Our experience with this testbed, and the experience re­
ported by other real-world deployments [I], [3]-[6] reveal that
fine-grained data collection is critical to several applications.

Fine-grained data collection typically requires data from all
sensors in the network. This is motivated by the fact that data
processing operations on sensor data are often too computa­
tionally intensive for resource constrained sensor nodes. For
example, in structural engineering time domain sensor data
needs to be converted to frequency domain spectrograms!,
which requires Fourier Transform over long data sequences.
Sensor nodes do not have the processing or memory ca­
pabilities to perform such operations. Furthermore, physical
phenomenon models, which provide the basis for in-network
processing, are often not known a-priori. In fact, a key use of

I Spectrograms are used to observe vibration modes of building structures
over the passage of time.

sensomets is to provide empirical measurements that are used
to build or verify scientific models [7].

Supporting fine-grained data collection in dense sensomets
is rendered challenging by the scarce network and energy
resources at sensor nodes. Increasing network density, and
hence data rate, results in rapid degradation in wireless
neighborhood network capacity [8]. Similarly, increasing data
rate results in high energy consumption [9]. Consequently,
reducing data traffic is critical to both throughput and longevity
of the network. In-network compression using spatio-temporal
correlations is a viable application-independent technique for
fine-grained data collection.

Several existing protocols (e.g., [7], [10]) exploit spatio­
temporal correlations by partitioning the network into disjoint
clusters. Data from each node in the cluster is routed to a
cluster representative, which then performs correlation driven
compression. Compressed data from cluster representatives is
then relayed to the sink. The resulting message overhead of
such protocols is typically:

(I)

Here, n is the number of nodes in the network, kc is
the average number of hops from a source to the cluster
representative, n c is the average number of messages with
compressed data, and ks is the average number of hops from
the cluster representatives to the sink. The first term in this
overhead results from data sharing for correlation and the
second term is the actual compressed data. As the density
and number of nodes in the network increase, the first· term
dominates overhead. Furthermore, while such protocols reduce
network congestion near the sink, congestion near the sources
increases rapidly. Figure 1, illustrates the decrease in network
throughput as the number of nodes generating data at a
constant rate in a wireless neighborhood near the sources
increases. Improvements to this approach are presented in [10],
where data is compressed along tree routing paths to the
cluster representative, thus reducing the number of messages.
However, the O(n) term still exists because over half the nodes
in a tree are leaves.. Pattem et a!. [11] provide an excellent
analysis of data compression using the network partitioning
approach. However, in their analysis they assume that the
routing topology within a partition is linear. Compression
along a linear topology overcomes the O(n) lower bound on
overhead. However, this increases the path length offsetting
the benefits and increasing load imbalance (nodes near the



cluster representative must deliver compressed packets from 
all predecessors). 

In this paper, we present a novel protocol called spatial 
neighborhood protocol (SNP) for exploiting spatio-temporal 
correlations in dense sensornets. The critical differentiating as- 
pect of SNP is that correlation-based compression is collocated 
with sensing. Each node independently determines whether 
it should share its data based on data, communicated using 
radio broadcast, from other nodes in its spatial neighborhood2. 
Given the assumption that correlations are likely to be spatially 
localized, a node requires data only from a few other nodes 
in its neighborhood to (near) optimally compress its data. 
In this manner, only a subset of the nodes in the network 
need to share their data, while all nodes can achieve near 
optimal compression based on this shared data. As a result 
the overhead of SNP is: 

number of nodes 

Fig. 1. Throughput of the network decreases rapidly as the number of nodes 
in a neighborhood increases. 

In demonstrating the near-optimality of compression overhead 
and rate for the SN model, we establish it as the basis for data 
gathering protocols in sensornets. 

A. Preliminaries 

Here, k is the average number of hops from a source to the 
sink, n, is the number of messages containing compressed 
data, and R is a measure of redundancy in the network. The 
increasing redundancy, R, as a function of node density, is 
key to the scalability of SNP. We show that SNP achieves 
near optimal compression without the 0(n)  overhead for 
computing correlations. 

The key contributions of this paper are as follows. 

We present an information theoretic model, called the 
SN model, for joint network compression, which exploits 
both the correlation of data in the sensor network and 
redundancy due to network density. We show that the SN 
model maximizes compression without incurring much 
overhead of data-sharing for correlations. We also de- 
velop a model for the partitioning-based technique used in 
prior work, and show that SN delivers higher compression 
rates and lower compression overhead. (Section 11) 
We develop SNP, a practical distributed protocol that 
implements the SN model, and inherits its performance 
properties. We discuss the architecture of SNP and 
demonstrate its robustness. (Section 111) 
We present a comprehensive evaluation of SNP on a real- 
world testbed, and using simulations. We demonstrate the 
superior performance of SNP in comparison to existing 
protocols and characterize its behavior over a wide oper- 
ational range. (Section IV) 

In this section we develop the spatial neighborhood (SN) 
model (Section 11-D), which forms the basis for the SNP 
protocol. We also present the partitioning model (PT), which 
forms the basis of existing protocols (Section 11-E). We show 
that the compression overhead of the SN model is much less 
than that of the PT model. We also show that the compression 
rate of the SN model is better than that of the PT model. 

'In a wireless network, a message broadcast transmission can be received 
by all nodes within the radio range of the broadcasting node. 

Shannon entropy, or simply entropy of a random variable X ,  
denoted by X ( X ) ,  is a measure of the uncertainty (random- 
ness) of a variable. If X  is a random variable whose values are 
drawn from the probability distribution of the data generated 
by a sensor node, then X ( X )  denotes the entropy of the 
source. To model a network with n nodes, we define N  as a set 
of random variables. Xi E N  represents the random variable 
associated with the data originating at node i and % ( X i )  repre- 
sents its entropy. Joint entropy of multiple sources corresponds 
to the minimum amount of information that can be used to 
reconstruct data from each source. Notationally, we represent 
joint entropy as X ( X 1 ,  X 2 , .  . . , X,), or simply X ( N ) .  Jointly 
coding data from correlated sources results in transmission 
of X ( N )  bits of information instead of C:=, % ( X i ) .  Note 
that X ( N )  < C:=, % ( X i ) ,  in the existence of any data 
correlations. Temporal correlations further reduce data since 
only X ( N ~   IN^-', . . .) (i.e., conditional entropy of data at time 
t ,  given data from previous time steps) bits of information 
need to be transmitted, instead of X ( N ) .  In this section we 
focus primarily on spatial correlations. Temporal correlations 
can be computed from history buffers at source nodes. 

B. Joint Entropy of Two Sources 

The joint entropy of two source nodes is expressed as: 

Here, X(X21X1)  is the conditional entropy of X 2  given X 1  
and Z(X1 ,  X2) is the mutual information between the two 
random variables X 1  and X2.  Mutual information is a quantity 
that measures the correlation between two random variables. 

As an example, consider a two-node system in which data 
transmitted by node 2 can be deterministically calculated using 
data from node 1. In this case, % ( X I ,  X 2 )  = % ( X I ) ,  and 
only data from source 1 needs to be transmitted. Conversely, 
if no correlations exist (i.e., there is no mutual information), 
then % ( X I ,  X2) = X ( X 1 )  + X ( X 2 ) ,  and data from both 
sources must be transmitted. In sensor networks, data from 

2

2 In a wireless network, a message broadcast transmission can be received
by all nodes within the radio range of the broadcasting node.

II. INFORMATION THEORETIC UNDERPINNINGS

In this section we develop the spatial neighborhood (SN)
model (Section II-D), which forms the basis for the SNP
protocol. We also present the partitioning model (PT), which
forms the basis of existing protocols (Section II-E). We show
that the compression overhead of the SN model is much less
than that of the PT model. We also show that the compression
rate of the SN model is better than that of the PT model.

cluster representative must deliver compressed packets from
all predecessors).

In this paper, we present a novel protocol called spatial
neighborhood protocol (SNP) for exploiting spatio-temporal
correlations in dense sensomets. The critical differentiating as­
pect of SNP is that correlation-based compression is collocated
with sensing. Each node independently determines whether
it should share its data based on data, communicated using
radio broadcast, from other nodes in its spatial neighborhood2.

Given the assumption that correlations are likely to be spatially
localized, a node requires data only from a few other nodes
in its neighborhood to (near) optimally compress its data.
In this manner, only a subset of the nodes in the network
need to share their data, while all nodes can achieve near
optimal compression based on this shared data. As a result
the overhead of SNP is:

Here, k is the average number of hops from a source to the
sink, n c is the number of messages containing compressed
data, and R is a measure of redundancy in the network. The
increasing redundancy, R, as a function of node density, is
key to the scalability of SNP. We show that SNP achieves
near optimal compression without the O(n) overhead for
computing correlations.

The key contributions of this paper are as follows.

• We present an information theoretic model, called the
SN model, for joint network compression, which exploits
both the correlation of data in the sensor network and
redundancy due to network density. We show that the SN
model maximizes compression without incurring much
overhead of data-sharing for correlations. We also de­
velop a model for the partitioning-based technique used in
prior work, and show that SN delivers higher compression
rates and lower compression overhead. (Section II)

• We develop SNP, a practical distributed protocol that
implements the SN model, and inherits its performance
properties. We discuss the architecture of SNP and
demonstrate its robustness. (Section III)

• We present a comprehensive evaluation of SNP on a real­
world testbed, and using simulations. We demonstrate the
superior performance of SNP in comparison to existing
protocols and characterize its behavior over a wide oper­
ational range. (Section IV)

In demonstrating the near-optimality of compression overhead
and rate for the SN model, we establish it as the basis for data
gathering protocols in sensomets.

A. Preliminaries

Shannon entropy, or simply entropy of a random variable X,
denoted by 1t(X), is a measure of the uncertainty (random­
ness) of a variable. If X is a random variable whose values are
drawn from the probability distribution of the data generated
by a sensor node, then 1t(X) denotes the entropy of the
source. To model a network with n nodes, we define N as a set
of random variables. Xi E N represents the random variable
associated with the data originating at node i and 1t(Xi) repre­
sents its entropy. Joint entropy of multiple sources corresponds
to the minimum amount of information that can be used to
reconstruct data from each source. Notationally, we represent
joint entropy as 1t(Xl ,X2, ... ,Xn ), or simply 1t(N). Jointly
coding data from correlated sources results in transmission
of 1t(N) bits of information instead of 2:~l1t(Xi)' Note
that 1t(N) < 2:7=11t(Xi ), in the existence of any data
correlations. Temporal correlations further reduce data since
only 1t(Nt INt

-
l , ...) (i.e., conditional entropy of data at time

t, given data from previous time steps) bits of information
need to be transmitted, instead of 1t(N). In this section we
focus primarily on spatial correlations. Temporal correlations
can be computed from history buffers at source nodes.

B. Joint Entropy of Two Sources

The joint entropy of two source nodes is expressed as:

20 ~~~~~~~~~~----,
1 packet per minute~
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Fig. 1. Throughput of the network decreases rapidly as the number of nodes
in a neighborhood increases.

1t(Xl ,X2) 1t(Xl) +1t(X2 IXl )

1t(Xl ) +1t(X2) - I(Xl, X 2) (3)

::; 1t(Xl ) +1t(X2).

Here, 1t(X2 IXl ) is the conditional entropy of X 2 given Xl
and I(Xl, X2) is the mutual information between the two
random variables Xl and X 2 . Mutual information is a quantity
that measures the correlation between two random variables.

As an example, consider a two-node system in which data
transmitted by node 2 can be deterministically calculated using·
data from node 1. In this case, 1t(Xl , X2) = 1t(Xl ), and
only data from source 1 needs to be transmitted. Conversely,
if no correlations exist (i.e., there is no mutual information),
then 1t(Xl, X 2) = 1t(Xl ) + 1t(X2), and data from both
sources must be transmitted. In sensor networks, data from

(2)O(n - R) + O(nc ' k).



one node is often correlated with nearby sources. Therefore, 
X ( X 1 ,  X2)  < X ( X 1 )  + X ( X 2 ) .  In such cases, only uncorre- 
lated bits of X 2  (called error bits or E )  need to be transmitted 
to exactly reconstruct the data of node 2 using the data from 
node 1. 

Mutual information in sensor networks quantifies correla- 
tions, which typically result from spatial locality of nodes in 
the network. Based on this spatial locality relation, mutual 
information for a pair of nodes can be expressed as: 

Here, D(d) ,  is a correlation scaling function defined in terms 
of the distance d between nodes 1 and 2, and takes values in 
the range 0 5 D(d) < 1. The lower of the two source entropies 
provides a trivial bound on the maximum mutual information. 
The exact characteristics of the function D(d)  depend on 
applications, and deployments within specific applications of 
sensornets. In typical applications, though, it is reasonable to 
expect that correlations are inversely related to proximity. We 
formally state this as: 

Lemma 2.1: Monotonicity of D(d): 

D(d)  2 D(dl)  iff d 5 d' 

We have, thus far, discussed the abstract correlation scaling 
function, D(.) in terms of spatial distance, i.e., as D(d).  
However, in different deployments the scaling function may 
be defined in terms of other parameters, leading to the gener- 
alization D(Ri,  j ) .  Here, Ri,j represents the parameter set. Our 
model does not impose any constraints on these parameters, as 
long as the generated function meets the following properties: 
(i) the range of the function should be 0 < D ( R i f )  5 1;  and 
(ii) the function should be a monotonic (either increasing or 
decreasing) function of its parameters. 

Example 2.1: In our structural health monitoring setup, 
sensors are attached to the frame. In structural response, there 
is a high correlation between sensors on the same structural 
element, but there is little correlation between the sensors on 
different elements, even if the spatial distance between them 
is small. To account for this, we define a correlation function 
D(d,p) ,  where d is the distance between the two sensors and 
p is variable set to 0 if the nodes are on the same element, 
and 1 otherwise. D(d ,p)  satisfies the properties of D(.) since 
it is monotonic in d and p. 

The above example shows how application specific correla- 
tion scaling functions can be designed. In the rest of the paper 
we use D(d)  as a concrete instance of D(.).  An analogy of the 
results can be easily constructed for other instances of D(.). 

C. Joint Entropy of N Sources 

A precise expression for (optimal) joint entropy must 
incorporate application features. To provide an application 
independent description, we define an approximation to the 
optimal joint entropy of the sensornet in terms of pair- 
wise mutual information. This approximation suffices to show 
that the spatial neighborhood model, which is the basis for 
SNP, achieves better compression than existing approaches. 

The joint entropy of the network is represented by X ( N ) .  
Correlation-based compression induces an implicit ordering 
of sources. This is because data from a node i can only be 
coded with respect to the data from a node j ,  which itself is not 
encoded with respect to i. Therefore, an iterative construction3 
is required to evaluate H,, our approximation to X ( N ) :  

Procedure 2. I: Evaluating H,. 
1) Initialize: Let, S be the set of nodes {vz ,  v3,. . . , v,) 

and V be the set of a single node { v l ) .  We set H1 = 
X ( X u l ) ,  where Xu,  is the random variable associated 
with data from node vl .  

2) Iterate: for i = 2 t o  n 
a) Select node vk from S and vj from V such that 

Z(Xu, ,  X u j )  is maximized. 
b) Set Hi = Hi-1 + ( X ( X u , )  -Z(Xu , ,Xu , ) ) .  
c) Remove node vk from S and add it to set V. 

3 )  H, is the approximation of X ( N ) .  
In the above procedure, step 2.a induces the ordering required 
for coding nodes with respect to each other. By selecting a 
node vk that is maximally correlated (maximum mutual infor- 
mation) to some node in V, this step minimizes joint entropy 
of the iteratively growing set, V. H, is an approximation to 
X ( N )  since pair-wise mutual information does not capture the 
information that vk can extract from (all) other nodes in the 
set V. Therefore, in general X ( N )  5 H,. 

As stated earlier, the task of a distributed in-network com- 
pression protocol is to support efficient sharing of data from 
sources in the network to enable joint encoding of correlated 
data. In the context of Procedure 2.1, node vk must have access 
to the data from node vj .  Furthermore, it is desirable that this 
data sharing be independent of the underlying network layout 
and routing topology. Existing approaches share data between 
nodes by partitioning the network into disjoint clusters and 
compressing the data at the cluster representative. However, 
this process has high compression overhead (i.e., data shar- 
ing overhead). Furthermore, the compression performance is 
sensitive to the optimalily of partitioning. 

D. Spatial Neighborhood Model (SN) 

The SN model is based on the following construction: let 
S be the set of n nodes in the network. For each node i, we 
define a spatial neighborhood set Sii ,  which is a subset of S 
containing all nodes within distance ri (except i itself). Here, 
ri is called the correlation radius of node i. Corresponding to 
each set SF, we build a set of random variables Mi, such that 
Vk  E Si' : X k  E M i  From Equation 4 and Lemma 2.1, nodes 
that are close to a given node i have a high spatial correlation 
with i. Therefore, the value of ri can be chosen such the set 
Sra contains all nodes whose mutual information w.r.t. i is 
above threshold c. 

In the SN model, each node i receives messages from nodes 
in its spatial neighborhood set Sii .  Since a node k may be in 
several spatial neighborhood sets, it can communicate with 

3 ~ h i s  model is similar to the one presented in [ I  I]. However, ours is a 
more general formulation. 

one node is often correlated with nearby sources. Therefore,
H(XI ,X2 ) < H(Xd +H(X2 ). In such cases, only uncorre­
lated bits of X 2 (called error bits or E) need to be transmitted
to exactly reconstruct the data of node 2 using the data from
node I.

Mutual information in sensor networks quantifies correla­
tions, which typically result from spatial locality of nodes in
the network. Based on this spatial locality relation, mutual
information for a pair of nodes can be expressed as:

I(XI , X 2 ) = V(d) . min(H(XI ), H(X2 )). (4)

Here, V(d), is a correlation scaling function defined in terms
of the distance d between nodes 1 and 2, and takes values in
the range 0 :s: V(d) :s: 1. The lower of the two source entropies
provides a trivial bound on the maximum mutual information.
The exact characteristics of the function V(d) depend on
applications, and deployments within specific applications of
sensomets. In typical applications, though, it is reasonable to
expect that correlations are inversely related to proximity. We
formally state this as:

Lemma 2.1: Monotonicity of V(d):

V(d) ~ V(d') iff d:S: d'.

We have, thus far, discussed the abstract correlation scaling
function, V(·) in terms of spatial distance, i.e., as V(d).
However, in different deployments the scaling function may
be defined in terms of other parameters, leading to the gener­
alization V(Ri,j). Here, Ri,j represents the parameter set. Our
model does not impose any constraints on these parameters, as
long as the generated function meets the following properties:
(i) the range of the function should be 0 :s: V(Ri,j) :s: 1; and
(ii) the function should be a monotonic (either increasing or
decreasing) function of its parameters.

Example 2.1: In our structural health monitoring setup,
sensors are attached to the frame. In structural response, there
is a high correlation between sensors on the same structural
element, but there is little correlation between the sensors on
different elements, even if the spatial distance between them
is small. To account for this, we define a correlation function
V(d,p), where d is the distance between the two sensors and
p is variable set to 0 if the nodes are on the same element,
and 1 otherwise. V(d,p) satisfies the properties ofV(·) since
it is monotonic in d and p.

The above example shows how application specific correla­
tion scaling functions can be designed. In the rest of the paper
we use V(d) as a concrete instance of VC). An analogy of the
results can be easily constructed for other instances of V(·).

C. Joint Entropy of N Sources

A precise expression for (optimal) joint entropy must
incorporate application features. To provide an application
independent description, we define an approximation to the
optimal joint entropy of the sensomet in terms of pair­
wise mutual information. This approximation suffices to show
that the spatial neighborhood model, which is the basis for
SNP, achieves better compression than existing approaches.

The joint entropy of the network is represented by H(N).
Correlation-based compression induces an implicit ordering
of sources. This is because data from a node i can only be
coded with respect to the data from a node j, which itself is not

.. . 3encoded with respect to i. Therefore, an Iterative constructIOn
is required to evaluate Hn , our approximation to H(N):

Procedure 2.1: Evaluating H n .

I) Initialize: Let, S be the set of nodes {V2, V3, ... ,vn }

and V be the set of a single node {VI}' We set HI =

H(XVI )' where XVI is the random variable associated
with data from node VI.

2) Iterate: for i = 2 to n

a) Select node Vk from S and Vj from V such that
I(XVk ' Xv;) is maximized.

b) Set Hi = H i- I + (H(XVk ) -I(XVk'XV;))'
c) Remove node Vk from S and add it to set V.

3) H n is the approximation of H(N).
In the above procedure, step 2.a induces the ordering required
for coding nodes with respect to each other. By selecting a
node Vk that is maximally correlated (maximum mutual infor­
mation) to some node in V, this step minimizes joint entropy
of the iteratively growing set, V. H n is an approximation to
H(N) since pair-wise mutual information does not capture the
information that Vk can extract from (all) other nodes in the
set V. Therefore, in general H(N) :s: Hn .

As stated earlier, the task of a distributed in-network com­
pression protocol is to support efficient sharing of data from
sources in the network to enable joint encoding of correlated
data. In the context of Procedure 2.1, node Vk must have access
to the data from node Vj. Furthermore, it is desirable that this
data sharing be independent of the underlying network layout
and routing topology. Existing approaches share data between
nodes by partitioning the network into disjoint clusters and
compressing the data at the cluster representative. However,
this process has high compression overhead (i.e., data shar­
ing overhead). Furthermore, the compression performance is
sensitive to the optimality of partitioning.

D. Spatial Neighborhood Model (SN)

The SN model is based on the following construction: let
S be the set of n nodes in the network. For each node i, we
define a spatial neighborhood set Sri, which is a subset of S
containing all nodes within distance ri (except i itself). Here,
r is called the correlation radius of node i. Corresponding to1

each set Sri, we build a set of random variables M i , such that
Vk E sri: Xk E Mi. From Equation 4 and Lemma 2.1, nodes
that are close to a given node i have a high spatial correlation
with i. Therefore, the value of ri can be chosen such the set
STi contains all nodes whose mutual information w.r.t. i is

1

above threshold c.
In the SN model, each node i receives messages from nodes

in its spatial neighborhood set Sri. Since a node k may be in
several spatial neighborhood sets, it can communicate with

3This model is similar to the one presented in [II]. However, ours is a
more general formulation.



all nodes i for which k  E S; using a single radio broadcast 
message, assuming radio range exceeds ri. 

The construction of SN, thus far, implies that n  broadcast 
messages are required, since each node must be in the spatial 
neighborhood set of at least one other node. However, due 
to redundancy in dense networks, we can prune the spatial 
neighborhood sets in such a way that a number of nodes (R) 
can be unaffiliated, i.e., are not in any set. 

DeJnition 2.1: A node k  E S? is redundant w.r.t. to S? if 
there exists a node j E S,Ti such that Z(X i ,  X k )  x Z(X i ,  X j  ) 
and the mutual information between k  and j is high (i.e., 
Z ( X k ,  X j )  > c, for some threshold c). 
To maximize R (and therefore, minimize message broadcast 
count), joint pruning of all the spatial neighborhood sets is 
needed. This is straightforward to achieve because, if the 
mutual information of two nodes, say k  and j ,  is high, they are 
spatially close to each other (due to Equation 4). Therefore, 
the distance of node k  and node j from another node i is 
approximately the same. Hence, Z(Xi ,  Xk)  x Z(Xi l  X j )  for 
all other nodes i. Note that identifying R redundant nodes 
results in message reduction from n  to n  - R. This result is 
useful and important because redundancy typically increases 
with number of network nodes, implying that protocols based 
on the SN model scale well with increasing density. 

Theorem 2.1: Redundancy (R) increases monotonically 
with network density. 

Proof: Consider a pair of spatially proximate nodes k  and 
j. From Equation 4 and Lemma 2.1, their mutual information 
is potentially high, i.e., Z ( X k ,  X j )  > c. Furthermore, as these 
nodes come closer (increasing density), they belong to the 
neighborhood sets of an increasing number of nodes together. 
It then follows from Equation 4 that Z(Xi ,  X k )  x Z(X i ,  X j ) .  
Consequently, one of k  or j can be removed from all spatial 
neighborhood sets (cf. Definition 2.1). It is easy to show that 
as the density of the network increases, the number of spatially 
proximate pairs increases linearly. One node from each such 
pair can be removed, if correlated, increasing R. If the network 
has uniform density this increase is linear as well. Note, 
though, that this relies on correlation (mutual information)- 
if there is no correlation, even with increasing density, R does 
not increase. 

Fig. 2. Overview of the SN model. 

Figure 2 illustrates the SN model for a sample network 
layout. Two nodes a and b (shaded red and green, respectively) 
and their correlation radius r,  and rb are shown. Solid (black 

Fig. 3. Overview of the PT model. 

outline) circles mark a few of the redundant pairs. One such 
pair is in the intersection of the correlation radius of nodes a 
and b. One of these nodes need not broadcast its data, without 
affecting the compression rate of the nodes a and b. 

We now show that the SN model achieves better compres- 
sion than the bound quantified by H, (cf. Section 11-C). 

Theorem 2.2: The spatial neighborhood model (SN) 
achieves joint entropy, < H,. 

Proof: This follows from the observation that the spatial 
neighborhood set of node i, S?, includes all nodes that have 
high mutual information w.r.t. node i (cf. Equation 4 and 
Lemma 2.1). Thus, it must include the node vj from step 
2.a of Procedure 2.1. Therefore, the SN model achieves joint 
entropy of _< H,. 
An implication of the above theorem is that the SN model can 
achieve in-network compression such that at most H, bits are 
transmitted to the sink. Let n,  denote the number of messages 
required to transmit H, bits, and k  be the average number of 
hops from the source to the sink (e.g., in a tree topology k  
is the height of the tree). Then the overhead of transmitting 
compressed data is O(n,  . k) .  As stated earlier, the overhead 
of data sharing in the network is O(n - R). Therefore, we can 
derive the following theorem: 

Theorem 2.3: The network overhead of the SN model is 
O(n - R) + O(n,.  k) .  
The key observation from this theorem is that the SN model 
scales well with increasing density of the network. This is 
because: (i) R increases with density, (ii) n ,  decreases with 
density, and (iii) k  remains approximately constant as the 
density increases. 

E. Partitioning Model (PT) 

An overview of the partitioning model for a random sensor 
network topology is presented in Figure 3. Here, the sensor 
network is partitioned into m disjoint clusters of neighboring 
nodes in the network (in the figure m = 6). A cluster 
representative (shaded nodes in the figure), chosen within 
each partition, is responsible for receiving data from all nodes 
in the partition (see lower right partition). At each cluster 
representative, all collected data is then jointly coded and the 
compressed information is relayed to the sink. To evaluate 
the resulting joint entropy we let Ci be the set of random 
variables associated with the nodes in the ith cluster. The 
joint entropy achieved by the PT model is therefore given by: 
7 i P T ( N )  = CE1 Z(Ci) .  

4

all nodes i for which k E S~i using a single radio broadcast
message, assuming radio range exceeds r i .

The construction of SN, thus far, implies that n broadcast
messages are required, since each node must be in the spatial
neighborhood set of at least one other node. However, due
to redundancy in dense networks, we can prune the spatial
neighborhood sets in such a way that a number of nodes (R)
can be unaffiliated, i.e., are not in any set.

Definition 2.1: A node k E S~i is redundant w.r.t. to S~i if
there exists a node j E S~i such that I(Xi , X k) ~ I(Xi , X j )
and the mutual information between k and j is high (i.e.,
I(Xk,Xj ) > c, for some threshold c).
To maximize R (and therefore, minimize message broadcast
count), joint pruning of all the spatial neighborhood sets is
needed. This is straightforward to achieve because, if the
mutual information of two nodes, say k and j, is high, they are
spatially close to each other (due to Equation 4). Therefore,
the distance of node k and node j from another node i is
approximately the same. Hence, I(Xi,Xk) ~ I(Xi,Xj ) for
all other nodes i. Note that identifying R redundant nodes
results in message reduction from n to n - R. This result is
useful and important because redundancy typically increases
with number of network nodes, implying that protocols based
on the SN model scale well with increasing density.

Theorem 2.1: Redundancy (R) increases monotonically
with network density.

Proof" Consider a pair of spatially proximate nodes k and
j. From Equation 4 and Lemma 2.1, their mutual information
is potentially high, i.e., I(Xk, X j ) > c. Furthermore, as these
nodes come closer (increasing density), they belong to the
neighborhood sets of an increasing number of nodes together.
It then follows from Equation 4 that I(Xi , Xk) ~ I(Xi , Xj).
Consequently, one of k or j can be removed from all spatial
neighborhood sets (cf. Definition 2.1). It is easy to show that
as the density of the network increases, the number of spatially
proximate pairs increases linearly. One node from each such
pair can be removed, if correlated, increasing R. If the network
has uniform density this increase is linear as well. Note,
though, that this relies on correlation (mutual information)­
if there is no correlation, even with increasing density, R does
not increase. •
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Fig. 3. Overview of the PT model.

outline) circles mark a few of the redundant pairs. One such
pair is in the intersection of the correlation radius of nodes a
and b. One of these nodes need not broadcast its data, without
affecting the compression rate of the nodes a and b.

We now show that the SN model achieves better compres­
sion than the bound quantified by H n (cf. Section II-C).

Theorem 2.2: The spatial neighborhood model (SN)
achieves joint entropy, ~ H n .

Proof" This follows from the observation that the spatial
neighborhood set of node i, S~i, includes all nodes that have
high mutual information w.r.t. node i (cf. Equation 4 and
Lemma 2.1). Thus, it must include the node Vj from step
2.a of Procedure 2.1. Therefore, the SN model achieves joint
entropy of ~ H n . •

An implication of the above theorem is that the SN model can
achieve in-network compression such that at most H n bits are
transmitted to the sink. Let nc denote the number of messages
required to transmit H n bits, and k be the average number of
hops from the source to the sink (e.g., in a tree topology k
is the height of the tree). Then the overhead of transmitting
compressed data is O(nc . k). As stated earlier, the overhead
of data sharing in the network is O(n - R). Therefore, we can
derive the following theorem:

Theorem 2.3: The network overhead of the SN model is
O(n - R) + O(nc ' k).
The key observation from this theorem is that the SN model
scales well with increasing density of the network. This is
because: (i) R increases with density, (ii) n c decreases with
density, and (iii) k remains approximately constant as the
density increases.

• •
E. Partitioning Model (PT)

An overview of the partitioning model for a random sensor
network topology is presented in Figure 3. Here, the sensor
network is partitioned into m disjoint clusters of neighboring
nodes in the network (in the figure m = 6). A cluster
representative (shaded nodes in the figure), chosen within
each partition, is responsible for receiving data from all nodes
in the partition (see lower right partition). At each cluster
representative, all collected data is then jointly coded and the
compressed information is relayed to the sink. To evaluate
the resulting joint entropy we let Ci be the set of random
variables associated with the nodes in the i th cluster. The
joint entropy achieved by the PT model is therefore given by:
HPT(N) = 2:~I H(Ci ).
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Fig. 2. Overview of the SN model.

Figure 2 illustrates the SN model for a sample network
layout. Two nodes a and b (shaded red and green, respectively)
and their correlation radius ra and rb are shown. Solid (black



Theorem 2.4: 7-tPT ( N )  2 Hn . 
Proof: If the number of clusters m = n ,  then 7-tPT(N) = 

Cy=1(7-t(Xi)) 2 Hn. If m = 1, clearly 7-tpT = Hn. For any 
other value of m the entropy of each cluster can be found 
using Procedure 2.1 and the sum of these entropies is greater 
than or equal to Hn. 

Corollary 2. I :  The spatial neighborhood model (SN) 
achieves better compression rate than the partitioning model 
(PT) because 7-tSN (N)  5 Hn 5 7 - t p T ( ~ ) .  

Protocols based on the PT model (e.g., [7], [12], [13]) 
reduce the number of messages by pushing compression (or 
processing) of information into the network, i.e., to the cluster 
representatives. This decreases the network messages delivered 
to the sink. Unfortunately, such protocols still have a transmis- 
sion overhead of O(n .  kh )  because each node must necessarily 
transmit its data to the respective cluster representative. Here, 
kh is the number of hops to the cluster representative. Thus, the 
compression overhead of the PT model is at least O(n) .  Due to 
its construction, the PT model can not reduce this overhead to 
O ( n  - R), which the SN model achieves. Therefore, in dense 
networks SN has significantly lower compression overhead 
than the PT model. 

From Corollary 2.1, we see that the SN model achieves 
better compression than the PT model. Let, n ,  be the number 
of messages required for transmitting the compressed data 
from the cluster representatives to the sink. Then, O(n,  . k,) 
messages are required for transmitting data to the sink. Here, 
k, is the average number of hops from the cluster rep- 
resentative to the sink. Recall that the SN model requires 
O(nL . k) messages, where nL 5 n ,  and in general k > k,. 
However, as the density of the network increases, the O(n)  
term dominates for PT, while O ( n  - R) dominates for SN. 
Since R increases with density, the total overhead of SN is 
much lower. Therefore, the key aspect of the SN model is 
that it achieves a low compression overhead, while achieving 
similar compression rates as prior approaches. 

It is worth noting that optimal partitioning of the network 
for PT is itself a hard problem. Finding an optimal partition 
with good load balance has exponential complexity in n ,  
though approximate algorithms with polynomial complexity 
are possible [7]. Secondly, optimal partitioning may change 
with time resulting in network overhead for re-organizing 
the clusters in the network. In comparison, the SN model 
is self-organizing without extra overhead. Furthermore, the 
PT model places a high computation, communication, and 
memory burden on the cluster representative. 

111. THE SNP PROTOCOL 

SNP is a distributed and self-organizing protocol that effi- 
ciently implements the SN model, achieving high associated 
compression rates at low overheads. It is practical and can be 
implemented on lean sensor nodes. 

a) Protocol Overview: In the SN model, each node 
needs data from its neighbors, using which it can compress 
(correlate) its own data. This data is communicated through 
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Fig. 4. Spatial neighborhood ordering in the SNP protocol. Node a initiates 
the ordering process. 

broadcasts. Other, correlated nodes, suppress their own broad- 
casts in response. The key unresolved issue is to construct a 
symmetric distributed coding and decoding scheme. Specifi- 
cally, if node i codes its data w.r.t. node j, then node j may 
not code its data w.r.t. node i. Furthermore, the sink should be 
aware that node i used data from node j for reconstruction. 
Clearly, an ordering based on which coding can take place is 
required. The task of SNP is to induce such an ordering, while 
conforming to the SN model. The ordering induced by SNP 
is based on spatial relationships (and consequently, likelihood 
of correlation) between nodes. 

b) Protocol Details.: SNP partitions time into intervals 
of user-defined epochs (based on the data rate). Within each 
epoch, a node broadcasts (or suppresses its communication) 
at an allocated time. This time-ordering of nodes in a spatial 
neighborhood can be established using several protocols. SNP 
designates a subset of spatially distant (with distance G D 
between them) nodes that initiate this ordering process. In 
this step, the designated nodes broadcast their data and go 
to sleep until the next epoch. Upon receiving this broadcast 
from a designated node, each node time-orders itself based 
on its distance from the designated node. This is done by 
initializing a count-down timer at node i to Ti = a x d:,j +Pi. 
Here, a cc epoch/D2, d i j  represents the distance between 
node i and designated node j, and Pi is calculated using the 
hash of node id of i to the space (0, a ) .  Note that SNP does 
not depend on the exact measurement of distance. A relative 
measure that is monotonic w.r.t. distance suffices. If nodes 
do not have a GPS, radio signal strength can be used [14]. 
Node locations can also be hard-coded into node IDS. The 
hash term, P prevents collisions between nodes that may be 
the same distance from a designated node. If a node receives 
messages from two nodes with different distances from it, the 
node chooses the closer of the two to synchronize its timer. 

Once all timers have been initialized, we have an induced 
time-ordering of nodes in a spatial neighborhood (Figure 4). 
We refer to this ordering as Spatial Neighborhood Node 
ordering (SNO). This technique for deriving SNO has several 
desirable features: (i) it is resilient to node failures and inser- 
tions, (ii) it provides relative synchronization of the nodes and 
hence has much lower overhead than absolute time division 
and synchronization protocols, (iii) it is independent of the 
radio range because nodes synchronize with messages from 
nearby neighbors. For the same reason it does not suffer from 
the hidden station problem, and (iv) it minimizes collisions 
in the network by providing a simple means of time division 
slotting (TDMA). 

Theorem 2.4: 1iPT (N) ~ Hn .

Proof' If the number of clusters m = n, then 1iPT (N) =

L:~=l (1i(Xi )) ~ H n . If m = 1, clearly 1iPT = H n . For any
other value of m the entropy of each cluster can be found
using Procedure 2.1 and the sum of these entropies is greater
than or equal to H n . •

Corollary 2.1: The spatial neighborhood model (SN)
achieves better compression rate than the partitioning model
(PT) because 1iSN (N) :::; H n :::; 1iPT (N).

Protocols based on the PT model (e.g., [7], [12], [13])
reduce the number of messages by pushing compression (or
processing) of information into the network, i.e., to the cluster
representatives. This decreases the network messages delivered
to the sink. Unfortunately, such protocols still have a transmis­
sion overhead of O(n·kh) because each node must necessarily
transmit its data to the respective cluster representative. Here,
kh is the number of hops to the cluster representative. Thus, the
compression overhead of the PT model is at least 0 (n). Due to
its construction, the PT model can not reduce this overhead to
O(n - R), which the SN model achieves. Therefore, in dense
networks SN has significantly lower compression overhead
than the PT model.

From Corollary 2.1, we see that the SN model achieves
better compression than the PT model. Let, n c be the number
of messages required for transmitting the compressed data
from the cluster representatives to the sink. Then, O(nc . ks )

messages are required for transmitting data to the sink. Here,
ks is the average number of hops from the cluster rep­
resentative to the sink. Recall that the SN model requires
O(n~ . k) messages, where n~ :::; nc and in general k > ks .

However, as the density of the network increases, the O(n)
term dominates for PT, while O(n - R) dominates for SN.
Since R increases with density, the total overhead of SN is
much lower. Therefore, the key aspect of the SN model is
that it achieves a low compression overhead, while achieving
similar compression rates as prior approaches.

It is worth noting that optimal partitioning of the network
for PT is itself a hard problem. Finding an optimal partition
with good load balance has exponential complexity in n,
though approximate algorithms with polynomial complexity
are possible [7]. Secondly, optimal partitioning may change
with time resulting in network overhead for re-organizing
the clusters in the network. In comparison, the SN model
is self-organizing without extra overhead. Furthermore, the
PT model places a high computation, communication, and
memory burden on the cluster representative.

III. THE SNP PROTOCOL

SNP is a distributed and self-organizing protocol that effi­
ciently implements the SN model, achieving high associated
compression rates at low overheads. It is practical and can be
implemented on lean sensor nodes.

a) Protocol Overview: In the SN model, each node
needs data from its neighbors, using which it can compress
(correlate) its own data. This data is communicated through

Fig. 4. Spatial neighborhood ordering in the SNP protocol. Node a initiates
the ordering process.

broadcasts. Other, correlated nodes, suppress their own broad­
casts in response. The key unresolved issue is to construct a
symmetric distributed coding and decoding scheme. Specifi­
cally, if node i codes its data W.r.t. node j, then node j may
not code its data w.r.t. node i. Furthermore, the sink should be
aware that node i used data from node j for reconstruction.
Clearly, an ordering based on which coding can take place is
required. The task of SNP is to induce such an ordering, while
conforming to the SN model. The ordering induced by SNP
is based on spatial relationships (and consequently, likelihood
of correlation) between nodes.

b) Protocol Details.: SNP partitions time into intervals
of user-defined epochs (based on the data rate). Within each
epoch, a node broadcasts (or suppresses its communication)
at an allocated time. This time-ordering of nodes in a spatial
neighborhood can be established using several protocols. SNP
designates a subset of spatially distant (with distance f':;; D
between them) nodes that initiate this ordering process. In
this step, the designated nodes broadcast their data and go
to sleep until the next epoch. Upon receiving this broadcast
from a designated node, each node time-orders itself based
on its distance from the designated node. This is done by
initializing a count-down timer at node i to Ti = a x dL + f3i.
Here, a <X epoch/D 2 , di,j represents the distance between
node i and designated node j, and f3i is calculated using the
hash of node id of i to the space (0, a). Note that SNP does
not depend on the exact measurement of distance. A relative
measure that is monotonic w.r.t. distance suffices. If nodes
do not have a GPS, radio signal strength can be used [14].
Node locations can also be hard-coded into node IDs. The
hash term, f3 prevents collisions between nodes that may be
the same distance from a designated node. If a node receives
messages from two nodes with different distances from it,· the
node chooses the closer of the two to synchronize its timer.

Once all timers have been initialized, we have an induced
time-ordering of nodes in a spatial neighborhood (Figure 4).
We refer to this ordering as Spatial Neighborhood Node
ordering (SNO). This technique for deriving SNO has several
desirable features: (i) it is resilient to node failures and inser­
tions, (ii) it provides relative synchronization of the nodes and
hence has much lower overhead than absolute time division
and synchronization protocols, (iii) it is independent of the
radio range because nodes synchronize with messages from
nearby neighbors. For the same reason it does not suffer from
the hidden station problem, and (iv) it minimizes collisions
in the network by providing a simple means of time division
slotting (TDMA).



C )  Prediction Functions.: A prediction function, Fe, es- 
timates the data at a node from data at correlated sources. 

t t  2; = Fe (xi lxj, xi, . . . , x:-', xj-l, . . .). 
Here, kf is an estimate of xf (the data at node i at time 

step t) computed from data at other nodes. Note that data 
from previous time steps (e.g., x;-') can also be used by 
the prediction function. The prediction error 161 is given by 
Ixt - 2:l. Higher correlation implies lower prediction error. 
Note that the prediction function has a model parameter 0i 
for each node. These parameters are evaluated at the sink and 
transmitted to the nodes. Thus, the computationally intensive 
task of calculating parameters is performed at the sink, while 
the nodes use simple operations to predict data. 0i can be 
updated at the sink if the correlations change. This technique 
has been used in prior systems as well [15], [16]. SNP is, itself, 
independent of the prediction function. The prediction function 
used in our implementation is discussed in Section IV-A. 

d)  Correlation Radius.: Instead of defining correlation 
radius in terms of distance, SNP keeps two sets of nodes, 
PREDi (predecessors in time ordering) and SUCCi (suc- 
cessors in time ordering) at each node, that serve the same 
practical purpose. These sets are constructed locally at each 
node. For example, for node e in Figure 4, PRED, = { a ,  c )  
and SUCC, = {g, b, f ,  d) . Note that these sets are sorted 
in terms of the distance of nodes from node e. A node is 
allowed predict its data using data from the current time step 
from nodes in PREDi and data from the previous time steps 
using data from nodes PREDi U SUCCi. The number of 
nodes in these sets is y, (predecessors) and y, (successors). 
Large predecessor and successor sets improve compression, 
however, they also have associated memory overheads. In SNP, 
these parameters to be tunable by users. We show in our 
experiments that a small constant set size suffices in practice 
(Section IV-C). 

e) Suppressing Data Broadcasts.: A node determines 
whether it must broadcast its data or not based on the value 
predicted using its predecessors (and successors from prior 
epochs). This results in a self-adjusting mechanism, with vary- 
ing density and correlations. Due to this broadcast suppression 
mechanism, SNP achieves scalability with increasing density, 
as with the SN model. The above mechanism is implemented 
using two thresholds, bl and bh. If the prediction error 16 1 < 61, 
the node does not broadcast its data. In subsequent epochs, the 
node continues to suppress communication of its data unless 
161 > bh. This hysteresis based thresholding results in stability 
across slight correlation changes. Stability is an important 
part of this decision process, since a change in the decision 
at a node can affect the PRED and SUCC sets of other 
nodes. Conversely, if the decision process is over-damped, the 
system can not adapt to changing correlations. We show using 
experiments in Section IV-D that this is not a major concern 
for SNP. 

Note that, as nodes broadcast their data, nodes that might 

position in the SNO ordering. This overcomes the hidden 
station problem. 

f) Data Compression and Transmission.: Locally, each 
node i finds an estimate, k:, of its data x: as: 

The prediction error is given by 6: = XI - 2; Users 
can specify E,, the maximum error tolerance (which can be 
zero). If 1 & f 1  5 E,, no data is transmitted, otherwise only 
€4 (which uses fewer bits) needs to be transmitted to the 
sink. Since data is communicated in packets, sending a packet 
with a few bits will have high overhead. Consequently, we 
buffer the prediction errors from multiple time epochs until 
the buffer is large enough to offset the packet overhead. We 
also use a threshold thresh, so that if I & f l  > thresh, the 
sensor measurement is immediately transfered to the sink4. 
In this manner, outlier data is immediately transmitted to 
the sink, while well correlated data is transfered lazily. By 
using the data from both its predecessor and successors for 
compression, SNP faithfully implements the SN model and 
achieves compression rates of the SN model. 

The final step of the SNP protocol runs at the sink, which 
reconstructs data from compressed values, i.e., E:,  received 
from each node. For this, the sink must be able to execute the 
same prediction operation (Equation 5). Once the estimate, 
kf, is evaluated at the sink, the actual value can be computed 
using the compressed bits received from the node. 

x4 = kt + &t 
Z Z Z  

Clearly, for the sink to apply the prediction operation it needs 
to know the SUCCi and PREDi sets of a node. Recall that 
data at node xt is predicted using data from the same time step 
from its PREDi set or data from previous time steps from its 
PREDi U SUCCi set. Thus, all data required to re-construct 
xf is available at sink. Each node communicates its PREDi 
and SUCCi sets to the sink. This needs to be done only once, 
when the sets are first constructed. This amortizes, over time, 
the overhead of communicating these lists. Note that these 
sets are stable because the broadcast suppression mechanism 
(which affects the nodes that can be in the SUCC and PRED 
sets) is stable, as discussed earlier and demonstrated in our 
experiments in Section IV-D. 

g) Resilience to Packet Losses.: Packet losses can disrupt 
prediction, since a packet (data) used for prediction at source 
may not have been received by the sink. Due to the use of 
spatial neighborhood ordering and data sharing, SNP mini- 
mizes packet losses from collisions and radio attenuation (due 
to spatial locality). Furthermore, the PREDi and SUCCi sets 
can be adapted so that nodes with repeated losses relative to 
the node i are removed from the sets. 

h) Selecting SNO Initiators.: In our implementation we 
offload to the task of selecting the initiators to the sink, 
which knows the topology of the network. Note that the sink 

have heard the SNO initiators can set their timers based 4 ~ a t a  is transmitted to the sink using the underlying sensor network routing 
on messages heard from their neighbors and, thus, find their protocol, e.g., tree routing. Note that SNP is independent of this routing layer. 

c) Prediction Functions.: A prediction function, Fe, es­
timates the data at a node from data at correlated sources.

~t ( tit t t-l t-l )
Xi = Fe Xi Xj,Xk"" ,Xi ,Xj , ....

Here, x~ is an estimate of x~ (the data at node i at time
step t) computed from data at other nodes. Note that data
from previous time steps (e.g., X~-I) can also be used by
the prediction function. The prediction error lei is given by
Ix~ - x~l. Higher correlation implies lower prediction error.
Note that the prediction function has a model parameter Bi

for each node. These parameters are evaluated at the sink and
transmitted to the nodes. Thus, the computationally intensive
task of calculating parameters is performed at the sink, while
the nodes use simple operations to predict data. Bi can be
updated at the sink if the correlations change. This technique
has been used in prior systems as well [15], [16]. SNP is, itself,
independent of the prediction function. The prediction function
used in our implementation is discussed in Section IV-A.

d) Correlation Radius.: Instead of defining correlation
radius in terms of distance, SNP keeps two sets of nodes,
PREDi (predecessors in time ordering) and SUCCi (suc­
cessors in time ordering) at each node, that serve the same
practical purpose. These sets are constructed locally at each
node. For example, for node e in Figure 4, PREDe = {a, c}
and SUCCe = {g, b, j, d}. Note that these sets are sorted
in terms of the distance of nodes from node e. A node is
allowed predict its data using data from the current time step
from nodes in PREDi and data from the previous time steps
using data from nodes PREDi U SUCCi. The number of
nodes in these sets is IP (predecessors) and Is (successors).
Large predecessor and successor sets improve compression,
however, they also have associated memory overheads. In SNP,
these parameters to be tunable by users. We show in our
experiments that a small constant set size suffices in practice
(Section IV-C).

e) Suppressing Data Broadcasts.: A node determines
whether it must broadcast its data or not based on the value
predicted using its predecessors (and successors from prior
epochs). This results in a self-adjusting mechanism, with vary­
ing density and correlations. Due to this broadcast suppression
mechanism, SNP achieves scalability with increasing density,
as with the SN model. The above mechanism is implemented
using two thresholds, bl and bh. If the prediction error lei < bl,
the node does not broadcast its data. In subsequent epochs, the
node continues to suppress communication of its data unless
Itl > bh. This hysteresis based thresholding results in stability
across slight correlation changes. Stability is an important
part of this decision process, since a change in the decision
at a node can affect the PRED and SUCC sets of other
nodes. Conversely, if the decision process is over-damped, the
system can not adapt to changing correlations. We show using
experiments in Section IV-D that this is not a major concern
for SNP.

Note that, as nodes broadcast their data, nodes that might
not have heard the SNO initiators can set their timers based
on messages heard from their neighbors and, thus, find their

6

position in the SNO ordering. This overcomes the hidden
station problem.

f) Data Compression and Transmission.: Locally, each
node i finds an estimate, x~, of its data x~ as:

x~ = Fe(x~1 PREDI U SUCC;-1 U PREDI- 1U ...). (5)

The prediction error is given by e~ = x~ - x~. Users
can specify em, the maximum error tolerance (which can be
zero). If le~ I ~ em, no data is transmitted, otherwise only
e~ (which uses fewer bits) needs to be transmitted to the
sink. Since data is communicated in packets, sending a packet
with a few bits will have high overhead. Consequently, we
buffer the prediction errors from multiple time epochs until
the buffer is large enough to offset the packet overhead. We
also use a threshold thresh, so that if le~ I > thresh, the
sensor measurement is immediately transfered to the sink4

•

In this manner, outlier data is immediately transmitted to
the sink, while well correlated data is transfered lazily. By
using the oota from both its predecessor and successors for
compression, SNP faithfully implements the SN model and
achieves compression rates of the SN model.

The final step of the SNP protocol runs at the sink, which
reconstructs data from compressed values, i.e., eL received
from each node. For this, the sink must be able to execute the
same prediction operation (Equation 5). Once the estimate,
x~, is evaluated at the sink, the actual value can be computed
using the compressed bits received from the node.

x~ = x~ + e~

Clearly, for tiIe sink to apply tiIe prediction operation it needs
to know tiIe SUCCi and PREDi sets of a node. Recall tiIat
data at node x~ is predicted using data from tiIe same time step
from its P REDi set or data from previous time steps from its
PREDi U SUCCi set. Thus, all data required to re-construct
x~ is available at sink. Each node communicates its PREDi

and SUCCi sets to tiIe sink. This needs to be done only once,
when the sets are first constructed. This amortizes, over time,
tiIe overhead of communicating tiIese lists. Note tiIat these
sets are stable because tiIe broadcast suppression mechanism
(which affects the nodes tiIat can be in the SUCC and PRED
sets) is stable, as discussed earlier and demonstrated in our
experiments in Section IV-D.

g) Resilience to Packet Losses.: Packet losses can disrupt
prediction, since a packet (data) used for prediction at source
may not have been received by tiIe sink. Due to tiIe use of
spatial neighborhood ordering and data sharing, SNP mini­
mizes packet losses from collisions and radio attenuation (due
to spatial locality). Furthermore, tiIe P REDi and SUCCi sets
can be adapted so tiIat nodes witiI repeated losses relative to
tiIe node i are removed from tiIe sets.

h) Selecting SNO Initiators.: In our implementation we
offload to the task of selecting tiIe initiators to tiIe sink,
which knows tiIe topology of tiIe network. Note tiIat the sink

4Data is transmitted to the sink using the underlying sensor network routing
protocol, e.g., tree routing. Note that SNP is independent of this routing layer.



time (minutes) Fig. 6 .  Overall performance of in-network compression. Number of messages 
(normalized w.r.t. the number of messages in SDC) using different schemes 

Fig. 5. Trace A (top) and Trace B (bottom), used in evaluating SNP. Each ( T ~ ~ ~ ~  A, left, and T~~~~ B, right), 
curve in a trace corresponds to the data from one node. 

can accurately keep track of failures of such nodes because 
the initiator node always transmits data to the sink at the 
start of each epoch, which can be used as a heartbeat. In 
general randomized algorithms for selecting these nodes can 
easily be formulated. In real-world deployments, however, 
there are practical benefits to pre-specifying designated nodes 
as initiators. 

IV. EXPERIMENTAL EVALUATION 

We present a comprehensive evaluation of the performance 
of SNP over a 25 Mica2 node deployment, and using detailed 
simulations for parameter studies. We show that SNP provides 
up to 60% savings in network messages for fine-grained data 
collection. We compare SNP with existing approaches for 
in-network compression based on network partitioning, and 
show that these protocols require 25% to 50% more messages 
than SNP. Using simulation we evaluate the performance of 
SNP with increasing density and number of nodes in the 
network. Our results show that SNP scales well, exploiting 
both correlations and redundancy in dense networks. Finally, 
we evaluate the effect of different parameters of SNP on its 
performance and describe how they can be used to tune SNP 
for different environments. 

A. Experimental Setup 

We have implemented SNP on Mica2 nodes using COS- 
MOS [I]. COSMOS supports a high-level programming model 
for sensor networks, with a lean runtime environment. The 
underlying source to sink data delivery uses tree routing. We 
present results using a lab testbed of 25 nodes. To evaluate 
SNP, we use two sensor data traces that are seeded on 
the sensor nodes. Thus, instead of sending data read from 
its sensors, the Mica2 nodes send data from the trace for 
repeatability. The two traces are shown in Figure 5. The first 
trace, Trace A (top plot), is based on temperature data from 
the Sonoma forest deployment 1171. The second trace, Trace 
B (bottom plot), is constructed by adding sharp perturbations 
to the first trace. This allows comprehensive evaluation of in- 
network compression in highly dynamic environments. 

To enable a comparative study we also implement the FT 
protocol, and a simple data collection (SDC) protocol for 
baseline measurements. SDC does not use any in-network 
compression. The FT protocol implementation uses the same 
prediction function as the SNP protocol. To allow a fair 
comparison, we do not incorporate the cost of partitioning the 

network in the FT protocol. All other overheads, e.g., hop- 
by-hop messages due to the routing tree are incorporated. We 
also fix the tree routing structure so that measurements are 
comparable across runs. We have also built a simulator for 
the SNP, FT, and SDC protocols, which allows us to evaluate 
different operational ranges in detail. 

Prediction Function: We use Autoregressive Moving Aver- 
age (ARMA) [18] based prediction to exploit spatio-temporal 
correlations. A node exploits data from multiple neighbors by 
taking a weighted average, or auto-regression, (based on spa- 
tial distance) of data. In addition to spatial correlations, each 
node exploits temporal correlations by maintaining a history 
of its own data and the data from its neighbors. A weighted 
average based on time (older data has lower weight) represents 
temporal history. Finally, the moving average component of 
ARMA captures the history of prediction errors making newer 
predictions more accurate based on the gradient of data. SNP 
is, itself, independent of the prediction function used. 

B. SNP Pegormance 

We evaluate the performance of SNP in terms of total 
messages (data sharing messages + messages for transmission 
of compressed data to sink) w.r.t. the baseline SDC protocol 
and also compare it to the FT protocol. Additionally, we study 
the impact of approximate compression using the SNP-E and 
PT-E variants of the orignal protocols. In our experiments we 
use E = 5%. We determined the number of messages required 
for SNP, SNP-E, FT, FT-E and SDC protocols using our testbed 
composed of 25 Mica2 motes. 

The results of this evaluation are shown in Figure 6. The 
number of messages are normalized to the number of messages 
required by SDC. As expected, in-network compression offers 
significant savings in the number of messages. Due to unex- 
pected perturbations (i.e., fewer correlations) the compression 
of Trace B is lower than that of Trace A. SNP outperforms FT, 
reducing the message overhead by up to 30%. Furthermore, 
as expected, the approximate versions of the SNP and FT 
protocols perform better in terms of the message overhead. A 
key point to note is that the overhead of data sharing (shaded 
boxes) is significant. In fact, the superior performance of the 
SNP protocol compared to FT can be attributed mostly to the 
lower data sharing overhead. In all cases the overhead of data 
sharing in SNP is at least 45% lower than the FT protocol. 

Another key point to note is that the data sharing overhead 
of SNP adjusts to the degree of correlations in the network, 
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Fig. 5. Trace A (top) and Trace B (bottom), used in evaluating SNP. Each
curve in a trace corresponds to the data from one node.

can accurately keep track of failures of such nodes because
the initiator node always transmits data to the sink at the
start of each epoch, which can be used as a heartbeat. In
general randomized algorithms for selecting these nodes can
easily be formulated. In real-world deployments, however,
there are practical benefits to pre-specifying designated nodes
as initiators.

IV. EXPERIMENTAL EVALUATION

We present a comprehensive evaluation of the performance
of SNP over a 25 Mica2 node deployment, and using detailed
simulations for parameter studies. We show that SNP provides
up to 60% savings in network messages for fine-grained data
collection. We compare SNP with existing approaches for
in-network compression based on network partitioning, and
show that these protocols require 25% to 50% more messages
than SNP. Using simulation we evaluate the performance of
SNP with increasing density and number of nodes in the
network. Our results show that SNP scales well, exploiting
both correlations and redundancy in dense networks. Finally,
we evaluate the effect of different parameters of SNP on its
performance and describe how they can be used to tune SNP
for different environments.

A. Experimental Setup

We have implemented SNP on Mica2 nodes using COS­
MOS [I]. COSMOS supports a high-level programming model
for sensor networks, with a lean runtime environment. The
underlying source to sink data delivery uses tree routing. We
present results using a lab testbed of 25 nodes. To evaluate
SNP, we use two sensor data traces that are seeded on
the sensor nodes. Thus, instead of sending data read from
its sensors, the Mica2 nodes send data from the trace for
repeatability. The two traces are shown in Figure 5. The first
trace, Trace A (top plot), is based on temperature data from
the Sonoma forest deployment [17]. The second trace, Trace
B (bottom plot), is constructed by adding sharp perturbations
to the first trace. This allows comprehensive evaluation of in­
network compression in highly dynamic environments.

To enable a comparative study we also implement the PT
protocol, and a simple data collection (SDC) protocol for
baseline measurements. SDC does not use any in-network
compression. The PT protocol implementation uses the same
prediction function as the SNP protocol. To allow a fair
comparison, we do not incorporate the cost of partitioning the

Fig. 6. Overall performance of in-network compression. Number of messages
(normalized W.r.t. the number of messages in SDC) using different schemes
(Trace A, left, and Trace B, right).

network in the PT protocol. All other overheads, e.g., hop­
by-hop messages due to the routing tree are incorporated. We
also fix the tree routing structure so that measurements are
comparable across runs. We have also built a simulator for
the SNP, PT, and SDC protocols, which allows us to evaluate
different operational ranges in detail.

Prediction Function: We use Autoregressive Moving Aver­
age (ARMA) [18] based prediction to exploit spatio-temporal
correlations. A node exploits data from multiple neighbors by
taking a weighted average, or auto-regression, (based on spa­
tial distance) of data. In addition to spatial correlations, each
node exploits temporal correlations by maintaining a history
of its own data and the data from its neighbors. A weighted
average based on time (older data has lower weight) represents
temporal history. Finally, the moving average component of
ARMA captures the history of prediction errors making newer
predictions more accurate based on the gradient of data. SNP
is, itself, independent of the prediction function used.

B. SNP Performance

We evaluate the performance of SNP in terms of total
messages (data sharing messages + messages for transmission
of compressed data to sink) w.r.t. the baseline SDC protocol
and also compare it to the PT protocol. Additionally, we study
the impact of approximate compression using the SNP-E and
PT-E variants of the orignal protocols. In our experiments we
use E= 5%. We determined the number of messages required
for SNP, SNP-E, PT, PT-E and SDC protocols using our testbed
composed of 25 Mica2 motes.

The results of this evaluation are shown in Figure 6. The
number of messages are normalized to the number of messages
required by SDC. As expected, in-network compression offers
significant savings in the number of messages. Due to unex­
pected perturbations (i.e., fewer correlations) the compression
of Trace B is lower than that of Trace A. SNP outperforms PT,
reducing the message overhead by up to 30%. Furthermore,
as expected, the approximate versions of the SNP and PT
protocols perform better in terms of the message overhead. A
key point to note is that the overhead of data sharing (shaded
boxes) is significant. In fact, the superior performance of the
SNP protocol compared to PT can be attributed mostly to the
lower data sharing overhead. In all cases the overhead of data
sharing in SNP is at least 45% lower than the PT protocol.

Another key point to note is that the data sharing overhead
of SNP adjusts to the degree of correlations in the network,
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Fig. 8. Effect of changing the number of members in predecessor and 
successor set of nodes. 

while that of the PT protocol remains the same. This is 
because, for the PT protocol, irrespective of the correlations in 
the network, each node must send its data to the cluster head 
for compression. The data sharing overhead of SNP for Trace 
B is about 20% higher as compared to that of SNP for Trace 
A due to lower correlations (and thus smaller R) in Trace B. 
Irrespective of correlations, the data sharing overhead of SNP 
is lower than PT. This is because, at worst, all nodes broadcast 
their messages, while in the case of PT all nodes must route 
their data to the cluster head, which requires n. k h  messages, 
where k h  is the number of hops to the cluster head. 

Impact of Node Density: We study the impact of node 
density on performance through simulations. To increase den- 
sity, the spatial area of the network (in the simulator) is kept 
constant while the number of nodes is increased. We evaluated 
this scenario using both Trace A and Trace B. Due to space 
limitation, we discuss results only from Trace B. 

We observe that the ratio of messages required for SNP w.ct. 
SDC tends to zero, while the same ratio for the PT protocol 
tends to a non-negligible constant (Figure 7). This is a clear 
consequence of the linear scaling overhead of PT and SDC 
and sublinear scaling of SNP. 

We now evaluate the characteristics of SNP with respect the 
tunable parameters of SNP. 

C. Changing Correlation Radius. 

In the SNP protocol, each node maintains sets P R E D i  and 
SUCCi, whose data is used to predict and, hence, compress 
data at the node. The sizes of these sets are yp, and y,, 
respectively. These parameters capture the correlation radius 
of a node and impact the memory-correlation tradeoff. We 
study the impact of yp and y, on compression. Users may 

tune y, or y, or a combination thereof to specific application 
characteristics. 

Evaluation of SNP using both traces were performed. The 
results from evaluation using Trace B are presented in Fig- 
ure 8. The metric of evaluation is compression efficiency, 
which is the ratio of the compression achieved using limited 
correlation radius with that of the compression achieved using 
an infinite radius. The three curves in the plots correspond 
to: (i) increasing y, while setting yp to zero, (ii) increasing 
yp with y, set to zero, and (iii) increasing yp + 7, with 
yp = [(yp+ys)/21 and YS = L(yP+ys)/21. We observe from 
Figure 8 that irrespective of the trace, the best performance 
is archived by using the yp + y, approach, since using this 
approach, nodes are able to use the closest spatial neighbors. 
This is consistent with the intuition behind the construction of 
the SN model. An important implication of this result is that 
small sets are sufficient for achieving high (99%) efficiency. 
This makes SNP particularly suited to resource constrained 
nodes such as Mica2, which has only 4KB RAM. 

D. Broadcast Suppression 

An important characteristic of SNP is that it minimizes the 
number of nodes that need to share their data with neighboring 
nodes, while achieving high compression. The SNP protocol 
achieves this by suppressing broadcasts. Two thresholds 61 
and dh are defined. If the node's prediction error based on 
its predecessors is below hl,  it suppresses broadcast till its 
prediction error increases beyond bh. This results in hysteresis, 
which is necessary so the predecessor and successor sets of 
nodes in the network do not change often. Perturbation of 
these sets results in transmission of message containing the 
new list of nodes in the sets. 

We study the effect of varying these parameters in terms 
of number of message transmissions as a percentage of the 
minimum number of messages achieved by varying the hys- 
teresis threshold (6h - 61). Based on the characterization, we 
develop a simple algorithm that automatically discovers the 
correct hysteresis value. The results for varying the hysteresis 
threshold while evaluating the SNP protocol using Trace B is 
shown in Figure 9. The precision threshold 61 was set at 2%. 
We observe that there is high overhead associated with low 
hysteresis. This is because of frequent changes to predecessor 
and successor sets, which must be communicated to the sink. 
This overhead decreases rapidly as hysteresis is increased. 
There is a wide range of hysteresis settings for which the 
system achieves low overhead. Finally, we note that if the 
hysteresis is too high, the overhead increases. This is because 
the selection of nodes does not change often enough to keep 
up with changing correlations in Trace B, resulting in loss of 
compression. The fact that there is a wide range of parameters 
where overhead is low, makes estimation of good hysteresis 
threshold easy. 

V. RELATED WORK 

Application dependent in-network processing and aggrega- 
tion based on data-centric routing has been well studied [12], 

number of nodes

radius (number of nodes) D. Broadcast Suppression

An important characteristic of SNP is that it minimizes the
number of nodes that need to share their data with neighboring
nodes, while achieving high compression. The SNP protocol
achieves this by suppressing broadcasts. Two thresholds 6z

and 6h are defined. If the node's prediction error based on
its predecessors is below 61, it suppresses broadcast till its
prediction error increases beyond 6h . This results in hysteresis,
which is necessary so the predecessor and successor sets of
nodes in the network do not change often. Perturbation of
these sets results in transmission of message containing the
new list of nodes in the sets.

We study the effect of varying these parameters in terms
of number of message transmissions as a percentage of the
minimum number of messages achieved by varying the hys­
teresis threshold (6h - 61), Based on the characterization, we
develop a simple algorithm that automatically discovers the
correct hysteresis value. The results for varying the hysteresis
threshold while evaluating the SNP protocol using Trace B is
shown in Figure 9. The precision threshold 61 was set at 2%.
We observe that there is high overhead associated with low
hysteresis. This is because of frequent changes to predecessor
and successor sets, which must be communicated to the sink.
This overhead decreases rapidly as hysteresis is increased.
There is a wide range of hysteresis settings for which the
system achieves low overhead. Finally, we note that if the
hysteresis is too high, the overhead increases. This is because
the selection of nodes does not change often enough to keep
up with changing correlations in Trace B, resulting in loss of
compression. The fact that there is a wide range of parameters
where overhead is low, makes estimation of good hysteresis
threshold easy.

V. RELATED WORK

Application dependent in-network processing and aggrega­
tion based on data-centric routing has been well studied [12],

tune 'Yp or "Is or a combination thereof to specific application
characteristics.

Evaluation of SNP using both traces were performed. The
results from evaluation using Trace B are presented in Fig­
ure 8. The metric of evaluation is compression efficiency,
which is the ratio of the compression achieved using limited
correlation radius with that of the compression achieved using
an infinite radius. The three curves in the plots correspond
to: (i) increasing "Is while setting 'Yp to zero, (ii) increasing
'Yp with "Is set to zero, and (iii) increasing 'Yp + "Is with
'Yp = fbp+'Ys)/2l and "Is = lbp+'Ys)/2J. We observe from
Figure 8 that irrespective of the trace, the best performance
is archived by using the 'Yp + "Is approach, since using this
approach, nodes are able to use the closest spatial neighbors.
This is consistent with the intuition behind the construction of
the SN model. An important implication of this result is that
small sets are sufficient for achieving high (99%) efficiency.
This makes SNP particularly suited to resource constrained
nodes such as Mica2, which has only 4KB RAM.
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C. Changing Correlation Radius.

In the SNP protocol, each node maintains sets P REDi and
SUCCi, whose data is used to predict and, hence, compress
data at the node. The sizes of these sets are 'Yp, and "Is,
respectively. These parameters capture the correlation radius
of a node and impact the memory-correlation tradeoff. We
study the impact of 'Yp and "Is on compression. Users may

while that of the PT protocol remains the same. This is
because, for the PT protocol, irrespective of the correlations in
the network, each node must send its data to the cluster head
for compression. The data sharing overhead of SNP for Trace
B is about 20% higher as compared to that of SNP for Trace
A due to lower correlations (and thus smaller R) in Trace B.
Irrespective of correlations, the data sharing overhead of SNP
is lower than PT. This is because, at worst, all nodes broadcast
their messages, while in the case of PT all nodes must route
their data to the cluster head, which requires n . kh messages,
where kh is the number of hops to the cluster head.

Impact of Node Density: We study the impact of node
density on performance through simulations. To increase den­
sity, the spatial area of the network (in the simulator) is kept
constant while the number of nodes is increased. We evaluated
this scenario using both Trace A and Trace B. Due to space
limitation, we discuss results only from Trace B.

We observe that the ratio of messages required for SNP w.r.t.
SDC tends to zero, while the same ratio for the PT protocol
tends to a non-negligible constant (Figure 7). This is a clear
consequence of the linear scaling overhead of PT and SDC
and sublinear scaling of SNP.

We now evaluate the characteristics of SNP with respect the
tunable parameters of SNP.
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Fig. 9. Characterization of varying hysteresis threshold. 

[19]-[22]. The focus of our work is to develop application 
and routing independent schemes to minimize traffic in sensor 
networks. To this end, we develop an in-network compression 
protocol to enable distributed joint coding, achieving a high 
compression rate, with low overheads. 

Traditional data compression schemes [23] can not directly 
be applied to sensor networks. There have been proposals 
to apply the much celebrated results of Selpian-Wolf [24] 
to sensor networks. Selpian-Wolf joint coding can achieve 
distributed compression without communication between the 
sources, which is attractive for sensor networks [25]. However, 
this approach requires precise a-priori knowledge of the 
probability density function of data sources. There have also 
been efforts aimed at exploiting temporal correlations of each 
sensor node with its own history [IS], [16]. However, the 
performance of these models is a function of the dynamic 
variations in data. 

In early work on exploiting spatio-temporal correlations 
in sensed data, researchers have explored the FT model of 
correlation [7], [lo], [ I  11. We improve on these results, both 
in terms of compression rates and overhead. Pattem et al. [I  11 
provide an information theoretic basis for the FT protocol. 
They also propose an implementation of the FT model in 
which compression can occur on a linear path to the cluster 
representative, thus, possibly reducing the O(n)  overhead of 
the FT protocol. However, this has the effect of increasing 
the route-length a data item must travel - thus adversely 
impacting network capacity. If this is not a consideration, the 
performance of this model approaches (but does not exceed) 
that of SNP. Furthermore, a key feature of SNF' is that it does 
not require any support from the underlying routing layer. 

VI. CONCLUSIONS 

In this paper, we present SNF', a novel application indepen- 
dent, lean, in-network compression protocol that achieves high 
compression rates by exploiting spatio-temporal correlations 
with low network overheads. We present formal quantification 
of compression rates, overheads, and scaling, and experi- 
mentally demonstrate its performance on real testbeds, as 
well as through simulations (for parameter studies). We also 
show that SNF' outperforms existing schemes based on these 
performance parameters. 
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Fig. 9. Characterization of varying hysteresis threshold.

[19]-[22]. The focus of our work is to develop application
and routing independent schemes to minimize traffic in sensor
networks. To this end, we develop an in-network compression
protocol to enable distributed joint coding, achieving a high
compression rate, with low overheads.

Traditional data compression schemes [23] can not directly
be applied to sensor networks. There have been proposals
to apply the much celebrated results of Selpian-Wolf [24]
to sensor networks. Selpian-Wolf joint coding can achieve
distributed compression without communication between the
sources, which is attractive for sensor networks [25]. However,
this approach requires precise a-priori knowledge of the
probability density function of data sources. There have also
been efforts aimed at exploiting temporal correlations of each
sensor node with its own history [15], [16]. However, the
performance of these models is a function of the dynamic
variations in data.

In early work on exploiting spatio-temporal correlations
in sensed data, researchers have explored the PT model of
correlation [7], [10], [11]. We improve on these results, both
in terms of compression rates and overhead. Pattem et al. [11]
provide an information theoretic basis for the PT protocol.
They also propose an implementation of the PT model in
which compression can occur on a linear path to the cluster
representative, thus, possibly reducing the 0(17,) overhead of
the PT protocol. However, this has the effect of increasing
the route-length a data item must travel - thus adversely
impacting network capacity. If this is not a consideration, the
performance of this model approaches (but does not exceed)
that of SNP. Furthermore, a key feature of SNP is that it does
not require any support from the underlying routing layer.

In this paper, we present SNP, a novel application indepen­
dent, lean, in-network compression protocol that achieves high
compression rates by exploiting spatio-temporal correlations
with low network overheads. We present formal quantification
of compression rates, overheads, and scaling, and experi­
mentally demonstrate its performance on real testbeds, as
well as through simulations (for parameter studies). We also
show that SNP outperforms existing schemes based on these
performance parameters.
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