EXPERIMENTAL STUDY OF TWO-PHASE SEPARATORS FOR VAPOR COMPRESSION SYSTEMS IN HOUSEHOLD APPLIANCES

Presented By:
Jessica Alvarado
GE Appliances
Co-authors:
Brent Junge
Andrea Kelecy

July 11 -14, 2016
Presentation Outline

- Introduction
- Background
- Methods
- Results
- Conclusion & Future Work
INTRODUCTION

Project Motivation

- Regulatory and financial incentives drive industry to meet increasing demand at higher system efficiencies.

Why Two-phase separators?

- Simple, passive component
- Offers system efficiency improvements

Objective:

- Evaluate the design of separators suitable for the operational ranges of household refrigeration.
BACKGROUND

Making use of two-phase separators

Flash Tank
Economizer Cycle

Ejector Cycle

Mixed Refrigerant System (2 evaporators)

- Heating Capacity and COP improvements: 34% and 6% (He et al. 2006)

- Increase suction pressure at compressor inlet
- Reduction of compressor work
- Chaudry, Zhuo, and Junge (2015) reached 15% efficiency for an AC ejector system.

- Tested with R-12 and R-114, 50% mixture (Stoecker, 1978)
- Energy savings of 12% in two-evaporator refrigerator

(Wang, 2008)

(Domanski, 1995)
Recent Experimental Findings

- Milosevic (2010)
 Flash gas bypass for R134a automotive A/C
 - Findings:
 - Geometry 1 effectively separated $10 < \dot{m} < 30$ g/s and $5 < x_i < 20\%$
 - Geometry 2 effectively separated up to $10 < \dot{m} < 45$ g/s and $5 < x_i < 15\%$

- Tuo & Hrnjak (2012)
 - Expanded on separation enhancers
 - Angling and dual inlet significantly improve separation
 - Flows are 10 – 20 times higher than small refrigeration appliances

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Sep 1in[mm]</th>
<th>Sep 2in[mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet branch</td>
<td>0.34(8.7)</td>
<td>0.47(12)</td>
</tr>
<tr>
<td>Body Diameter</td>
<td>0.72(18.3)</td>
<td>0.94(23.8)</td>
</tr>
<tr>
<td>Overall Height</td>
<td>15.748(400)</td>
<td>15.748(400)</td>
</tr>
</tbody>
</table>
METHODS

Two-Phase Separator Test Facility
METHODS

Two-Phase Control

\[\dot{q}_{htr} = \dot{m}_T (h_o - h_i) \]

\[x_i = \frac{h_o - h_f}{h_v - h_f} \]
METHODS

Separator Geometry

Separator 1

- **Geometry**: Inlet, Outlet (liq, vap)
 - **in[mm]**: 0.232 (0.200)
- **Body Diameter**: 0.423 (10.733)
- **Overall Height**: 4.125 (104.775)
- **Inlet to bottom**: 1.500 (38.100)

Separator 2

- **Geometry**: Inlet, Outlet (liq, vap)
 - **in[mm]**: 0.232 (0.200)
- **Body Diameter**: 0.742 (18.847)
- **Overall Height**: 1.750 (44.450)
- **Inlet to bottom**: 0.656 (16.67)
RESULTS

Separator 1

\[P = 115 \text{ Psia} \ [800 \text{kPa}] \]
\[m_T = 12 \text{ lbm/hr} \ [5.44 \frac{\text{kg}}{\text{hr}}] \]
Separator 2

\[P = 115 \text{ Psia} \ [800\text{ kPa}] \]
\[\dot{m}_T = 6 \text{ lbm/hr} \[2.7 \text{ kg/hr}\] \]

- \(x_i = 30\% \) Full Liquid column, Liquid Vapor interface is above visible range of separator
- \(x_i = 50\% \) Full Liquid column, Liquid Vapor interface is above visible range of separator
- \(x_i = 60\% \) Full Liquid column, Liquid Vapor interface is above visible range of separator
Conclusion

- Liquid-Vapor separation is effective for both geometries so long as x_i and γ are balanced.
- Major Observations:
 1) $x_1 > \gamma$: No clear liquid-vapor interface was found; no liquid buildup was found within the separator.
 2) $x_1 < \gamma$: The liquid-vapor interface was visible and a liquid buildup was observed within the separator vessel.

Future work

- System Level Testing
- Further investigate vapor branch quality when $x_i > \gamma$.