
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2007

Aspects and Exception Handling: The Case of Explicit Join Points Aspects and Exception Handling: The Case of Explicit Join Points

Kevin Hoffman

Patrick Eugster
Purdue University, p@cs.purdue.edu

Report Number:
07-017

Hoffman, Kevin and Eugster, Patrick, "Aspects and Exception Handling: The Case of Explicit Join Points"
(2007). Department of Computer Science Technical Reports. Paper 1681.
https://docs.lib.purdue.edu/cstech/1681

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ASPECTS AND EXCEPTION HANDLING:
THE CASE OF EXPLICIT JOIN POINTS

Kevin Hoffman
Patrick Eugster

Department of Computer Science
Purdue University

West Lafayette, IN 47907

CSD TR #07-017
July 2007

ASPECTS AND EXCEPTION HANDLING:
THE CASE OF EXPLICIT JOIN POINTS

Kevin Hoffman
Patrick Eugster

Department of Computer Science
Purdue University

West Lafayette, IN 47907

CSD TR #07-017
July 2007

Aspects and exception handling:
the case of explicit join points

TECH REPORT ejp-200703-01
IN SUBMISSION MARCH 2007

Kevin Hoffman
Purdue University

305 N. University Street
West Lafayette, IN 47907

kjhoffma@cs.purdue.edu

ABSTRACT
Several authors have debated the modularity and oblivious-
ness of aspects in AOP and the links between these two
notions, noting that obliviousness is not always desirable or
achievable. Many proposals have appeared, mainly in the
context of AspectJ, to mitigate these issues by restricting
upfront, or "inferring" and documenting, where aspects can
apply. As pointed out, sacrificing certain facets of oblivious-
ness can not only increase safety but even increase modu-
larity.

This paper presents and evaluates a simple extension to As-
pectJ, consisting in explicit join points (EJPs) which denote
potential occurrences of aspects in the base code and enable
information passing between base code and aspects. The
evaluation takes place in the context of exception handling;
by picking up on a recent study of the use of aspects for the
same purpose, we quantifg the benefits of our extensions for
various common measures of code quality in the context of
AOP, such as separation of concerns or coupling.

Categories and Subject Descriptors
D. 1 [Software]: Programming Techniques-Aspect-Oriented
Programming; D.2.8 [Software]: Software Engineering-
Metrics

1. INTRODUCTION
Aspect-oriented programming (AOP) [17] is slowly stepping
out of its infant shoes. By offering programmers the possibil-
ity of dealing with cross-cutting concerns once and for all in
the form of aspects alongside the primary application logic,
AOP strives for an increased modularity in applications, and
a break-down of development efforts. Typical show-cases for
aspects include concerns such as security, synchronization,

Patrick Eugster
Purdue University

305 N. University Street
West Lafayette, IN 47907

peugster@cs.purdue.edu

or persistence. The ability to describe aspects both cleanly
and safely is crucial to help developers think in terms of
aspects at early development stages and thus represents a
cornerstone towards aspect-oriented software development.

AspectJ. AspectJ [I61 is an extension of Java that pro-
vides powerful new constructs to support aspect-oriented
programming (AOP). In AspectJ, programs are decomposed
along "functional" lines in an object-oriented fashion as fa-
cilitated by Java, but code to implement any cross-cutting
concerns is isolated into aspects which are injected by ad-
vice into the base code a t join points. AspectJ provides the
pointcut construct, allowing for collections of join points to
be specified based on lexical context, join point type, pat-
tern matching, and even dynamic context (such as control
flow or argument value).

Modularity and obliviousness. Various authors have re-
cently debated the full implications of AOP for modularity
and modular reasoning. In particular, the impact and feasi-
bility of aspects' obliviousness with respect to the base code
has been the topic of many recent publications, e.g. [26, 19,
7, 91. Early work on AOP, and AspectJ in particular, have
described modularity as a direct consequence of oblivious-
ness. While several authors have proposed extensions to
AOP models and languages to restrict or to infer and doc-
ument the occurrence of aspects within the base code [14,
2, 18, 261 for safety purposes, Sullivan et al. [26] thoroughly
decompose the notion of "obliviousness", pointing out that
certain of its facets might even reduce modularity.

Contributions. This paper presents and evaluates a prag-
matic extension of AspectJ, consisting in eqlicit join points
(EJPs). In short, EJPs explicitly denote potential occur-
rences of aspects within the base code, allowing for the pass-
ing of information to and from aspects. Scoped EJPs are a
generalization of any join points in the sense that they en-
able the advising of arbitrary code blocks, i.e., several sub-
sequent statements, in contrast to common models which
focus on advising single statements (or entire methods when
distinguishing between callee- and caller-site). We present
an overview of our new language features, comparing them
to traditional methods, along with our implementation of
EJPs based on the abc compiler [I].

Aspects and exception l1.andling:
the case of explicit join points

TECH REPORT ejp-200703-01
IN SUBMISSION MARCH 2007

Kevin Hoffman
Purdue University

305 N. University Street
West Lafayette, IN 47907

kjhoffma@cs.purdue.edu

ABSTRACT
Several authors have debated the modularity and oblivious­
ness of aspects in AOP and the links between these two
notions, noting that obliviousness is not always desirable or
achievable. Many proposals have appeared, mainly in the
context of AspectJ, to mitigate these issues by restricting
upfront, or "inferring" and documenting, where aspects can
apply. As pointed out, sacrificing certain facets of oblivious­
ness can not only increase safety but even increase modu­
larity.

This paper presents and evaluates a simple extension to As­
pectJ, consisting in explicit join points (EJPs) which denote
potential occurrences of aspects in the base code and enable
information passing between base code and aspects. The
evaluation takes place in the context of exception handling;
by picking up on a recent study of the use of aspects for the
same purpose, we quantify the benefits of our extensions for
various common measures of code quality in the context of
AOP, such as separation of concerns or coupling.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques-Aspect-Oriented
Programming; D.2.8 [Software]: Software Engineering­
Metrics

1. INTRODUCTION
Aspect-oriented programming (AOP) [17] is slowly stepping
out of its infant shoes. By offering programmers the possibil­
ity of dealing with cross-cutting concerns once and for all in
the form of aspects alongside the primary application logic,
AOP strives for an increased modularity in applications, and
a break-down of development efforts. Typical show-cases for
aspects include concerns such as security, synchronization,

Patrick Eugster
Purdue University

305 N. University Street
West Lafayette, IN 47907

peugster@cs.purdue.edu

or persistence. The ability to describe aspects both cleanly
and safely is crucial to help developers think in terms of
aspects at early development stages and thus represents a
cornerstone towards aspect-oriented software development.

AspectJ. AspectJ [16] is an extension of Java that pro­
vides powerful new constructs to support aspect-oriented
programming (AOP). In AspectJ, programs are decomposed
along "functional" lines in an object-oriented fashion as fa­
cilitated by Java, but code to implement any cross-cutting
concerns is isolated into aspects which are injected by ad­
vice into the base code at join points. AspectJ provides the
pointcut construct, allowing for collections of join points to
be specified based on lexical context, join point type, pat­
tern matching, and even dynamic context (such as control
flow or argument value).

Modularity and obliviousness. Various authors have re­
cently debated the full implications of AOP for modularity
and modular reasoning. In particular, the impact and feasi­
bility of aspects' obliviousness with respect to the base code
has been the topic of many recent publications, e.g. [26, 19,
7, 9]. Early work on AOP, and AspectJ in particular, have
described modularity as a direct consequence of oblivious­
ness. While several authors have proposed extensions to
AOP models and languages to restrict or to infer and doc­
ument the occurrence of aspects within the base code [14,
2, 18, 26] for safety purposes, Sullivan et al. [26] thoroughly
decompose the notion of "obliviousness", pointing out that
certain of its facets might even reduce modularity.

Contributions. This paper presents and evaluates a prag­
matic extension of AspectJ, consisting in explicit join points
(EJPs). In short, EJPs explicitly denote potential occur­
rences of aspects within the base code, allowing for the pass­
ing of information to and from aspects. Scoped EJPs are a
generalization of any join points in the sense that they en­
able the advising of arbitrary code blocks, i.e., several sub­
sequent statements, in contrast to common models which
focus on advising single statements (or entire methods when
distinguishing between callee- and caller-site). We present
an overview of our new language features, comparing them
to traditional methods, along with our implementation of
EJPs based on the abc compiler [1].

While quite obviously sacrificing some obliviousness, we il-
lustrate through an in-depth empirical study how EJPs quan-
titatively improve the quality of three industrial-strength
applications after refactoring the exception handling cross-
cutting concern using EJPs. More precisely, we revisit a
prior study /8] where these same applications were refactored
for the same purpose, directly comparing our method to the
AspectJ method and original code.We discuss the quantita-
tive results of our study, considering the effect of EJPs on
well-established metrics such as coupling, cohesion, size, and
separation of concerns, and then discuss important qualita-
tive issues. We also contribute the results of an extendibility
study, exploring how EJPs improve the ability to implement
future concerns obliviously. Finally, we position EJPs with
respect to seminal work on modular aspect-oriented soft-
ware development, pointing out how EJPs can be used to
implement or complement these approaches.

Roadmap. Section 2 presents an overview of explicit join
points. Section 3 presents the setting of our case study. Sec-
tion 4 presents our findings, and Section 5 discusses various
issues. Section 6 studies the impact of explicit join points
on oblivious extendibility. Section 7 presents related work,
and Section 8 summarizes our work.

2. EXPLICIT JOIN POINTS: A PRIMER
This section describes some of the existing challenges in
aspect-oriented software development with AspectJ. We then
present an overview of earplicit join points, which we use in
our case study to implement aspectized exception handling
for major software packages.

2.1 Motivation
AOP as expressed in AspectJ has been proven to be very
effective in separating cross-cutting concerns from the base
code. However, while it is clear that implementations of such
concerns in AspectJ are completely separated from the base
code, the effects of this separation on other important fac-
tors such as modularity and coupling and the impact on the
software development process remains a highly researched
topic. Empirical case studies illustrating some of these ef-
fects have recently begun to emerge [8, 4, 26, 27, 12, 111.

One important problem highlighted by these studies is that
even though couplings between the base code and the classes
implementing the cross-cutting concern are removed, new
couplings are introduced between the aspect and base code.
This coupling is founded in the inherent complexity in as-
pects trying to describe the precise join points at which they
should inject new logic because these join points are not ex-
plicitly named. Instead, these descriptions of which join
points to advise, termed pointcuts, must rely on matching
against join point type (method call, field access, etc.) and
pattern matching against type names and identifiers.

The anonymity of join points makes it difficult to define
pointcuts so that they anchor cross-cutting logic precisely
where needed, without unintentionally matching additional
join points. When pointcuts are defined a tradeoff must
inherently be made between precision and pointcut stability.

On the one hand, the pointcut dkscription language of As-
pectJ has been shown to be reasonably powerful in picking

out very specific join points. However, as pointcut precision
increases so does its potential for fragility, meaning that
there is greater possibility for it to stop matching what it
semantically intends to advise as base code is refactored.
This pointcut induced fragility couples the aspect to the
base code, requiring the aspect's pointcuts to be revisited
as the base code changes and thus reducing its modularity.

On the other hand, using pointcuts that are too general
may cause advice to be applied unintentionally, which can
be problematic when the concerns being implemented have
non-trivial semantics (e.g. persistence or concurrency con-
trol). Finding the appropriate balance between precision
and generality while optimizing the different software en-
gineering factors is a non-trival challenge in aspect-oriented
software development. Additionally, when base code is writ-
ten without a priori planning for the aspectization of certain
concerns (as is actually a goal promulgated by many AOP
supporters), the resulting aspects can become tightly cou-
pled to the base code.18, 261

Another challenge of AspectJ is the limited granularity of
join points that can be advised. Because pointcuts pattern
match against type names and identifiers in the base code,
the granularity where you can apply around advice is limited
- either around a primitive statement (field access, method
call), an exception handler, or an entire method. This re-
striction makes it difficult to apply advice around a set of
statements within a method, and thus limits how advice can
affect control flow within a method.

This inability to advise arbitrary blocks of code can mag-
nify the fragile pointcut problem 1251, as programmers try
to approximate advising blocks of code by using pointcuts
that individually specify the field and method call accesses
within that block of code. This technique actually encour-
ages extremely fragile pointcuts, which can fail in two ways:
(1) A call to a method that matches the pointcut targeting
a block of code is added outside that block of code in the
same method. In this case the programmer may attempt to
exclude the new method call by increasing the precision of
the pointcut (by matching based on properties of the target
object or parameters instead of just the method name). (2)
Doing so, however, increases the likelihood that the pointcut
will stop matching the method call within the targeted block
of code as that code changes. We again see the theme of
trading between precision and pointcut stability, only mag-
nified by the attempt to target a specific collection of join
points instead of targeting a single join point.

Details of challenges created by join point anonymity along
with illustrative examples are described in [26].

Beyond quantification difficulties, the one-sidedness of as-
pects obliviously advising base code creates limitations when
the concerns being implemented may be semantically cou-
pled in some fashion. Concerns of this nature can be clas-
sified as those with significant semantics (more than trivial
logging or tracing semantics) that have the potential to fail
or require complex contextual input from the base code. For
example, an aspect implementing transactionalizing mech-
anisms may need to ensure that the base code (or at least
some other error handling aspect) reacts to any fault encoun-

While quite obviously sacrificing some obliviousness, we il­
lustrate through an in-depth empirical study how EJPs quan­
titatively improve the quality of three industrial-strength
applications after refactoring the exception handling cross­
cutting concern using EJPs. More precisely, we revisit a
prior study 18] where these same applications were refactored
for the same purpose, directly comparing our method to the
AspectJ method and original code.We discuss the quantita­
tive results of our study, considering the effect of EJPs on
well-established metrics such as coupling, cohesion, size, and
separation of concerns, and then discuss important qualita­
tive issues. We also contribute the results of an extendibility
study, exploring how EJPs improve the ability to implement
future concerns obliviously. Finally, we position EJPs with
respect to seminal work on modular aspect-oriented soft­
ware development, pointing out how EJPs can be used to
implement or complement these approaches.

Roadmap. Section 2 presents an overview of explicit join
points. Section 3 presents the setting of our case study. Sec­
tion 4 presents our findings, and Section 5 discusses various
issues. Section 6 studies the impact of explicit join points
on oblivious extendibility. Section 7 presents related work,
and Section 8 summarizes our work.

2. EXPLICIT JOIN POINTS: A PRIMER
This section describes some of the existing challenges in
aspect-oriented software development with AspectJ. We then
present an overview of explicit join points, which we use in
our case study to implement aspectized exception handling
for major software packages.

2.1 Motivation
AOP as expressed in AspectJ has been proven to be very
effective in separating cross-cutting concerns from the base
code. However, while it is clear that implementations of such
concerns in AspectJ are completely separated from the base
code, the effects of this separation on other important fac­
tors such as modularity and coupling and the impact on the
software development process remains a highly researched
topic. Empirical case studies illustrating some of these ef­
fects have recently begun to emerge [8, 4, 26, 27, 12, 11].

One important problem highlighted by these studies is that
even though couplings between the base code and the classes
implementing the cross-cutting concern are removed, new
couplings are introduced between the aspect and base code.
This coupling is founded in the inherent complexity in as­
pects trying to describe the precise join points at which they
should inject new logic because these join points are not ex­
plicitly named. Instead, these descriptions of which join
points to advise, termed pointcuts, must rely on matching
against join point type (method call, field access, etc.) and
pattern matching against type names and identifiers.

The anonymity of join points makes it difficult to define
pointcuts so that they anchor cross-cutting logic precisely
where needed, without unintentionally matching additional
join points. When pointcuts are defined a tradeoff must
inherently be made between precision and pointcut stability.

On the one hand, the pointcut description language of As­
pectJ has been shown to be reasonably powerful in picking

out very specific join points. However, as pointcut precision
increases so does its potential for fragility, meaning that
there is greater possibility for it to stop matching what it
semantically intends to advise as base code is refactored.
This pointcut induced fragility couples the aspect to the
base code, requiring the aspect's pointcuts to be revisited
as the base code changes and thus reducing its modularity.

On the other hand, using pointcuts that are too general
may cause advice to be applied unintentionally, which can
be problematic when the concerns being implemented have
non-trivial semantics (e.g. persistence or concurrency con­
trol). Finding the appropriate balance between precision
and generality while optimizing the different software en­
gineering factors is a non-trival challenge in aspect-oriented
software development. Additionally, when base code is writ­
ten without a priori planning for the aspectization of certain
concerns (as is actually a goal promulgated by many AOP
supporters), the resulting aspects can become tightly cou­
pled to the base code.[8, 26]

Another challenge of AspectJ is the limited granularity of
join points that can be advised. Because pointcuts pattern
match against type names and identifiers in the base code,
the granularity where you can apply around advice is limited
- either around a primitive statement (field access, method
call), an exception handler, or an entire method. This re­
striction makes it difficult to apply advice around a set of
statements within a method, and thus limits how advice can
affect control flow within a method.

This inability to advise arbitrary blocks of code can mag­
nify the fragile pointcut problem [25], as programmers try
to approximate advising blocks of code by using pointcuts
that individually specify the field and method call accesses
within that block of code. This technique actually encour­
ages extremely fragile pointcuts, which can fail in two ways:
(1) A call to a method that matches the pointcut targeting
a block of code is added outside that block of code in the
same method. In this case the programmer may attempt to
exclude the new method call by increasing the precision of
the pointcut (by matching based on properties of the target
object or parameters instead of just the method name). (2)
Doing so, however, increases the likelihood that the pointcut
will stop matching the method call within the targeted block
of code as that code changes. We again see the theme of
trading between precision and pointcut stability, only mag­
nified by the attempt to target a specific collection of join
points instead of targeting a single join point.

Details of challenges created by join point anonymity along
with illustrative examples are described in [26].

Beyond quantification difficulties, the one-sidedness of as­
pects obliviously advising base code creates limitations when
the concerns being implemented may be semantically cou­
pled in some fashion. Concerns of this nature can be clas­
sified as those with significant semantics (more than trivial
logging or tracing semantics) that have the potential to fail
or require complex contextual input from the base code. For
example, an aspect implementing transactionalizing mech­
anisms may need to ensure that the base code (or at least
some other error handling aspect) reacts to any fault encoun-

tered while committing a transaction. Using AspectJ, there
is no mechanism for an aspect to require that a new type
of checked exception is handled at certain join points (the
oppmite functionality, exception softening is provided, fur-
ther highlighting the one-sidedness of the advising method-
ology in the design of AspectJ). Additionally, there is no
mechanism to capture the state of local variables, except
as they are exposed as return values or arguments, limiting
the amount of local state that can be captured by a single
advice. This leads to complex (potentially fragile) multi-
stage advising patterns and other problems, discussed as
the state-point separation problem in [26].

In summary, while AspectJ provides mechanisms to effec-
tively separate cross-cutting concerns from base code, these
same mechanisms can introduce other problems affecting the
effectiveness of the software engineering process as a whole.

2.2 Introducing Explicit Join Points
To address the above challenges we introduce a new type of
join point into the quantification model - explicit join points
(EJPs). Unlike anonymous join points that are exposed au-
tomatically by the AspectJ compiler, EJPs are explicitly
declared by the programmer, given a unique name and sig-
nature, and referenced explicitly in the base code. Addi-
tionally, we allow EJPs to be scoped, empowering the ad-
vising of arbitrary blocks of code without increasing pointcut
fragility. Finally, we define ways in which EJPs can enforce
constraints, both on the base code referring to EJPs and on
the aspects that advise EJPs. Evaluation of the concept will
be reserved for future sections of the paper.

An explicit join point is a signature declared within an as-
pect, defining its properties, parameters, and constraints. In
it's simplest form, an EJP looks similar to a method dec-
laration in an interface and is named by an identifier, can
return a value, has formals and a throws clause, and has a
new construct - the handles clause. The syntax for declaring
EJPs (simplified) is as follows:'

Cscopedl j o i n p o i n t < r e t u r n t y p e > <na rne>(<fo rma l s>)
[h a n d l e s . . . I [t h rows . . . I ;

The scoped modifier specifies that when the base code refer-
ences the EJP it must be associated with a block of code,
as will be shown below. The handles clause constrains aspect
implementers of the EJP, requiring that for each type in the
handles clause at least one aspect implements an around ad-
vice catching that exception type. This constraint can be
enforced at compilation to ensure checked exception safety
is preserved. In the base code use of a scoped EJP with a
handles clause has the same semantics on checked exceptions
as if the block of code in the scope of the EJP reference
were contained inside a try-catch block with catch blocks for
each type in the handles clause. Additional ways in which the
EJP can be parameterized have been explored (e.g. pointcut
parameters) but are outside the scope of this paper.

References to scoped EJPs in the base code are similar to
static method invocations and anonymous class creation:

'Full syntax definitions can be found in [15]

Finally, additional primitive pointcut designators are de-
fined, e jp and ejpscoped, allowing pointcuts to match EJP
references in a stable manner. For example:
- - - - - - - -

p o i n t c u t needsMerno iza t ion0 :
c a l l (Value * . * (. .))

&& c f l o w (e x e c u t i o n (e j p s c o p e (m e r n o i z e C a l l s)))

This pointcut matches calls to any function returning the
type Value in the control flow of the memoizeCalls scoped
EJP. This example sketches how the base code and aspect
can cooperate to robustly advise arbitrary blocks of code.

To promote modularity, EJPs should be defined in abstract
aspects separated from any concrete advice, thus becoming
an explicit form of an abstract cross-cutting interface. All
known principles of designing modular interfaces apply here,
now keeping in mind the interface will be implemented by
one or more aspects and the new power offered by scoped
EJPs.

Figure 1 visualizes the difficulty in implementing a cross-
cutting concern using AspectJ when that concern needs to
access state only available across multiple (dissimilar) join
points and how that compares to using EJPs. It also shows
how scoped EJPs compare.

A well known alternative to advising arbitrary blocks of code
is to extract the fragment of code that should be advised
into a new method, exposing needed local variable values
and allowing advising of that block of code. However, this
has empirically been shown to decrease cohesion, sometimes
significantly. [8] Additionally, such a technique causes un-
necessary tangling in the base code when more than one
concern requires the refactoring of methods. As the number
of complex concerns increases, the base code can become
splintered and hard to refactor. Another issueis that the
signature of the newly created method is replicated each
time a new fragment of code is extracted, making it more
difficult if that signature must change. In contrast, EJPs
are minimally intrusive into the base code and EJP signa-
tures are only defined once. The benefits of EJPs vs. the
traditional method are explored in our empirical case study.

2.3 Implementation
We implemented EJPs in AspectJ by extending the Aspect-
Bench research compiler (abc) [I]. TO encourage industrial
use and feedback, peer evaluation, and future research, and
in agreement with the licensing style of abc and its dependent
packages, our EJP extension with source code is freely avail-
able for download and distribution under the GNU Lesser
General Public License (LGPL) [15].

Support for non-scoped EJPs was straightforward via ab-
stract syntax tree rewriting and by extending the type sys-
tem, while support for scoped EJPs proved to be more inter-

tered while committing a transaction. Using AspectJ, there
is no mechanism for an aspect to require that a new type
of checked exception is handled at certain join points (the
opposite functionality, exception softening is provided, fur­
ther highlighting the one-sidedness of the advising method­
ology in the design of AspectJ). Additionally, there is no
mechanism to capture the state of local variables, except
as they are exposed as return values or arguments, limiting
the amount of local state that can be captured by a single
advice. This leads to complex (potentially fragile) multi­
stage advising patterns and other problems, discussed as
the state-point separation problem in [26].

In summary, while AspectJ provides mechanisms to effec­
tively separate cross-cutting concerns from base code, these
same mechanisms can introduce other problems affecting the
effectiveness of the software engineering process as a whole.

2.2 Introducing Explicit Join Points
To address the above challenges we introduce a new type of
join point into the quantification model - explicit join points
(EJPs). Unlike anonymous join points that are exposed au­
tomatically by the AspectJ compiler, EJPs are explicitly
declared by the programmer, given a unique name and sig­
nature, and referenced explicitly in the base code. Addi­
tionally, we allow EJPs to be scoped, empowering the ad­
vising of arbitrary blocks of code without increasing pointcut
fragility. Finally, we define ways in which EJPs can enforce
constraints, both on the base code referring to EJPs and on
the aspects that advise EJPs. Evaluation of the concept will
be reserved for future sections of the paper.

An explicit join point is a signature declared within an as­
pect, defining its properties, parameters, and constraints. In
it's simplest form, an EJP looks similar to a method dec­
laration in an interface and· is named by an identifier, can
return a value, has formals and a throws clause, and has a
new construct - the handles clause. The syntax for declaring
EJPs (simplified) is as follows: l

escaped] joinpoint <return type> <name>«formals »
[handles ... J [throws ... J;

The scoped modifier specifies that when the base code refer­
ences the EJP it must be associated with a block of code,
as will be shown below. The handles clause constrains aspect
implementers of the EJP, requiring that for each type in the
handles clause at least one aspect implements an around ad­
vice catching that exception type. This constraint can be
enforced at compilation to ensure checked exception safety
is preserved. In the base code use of a scoped EJP with a
handles clause has the same semantics on checked exceptions
as if the block of code in the scope of the EJP reference
were contained inside a try-catch block with catch blocks for
each type in the handles clause. Additional ways in which the
EJP can be parameterized have been explored (e.g. pointcut
parameters) but are outside the scope of this paper.

References to scoped EJPs in the base code are similar to
static method invocations and anonymous class creation:

lFull syntax definitions can be found in [15J

<AspectName>.<EJP name>C<formals» {

} ;

Finally, additional primitive pointcut designators are de­
fined, ejp and ejpscoped, allowing pointcuts to match EJP
references in a stable manner. For example:

pointcut needsMemoization():
callCValue "'C ..))

&& cflowCexecutionCejpscopeCmemoizeCalls)))

This pointcut matches calls to any function returning the
type Value in the control flow of the memoizeCalls scoped
EJP. This example sketches how the base code and aspect
can cooperate to robustly advise arbitrary blocks of code.

To promote modularity, EJPs should be defined in abstract
aspects separated from any concrete advice, thus becoming
an explicit form of an abstract cross-cutting interface. All
known principles of designing modular interfaces apply here,
now keeping in mind the interface will be implemented by
one or more aspects and the new power offered by scoped
EJPs.

Figure 1 visualizes the difficulty in implementing a cross­
cutting concern using AspectJ when that concern needs to
access state only available across multiple (dissimilar) join
points and how that compares to using EJPs. It also shows
how scoped EJPs compare.

A well known alternative to advising arbitrary blocks of code
is to extract the fragment of code that should be advised
into a new method, exposing needed local variable values
and allowing advising of that block of code. However, this
has empirically been shown to decrease cohesion, sometimes
significantly. [8] Additionally, such a technique causes un­
necessary tangling in the base code when more than one
concern requires the refactoring of methods. As the number
of complex concerns increases, the base code can become
splintered and hard to refactor. Another issue is that the
signature of the newly created method is replicated each
time a new fragment of code is extracted, making it more
difficult if that signature must change. In contrast, EJPs
are minimally intrusive into the base code and EJP signa­
tures are only defined once. The benefits of EJPs vs. the
traditional method are explored in our empirical case study.

2.3 Implementation
We implemented EJPs in AspectJ by extending the Aspect­

Bench research compiler (abc) [1]. To encourage industrial
use and feedback, peer evaluation, and future research, and
in agreement with the licensing style of abc and its dependent
packages, our EJP extension with source code is freely avail­
able for download and distribution under the GNU Lesser
General Public License (LGPL) [15].

Support for non-scoped EJPs was straightforward via ab­
stract syntax tree rewriting and by extending the type sys­
tem, while support for scoped EJPs proved to be more inter-

Aspect A1 8 1
Class C

Aspect A

(a) AspectJ approach (b) AspectJ with EJPs approach (c) Advising arbitrary blocks using EJPs

Figure 1: Visualization of t h e differences between traditional AspectJ join points a n d Explicit Jo in Points

esting. Our approach lifts the code within the scoped EJP
and places it into a new inner class. Due to the limitations
of Java, references to formals and local variables declared
outside the EJP scope are converted into fields in the in-
ner class. Code is generated to instantiate the inner class,
populate its fields, call the method with the lifted code, and
copy changed field values back to local variables.

Although our technique requires a new inner class object
to be instantiated every time a scoped EJP is entered, this
runtime overhead is mitigated by fast allocation and escape-
analysis optimizations in modern JVMs [13] (allowing heap
allocation to be converted to stack allocation). Alternative
implementation strategies, such as modifying the around
weaver to treat EJP scopes as new dynamic contexts using
mechanisms along the lines of [20] could facilitate additional
compile-time optimization.

3. CASE STUDY SETTING
A recent study [8] (herein termed the AspectJ study) quan-

tatatively compared the benefits and drawbacks of using
AspectJ to implement exception handling in an oblivious
manner. In their study four applications were refactored
and then evaluated to see how cohesion, coupling, concise-
ness, and separation of concerns were affected. We build
upon this study by refactoring three of the four applications
using EJPs to implement exception handling, starting from
source code provided by the authors of the AspectJ study.
We then evaluate the effectiveness of EJPs using a superset
of the metrics employed in the AspectJ study.

3.1 Technique
In the AspectJ study exception handling code was refac-
tored according to the following strategy: New advice were
created for each catch or f i n a l l y block, and advice were then
combined where reuse was possible. Advice were organized
so that exception handling logic for either a single class, a
single package, or a single concern were contained within a
single aspect. Exception detection code was not aspectized.

Our strategy for refactoring closely follows that of the As-
pectJ study for both advice creation and organization, prop-
erly modified to exploit the benefits of EJPs by also treat-
ing a generic exception handling aspect, free of application-
specific types and code, and using EJPs from that aspect
whenever possible. The parameterization provided by EJPs
allowed for modeling of many common exception handling

patterns while still remaining generic and reuseable.

Rather than using a mixture of oblivious aspects and EJPs
we used EJPs exclusively so the differences between the ap-
proaches would be highlighted, and this approach also pre-
serves checked exceptions without requiring softening.

As in the AspectJ study, exception handlers were imple-
mented using after advice when possible, reverting to around
advice when exceptions had to be caught but not propa-
gated. The following trivial example demonstrates the gen-
eral pattern of our approach:

c lass C aspect A I
void m 0 throws . . . I scoped joinpoint ejpH0

t r y {/*body*/) handles E throws ... ;
catch(E e) {. . .) ==> void around0 throws . . . :

> c a l l (ejpscope (ejpH)) I
> try{ proceed();)

catch(E e) I . . .)
1

>
c l a s s C I

void m 0 throus . . . I
A .ejpHO </*body*/)

>

In both our study and the AspectJ study the refactoring was
semantics-preserving, such that the before and after versions
of the code will behave the same way and produce the same
output across all possible executions (including those hav-
ing exceptional conditions). This constraint ensures a fair
comparison between the different versions.

3.2 Target Applications
In our study we have refactored two object-oriented applica-
tions and one aspect-oriented application using EJPs. These
same applications were refactored in the AspectJ study. They
were chosen by the authors of the AspectJ study because
they are representative of real-world applications that ex-
hibit a variety of exception handling strategies, each with a
different mixture of cross-cutting concerns.

The first application is a subset of Telestrada, a travelor
information system originally implemented in Java (220t
classes and interfaces and about 3400 LOC).The second ap-
plication is Java Pet Store - a demo application for the J2EE
platform that showcases how to build robust enterprise ap-
plications (340t classes and interfaces and 17800 LOC).

r--AS";;.CtA'---­
Ii:l

AspectA1

(a) AspectJ approach

I

Aspect A
ClassC

116.@ I/.

(c) Advising arbitrary blocks using EJPs

AspectA2

Advlc:eccc1 @@®@

(b) AspectJ with EJPs approach

CI!t9sC

@@ V
MtU10dA lS<ElG

AspectA2
114,@ 1~

2

CCQQBv=TI
3,__

Class C AdvIce ccc1 Q @ 0 Q

",@""Ill::=__""""'"""//!I n:, :~0i@,;,"~i,
Method A $ ® C U! !2.(Q 1
111,@$@ 11/

Figure 1: Visualization of the differences between traditional AspectJ join points and Explicit Join Points

patterns while still remaining generic and reuseable.

Rather than using a mixture of oblivious aspects and EJPs
we used EJPs exclusively so the differences between the ap­
proaches would be highlighted, and this approach also pre­
serves checked exceptions without requiring softening.

As in the AspectJ study, exception handlers were imple­
mented using after advice when possible, reverting to around
advice when exceptions had to be caught but not propa­
gated. The followmg trivial example demonstrates tile gen­
eral pattern of our approach:

esting. Our approach lifts the code within the scoped EJP
and places it into a new inner class. Due to the limitations
of Java, references to formals and local variables declared
outside the EJP scope are converted into fields in the in­
ner class. Code is generated to instantiate the inner class,
populate its fields, call the method with the lifted code, and
copy changed field values back to local variables.

Although our technique requires a new inner class object
to be instantiated every time a scoped EJP is entered, this
runtime overhead is mitigated by fast allocation and escape­
analysis optimizations in modern JVMs [13] (allowing heap
allocation to be converted to stack allocation). Alternative
implementation strategies, such as modifying the around
weaver to treat EJP scopes as new dynamic contexts using
mechanisms along the lines of [20] could facilitate additional
compile-time optimization.

class C
void mO throws ... {

try {/>body>/}
catch(E e) { ... } ~~>

aspect A {
scoped joinpoint ejpHO

handles E throws ;
void aroundO throws :

call (ejpScope (ejpH» {
try{ proceed(); }
catch(E e) { ... }

3. CASE STUDY SETTING
A recent study [8] (herein termed the AspectJ study) quan­

tatatively compared the benefits and drawbacks of using
AspectJ to implement exception handling in an oblivious
manner. In their study four applications were refactored
and then evaluated to see how cohesion, coupling, concise­
ness, and separation of concerns were affected. We build
upon this study by refactoring three of the four applications
using EJPs to implement exception handling, starting from
source code provided by the authors of the AspectJ study.
We then evaluate the effectiveness of EJPs using a superset
of the metrics employed in the AspectJ study.

}

}
class C {

void mO throws ... {
A.ejpHO {/>body>/}

}

}

In both our study and the AspectJ study the refactoring was
semantics-preserving, such that the before and after versions
of the code will behave the same way and produce the same
output across all possible executions (including those hav­
ing exceptional conditions). This constraint ensures a fair
comparison between the different versions.

3.1 Technique
In the AspectJ study exception handling code was refac­
tored according to the following strategy: New advice were
created for each catch or finally block, and advice were then
combined where reuse was possible. Advice were organized
so that exception handling logic for either a single class, a
single package, or a single concern were contained within a
single aspect. Exception detection code was not aspectized.

Our strategy for refactoring closely follows that of the As­
pectJ study for both advice creation and organization, prop­
erly modified to exploit the benefits of EJPs by also creat­
ing a generic exception handling aspect, free of application­
specific types and code, and using EJPs from that aspect
whenever possible. The parameterization provided by EJPs
allowed for modeling of many common exception handling

3.2 Target Applications
In our study we have refactored two object-oriented applica­
tions and one aspect-oriented application using EJPs. These
same applications were refactored in the AspectJ study. They
were chosen by the authors of the AspectJ study because
they are representative of real-world applications that ex­
hibit a variety of exception handling strategies, each with a
different mixture of cross-cutting concerns.

The first application is a subset of Telestrada, a travelor
information system originally implemented in Java (220+
classes and interfaces and about 3400 LOC).The second ap­
plication is Java Pet Store - a demo application for the J2EE
platform that showcases how to build robust enterprise ap­
plications (340+ classes and interfaces and 17800 LaC).

Table 1: Met]

A t t r i b u t e s

Coup l ing

The final application is Health Watcher, a web-based infor-
mation system. This application was originally implemented
in AspectJ and has aspects for concurrency control, distribu-
tion, persistence, and some exception handling (which were
converted to use EJPs). This application consists of 36 as-
pects, 96 classes and interfaces, and 6600 LOC.

3.3 Metrics Suite
Recently there has been increased interest in empirically
evaluating aspect-oriented software. AOP specific metrics
have been proposed in [23, 5, 28]and used within empirical
case studies of aspect-oriented software such as [8, 4, 12, 111.

M e t r i c s

Coupling Between Modules

The metrics used in this study, are a superset of those used
in the AspectJ study, being supplemented by metrics pro-
posed in [5]. Table 1 overviews our primary metrics, focus-
ing on coupling, cohesion, size, and separation of concern^.^
The cohesion, coupling, and size metrics are variants of the
well known CK metrics [6] extended to support AspectJ
concepts.[23] We also use aspect-specific coupling metrics
as propos'ed in [5] to better understand pointcut induced
coupling. The separation of concern metrics are introduced
in [23] and model the scattering of a concern (e.g. exception
handling) across modules and operations, and also model
the interleaving of a concern across lines of code. Addition-
ally, we introduce the concern lines of code metric to better
understand code size for just exception handling.

Defini t ion
Number of modules declaring methods or fields potentially called or accessed by
another module.

Coupling on Intercepted Modules Number of modules explicitly named within pointcuts.

Cohesion Lack of Cohesion in Operations Number of pairs of methods accessing different fields minus number of pairs of
methods accessing common fields.

Lines of Code Number of uniformly formatted lines of code, excluding whitespace and comments.

The metrics were calculated for all three versions of each of
the three target applications, primarily using the aopmetrics
too:l. [24]. This tool has slightly different heuristics for some
metrics (e.g. LOC) than in the AspectJ study, but any
differences are minor, and the same trends and degrees of
change can be observed within the data.

S ize

Separation of
Concerns

4. QUANTITATIVE RESULTS
This section presents the results of the empirical metrics, or-
ganized by attribute. The data are presented using stacked
bar graphs, allowing for inspecting of the contribution of
the base code, exception handling aspects, and other as-
pects (only in Health Watcher) to each metric. In addition
to analyzing the total metric values, additional insight can
be gained by inspecting the sub-totals for just the exception
handling aspects. In all cases lower values are better.

Results for metrics are given in the following order: coupling

Concern Lines of Code
Number of Operations
Concern Diffusion over Modules
Concern Diffusion over Operations
Concern Diffusion over LOC

2 ~ e r e i n we use the term module to refer to interfaces,
classes, and aspects.

Subset of Lines of Code used to implement a specific concern.
Number of declared methods and advice.
Number of modules that implement a concern or reference one that does.
Number of operations that implement a concern or reference one that does.
Number of transitions between one concern to another across all lines of code.

:ic definitions

and cohesion, size, and separation of concerns. From hence-
forth, metric results will always be listed in the following
order: Telestrada, Java Pet Store, Health Watcher.

4.1 Coupling and Cohesion Metrics
Figure 2 shows the results for the coupling and cohesion
metrics. Careful inspection of the results show that in the
EJP version there is significantly less coupling between the
aspects and base code, and that there are significant im-
provements in cohesion in the EJP version over the AspectJ
version. Overall the total coupling of a system can increase
or decrease, depending upon factors discussed below.

The most significant indicator of the decrease in coupling
between aspects and base code is the impact of EJPs on
the Coupling on Intercepted Modules (CIM) metric. This
metric counts the number of modules explicitly named in
pointcuts.Compared to the AspectJ versions, the EJP ver-
sions have a reduction of loo%, loo%, and 57% in CIM.The
exception handling aspects in the AspectJ version caused
disproportionate increases in CIM. For example, these as-
pects in Health Watcher AspectJ caused a 120% increase in
CIM but account for only 12% of the number of aspects.

For all AspectJ versions the exception handling aspects were
almost all tightly coupled to their advisees, as indicated by
the significant increases in their CIM values. Beyond refer-
ring explicitly to base code classes in pointcuts (increasing
CIM), these pointcuts were sometimes quite complex, hav-
ing to capture exact call sites or field accesses within specific
methods, for example to deal with statepoint separation
scenarios [26]. The AspectJ study did take into account this
particular metric, although they do mention a "hidden cou-
pling" between the aspects and the base code. This metric
clarifies the strength of that hidden coupling.

Just looking at the numbers, EJPs did not consistently per-
form well for total Coupling Between Modules (CBM) met-
ric. Compared to the AspectJ versions the EJP versions
differed by -5%, +8%, and +14%.Compared to the original
versions, EJP versions differed by -9%, +9%, and +13%.

This metric counts the number of other modules coupled to
a module through field accesses, method calls, or EJP refer-
ences and was affected by three factors for the EJP versions.
First, the use of parameterized EJPs facilitate generic excep-
tion handling logic (which are free from couplings), reducing
the coupling within this logic significantly. For example, the
CBM metric value for exception handling aspects for Java

Attributes Metrics Definition

Coupling
Coupling Between Modules Number of modules declaring methods or fields potentially called or accessed by

another module.
Coupling on Intercepted Modules Number of modules explicitly named within pointcuts.

Cohesion Lack of Cohesion in Operations Number of pairs of methods accessing different fields minus number of pairs of
methods accessing common fields.

Lines of Code Number of uniformly formatted lines of code, excluding whitespace and comments.

Size Concern Lines of Code Subset of Lines of Code used to implement a specific concern.
Number of Operations Number of declared methods and advice.

Separation of
Concern Diffusion over Modules Number of modules that implement a concern or reference one that does.

Concerns Concern Diffusion over Operations Number of operations that implement a concern or reference one that does.
Concern Diffusion over LOC Number of transitions between one concern to another across all lines of code.

Table 1: Metric definitions

The final application is Health Watcher, a web-based infor­
mation system. This application was originally implemented
in AspectJ and has aspects for concurrency control, distribu­
tion, persistence, and some exception handling (which were
converted to use EJPs). This application consists of 36 as­
pects, 96 classes and interfaces, and 6600 LaC.

3.3 Metrics Suite
Recently there has been increased interest in empirically
evaluating aspect-oriented software. AOP specific metrics
have been proposed in [23, 5, 28]and used within empirical
case studies of aspect-oriented software such as [8, 4, 12, 11].

The metrics used in this study, are a superset of those used
in the AspectJ study, being supplemented by metrics pro­
posed in [5]. Table 1 overviews our primary metrics, focus­
ing on coupling, cohesion, size, and separation of concerns.2

The cohesion, coupling, and size metrics are variants of the
well known CK metrics [6] extended to support AspectJ
concepts. [23] We also use aspect-specific coupling metrics
as proposed in [5] to better understand pointcut induced
coupling. The separation of concern metrics are introduced
in [23] and model the scattering of a concern (e.g. exception
handling) across modules and operations, and also model
the interleaving of a concern across lines of code. Addition­
ally, we introduce the concern lines of code metric to better
understand code size for just exception handling.

The metrics were calculated for all three versions of each of
the three target applications, primarily using the aopmetrics
tool [24]. This tool has slightly different heuristics for some
metrics (e.g. LaC) than in the AspectJ study, but any
differences are minor, and the same trends and degrees of
change can be observed within the data.

4. QUANTITATIVE RESULTS
This section presents the results of the empirical metrics, or­

ganized by attribute. The data are presented using stacked
bar graphs, allowing for inspecting of the contribution of
the base code, exception handling aspects, and other as­
pects (only in Health Watcher) to each metric. In addition
to analyzing the total metric values, additional insight can
be gained by inspecting the sub-totals for just the exception
handling aspects. In all cases lower values are better.

Results for metrics are given in the following order: coupling

2Herein we use the term module to refer to interfaces,
classes, and aspects.

and cohesion, size, and separation of concerns. From hence­
forth, metric results will always be listed in the following
order: Telestrada, Java Pet Store, Health Watcher.

4.1 Coupling and Cohesion Metrics
Figure 2 shows the results for the coupling and cohesion
metrics. Careful inspection of the results show that in the
EJP version there is significantly less coupling between the
aspects and base code, and that there are significant im­
provements in cohesion in the EJP version over the AspectJ
version. Overall the total coupling of a system can increase
or decrease, depending upon factors discussed below.

The most significant indicator of the decrease in coupling
between aspects and base code is the impact of EJPs on
the Coupling on Intercepted Modules (CIM) metric. This
metric counts the number of modules explicitly named in
pointcuts.Compared to the AspectJ versions, the EJP ver­
sions have a reduction of 100%, 100%, and 57% in CIM.The
exception handling aspects in the AspectJ version caused
disproportionate increases in CIM. For example, these as­
pects in Health Watcher AspectJ caused a 120% increase in
CIM but account for only 12% of the number of aspects.

For all AspectJ versions the exception handling aspects were
almost all tightly coupled to their advisees, as indicated by
the significant increases in their CIM values. Beyond refer­
ring explicitly to base code classes in pointcuts (increasing
CIM), these pointcuts were sometimes quite complex, hav­
ing to capture exact call sites or field accesses within specific
methods, for example to deal with state-point separation
scenarios [26]. The AspectJ study did take into account this
particular metric, although they do mention a "hidden cou­
pling" between the aspects and the base code. This metric
clarifies the strength of that hidden coupling.

Just looking at the numbers, EJPs did not consistently per­
form well for total Coupling Between Modules (CBM) met­
ric. Compared to the AspectJ versions the EJP versions
differed by -5%, +8%, and +14%.Compared to the original
versions, EJP versions differed by -9%, +9%, and +13%.

This metric counts the number of other modules coupled to
a module through field accesses, method calls, or EJP refer­
ences and was affected by three factors for the EJP versions.
First, the use of parameterized EJPs facilitate generic excep­
tion handling logic (which are free from couplings), reducing
the coupling within this logic significantly. For example, the
CBM metric value for exception handling aspects for Java

3-

3- m
a .m

ta a
n

*
w

a
a

I.", U "P J l r . 11 E1P Jaw1 11 EIP lm 11 U P Oq. 11 EJP

Telestrada Pet Store Health Watcher Telestrada Pet Store Health Watcher

(a) Coupling Between Modules (b) Coupling on Intercepted Modules (c) Lack of Cohesion in Operations

Figure 2: Results for coupling a n d cohesion metrics (lower is be t te r)

Pet Store for the EJP version was reduced by 80% com-
pared to the AspectJ version. Second, parameterized EJPs
allow base code to customize the generic exception handling
EJPs without coupling links due to removed handler logic,
decreasing the CBM metric value in the base code (e.g. the
reduction for Telestrada was 9%). Third, EJP references in
base code increased the CBM metric, as each base code class
is coupled to the aspect interface containing the EJP dec-
larations. In Java Pet Store and Health Watcher, this fac-
tor outweighed the others, resulting in a higher total CBM.
These results indicate the need to carefully design the EJP
declarations to prevent unnecessary couplings.

In all cases the Lack of Cohesion of Operations (LCO) for
the EJP version compared to the original version either im-
proved or remained the same. The improvement in cohe-
sion by 6% in the EJP version vs the original version for
Telestrada results from the removal of fields in base code no
longer needed to implement exception handling.

Compared to the AspectJ version, the EJP version improved
cohesion in all cases, sometimes significantly (from 8% to
22%). The decreases in cohesion in the AspectJ version
are caused by the need to extract new methods to expose
advisable join points (e.g. t ry -ca tch blocks in loops, etc.). As
dicussed in [8], these new methods are a negative byproduct
of the AspectJ refactoring, and is one empirical indicator of
the benefits of scoped EJPs.

4.2 Size Metrics
Figure 3 shows the results for the size metrics. Lines of code
decreased for all applications for all versions, except com-
pared to the AspectJ version for Health Watcher. Concern
lines of code consistently decreased, usually significantly.
Number of operations always increased vs the original ver-
sion, but was always lower than the AspectJ version.

Compared to the original version, Lines of Code for the EJP
versions differed by -6%, -4%, and -4%. Compared to the
AspectJ version they differed by -4%, -4%, and +3%.

The Concern Lines of Code metric counts lines of code that
implement the exception handling concern, including EJP
references in base code. The EJP version performed signif-
icantly better than both the original and AspectJ versions
for Telestrada and Java Pet Store (by 32% and 46%), while
only a 6% reduction was observed for Health Watcher.

First, greater code reuse facilitated by generic exception
handling EJPs reduced the number of lines of code, espe-
cially for the exception handling aspects (the data showing
EJPs performing better than AspectJ for this subtotal by
62.1%, 77%, and 61.9%). These significant reductions com-
bined with the constraint that the semantics of the applica-
tion remain exactly the same across all versions imply higher
levels of reuse in the EJP versions. This increased level of
reuse was made possible by the parameterization of EJPs.
Second, true to our technique, in Health Watcher any obliv-
ious exception handling aspects were converted to use EJPs,
increasing lines of code due to EJP references.

The total Number of Operations for the EJP versions in-
creased by 4%, 2%, and 6% compared to the original ver-
sions. The EJP versions were consistently better than the
the AspectJ versions, with differences of -6%, -8%, and -5%.

The increase for the AspectJ and EJP versions vs the orig-
inal versions are an expected byproduct of the refactoring,
due to inlined code in ca tch blocks being extracted to advice.

The improvement of the EJP versions vs the AspectJ ver-
sions was caused by (a) the higher level of reuse of excep-
tion handling logic (there were 36.4%, 71%, and 36.1% fewer
handler operations for the EJP version), and (b) the use of
scoped EJPs avoiding the creation of new methods to expose
new join points (causing improvements of 2% to 3%).

4.3 Separation of Concerns Metrics
Figure 4 gives the results for the Separation of Concerns
metrics. The results here are as expected, and clearly show
that the use of Explicit Join Points does not facilitate pure
obliviousness, as commonly defined by traditional AOP. We
argue instead that EJPs provide a lesser level of oblivious-
ness, feature obliviousness [26], and that these metrics are
not reflective of this lesser level of obliviousness.

Concern Diffusion over Modules (CDoM) measures the num-
ber of modules that contain exception handling logic or a
reference to a method or EJP that implements such logic.
As all handler logic in the base code has been replaced with
EJP references and then new aspects were added to imple-
ment the EJPs, it is expected that this metric differed by
+23%, +9.1%, and +8.5% between the EJP and original
versions. Additionally, the AspectJ versions showed an im-
provement over the EJP versions by 33%, 53%, and 80%.

Two EJP induced factors affect the lines of code metrics: Similarly and for the same reasons, the results for the Con-

JIYlI AJ EJp

Telestrada
0._

Pet Store Health Watcher Telestrada
Org.

Pet Store Health Watcher Telestrada
0._

Pet Store Health Watcher

(a) Coupling Between Modules (b) Coupling on Intercepted Modules (c) Lack of Cohesion in Operations

Figure 2: Results for coupling and cohesion metrics (lower is better)

Pet Store for the EJP version was reduced by 80% com­
pared to the AspectJ version. Second, parameterized EJPs
allow base code to customize the generic exception handling
EJPs without coupling links due to removed handler logic,
decreasing the CBM metric value in the base code (e.g. the
reduction for Telestrada was 9%). Third, EJP references in
base code increased the CBM metric, as each base code class
is coupled to the aspect interface containing the EJP dec­
larations. In Java Pet Store and Health Watcher, this fac­
tor outweighed the others, resulting in a higher total CBM.
These results indicate the need to carefully design the EJP
declarations to prevent unnecessary couplings.

In all cases the Lack of Cohesion of Operations (LCO) for
the EJP version compared to the original version either im­
proved or remained the same. The improvement in cohe­
sion by 6% in the EJP version vs the original version for
Telestrada results from the removal of fields in base code no
longer needed to implement exception handling.

Compared to the AspectJ version, the EJP version improved
cohesion in all cases, sometimes significantly (from 8% to
22%). The decreases in cohesion in the AspectJ version
are caused by the need to extract new methods to expose
advisable join points (e.g. try-catch blocks in loops, etc.). As
dicussed in [8], these new methods are a negative byproduct
of the AspectJ refactoring, and is one empirical indicator of
the benefits of scoped EJPs.

4.2 Size Metrics
Figure 3 shows the results for the size metrics. Lines of code
decreased for all applications for all versions, except com­
pared to the AspectJ version for Health Watcher. Concern
lines of code consistently decreased, usually significantly.
Number of operations always increased vs the original ver­
sion, but was always lower than the AspectJ version.

Compared to the original version, Lines of Code for the EJP
versions differed by -6%, -4%, and -4%. Compared to the
AspectJ version they differed by -4%, -4%, and +3%.

The Concern Lines of Code metric counts lines of code that
implement the exception handling concern, including EJP
references in base code. The EJP version performed signif­
icantly better than both the original and AspectJ versions
for Telestrada and Java Pet Store (by 32% and 46%), while
only a 6% reduction was observed for Health Watcher.

Two EJP induced factors affect the lines of code metrics:

First, greater code reuse facilitated by generic exception
handling EJPs reduced the number of lines of code, espe­
cially for the exception handling aspects (the data showing
EJPs performing better than AspectJ for this subtotal by
62.1%, 77%, and 61.9%). These significant reductions com­
bined with the constraint that the semantics of the applica­
tion remain exactly the same across all versions imply higher
levels of reuse in the EJP versions. This increased level of
reuse was made possible by the parameterization of EJPs.
Second, true to our technique, in Health Watcher any obliv­
ious exception handling aspects were converted to use EJPs,
increasing lines of code due to EJP references.

The total Number of Operations for the EJP versions in­
creased by 4%, 2%, and 6% compared to the original ver­
sions. The EJP versions were consistently better than the
the AspectJ versions, with differences of -6%, -8%, and -5%.

The increase for the AspectJ and EJP versions vs the orig­
inal versions are an expected byproduct of the refactoring,
due to inlined code in catch blocks being extracted to advice.

The improvement of the EJP versions vs the AspectJ ver­
sions was caused by (a) the higher level of reuse of excep­
tion handling logic (there were 36.4%, 71%, and 36.1% fewer
handler operations for the EJP version), and (b) the use of
scoped EJPs avoiding the creation of new methods to expose
new join points (causing improvements of 2% to 3%).

4.3 Separation of Concerns Metrics
Figure 4 gives the results for the Separation of Concerns
metrics. The results here are as expected, and clearly show
that the use of Explicit Join Points does not facilitate pure
obliviousness, as commonly defined by traditional AOP. We
argue instead that EJPs provide a lesser level of oblivious­
ness, feature obliviousness [26], and that these metrics are
not reflective of this lesser level of obliviousness.

Concern Diffusion over Modules (CDoM) measures the num­
ber of modules that contain exception handling logic or a
reference to a method or EJP that implements such logic.
As all handler logic in the base code has been replaced with
EJP references and then new aspects were added to imple­
ment the EJPs, it is expected that this metric differed by
+23%, +9.1%, and +8.5% between the EJP and original
versions. Additionally, the AspectJ versions showed an im­
provement over the EJP versions by 33%, 53%, and 80%.

Similarly and for the same reasons, the results for the Con-

1 (a) Lines of Code (b) Concern Lines of Code (c) Number of Operations 1
Figure 3: Results for size metrics (lower is be t te r)

1 Telestrada Pet Store Health Watcher Telestrada Pet Store Health Watcher Telestrada Pet Store ~ e a l t h Watcher 1
(a) Concern Diffusion over Modules (b) Concern Diffusion over Operations (c) Concern Diffusion over LOC

Figure 4: Results for separat ion of concerns metrics (lower is be t te r)

cern Diffusion over Operations (CDoO) differed by +33%,
+ l l % , and +13% between the EJP and original versions
and by +27%, +40%, and +120% between the EJP and As-
pectJ versions. Note that considering only handler aspects
for both the CDoM metric and the CDoO metric the differ-
ences between the EJP versions and the AspectJ versions
actually decreased significantly, with the differences ranging
from -20% to -72% for CDoM and -63% to -84% for CDoO.

The Concern Diffusion over Lines of Code (CDoLOC) metric
counts the number of concern switches (between exception
handling and some other concern). The differences between
the EJP versions and the original versions were -51%, -47%,
and -39%. The AspectJ versions showed an improvement
over the EJP versions by loo%, 86%, and 100%.

In most modules refactoring the original version with EJPs
caused this metric to be decreased by exactly one half, as
each try-catch block (usually contributing four switches) was
converted into one EJP reference (contributing two switches).
In some modules the decrease was less than 50% because
of the contiguous alignment of catch blocks belonging to
t r y blocks that started at different places. In the case of
Telestrada, the removal of exception handling code existing
outside catch blocks allowed a decrease greater than 50%.

While it is clear that the exception handling concern is still
present in the base code, this presence has been greatly re-
duced, in fact to the point where only the existence of the
concern and minimal contextual information remain. (Note
that the size of the presence is not reflected in CDoM and
CDoO.) In cases where required contextual information is
not exposed by any one join point, we argue that it is less
burdensome for the base code to explicitly provide it, rather
than having the aspect reconstruct it (as discussed in [26]).

This decrease in pure obliviousness trades for benefits along
other important dimensions, as discussed in this paper. Ad-
ditionally, the level of traditional AOP obliviousness may
not be desirable if the concern must constrain the base code
(e.g. introduce new checked exceptions). EJPs instead pro-
vide feature obliviousness, as aspects implementing EJPs
are oblivious to base code referring to the EJPs they match.
This kind of obliviousness facilitates higher aspect modu-
larity (i.e. decreased aspect-base code coupling) and less
fragile pointcuts. Finally, adding EJPs as a language fea-
ture does not preclude using traditional, oblivious aspects,
but rather adds flexibility within engineering tradeoffs.

5. QUALITATIVE RESULTS
Herein we present qualitative lessons learned, discussing

safety, reusability, comprehensibility, and extendibility.

5.1 Safety
In the AspectJ version when exception handlers were moved
to aspects any checked exceptions handled by the aspects
had to be softened (wrapped by the AspectJ compiler in an
unchecked exception) so that the base code could compile.
When implementing exception handling aspects in AspectJ
a tradeoff between generality and safety must be made.

On the one hand, very specific pointcuts can be created that
precisely capture the exact method being advised (including
both the method name and signature). These same point-
cuts can be used to both soften exceptions and advise base
code, ensuring that if the base code changes and handler
advice no longer applies to a method, then exceptions are
no longer softened, causing a compile error and preserving
exception safety. However, this strategy creates a tight cou-
pling between pointcuts and base code, requiring that as

Telestrada

1

,=<'..... ,I_A8paetll
I!ll!!i!!m EH A8peetll

Or9. AJ EJP

Pet Store Health Watcher Telestrada
011- AJ EJP

Pet Store Health Watcher Telestrada
011 AJ EJP

Pet Store Health Watcher

(a) Lines of Code (b) Concern Lines of Code (c) Number of Operations

Figure 3: Results for size metrics (lower is better)

Telestrada

I
=«u... ,I,_ Aspecta

flmlZ!I EH Aspecta

"lJ
Org. AJ EJP

Pet store Health Watcher
J."I AJ EJp

Telestrada

1
=<...... ,I_ Aspeds

ISm EHAspectll

I
Org. AJ EJP

Pet Store Health Watcher Telestrada
J.".~EJP
Pet Store

0'9. AJ EJP

Health Watcher

(a) Concern Diffusion over Modules (b) Concern Diffusion over Operations (c) Concern Diffusion over LOC

Figure 4: Results for separation of concerns metrics (lower is better)

cern Diffusion over Operations (CDoO) differed by +33%,
+ 11 %, and + 13% between the EJP and original versions
and by +27%, +40%, and +120% between the EJP and As­
pectJ versions. Note that considering only handler aspects
for both the CDoM metric and the CDoO metric the differ­
ences between the EJP versions and the AspectJ versions
actually decreased significantly, with the differences ranging
from -20% to -72% for CDoM and -63% to -84% for CDoO.

The Concern Diffusion over Lines of Code (CDoLOC) metric
counts the number of concern switches (between exception
handling and some other concern). The differences between
the EJP versions and the original versions were -51%, -47%,
and -39%. The AspectJ versions showed an improvement
over the EJP versions by 100%, 86%, and 100%.

In most modules refactoring the original version with EJPs
caused this metric to be decreased by exactly one half, as
each try-catch block (usually contributing four switches) was
converted into one EJP reference (contributing two switches).
In some modules the decrease was less than 50% because
of the contiguous alignment of catch blocks belonging to
try blocks that started at different places. In the case of
Telestrada, the removal of exception handling code existing
outside catch blocks allowed a decrease greater than 50%.

While it is clear that the exception handling concern is still
present in the base code, this presence has been greatly re­
duced, in fact to the point where only the existence of the
concern and minimal contextual information remain. (Note
that the size of the presence is not reflected in CDoM and
CDoO.) In cases where required contextual information is
not exposed by anyone join point, we argue that it is less
burdensome for the base code to explicitly provide it, rather
than having the aspect reconstruct it (as discussed in [26]).

This decrease in pure obliviousness trades for benefits along
other important dimensions, as discussed in this paper. Ad­
ditionally, the level of traditional AOP obliviousness may
not be desirable if the concern must constrain the base code
(e.g. introduce new checked exceptions). EJPs instead pro­
vide feature obliviousness, as aspects implementing EJPs
are oblivious to base code referring to the EJPs they match.
This kind of obliviousness facilitates higher aspect modu­
larity (i.e. decreased aspect-base code coupling) and less
fragile pointcuts. Finally, adding EJPs as a language fea­
ture does not preclude using traditional, oblivious aspects,
but rather adds flexibility within engineering tradeoffs.

5. QUALITATIVE RESULTS
Herein we present qualitative lessons learned, discussing

safety, reusability, comprehensibility, and extendibility.

5.1 Safety
In the AspectJ version when exception handlers were moved
to aspects any checked exceptions handled by the aspects
had to be softened (wrapped by the AspectJ compiler in an
unchecked exception) so that the base code could compile.
When implementing exception handling aspects in AspectJ
a tradeoff between generality and safety must be made.

On the one hand, very specific pointcuts can be created that
precisely capture the exact method being advised (including
both the method name and signature). These same point­
cuts can be used to both soften exceptions and advise base
code, ensuring that if the base code changes and handler
advice no longer applies to a method, then exceptions are
no longer softened, causing a compile error and preserving
exception safety. However, this strategy creates a tight cou­
pling between pointcuts and base code, requiring that as

base code changes related pointcuts must change also, be-
coming a maintenance burden for the aspect programmers.

On the other hand, pointcuts can be more general and try
to advise categories of exception handling scenarios (for ex-
ample, whenever method A is called and throws exception
B, throw exception C instead). This has the advantage that
pointcuts are less coupled to the base code.However, if in an
attempt to be more general the exception softening decla-
rations are not precise (e.g. softening Exception instead of a
specific subclass) or the pointcuts indicating when to soften
exceptions are different from those indicating when to advise
exceptions, then a checked exception can be softened by but
not handled by an aspect. This hazard can be avoided by
using more precise pointcuts, but the price is an increased
coupling between the aspect and the base code.

With EJPs, this tradeoff between generality and safety is
not required. The signature of each EJP explicitly states
both which exceptions must be handled by some aspect ad-
vising the EJP and also indicates which checked exceptions
could be thrown by implementers of the EJP. In this way
the EJP models both the promises to and the requirements
of code that references the EJP. The combination of generics
and EJPs allow for parameterized exception handling that is
both generic and safe. Examples EJP declarations are given
in Figure 5.3 EJPs like these provide for full checked excep-
tion safety while also allowing pointcuts to advise general
exception handling patterns based solely on the EJP name.

Our study also shows supporting evidence for the feasibil-
ity of creating "EJP interfaces" that applications could de-
pend upon even for complex concerns like exception han-
dling. This is possible with AspectJ, but only for simple
concerns need to advise single join points (not arbitrary
blocks of code), unless you refactor methods to expose new
join points. However, doing so decreases cohesion in the sys-
tem and complicates tangling issues when aspectizing other
cross-cutting concerns.1'81 The E J P strategy sidesteps these
issues, enhancing the power and modularity of generic aspect
interfaces and libraries (such as exception handling or trans-
actions). Even if a common set of EJPs cannot be agreed
upon between two different libraries for the same concern,
EJPs make it easier to write an adapter from one to the
other, as the number of EJPs to adapt is relatively small.

Along these lines, EJPs can be viewed as a mechanism to
explicitly model "feature contracts" in a feature oblivious
system [26]. The principle of information hiding [22] can
be invoked here, guiding EJP design so that hidden design
decisions do not impact the EJP signature.Conversely, EJPs
to explicitly expose points of extendibility, attaching specific
semantics to EJPs and thereby allowing "plugin aspects" to
flexibly modify or extend the behavior of base code. Similar
concepts, such as extension points in Eclipse, have already
been used in architectures with good results [3].

In summary, our experience has shown that EJPs enhance
reusability for aspectized exception handling and that EJPs
facilitate more powerful aspect interfaces and libraries.

scoped joinpoint <H> printAndRethrov(String msg);
scoped joinpoint <H> ignoreException0 handles H;
scoped joinpoint <H,T> convertException0

handles H throvs T;

Figure 5: Pseudo-code of example E J P declarations
for generic exception handling

5.2 Reusability
Reusability is an important goal in well engineered systems,
and was one of the original motivations of using aspects
to implement exception handling [21.]. However, in systems
with complex, application specific handler logic, the realized
level of reuse is lower than anticipated, being hindered by
application specific context (e.g. error messages), exception
types, and control flow differences. [8]

In contrast, the explicit presence of EJPs in the base code
allow for parameterization of the handler logic implemented
by aspects, allowing context and exception types to be ex-
plicitly communicated, as shown in Figure 5 . The generic
exception handling EJPs in our study were heavily reused,
accounting for 53%, 71%, and 90% of all EJP references.

Additionally, the generic exception handling EJPs and the
advice implementing them were free from any references to
application specific logic (implied by their CIM of 0) and
could be used in other applications without modification. In
contrast, in the AspectJ version only abstract aspects were
decoupled from the target applications, and were responsible
for handler logic only 16%, 0%, and 10% of the time.

3 ~ h e generic type variable declarations must actually follow
the form T extends Throvable but are omitted for space.

5.3 Comprehensibility and Readability
This section discusses the tradeoffs between comprehensibil-
ity and readability in base code for each approach.

The Java approach provides good comprehensibility with
weak readability, as handler logic is usually inlined within
catch and finally blocks. This makes it easy to comprehend
exactly how exceptional conditions will (or will not) be han-
dled. However, it does distract the reader with unnecessary
specifics about the handling of an exception. Also, in cer-
tain cases the handling concern was especially tangled (rem-
iniscent of error handling in languages without exceptions),
reducing readability and making refactoring more difficult.

In stark contrast, AspectJ provides good readability but
weaker comprehensibility. The oblivious implementation of
exception handling makes the primary functionality of the
base code easy to read and comprehend. However, com-
prehending the details of exception handling logic becomes
more complicated. Tools such as A J D T ~ assist in compre-
hending how join points in base code are advised. However,
the overall big picture is less clear because the scope of a
join point may not match handler scope. Also, as fragments
are extracted into new methods readability is reduced. [8]

Finally, the EJP version provides a compromise between the
two approaches. On the one hand, EJP references in the
base code clearly express error handling semantics (i.e. log-
ically attached to the EJP name) and the scope to which
those semantics apply, providing good comprehensibility.

base code changes related pointcuts must change also, be­
coming a maintenance burden for the aspect programmers.

On the other hand, pointcuts can be more general and try
to advise categories of exception handling scenarios (for ex­
ample, whenever method A is called and throws exception
B, throw exception C instead). This has the advantage that
pointcuts are less coupled to the base code.However, if in an
attempt to be more general the exception softening decla­
rations are not precise (e.g. softening Exception instead of a
specific subclass) or the pointcuts indicating when to soften
exceptions are different from those indicating when to advise
exceptions, then a checked exception can be softened by but
not handled by an aspect. This hazard can be avoided by
using more precise pointcuts, but the price is an increased
coupling between the aspect and the base code.

With EJPs, this tradeoff between generality and safety is
not required. The signature of each EJP explicitly states
both which exceptions must be handled by some aspect ad­
vising the EJP and also indicates which checked exceptions
could be thrown by implementers of the EJP. In this way
the EJP models both the promises to and the requirements
of code that references the EJP. The combination of generics
and EJPs allow for parameterized exception handling that is
both generic and safe. Examples EJP declarations are given
in Figure 5.3 EJPs like these provide for full checked excep­
tion safety while also allowing pointcuts to advise general
exception handling patterns based solely on the EJP name.

Our study also shows supporting evidence for the feasibil­
ity of creating "EJP interfaces" that applications could de­
pend upon even for complex concerns like exception han­
dling. This is possible with AspectJ, but only for simple
concerns need to advise single join points (not arbitrary
blocks of code), unless you refactor methods to expose new
join points. However, doing so decreases cohesion in the sys­
tem and complicates tangling issues when aspectizing other
cross-cutting concerns.I'8] The EJP strategy sidesteps these
issues, enhancing the power and modularity of generic aspect
interfaces and libraries (such as exception handling or trans­
actions). Even if a common set of EJPs cannot be agreed
upon between two different libraries for the same concern,
EJPs make it easier to write an adapter from one to the
other, as the number of EJPs to adapt is relatively small.

Along these lines, EJPs can be viewed as a mechanism to
explicitly model "feature contracts" in a feature oblivious
system [26]. The principle of information hiding [22] can
be invoked here, guiding EJP design so that hidden design
decisions do not impact the EJP signature.Conversely, EJPs
to explicitly expose points of extendibility, attaching specific
semantics to EJPs and thereby allowing "plugin aspects" to
flexibly modify or extend the behavior of base code. Similar
concepts, such as extension points in Eclipse, have already
been used in architectures with good results [3].

In summary, our experience has shown that EJPs enhance
reusability for aspectized exception handling and that EJPs
facilitate more powerful aspect interfaces and libraries.

Figure 5: Pseudo-code of example EJP declarations
for generic exception handling

In contrast, the explicit presence of EJPs in the base code
allow for parameterization of the handler logic implemented
by aspects, allowing context and exception types to be ex­
plicitly communicated, as shown in Figure 5. The generic
exception handling EJPs in our study were heavily reused,
accounting for 53%, 71%, and 90% of all EJP references.

5.2 Reusability
Reusability is an important goal in well engineered systems,
and was one of the original motivations of using aspects
to implement exception handling [21]. However, in systems
with complex, application specific handler logic, the realized
level of reuse is lower than anticipated, being hindered by
application specific context (e.g. error messages), exception
types, and control flow differences. [8]

Additionally, the generic exception handling EJPs and the
advice implementing them were free from any references to
application specific logic (implied by their CIM of 0) and
could be used in other applications without modification. In
contrast, in the AspectJ version only abstract aspects were
decoupled from the target applications, and were responsible
for handler logic only 16%, 0%, and 10% of the time.

3The generic type variable declarations must actually follow
the form T extends Throwable but are omitted for space.

5.3 Comprehensibility and Readability
This section discusses the tradeoffs between comprehensibil­
ity and readability in base code for each approach.

The Java approach provides good comprehensibility with
weak readability, as handler logic is usually inlined within
catch and finally blocks. This makes it easy to comprehend
exactly how exceptional conditions will (or will not) be han­
dled. However, it does distract the reader with unnecessary
specifics about the handling of an exception. Also, in cer­
tain cases the handling concern was especially tangled (rem­
iniscent of error handling in languages without exceptions),
reducing readability and making refactoring more difficult.

4http://www.eclipse.org/ajdt/

Finally, the EJP version provides a compromise between the
two approaches. On the one hand, EJP references in the
base code clearly express error handling semantics (i.e. log­
ically attached to the EJP name) and the scope to which
those semantics apply, providing good comprehensibility.

In stark contrast, AspectJ provides good readability but
weaker comprehensibility. The oblivious implementation of
exception handling makes the primary functionality of the
base code easy to read and comprehend. However, com­
prehending the details of exception handling logic becomes
more complicated. Tools such as AJDT4 assist in compre­
hending how join points in base code are advised. However,
the overall big picture is less clear because the scope of a
join point may not match handler scope. Also, as fragments
are extracted into new methods readability is reduced. [8]

printAndRethrow(String msg):
ignoreException() handles H;
convertException()

handles H throws T;

scoped joinpoint <H>
scoped joinpoint <H>
scoped joinpoint <H,T>

On the other hand, the EJP implementation details are com-
pletely separate and not visible in the base code, providing
good readability. Code implementing EJPs are free from
application specific logic, increasing comprehensibility.

6. EXTENDIBILITY STUDY

One of the central themes of aspect-oriented programming
is Filman and Friedman's oft-quoted statement: "Just pro-
gram like always, and we'll be able to add the aspects later."
[9] To gain insight into how EJPs affect the ability to ex-
tend functionality in this way (whether it becomes easier

pF 1
ml EJP

ar&u EJP

Lines of Code Coupling (CIM) Pointcut Size

or more difficult), we performed an experiment where we
enhanced the AspectJ and EJP versions of Java Pet Store
t o handle an additional exception-handling related concern.
Herein we describe the new concern that was chosen and
our techniques in implementing the new concern completely
o b l i v i ~ u s l ~ . ~ We then compare the two implementations,
using metric measurements as material for discussion.

6.1 New Concern Definition
We postulated that because the exception handling logic
had been separated from the main application it should be
easier t o change and enhance handler logic. One such en-
hancement could be integrating the application with a fault
analysis engine [lo], which would be desirable for an enter-
prise application. While the details of fault analysis and
fault healing are beyond the scope of this paper, herein we
can view a fault analysis engine as an interface that accepts
information about thrown and handled exceptions. In addi-
tion t o the exception itself, these engines require contextual
information t o classify faults and build fault models.

We thus defined our additional concern to be for the ap-
plication t o provide information on all handled exceptions
and their context t o this fault analysis engine interface. The
contextual information was defined to include any log mes-
sages generated by the handler and also a flag indicating
whether the handled exception would be rethrown. (Pro-
viding this information can facilitate insight into how the
application reacted t o the fault, when it was finally han-
dled, and whether any action by an administrator might be
required.) We note that this additional concern was not
conceptualized until after all refactoring of the exception
handlers had been finished, so that our initial refactoring
would not be influenced by the additional concern.

6.2 Implementation Techniques
The new concern was implemented for both the AspectJ ver-
sion and the EJP version in a purely oblivious fashion solely
by creating new aspects t o advise the handler base code.
The new concerns requirement for fault contextual informa-
tion required the new aspects to classify handler blocks as
to whether or not a handled exception would be rethrown.

However, this classification was difficult because it is not
possible t o lexically pick out handler blocks within certain
advice, even based on the types of the advice arguments, due
t o the limitations of AspectJ's withincode and adviceexecution

5 ~ o clarify the discussion, we refer t o the aspects containing
the exception handling logic as the handler base code.

Figure 6: Metrics results for an aspect implementing a
new concern in Java Pet Store (lower is better)

primitive pointcuts (in the former case, it does not pick out
advice execution, while in the latter case there is no pattern
matching ability). Our workaround strategies were to either
(a) pick out exception handlers and calls to print functions
within advice based on the use of a Throwable object of
a particular subtype within a target handler aspect, or (b)
advise the same pointcuts as the advice in the handler base
code with appropriate precedence so that thrown exceptions
could be intercepted with first priority.When implementing
the aspect for the EJP version we used an additional strat-
egy where the aspect remembered the name of the last EJP
that was exited (normally or via a thrown exception, on a
per-thread basis), which simplified the code that classified
printed messages in handlers. We applied our strategies with
the goal that the resulting code be as simple as possible.

6.3 Results
Figure 6 show the results of the Lines of Code, Coupling on
Intercepted Modules, and Pointcut Size metrics. Pointcut
Size is defined as the total number of terms (primitive point-
cuts or pointcut references) within all pointcuts, modeling
potential pointcut complexity and fragility.

The oblivious aspect t o implement the concern for the EJP
version required 25% less Lines of Code (LOC), and its im-
plementation primarily consisted of code to special case han-
dler EJPs that conditionally handled exceptions based on a
generic type parameter. In contrast, the implementation
for the AspectJ version consisted mostly of complex point-
cuts that picked out the different classifications of exception
handlers for each exception handling aspect.

If additional functionality were added to Java Pet Store, we
expect that the LOC for the new aspect for the AspectJ
version would increase much faster than for the EJP version
because the amount of code required in the AspectJ version
is nearly directly related to the number of handler aspects.
In contrast, the LOC for the new aspect in the EJP ver-
sion were mainly used to implement advice for the generic
exception handling EJPs, so additional code would only be
needed for any new custom exception handling EJPs. In
Java Pet Store, only 2% of all EJP references were due t o
custom exception handling EJPs, so it is expected that the

250 50 I~~pl
16O

200 160

'50 30 "0

'00

20 eo

60

<0

20

AspoctJ EJP Aspe<U EJP AspectJ EJP

Lines of Code Coupling (CIM) Poinlcul Size

Figure 6: Metrics results for an aspect implementing a
new concern in Java Pet Store (lower is better)

The oblivious aspect to implement the concern for the EJP
version required 25% less Lines of Code (LOC), and its im­
plementation primarily consisted of code to special case han­
dler EJPs that conditionally handled exceptions based on a
generic type parameter. In contrast, the implementation
for the AspectJ version consisted mostly of complex point­
cuts that picked out the different classifications of exception
handlers for each exception handling aspect.

6.3 Results
Figure 6 show the results of the Lines of Code, Coupling on
Intercepted Modules, and Pointcut Size metrics. Pointcut
Size is defined as the total number of terms (primitive point­
cuts or pointcut references) within all pointcuts, modeling
potential pointcut complexity and fragility.

primitive pointcuts (in the former case, it does not pick out
advice execution, while in the latter case there is no pattern
matching ability). Our workaround strategies were to either
(a) pick out exception handlers and calls to print functions
within advice based on the use of a Throwable object of
a particular subtype within a target handler aspect, or (b)
advise the same pointcuts as the advice in the handler base
code with appropriate precedence so that thrown exceptions
could be intercepted with first priority.When implementing
the aspect for the EJP version we used an additional strat­
egy where the aspect remembered the name of the last EJP
that was exited (normally or via a thrown exception, on a
per-thread basis), which simplified the code that classified
printed messages in handlers. We applied our strategies with
the goal that the resulting code be as simple as possible.

If additional functionality were added to Java Pet Store, we
expect that the LOC for the new aspect for the AspectJ
version would increase much faster than for the EJP version
because the amount of code required in the AspectJ version
is nearly directly related to the number of handler aspects.
In contrast, the LOC for the new aspect in the EJP ver­
sion were mainly used to implement advice for the generic
exception handling EJPs, so additional code would only be
needed for any new custom exception handling EJPs. In
Java Pet Store, only 2% of all EJP references were due to
custom exception handling EJPs, so it is expected that the

However, this classification was difficult because it is not
possible to lexically pick out handler blocks within certain
advice, even based on the types of the advice arguments, due
to the limitations of AspectJ's withincode and adviceexecution

sTo clarify the discussion, we refer to the aspects containing
the exception handling logic as the handler base code.

On the other hand, the EJP implementation details are com­
pletely separate and not visible in the base code, providing
good readability. Code implementing EJPs are free from
application specific logic, increasing comprehensibility.

One of the central themes of aspect-oriented programming
is Filman and Friedman's oft-quoted statement: "Just pro­
gram like always, and we'll be able to add the aspects later."
[9] To gain insight into how EJPs affect the ability to ex­
tend functionality in this way (whether it becomes easier
or more difficult), we performed an experiment where we
enhanced the AspectJ and EJP versions of Java Pet Store
to handle an additional exception-handling related concern.
Herein we describe the new concern that was chosen and
our techniques in implementing the new concern completely
obliviously.s We then compare the two implementations,
using metric measurements as material for discussion.

6. EXTENDIBILITY STUDY

6.1 New Concern Definition
We postulated that because the exception handling logic
had been separated from the main application it should be
easier to change and enhance handler logic. One such en­
hancement could be integrating the application with a fault
analysis engine [10], which would be desirable for an enter­
prise application. While the details of fault analysis and
fault healing are beyond the scope of this paper, herein we
can view a fault analysis engine as an interface that accepts
information about thrown and handled exceptions. In addi­
tion to the exception itself, these engines require contextual
information to classify faults and build fault models.

We thus defined our additional concern to be for the ap­
plication to provide information on all handled exceptions
and their context to this fault analysis engine interface. The
contextual information was defined to include any log mes­
sages generated by the handler and also a flag indicating
whether the handled exception would be rethrown. (Pro­
viding this information can facilitate insight into how the
application reacted to the fault, when it was finally han­
dled, and whether any action by an administrator might be
required.) We note that this additional concern was not
conceptualized until after all refactoring of the exception
handlers had been finished, so that our initial refactoring
would not be influenced by the additional concern.

6.2 Implementation Techniques
The new concern was implemented for both the AspectJ ver­
sion and the EJP version in a purely oblivious fashion solely
by creating new aspects to advise the handler base code.
The new concerns requirement for fault contextual informa­
tion required the new aspects to classify handler blocks as
to whether or not a handled exception would be rethrown.

number of new custom handlers required would be very low.

For the Coupling on Intercepted Modules metric, the aspect
for the EJP version had 80% less dependent modules in its
pointcuts. This was caused by the relatively few number
of handler EJPs that had to be advised to implement the
additional concern, whereas with the AspectJ version every
custom Pet Store handler aspect had to be explicitly named,
tightly coupling the new aspect to the handler base code.

Finally, Pointcut Size for the EJP version was 63% less than
for the AspectJ version. Pointcuts for the AspectJ version
were more complex because custom pointcuts were required
for each handler aspect in order to determine whether an
exception would be rethrown or not. For example, in one
handler aspect all catch blocks would not rethrow the excep-
tion whereas in another aspect some handlers would rethrow
and others would not. These detailed pointcuts in the As-
pectJ version are fragile and induce coupling because the
above assumptions for a handler aspect could change as it
is modified. In contrast, the EJP version pointcuts were
structured around EJP names and would be robust against
all but significant changes in their targeted EJP.

For both versions the aspects implementing the new concern
are completely oblivious and have nearly identical Separa-
tion of Concerns metric values (the only significant difference
being that the EJP version required two more operations to
handle the concern). The results were very similar for the
other metric values as well (CBM, LCO, NoO). The largest
difference was that the EJP version had 25 No0 instead of
21 (two of those operations were generic).

Based on these results, we assert that using EJPs to imple-
ment cross-cutting concerns empowers oblivious implemen-
tation of unforeseen functionality. By giving up a certain
amount of obliviousness up front through EJPs, oblivious
programming in the future is more powerful and robust.

7. RELATED WORK
The relationship of obliviousness within aspect-oriented de-

sign, its definition, benefits, and drawbacks, are discussed in
[26], and specific challenges of a design oblivious approach
are detailed. They introduce crosscutting programming in-
terfaces (XPIs) based on the principle of information hid-
ing. [22] These interfaces represent design rules that con-
strain the structure of the base code, allowing stable point-
cuts to be written solely on the structure provided by the
design rules agreed upon a priori. Our work can be consid-
ered complementary, as we highlight with specific empirical
evidence drawbacks to a design oblivious approach. EJPs
provide a similar level of obliviousness and can be viewed as
one possible mechanism to explicitly model XPIs, and addi-
tionally provide means to enforce semantic constraints upon
base code and to advise arbitrary blocks of code.

In [14] the authors introduce a different kind of pointcut in-
terface. They argue that aspects should not be tangled with
the implementation details of classes, and thus pointcuts
should be defined within the class itself. The named point-
cuts, aggregated into pointcut interfaces, serve as contracts
between the aspects and the base code, facilitating com-
prehensibility and independent development. EJP's point-

cut arguments serve as pointcut interfaces, but provide a
finer degree of granularity, and also allow the base code
to expose local variables in arguments passed to the point-
cuts. Additionally, they allow for scoping information finer
than method boundaries. EJPs are complementary to point-
cut interfaces, being appropriate where a semantic coupling
between aspect and base code is needed to enforce safety,
whereas pointcut interfaces provide more obliviousness and
are appropriate where such coupling is not needed. We
advise that both constructs be provided to facilitate well-
engineered AspectJ programs.

Aldrich builds on the work of [14] by proposing open mod-
ules [2], defining the concept of a "package" that explic-
itly exports functions and pointcuts (representing internal
events within that module), which become the only advis-
able join points. A formal model was developed within a
limited AOP language that proved that the semantics of a
package could be preserved even when its internal imple-
mentation changes. Whereas open modules allow for the
hiding of implementation details from aspects, EJPs allow
for the base code to specify advisable join points tied to spe-
cific semantics as defined by the programmer. With open
modules either a join point is advisable by aspects or it is
not, whereas EJP give you more flexibility and finer granu-
larity in choosing which join points to expose and how far
(via scoped EJPs and pointcut arguments). Also, with open
modules you specify which join points are advisable stati-
cally, whereas using EJPs you can specify this information
using dynamic context (via scoped EJPs and the C ~ ~ O W des-
ignator).

In [18], Mezini and Kiczales recognize the need to program
against cross-cutting interfaces. The approach proposed can
be viewed as a "reverse engineering" approach, where as-
pects' dependences on a system's join points are computed,
and shown as annotations on the explicit interfaces of ad-
vised code.

8. CONCLUSIONS
We have proposed extending AspectJ in a fully backwards

compatible manner with the explicit join point (EJP) con-
struct, which facilitates semantically coupled cross-cutting
concerns while only minimally reducing obliviousness. We
have shown how EJPs facilitate finer granularity in how and
where advice should be applied and have quantified these
benefits through the case of exception handling.

Our implementation of EJPs, which includes more advanced
features omitted in this paper for brevity, is based on an
extension to the abc for AspectJ, and is freely available to
encourage future collaboration, evaluation, and experimen-
tation.

9. REFERENCES
[I] abc Project. abc. The AspectBench Compiler.

http://aspectbench.org.

1:2] J . Aldrich. Open Modules: Modular reasoning about
advice. In ECOOP105, pages 144-168, 2005.

1.31 D. Birsan. On plug-ins and extensible architectures.
Queue, 3(2):40-46, 2005.

1.41 N. Cacho, C. Sant'Anna, E. Figueiredo, A. Garcia,

number of new custom handlers required would be very low.

For the Coupling on Intercepted Modules metric, the aspect
for the EJP version had 80% less dependent modules in its
pointcuts. This was caused by the relatively few number
of handler EJPs that had to be advised to implement the
additional concern, whereas with the AspectJ version every
custom Pet Store handler aspect had to be explicitly named,
tightly coupling the new aspect to the handler base code.

Finally, Pointcut Size for the EJP version was 63% less than
for the AspectJ version. Pointcuts for the AspectJ version
were more complex because custom pointcuts were required
for each handler aspect in order to determine whether an
exception would be rethrown or not. For example, in one
handler aspect all catch blocks would not rethrow the excep­
tion whereas in another aspect some handlers would rethrow
and others would not. These detailed pointcuts in the As­
pectJ version are fragile and induce coupling because the
above assumptions for a handler aspect could change as it
is modified. In contrast, the EJP version pointcuts were
structured around EJP names and would be robust against
all but significant changes in their targeted EJP.

For both versions the aspects implementing the new concern
are completely oblivious and have nearly identical Separa­
tion of Concerns metric values (the only significant difference
being that the EJP version required two more operations to
handle the concern). The results were very similar for the
other metric values as well (CBM, LCO, NoO). The largest
difference was that the EJP version had 25 NoO instead of
21 (two of those operations were generic).

Based on these results, we assert that using EJPs to imple­
ment cross-cutting concerns empowers oblivious implemen­
tation of unforeseen functionality. By giving up a certain
amount of obliviousness up front through EJPs, oblivious
programming in the future is more powerful and robust.

7. RELATED WORK
The relationship of obliviousness within aspect-oriented de­

sign, its definition, benefits, and drawbacks, are discussed in
[26], and specific challenges of a design oblivious approach
are detailed. They introduce crosscutting programming in­
terfaces (XPIs) based on the principle of information hid­
ing. [22] These interfaces represent design rules that con­
strain the structure of the base code, allowing stable point­
cuts to be written solely on the structure provided by the
design rules agreed upon a priori. Our work can be consid­
ered complementary, as we highlight with specific empirical
evidence drawbacks to a design oblivious approach. EJPs
provide a similar level of obliviousness and can be viewed as
one possible mechanism to explicitly model XPIs, and addi­
tionally provide means to enforce semantic constraints upon
base code and to advise arbitrary blocks of code.

In [14] the authors introduce a different kind of pointcut in­
terface. They argue that aspects should not be tangled with
the implementation details of classes, and thus pointcuts
should be defined within the class itself. The named point­
cuts, aggregated into pointcut interfaces, serve as contracts
between the aspects and the base code, facilitating com­
prehensibility and independent development. EJP's point-

cut arguments serve as pointcut interfaces, but provide a
finer degree of granularity, and also allow the base code
to expose local variables in arguments passed to the point­
cuts. Additionally, they allow for scoping information finer
than method boundaries. EJPs are complementary to point­
cut interfaces, being appropriate where a semantic coupling
between aspect and base code is needed to enforce safety,
whereas pointcut interfaces provide more obliviousness and
are appropriate where such coupling is not needed. We
advise that both constructs be provided to facilitate well­
engineered AspectJ programs.

Aldrich builds on the work of [14] by proposing open mod­
ules [2], defining the concept of a "package" that explic­
itly exports functions and pointcuts (representing internal
events within that module), which become the only advis­
able join points. A formal model was developed within a
limited AOP language that proved that the semantics of a
package could be preserved even when its internal imple­
mentation changes. Whereas open modules allow for the
hiding of implementation details from aspects, EJPs allow
for the base code to specify advisable join points tied to spe­
cific semantics as defined by the programmer. With open
modules either a join point is advisable by aspects or it is
not, whereas EJP give you more flexibility and finer granu­
larity in choosing which join points to expose and how far
(via scoped EJPs and pointcut arguments). Also, with open
modules you specify which join points are advisable stati­
cally, whereas using EJPs you can specify this information
using dynamic context (via scoped EJPs and the cflow des­
ignator).

In [18], Mezini and Kiczales recognize the need to program
against cross-cutting interfaces. The approach proposed can
be viewed as a "reverse engineering" approach, where as­
pects' dependences on a system's join points are computed,
and shown as annotations on the explicit interfaces of ad­
vised code.

8. CONCLUSIONS
We have proposed extending AspectJ in a fully backwards

compatible manner with the explicit join point (EJP) con­
struct, which facilitates semantically coupled cross-cutting
concerns while only minimally reducing obliviousness. We
have shown how EJPs facilitate finer granularity in how and
where advice should be applied and have quantified these
benefits through the case of exception handling.

Our implementation of EJPs, which includes more advanced
features omitted in this paper for brevity, is based on an
extension to the abc for AspectJ, and is freely available to
encourage future collaboration, evaluation, and experimen­
tation.

9. REFERENCES
[1] abc Project. abc. The AspectBench Compiler.

http://aspectbench.org.
1:2] J. Aldrich. Open Modules: Modular reasoning about

advice. In ECOOP'05, pages 144-168, 2005.
1"3] D. Birsan. On plug-ins and extensible architectures.

Queue, 3(2):40-46, 2005.
1"4] N. Cacho, C. Sant'Anna, E. Figueiredo, A. Garcia,

T. Batista, and C. Lucena. Composing design
patterns: a scalability study of aspect-oriented
programming. In AOSD'06, pages 109-121, 2006.

[5] M. Ceccato and P. Tonella. Measuring the effects of
software aspectization. In 1st Workshop on Aspect
Reverse Engineering, Delft, The Netherlands, 2004.

[6] S. Chidamber and C. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on
Software Engineering, 20(6):476-493, June 1994.

[7] C. Clifton and G. Leavens. Obliviousness, modular
reasoning, and the behavioral subtyping analogy. 2003.

[8] F. C. Filho, N. Cacho, E. Figueiredo, R. Maranho,
A. Garcia, and C. M. F. Rubira. Exceptions and
aspects: the devil is in the details. In FSE'O6, pages
152-162, 2006.

[9] R. Filman and D. Friedman. Aspect-Oriented
Programming Is Quantification and Obliviousness,
pages 21-35. Addison-Wesley, 2005.

[lo] M. h a d , D. Deb, and M. Oudshoorn. Adding
self-healing capabilities into legacy object oriented
application. In ICAS'O6, pages 51-51, 2006.

[ll] A. Garcia, C. Sant'Anna, C. Chavez, V. T. d a Silva,
C. J. de Lucena, and A. von Staa. Software
Engineering for Multi-Agent Systems 11, chapter
Separation of Concerns in Multi-agent Systems: An
Empirical Study, pages 49-72. Springer Berlin /
Heidelberg, 2004.

[12] A. Garcia, C. Sant'Anna, E. Figueiredo, U. Kulesza,
C. Lucena, and A. von Staa. Modularizing design
patterns with aspects: a quantitative study. In
AOSD'05, pages 3-14, 2005.

[13] S. Goldman, D. Detlefs, S. Dever, and K. Russell. New
compiler optimizations in the java hotspot virtual
machine. In JavaOne 2006, 2006.

[14] S. Gudmundson and G. Kiczales. Addressing practical
software development issues in AspectJ with a
pointcut interface. In Workshop on Advanced
Separation of Concerns of ECOOP'01, 2001.

[15] K. Hoffman and P. Eugster. EJP eztension to The
AspectBench Compiler.
http://www.cs.purdue.edu/homes/kjhoffma/.

[16] G. Kiczales, E. Hilsdale, J . Hugunin, M. Kersten,
J . Palm, and W. Griswold. An overview of AspectJ. In
ECOOP'01, pages 327-353, 2001.

[17] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP'97, pages
220-242, 1997.

[18] G. Kiczales and M. Mezini. Aspect-oriented
programming and modular reasoning. In ICSE'05,
pages 49-58, 2005.

[19] J . Kienzle and R. Guerraoui. Aop: Does it make
sense? the case of concurrency and failures. In
ECOOP'02, pages 37-61, 2002.

[20] S. Kuzins. Efficient implementation of around-advice
for the AspectBench compiler. Master's thesis, Oxford
University, 2004.

[21] M. Lippert and C. V. Lopes. A study on exception
detection and handling using aspect-oriented
programming. In ICSE'OO, pages 418-427, New York,
NY, USA, 2000. ACM Press.

[22] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15(12):1053-1058, 1972.

[23] C. N. Sant'Anna, A. F. Garcia, C. von Flach
Garcia Chavez, C. J . P. de Lucena, and A. von Staa.
On the reuse and maintenance of Aspect-Oriented
software: An assessment framework. In 17th Brazilian
Symposium on Software Engineering, pages 19-34,
October 2003.

[24] M. Stochmialek. aopmetrics.
http://aopmetrics.tigris.org/.

[25] M. Stoerzer and J . Graf. Using pointcut delta analysis
to support evolution of aspect-oriented software. In
ICSMJ05, pages 653-656, 2005.

[26] K. Sullivan, W. G. Griswold, Y. Song, Y. Cai,
M. Shonle, N. Tewari, and H. Rajan. Information
hiding interfaces for aspect-oriented design. In
FSE'O5, pages 166-175, 2005.

[27] P. Tonella and M. Ceccato. Refactoring the
aspectizable interfaces: an empirical assessment. IEEE
Transactions on Software Engineering,
31(10):819-832, Oct. 2005.

[28] J. Zhao. Measuring coupling in Aspect-Oriented
systems. In METRICS'Od, 2004.

T. Batista, and C. Lucena. Composing design
patterns: a scalability study of aspect-oriented
programming. In AOSD'06, pages 109-121, 2006.

[5] M. Ceccato and P. Tonella. Measuring the effects of
software aspectization. In 1st Workshop on Aspect
Reverse Engineering, Delft, The Netherlands, 2004.

[6] S. Chidamber and C. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on
Software Engineering, 20(6):476-493, June 1994.

[7] C. Clifton and G. Leavens. Obliviousness, modular
reasoning, and the behavioral subtyping analogy. 2003.

[8] F. C. Filho, N. Cacho, E. Figueiredo, R. Maranho,
A. Garcia, and C. M. F. Rubira. Exceptions and
aspects: the devil is in the details. In FSE'06, pages
152-162, 2006.

[9] R. Filman and D. Friedman. Aspect-Oriented
Programming Is Quantification and Obliviousness,
pages 21-35. Addison-Wesley, 2005.

[10] M. Fuad, D. Deb, and M. Oudshoorn. Adding
self-healing capabilities into legacy object oriented
application. In ICAS'06, pages 51-51, 2006.

[11] A. Garcia, C. Sant'Anna, C. Chavez, V. T. da Silva,
C. J. de Lucena, and A. von Staa. Software
Engineering for Multi-Agent Systems II, chapter
Separation of Concerns in Multi-agent Systems: An
Empirical Study, pages 49-72. Springer Berlin /
Heidelberg, 2004.

[12] A. Garcia, C. Sant'Anna, E. Figueiredo, U. Kulesza,
C. Lucena, and A. von Staa. Modularizing design
patterns with aspects: a quantitative study. In
AOSD'OS, pages 3-14, 2005.

[13] S. Goldman, D. Detlefs, S. Dever, and K. Russell. New
compiler optimizations in the java hotspot virtual
machine. In JavaOne 2006, 2006.

[14] S. Gudmundson and G. Kiczales. Addressing practical
software development issues in AspectJ with a
pointcut interface. In Workshop on Advanced
Separation of Concerns of ECOOP'01, 2001.

[15] K. Hoffman and P. Eugster. EJP extension to The
AspectBench Compiler.
http://www.cs.purdue.edu/homes/kjhoffma/.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of AspectJ. In
ECOOP'01, pages 327-353, 2001.

[17] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP'97, pages
220-242, 1997.

[18] G. Kiczales and M. Mezini. Aspect-oriented
programming and modular reasoning. In ICSE'OS,
pages 49-58, 2005.

[19] J. Kienzle and R. Guerraoui. Aop: Does it make
sense? the case of concurrency and failures. In
ECOOP'02, pages 37-61, 2002.

[20] S. Kuzins. Efficient implementation of around-advice
for the AspectBench compiler. Master's thesis, Oxford
University, 2004.

[21] M. Lippert and C. V. Lopes. A study on exception
detection and handling using aspect-oriented
programming. In ICSE'OO, pages 418-427, New York,
NY, USA, 2000. ACM Press.

[22] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15(12):1053-1058, 1972.

[23] C. N. Sant'Anna, A. F. Garcia, C. von Flach
Garcia Chavez, C. J. P. de Lucena, and A. von Staa.
On the reuse and maintenance of Aspect-Oriented
software: An assessment framework. In 17th Brazilian
Symposium on Software Engineering, pages 19-34,
October 2003.

[24] M. Stochmialek. aopmetrics.
http://aopmetrics.tigris.org/.

[25] M. Stoerzer and J. Graf. Using pointcut delta analysis
to support evolution of aspect-oriented software. In
ICSM'OS, pages 653-656, 2005.

[26] K. Sullivan, W. G. Griswold, Y. Song, Y. Cai,
M. Shonle, N. Tewari, and H. Rajan. Information
hiding interfaces for aspect-oriented design. In
FSE'OS, pages 166-175, 2005.

[27] P. Tonella and M. Ceccato. Refactoring the
aspectizable interfaces: an empirical assessment. IEEE
Transactions on Software Engineering,
31(10):819-832, Oct. 2005.

[28] J. Zhao. Measuring coupling in Aspect-Oriented
systems. In METRICS'04, 2004.

	Aspects and Exception Handling: The Case of Explicit Join Points
	Report Number:
	

	tmp.1307986960.pdf.ik1Q2

