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Abstract 

Itz this paper we address rlze proble17z of e/zsuri/zg tlze cor- 
rectness of query results retur-/led 6). atz u/ztrusted pn'vate 
database. The database okvtzs rlze data and /nay nzodi' it 
at any rime. The querier is allo~ved to execute queries over 
this database; however it /nay /lot Ieanz a/z).thing nzore than 
the result of these legal queries. The querier does not nec- 
essarily trust the database and would like rlze owtier to fur- 
tzislz proof that the data has nor been tnodijed in response 
to recent events suclz as tlze submission of the query We 
develop two metrics that capture rlze correctness of query 
answers and propose a range of solutions that provide a 
trade-off between rlze degree of exposure of private data, 
and the overhead of generation and verijcation of tlze proof: 
Our proposed solutio/zs are rested rlzrouglz i/npleme/ztation 
using PostgreSQL. 

1 Introduction 

Consider the case of the food supply chain which is made 
up of multiple entities: farms, processing plants, distribu- 
tion centers, warehouses, and retailers. These entities are 
typically independent, each with its own database that keeps 
track of its operations. Each entity would like to prevent 
other entities from learning the details of its operations as 
this may yield an advantage to a competitor. However, there 
are instances where it is necessary to provide access to some 
of this private data in order to enhance public safety, and 
comply with regulations. For example, if a packet of beef 
sold at a given store is found to be contaminated, it is nec- 
essary to recall all other packages that may also be infected. 
This entails searching through the private databases of var- 
ious entities in the supply chain, beginning with the retailer 
that sold the package that has been found to be contami- 
nated, and working backwards (i.e. to the distributors, pack- 
agers, etc.) to locate the source of the problem and then 

workin? forwards to track all possibly infected packages. 
The current solutions to this problem are manual involv- 
ing paperwork and result in long delays, sometimes days. 
An automated solution to this problem would essentially re- 
move these long delays and result in almost instantaneous 
detection. 

Automatic detection requires interaction between multi- 
ple PI-ivate databases involved in the food supply chain. To 
support such queries, the databases can provide a limited in- 
terface into their databases that can be used either by other 
entities in the supply chain. or a federal organization. There 
is however. one major problem: since the databases are un- 
der the control of individual organizations, there is no guar- 
antee that changes are not made to the database in order to 
produce misleading results. Providing incorrect results can 
help an organization protect itself or a partner from blame, 
and shift the blame to another innocent party. Once again, it 
is desirable that the external querier be able to obtain proof 
that the results returned by the database do reflect the cor- 
rect evaluation of the submitted query over an uncoil-upted 
version of the database. 

More generally. consider the case where a law enforcing 
agency (e.?. the FBI) wants to query a corporate database 
for the purpose of ensuring compliance with regulations. 
The entity owning the data may be very concerned about 
privacy and not be willing to reveal its entire database to 
this agency. At the same time, there is an issue of trust. 
The federal agency cannot blindly trust the corporation to 
provide uncorrupted results, and would like to receive some 
proof from the database (which the agency cannot contest) 
that it has provided the correct result. This proof must han- 
dle the case that the database owner could have changed the 
data once the investigation has begun to mislead the agency. 

A similar problem exists with virtually any situation 
where mutually distrusting entities need to exchange some 
data while preserving the privacy of the rest of the database. 
Emerging and recent regulations such as Sarbanes Oxley, 
and C m 2 2  part I 1 also impose constraints on the handling 
of data owned by corporations. Solutions that can provide 
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at any time. The querier is allowed to execute queries over
this database; however it may not learn anything more than
the result of these legal queries. The querier does not nec
essarily trust the database and would like the owner to fur
nish proof that the data has not been modified in response
to recent events such as the submission of the query. We
develop two metrics that capture the correctness of query
answers and propose a range of solutions that provide a
trade-off between the degree of exposure of private data,
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1 Introduction

Consider the case of the food supply chain which is made
up of multiple entities: farms, processing plants, distribu
tion centers, warehouses, and retailers. These entities are
typically independent, each with its own database that keeps
track of its operations. Each entity would like to prevent
other entities from learning the details of its operations as
this may yield an advantage to a competitor. However, there
are instances where it is necessary to provide access to some
of this private data in order to enhance public safety, and
comply with regulations. For example, if a packet of beef
sold at a given store is found to be contaminated, it is nec
essary to recall all other packages that may also be infected.
This entails searching through the private databases of var
ious entities in the supply chain, beginning with the retailer
that sold the package that has been found to be contami
nated, and working backwards (i.e. to the distributors, pack
agers, etc.) to locate the source of the problem and then

working forwards to track all possibly infected packages.
The current solutions to this problem are manual involv
ing paperwork and result in long delays, sometimes days.
An automated solution to this problem would essentially re
move these long delays and result in almost instantaneous
detection.

Automatic detection requires interaction between multi
ple private databases involved in the food supply chain. To
support such queries, the databases can provide a limited in
terface into their databases that can be used either by other
entities in the supply chain, or a federal organization. There
is however, one major problem: since the databases are un
der the control of individual organizations, there is no guar
antee that changes are not made to the database in order to
produce misleading results. Providing incolTect results can
help an organization protect itself or a partner from blame,
and shift the blame to another innocent party. Once again, it
is desirable that the external querier be able to obtain proof
that the results returned by the database do reflect the cor
rect evaluation of the submitted query over an uncolTupted
version of the database.

More generally, consider the case where a law enforcing
agency (e.g. the FBI) wants to query a corporate database
for the purpose of ensuring compliance with regulations.
The entity owning the data may be very concerned about
privacy and not be willing to reveal its entire database to
this agency. At the same time, there is an issue of trust.
The federal agency cannot blindly trust the corporation to
provide uncorrupted results, and would like to receive some
proof from the database (which the agency cannot contest)
that it has provided the correct result. This proof must han
dle the case that the database owner could have changed the
data once the investigation has begun to mislead the agency_

A similar problem exists with virtually any situation
where mutually distrusting entities need to exchange some
data while preserving the privacy of the rest of the database.
Emerging and recent regulations such as Sarbanes Oxley,
and CFR 22 part I I also impose constraints on the handling
of data owned by corporations. Solutions that can provide



guarantees of correctness of queries over these databases 
without exposing the entire contents of the database are 
highly desirable. In all these examples, it is in the interest 
of the database owner to share data with business partners 
or regulatory agencies. 

Thus in practice, there is a strong need for providing 
guarantees of correctness of query results executed over a 
private database not under the control of the querier. One 
possible solution to this problem is to involve an external 
entity that is trusted (willingly or by law), e.g. the USDA in 
the food supply example. Each database owner then sends 
a copy of their database (and updates) to this trusted third 
part): which can verify that the queries are executed cor- 
rectly. In fact, it could execute the queries itself. There are 
several problems with this solution: 1) This is a very ex- 
pensive solution with respect to the voluine of traffic to the 
third party and also the requirements of storage at the third 
party; 2) this third pasty is a potential weakness in the sys- 
tem - if it is compromised, then too much private data may 
be compromised; 3) the trusted party is now liable for the 
privacy of the data - it may be subjected to lawsuits claim- 
ing that it has leaked (willingly or unwillingly) private data 
of one organization to another; and 4) such solutions would 
be resisted by privacy advocates since there is too much of 
a "Big Brother" flavor. 

To the best of our knowledge, this problem has not been 
addressed earlier. Existing solutions for tamper proofing au- 
dit trails [15], or privacy-preserving database access [9, 11, 
and authentic third-party data publication [6, 4, I 11 are not 
applicable in this domain as discussed in the related work 
section. In this paper we propose scalable solutions for 
the privacy-preserving query result verification problem and 
develop a number of solutions that provide a tradeoff be- 
tween the overhead for the owner, the efficiency of the veri- 
fication, and the degree of exposure of the owner's database 
in order to prove the colTectness of a query. It should be 
pointed, however, out that our solution is directly applicable 
to the authentic third party data publication and the tamper 
proofing of audit trail problems too (with no modification 
whatsoever) with the added advantage that we do not need 
to trust the owner of these databases. 

The specific problem considered in this paper is as fol- 
lows. We have two entities - the database owner (Bob) and 
the querier (Alice). The two entities do not entirely trust 
each other. Bob allows Alice to execute certain queries over 
his private database. He is willing to reveal as little infor- 
mation as possible to Alice, apart from the results of the 
query. Alice, on the other hand, is not necessarily confident 
of the results she receives and may want a guaratltee from 
Bob that he has returned the correct results to Alice, without 
modifying the database (e.g. afrer receiving Alice's query). 
Figure 1 shows the high-level model of the problem with 
the possibility of a trusted third party. Alice can ask Bob to 

commit to his database (while preserving its privacy) before 
issuing a query. Alternatively, Bob can periodically commit 
the database. In this paper, the notion of "commit" is that 
Bob ensures that he can prove the authenticity of these data 
at a later point in time. The important parameters of the 
problem are: 1) providing a guarantee for correctness; 2) 
the overhead on Bob and Alice; and 3) the degree of expo- 
sure of Bob's data other than the query results. 
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Figure 1. Interaction between the entities. 
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In its full generality this problem is very hard to solve. 
Note that the database owner can legitimately modify any 
value in its database (e.g. the number of cans of soup sold 
today). Thus we would need some means of distinguishing 
valid modifications from invalid ones. This problem is very 
hard to solve, and we believe that it is impractical to provide 
guarantees about dynamic attributes - i.e. those that change 
over time as part of the operations of the database. We there- 
fore begin by making the following assumptions to limit the 
scope of the problem. We assume that guarantees can only 
be provided for data that is not modified after a given point 
in time (e.g. the number of cans of soup sold yesterday or 
earlier.). Bob freezes the values of certain data periodically 
(e.g. daily or every few hours), after which no modification 
or deletion of these data is allowed. (To be more precise, 
modifications are allowed, but their authenticity cannot be 
guaranteed.) 

The owner generates a proof that it has frozen the 
database at regular intervals and ships that proof to an ex- 
ternal entity. This could be Alice, or a third party (note that 
we do not need to fully trust this third party). The only re- 
quirement from the third party (if it is used) is that it does 
not modify the proof. The inclusion of the third party is 
only a minor issue and does not impact any of the details of 
our solution. Consequently, throughout this paper we will 
assume that Alice receives the proof. The contributions of 
this paper are as follows: 

1 .  Identification and formal statement of the untrusted 
private database verification problem; 

2. A range of solutions that vary in the degree of privacy 2. A range of solutions that vary in the degree of privacy

Figure 1. Interaction between the entities.
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the database. In this paper, the notion of "commit" is that
Bob ensures that he can prove the authenticity of these data
at a later point in time. The important parameters of the
problem are: I) providing a guarantee for correctness; 2)
the overhead on Bob and Alice; and 3) the degree of expo
sure of Bob's data other than the query results.

In its full generality this problem is very hard to solve.
Note that the database owner can legitimately modify any
value in its database (e.g. the number of cans of soup sold
today). Thus we would need some means of distinguishing
valid modifications from invalid ones. This problem is very
hard to solve, and we believe that it is impractical to provide
guarantees about dynamic attributes - i.e. those that change
over time as part of the operations of the database. We there
fore begin by making the following assumptions to limit the
scope of the problem. We assume that guarantees can only
be provided for data that is not modified after a given point
in time (e.g. the number of cans of soup sold yesterday or
earlier.). Bob freezes the values of certain data periodically
(e.g. daily or every few hours), after which no modification
or deletion of these data is allowed. (To be more precise,
modifications are allowed, but their authenticity cannot be
guaranteed.)

The owner generates a proof that it has frozen the
database at regular intervals and ships that proof to an ex
ternal entity. This could be Alice, or a third party (note that
we do not need to fully trust this third party). The only re
quirement from the third party (if it is used) is that it does
not modify the proof. The inclusion of the third party is
only a minor issue and does not impact any of the details of
our solution. Consequently, throughout this paper we will
assume that Alice receives the proof. The contributions of
this paper are as follows:

I. Identification and formal statement of the untrusted
private database verification problem;
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guarantees of correctness of queries over these databases
without exposing the entire contents of the database are
highly desirable. In all these examples, it is in the interest
of the database owner to share data with business partners
or regulatory agencies.

Thus in practice, there is a strong need for providing
guarantees of correctness of query results executed over a
private database not under the control of the querier. One
possible solution to this problem is to involve an external
entity that is trusted (willingly or by law), e.g. the USDA in
the food supply example. Each database owner then sends
a copy of their database (and updates) to this trusted third
party which can verify that the queries are executed cor
rectly. In fact, it could execute the queries itself. There are
several problems with this solution: I) This is a very ex
pensive solution with respect to the volume of traffic to the
third party and also the requirements of storage at the third
party; 2) this third party is a potential weakness in the sys
tem - if it is compromised, then too much private data may
be compromised; 3) the trusted party is now liable for the
privacy of the data - it may be subjected to lawsuits claim
ing that it has leaked (willingly or unwillingly) private data
of one organization to another; and 4) such solutions would
be resisted by privacy advocates since there is too much of
a "Big Brother" flavor.

To the best of our knowledge, this problem has not been
addressed earlier. Existing solutions for tamper proofing au
dit trails [15], or privacy-preserving database access [9, I],
and authentic third-party data publication [6, 4, ll] are not
applicable in this domain as discussed in the related work
section. In this paper we propose scalable solutions for
the privacy-preserving query result verification problem and
develop a number of solutions that provide a tradeoff be
tween the overhead for the owner, the efficiency of the veri
fication, and the degree of exposure of the owner's database
in order to prove the COITectness of a query. It should be
pointed, however, out that our solution is directly applicable
to the authentic third party data publication and the tamper
proofing of audit trail problems too (with no modification
whatsoever) with the added advantage that we do not need
to trust the owner of these databases.

The specific problem considered in this paper is as fol
lows. We have two entities - the database owner (Bob) and
the querier (Alice). The two entities do not entirely trust
each other. Bob allows Alice to execute certain queries over
his private database. He is willing to reveal as little infor
mation as possible to Alice, apaI1 from the results of the
query. Alice, on the other hand, is not necessarily confident
of the results she receives and may want a guarantee from
Bob that he has returned the correct results to Alice, without
modifying the database (e.g. after receiving Alice's query).
Figure I shows the high-level model of the problem with
the possibility of a trusted third party. Alice can ask Bob to



and the overhead of generating and verifying the proof 
and 

3. Details of a prototype implementation using Post- 
greSQL and experimental validation. 

The rest of this paper is organized as follows. Section 2 
discusses related work. Section 3 gives a formal definition 
of the problem and the model used in this paper. It also 
provides a brief background on some relevant tools that will 
be used in our solutions. Section 5 presents our proposed 
solutions, and Section 6 discusses implementation details 
and experimental results. Section 8 concludes the paper. 

2 Related Work 

There has been a recent surge in interest in privacy con- 
cerns for databases [ l .  9, 21. Several efforts have focused 
on generating data mining results over multiple databases 
while preserving privacy [9, 2, 51. These protocols are 
highly tailored to the mining algorithm and are not general 
purpose. Furthelmore, they trust each of the owners of the 
individual databases to provide correct data. A malicious 
participant can mislead the group. Consequently, they are 
inapplicable for the problem studied in this paper. 

A recent paper [IS] studied the problem of detecting 
malicious modifications of data by an external intruder. 
This is achieved through tamper detection of an audit log 
of the database that records all changes. The database is 
treated as an append-only database (in particular, a tempo- 
ral database). This work does not address privacy concerns 
of the database and assumes complete trust of the database. 
Our solution (with slight modifications) can be applied to 
this problem. 

Devanbu et al. [6] recently proposed a solution to the 
problem of authentic third-party database publication. This 
problem deals with a database owner that wishes to use a 
third party to host his data. The owner does not entirely 
trust the third party and would like to ensure that the val- 
ues stored in the database are not modified by the host. 
Their solution does not address the problem of privacy of 
the database. Furthermore, the solution relies upon com- 
plete trust of the database owner. Although their solution 
bears a superficial resemblance to ours (in terms of the use 
of merkle trees). as discussed in Appendix A it is not appli- 
cable to our problem. On the other hand, our solution can 
be directly applied to the problem of authentic thii-d-party 
database publication. Our solution is much more efficient 
in terms of storage and computation as compared to the so- 
lution in [6]. The solution in [6] needs to specially address 
each join and selection that may be executed by the querier. 
Our solution does not suffer from this limitation. A related 
paper [3] addresses similar issues for XML. 

The problem of private outsourcing of a database has 
also been studied [7] wherein a semi-trusted third party is 
used to host a database. To protect privacy, the data is en- 
crypted by the owner and stored only in encrypted format at 
the host. This introduces challenges for efficient execution 
of queries and creation of indexes [8]. 

To the best of our knowledge the problem of ensuring 
correctness over untrusted private database has not been ad- 
dressed earlier. 

3 Assumptions and Model 

In this section, we describe the assumptions and trust 
model for the entities involved in the protocol. 

3.1 Querier (Alice) 

The database is located in a remote location over which 
Alice has no control. The database determines what types 
of queries are allowed to be executed. In order to prove 
that the results of allowed queries are correct, the database 
periodically commits ("freezes") its current state. Subse- 
quent queries must be guaranteed to return results computed 
over this commit state. Any change to the committed values 
should be detected. Alice may demand proof of correctness 
of a given result and also demand that data be committed 
before submitting a query. Correctness of results can only 
be guaranteed over committed data. 

In case of such an update, Alice will either detect this 
modification or Bob should send Alice the value of the tu- 
ple at the time it  was frozen. The application semantics 
determines which of the above action is more appropriate. 
In either case, this does not restrict the applicability of the 
results of this paper. 

3.2 Database owner (Bob) 

The database owner controls the private database. He 
has unconditional read and write access to the database. He 
can intercept all the queries posed to the database and their 
results: and may even modify the results. In order to prove 
the correctness of the query results, Bob explicitly gener- 
ates a proof by freezing the data. Note that since Alice does 
not trust Bob, some proof of the freezing must be shipped 
outside of the database where it cannot be modified by Bob. 
This can be achieved by either sending some information to 
Alice, to a semi-trusted third party, or can be authenticated 
by an independent authentication authority. We assume that 
whatever data is frozen by Bob is correct. In practical set- 
tings, this is the same as recording entries in an accounts 
ledger - since the entries can be audited, the owner is dis- 
couraged from recording incorrect data. similarly, for the 
current problem, there needs to be in place a mechanism 

and the overhead of generating and verifying the proof;
and

3. Details of a prototype implementation using Post
greSQL and experimental validation.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 gives a formal definition
of the problem and the model used in this paper. It also
provides a brief background on some relevant tools that will
be used in our solutions. Section 5 presents our proposed
solutions, and Section 6 discusses implementation details
and experimental results. Section 8 concludes the paper.

2 Related Work

There has been a recent surge in interest in privacy con
cerns for databases [1,9,2]. Several efforts have focused
on generating data mining results over multiple databases
while preserving privacy [9, 2, 5]. These protocols are
highly tailored to the mining algorithm and are not general
purpose. Furthennore, they trust each of the owners of the
individual databases to provide con-ect data. A malicious
participant can mislead the group. Consequently, they are
inapplicable for the problem studied in this paper.

A recent paper [15] studied the problem of detecting
malicious modifications of data by an external intruder.
This is achieved through tamper detection of an audit log
of the database that records all changes. The database is
treated as an append-only database (in particular, a tempo
ral database). This work does not address privacy concerns
of the database and assumes complete trust of the database.
Our solution (with slight modifications) can be applied to
this problem.

Devanbu et al. [6] recently proposed a solution to the
problem of authentic third-party database publication. This
problem deals with a database owner that wishes to use a
third party to host his data. The owner does not entirely
trust the third party and would like to ensure that the val
ues stored in the database are not modified by the host.
Their solution does not address the problem of privacy of
the database. Furthermore, the solution relies upon com
plete trust of the database owner. Although their solution
bears a superficial resemblance to ours (in terms of the use
of merkle trees), as discussed in Appendix A it is not appli
cable to our problem. On the other hand, our solution can
be directly applied to the problem of authentic third-party
database publication. Our solution is much more efficient
in terms of storage and computation as compared to the so
lution in [6]. The solution in [6] needs to specially address
each join and selection that may be executed by the querier.
Our solution does not suffer from this limitation. A related
paper [3] addresses similar issues for XML.

The problem of private outsourcing of a database has
also been studied [7] wherein a semi-trusted third party is
used to host a database. To protect privacy, the data is en
crypted by the owner and stored only in encrypted format at
the host. This introduces challenges for efficient execution
of queries and creation of indexes [8].

To the best of our knowledge the problem of ensuring
conectness over untrusted private database has not been ad
dressed earlier.

3 Assumptions and Model

In this section, we describe the assumptions and trust
model for the entities involved in the protocol.

3.1 Querier (Alice)

The database is located in a remote location over which
Alice has no control. The database determines what types
of queries are allowed to be executed. In order to prove
that the results of allowed queries are correct, the database
periodically commits ("freezes") its current state. Subse
quent queries must be guaranteed to return results computed
over this commit state. Any change to the committed values
should be detected. Alice may demand proof of correctness
of a given result and also demand that data be committed
before submitting a query. Correctness of results can only
be guaranteed over committed data.

In case of such an update, Alice will either detect this
modification or Bob should send Alice the value of the tu
ple at the time it was frozen. The application semantics
determines which of the above action is more appropriate.
In either case, this does not restrict the applicability of the
results of this paper.

3.2 Database owner (Bob)

The database owner controls the private database. He
has unconditional read and write access to the database. He
can intercept all the queries posed to the database and their
results, and may even modify the results. In order to prove
the conectness of the query results, Bob explicitly gener
ates a proof by freezing the data. Note that since Alice does
not trust Bob, some proof of the freezing must be shipped
outside of the database where it cannot be modified by Bob.
This can be achieved by either sending some information to
Alice, to a semi-trusted third party, or can be authenticated
by an independent authentication authority. We assume that
whatever data is frozen by Bob is correct. In practical set
tings, this is the same as recording entries in an accounts
ledger - since the entries can be audited, the owner is dis
couraged from recording incorrect data. Similarly, for the
current problem, there needs to be in place a mechanism



that enables a random audit of frozen data in order to en- 
sure that Bob does not freeze incol~ect data. Once a data 
item is frozen, the protocol should not allow him to mod- 
ify it - i.e. Bob's hands should be tied with respect to the 
frozen data. This is a reasonable assumption given that the 
event which causes Bob to become malicious and skew the 
results to his favor does not happen before Bob generates 
and sends the proof. Nevertheless, we do not tl-ust Bob to 
follow the algorithm correctly. He may try to find loopholes 
in the algorithm to genesate a proof that does not tie his 
hands completely (e.g. as discussed in Appendix A, instead 
of freezing a tuple to one value, Bob may try to freeze it in 
such a way that allows him to report two or more possible 
values for that tuple). 

There is no restriction on how the query results can be 
modified. Further, Bob is concerned about the privacy of 
the database. He wishes to reveal only a minimal amount of 
information to Alice, in addition to the query results. 

3.3 Definition of Correctness 

There are two aspects of correctness of query results. 
We now present two requirements for the correctness of 
query results returned by a private database. Without loss 
of generality, we can denote the result tuples of a SPJ query 
(queries involving only select, projects and joins) as: 

where 1 1  denotes concatenation, Ri is the it'?uple of the 
result and R: refers to the value of projected attributes of 
tuple ij of table Tj. We divide the correctness requirements 
into a- and 0-col-rectness as defined below. 

a-correctness This refers to the correctness of tlze result 
values, i.e. the validity of the tuple values returned by the 

T query. Folmally, this implies that the values returned, RiJJ, 
must match values that were frozen when the proof was gen- 
erated. 

P-correctness This refers to the correctriess of quety ex- 
ecutiorz. It implies that the joins and selections were per- 
formed correctly and the it" tuple of the result should in fact 
consist of (subset of) data from tuples i l .  i2, . . . i, of tables 
T I ,  T2, . . . T, respectively. This definition also checks for 
absence of valid tuples from the result set. 

To understand P-correctness intuitively, it is helpful to 
picture the database table as collection of tuple ids only. 
E.g. for a selection query P-correctness only tests whether 
the correct tuple ids are part of the result - it does not check 
whether the tuple data coi~esponding to these tuple ids is 
unmodified. In case of joins, it checks that correct pairs 

Figure 2. Example tables for Query Correct- 
ness. 

of tuple ids from two tables are in the result. While P- 
con-ectness does not check the tuple contents, a-correctness 
ties the tuple id to the contents stored in the tuple, and en- 
sures that they are not tampered. 

Consider two relations, R(A,  B) and S ( A ,  C, D), and 
the query 

Example instances of the two relations are shown in Fig- 
ure 2. The col-rect result of the query should be the tu- 
ples: {< b,: cl >; < b ~ :  cz >). a-co~~ectness  requires 
the database to prove beyond any doubt that the tuples in 
the result are indeed committed values. For this specific ex- 
ample, this amounts to proving that bl and b2 are part of 
some frozen tuples in table R (and similarly for cl and c2). 
,3-correctness requires that the selections and joins are cor- 
rectly performed and all the resulting tuples are returned. 
For example, if the database only returns: {< bl, cl >) (an 
incomplete result), or {< bl? c, >: < b2, c2 >, < bl! c3 >) 
(incorrect selection) or {< bl; cl  >, < b2, c2 >, < bl, c2 > 
) (incorrect join) then Alice should be able to discover this 
inconsistency. Note that all these results are a-COII-ect as the 
values returned do belong to some tuple in the table. The P- 
con-ectness proof will verify that the tuples containing the 
values returned (as certified by a-correctness) should in fact 
be in the result of the query. 

These two definitions are independent of each other and 
together imply the correctness of query results. As de- 
scribed later, for some specific cases we may not need the 
,B-col~ectness requirement in order to verify the correctness 
of query results. 

3.4 Query 

The solutions proposed in this paper can guarantee a- 
correctness for any arbitrary query over the database. How- 
ever, for the case of the more challenging ,3-correctness, we 
need to limit the types of queries of the form: 

T ~ ~ . ~ ? - . . . . ~ 7 , ,  (csl=al.s2=u2 ..... s,,=u,, (TI W T2 W . . . T,)) 

wherepl; p2 . . . p,. s l ;  ~ 2 ,  . . . S ,  are the attributes of the ta- 
bles TI, G: .  . . ,T, of the database. The joins between the 

that enables a random audit of frozen data in order to en
sure that Bob does not freeze incolTect data. Once a data
item is frozen, the protocol should not allow him to mod
ify it - i.e. Bob's hands should be tied with respect to the
frozen data. This is a reasonable assumption given that the
event which causes Bob to become malicious and skew the
results to his favor does not happen before Bob generates
and sends the proof. Nevertheless, we do not trust Bob to
follow the algorithm cOlTectly. He may try to find loopholes
in the algorithm to generate a proof that does not tie his
hands completely (e.g. as discussed in Appendix A, instead
of freezing a tuple to one value, Bob may try to freeze it in
such a way that allows him to report two or more possible
values for that tuple).

There is no restriction on how the query results can be
modified. Further, Bob is concerned about the privacy of
the database. He wishes to reveal only a minimal amount of
information to Alice, in addition to the query results.

3.3 Definition of Correctness

There are two aspects of correctness of query results.
We now present two requirements for the conectness of
query results returned by a private database. Without loss
of generality, we can denote the result tuples of a SP] query
(queries involving only select, projects and joins) as:

where II denotes concatenation, R; is the i th tuple of the

result and R~ refers to the value of projected attributes of
tuple i j of table T j . We divide the conectness requirements
into a- and ,6-cOITectness as defined below.

a-correctness This refers to the correctness of the result
values, i.e. the validity of the tuple values returned by the

query. FOImally, this implies that the values returned, R~j ,
must match values that were frozen when the proof was gen
erated.

,6-correctness This refers to the correctness of query ex
ecution. It implies that the joins and selections were per
formed conectly and the i th tuple of the result should in fact
consist of (subset of) data from tuples iI, i 2, ... i q of tables
T I , T2 , •.. Tq respectively. This definition also checks for
absence of valid tuples from the result set.

To understand ,6-conectness intuitively, it is helpful to
picture the database table as collection of tuple ids only.
E.g. for a selection query ,6-correctness only tests whether
the conect tuple ids are part of the result - it does not check
whether the tuple data cOlTesponding to these tuple ids is
unmodified. In case of joins, it checks that correct pairs

al CI d l
al C3 d2

a2 C2 d l

Figure 2. Example tables for Query Correct
ness.

of tuple ids from two tables are in the result. While,6
conectness does not check the tuple contents, a-correctness
ties the tuple id to the contents stored in the tuple, and en
sures that they are not tampered.

Consider two relations, R(A, B) and S(A, C, D), and
the query

7rB,c(USD=d, (R ~R.A=S.A S))

Example instances of the two relations are shown in Fig
ure 2. The COITect result of the query should be the tu
ples: {< bl,CI >,< b2 ,c2 >}. a-correctness requires
the database to prove beyond any doubt that the tuples in
the result are indeed committed values. For this specific ex
ample, this amounts to proving that bl and b2 are paI1 of
some frozen tuples in table R (and similarly for CI and C2).

,6-correctness requires that the selections and joins are cor
rectly performed and all the resulting tuples are returned.
For example, if the database only returns: {< bl , CI >} (an
incompleteresult),or{< bl,CI >,< b2 ,C2 >,< bl ,C3 >}
(incorrect selection) or {< bl , CI >, < b2 , C2 >, < bl , C2 >
} (incorrect join) then Alice should be able to discover this
inconsistency. Note that all these results are a-COITect as the
values returned do belong to some tuple in the table. The,6
conectness proof will verify that the tuples containing the
values returned (as certified by a-correctness) should in fact
be in the result of the query.

These two definitions are independent of each other and
together imply the correctness of query results. As de
scribed later, for some specific cases we may not need the
,6-colTectness requirement in order to verify the correctness
of query results.

3.4 Query

The solutions proposed in this paper can guarantee a
correctness for any arbitrary query over the database. How
ever, for the case of the more challenging ,6-correctness, we
need to limit the types of queries of the form:

where PI, P2 ... Pm, 81,82, ... 8n are the attributes of the ta
bles T I , T2 , .•• ,Tq of the database. The joins between the



tables are assumed to be equality joins. 
It should be noted that our approach can also prove cor- 

rectness for queries whose results are essentially derived 
from queries of the type shown above (e.g. aggregate 
queries) by proving the correctness of the underlying query, 
we can show that the derived query was also correctly eval- 
uated. For example, we can prove correctness for a query 
that computes an aggregate over a set of tuples generated 
by a query of the type shown above. However, in order to 
prove its authenticity, we would have to expose the values 
of these tuples (i.e. we can not ensure the privacy of under- 
lying query and expose only the aggregate). 

4 Preliminaries 

This paper employs two standard data security tools: 
strorzg one-way haslz furzctiorzs [13] and Merkle Trees [ 101. 
We provide a brief description of these tools before dis- 
cussing the proposed solutions. 

4.1 One-Way Hashing 

A one-way hash is a function, h, that takes as input a 
data item, x and produces as output the'hash of the data 
item, y = h(x). Important requirements for a one-way hash 
function are: 

1. Given a hash value, y, and the details of the hashing 
function h, it is very difficult to find x such that h(x) = 

y. In other words, given the hash of a data item it is 
hard to work back and determine the data value that 
generated this hash value. 

2. The probability that h(q) ; h(y) for x # y is very 
low. i.e., it is very unlikely that two different values 
will yield the same hash. 

Therefore, given a hashed value, y, it is virtually impos- 
sible to discover any data value that yields y as its hash 
value. If a value x is known, then it is virtually impossible 
to generate a second value z such that h(z) = h(x). Thus, 
given a hash value y, it is possible to determine x such that 
y = h(x) only if x is already known (or one gets extremely 
lucky). There are many well-known and commonly used 
strong one-way hash functions, such as SHA-256. 

Another important class of hash functions are cvp to -  
graphically secure keyed hash functions, denoted by hl;. 
These work in much the same way as a one-way hash func- 
tion, but they take as an additional input, a key, k. With such 
a function, given x it is not possible to determine hk(x) even 
if we know the hash function unless the key k is also known. 

4.2 Merkle Trees 

A Merkle tree [ lo]  is a binary tree (not necessarily com- 
plete) with labeled nodes. The labels are binary strings 
of length k. Let @(n) represent the label of node n. thus 
@(n) E (0; 1)" The label for each internal node of the tree, 
nPaTenl, with children, 7zlef t  and nTi,hl, is derived from the 
labels of its children using a hash function, h as: 

The function Iz is a candidate one-way function such as 
SHA-256. The above equation gives assignment of Q, for 
internal nodes. For leaf nodes, Q, is usually chosen depend- 
ing upon the application of merkle trees. For example, Q, for 
a leaf can be the hash of a small part of a document whose 
integrity we want to establish. 

I I 
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data 

------------------ 

Figure 3. An example Merkle tree. The black 
nodes form the authentication path of shaded 
data block. 

Merkle trees are used to establish the authenticity of the 
leaf node labels. This is achieved by simply publishing the 
value of the root's label. Publishing in this context, refers 
to recording the value in a manner that cannot be modified 
later. This can be achieved by printing this value in a news- 
paper, or using an authentication service. With this pub- 
lished and unmodifiable value, one can now establish that 
the value for any of the leaf labels has not been modified 
after the publication of the root's label. Consider for ex- 
ample, the merkle tree shown in Figure 3. In this example, 
the labels for the leaf nodes correspond to the hash values 
of data items whose authenticity we would like to establish. 
In order to prove that the value of the data item x (shown 
shaded in the figure) has not been modified, we simply need 

4.2 Merkle Trees
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Figure 3. An example Merkle tree. The black
nodes form the authentication path of shaded
data block.
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The function h is a candidate one-way function such as
SHA-256. The above equation gives assignment of iI> for
internal nodes. For leaf nodes, iI> is usually chosen depend
ing upon the appl ication of merkle trees. For example, iI> for
a leaf can be the hash of a small part of a document whose
integrity we want to establish.

A Merkle tree [10] is a binary tree (not necessarily com
plete) with labeled nodes. The labels are binary strings
of length k. Let iI>(n) represent the label of node n, thus
iI>(n) E {a, l}k. The label for each internal node of the tree,
nparent, with children, nlejt and nrighb is derived from the
labels of its children using a hash function, has:

4.1 One-Way Hashing

This paper employs two standard data security tools:
strong one-way hash functions [13] and Merkle Trees [10].
We provide a brief description of these tools before dis
cussing the proposed solutions.

4 Preliminaries

2. The probability that h(xJ =: h(y) for x #- y is very
low. i.e., it is very unlikely that two different values
will yield the same hash.

A one-way hash is a function, h, that takes as input a
data item, x and produces as output the' hash of the data
item, y = h(x). Imp0l1ant requirements for a one-way hash
function are:

tables are assumed to be equality joins.

It should be noted that our approach can also prove cor
rectness for queries whose results are essentially derived
from queries of the type shown above (e.g. aggregate
queries) by proving the correctness of the underlying query,
we can show that the derived query was also correctly eval
uated. For example, we can prove correctness for a query
that computes an aggregate over a set of tuples generated
by a query of the type shown above. However, in order to
prove its authenticity, we would have to expose the values
of these tuples (i.e. we can not ensure the privacy of under
lying query and expose only the aggregate).

1. Given a hash value, y, and the details of the hashing
function h, it is very difficult to find x such that h(x) =
y. In other words, given the hash of a data item it is
hard to work back and determine the data value that
generated this hash value.

Therefore, given a hashed value, y, it is virtually impos
sible to discover any data value that yields y as its hash
value. If a value x is known, then it is virtually impossible
to generate a second value z such that h(z) = h(x). Thus,
given a hash value y, it is possible to determine x such that
y = h(x) only if x is already known (or one gets extremely
lucky). There are many well-known and commonly used
strong one-way hash functions, such as SHA-256.

Another important class of hash functions are crypto
graphically secure keyed hash functions, denoted by h k .

These work in much the same way as a one-way hash func
tion, but they take as an additional input, a key, k. With such
a function, given x it is not possible to determine hk (x) even
if we know the hash function unless the key k is also known.

Merkle trees are used to establish the authenticity of the
leaf node labels. This is achieved by simply publishing the
value of the root's label. Publishing in this context, refers
to recording the value in a manner that cannot be modified
later. This can be achieved by printing this value in a news
paper, or using an authentication service. With this pub
lished and unmodifiable value, one can now establish that
the value for any of the leaf labels has not been modified
after the publication of the root's label. Consider for ex
ample, the merkle tree shown in Figure 3. In this example,
the labels for the leaf nodes correspond to the hash values
of data items whose authenticity we would like to establish.
In order to prove that the value of the data item x (shown
shaded in the figure) has not been modified, we simply need



to provide the value of x (the hash function for the tree is 
well known), and the labels of the sibling nodes on the path 
from x to the root. These nodes are shown as black circles 
in the figure. This path is called the authentication path for 
x. To verify the claim, one computes the labels of the nodes 
along the path using the definition of @ for internal nodes. 
If the computed label for the root matches the previously 
published value then the value of x is authenticated. 

To see why this is so, consider what happens if the value 
of x has indeed been modified. Given the new value of x, 
one would have to create labels for each sibling such that af- 
ter repeated computations of the parent labels, the final hash 
value is the same as the one that was generated earlier. By 
the very nature of one-way hash functions, this is extremely 
difficult to do, thus the labels cannot have been modified. 

5 Simple Model Solution 

In this section, we discuss several solutions with vari- 
ous degrees of privacy, computational complexity and data 
bandwidth. For the moment, we assume that the query con- 
tains only select operators and we are only verifying the a- 
correctness of the query results in each of these solutions. 
We will discuss the general case later. For each solution, we 
discuss the Proof of integrity that must be shipped by Bob 
whenever he freezes the data, and the Verification steps that 
Alice must carry out in order to establish the authenticity of 
data in case she suspects foul play. We begin with a very 
simple solution to illustrate the nature of the problem. In 
the rest of the paper, the term database refers to the part of 
Bob's private database that is frozen. 

In all of these solutions, the hash function 1z is assumed 
to be public. The hash function implementations normally 
take a sequence of bytes as input and returns an output of 
fixed length. Using this, we can define the function lz on any 
chunk of data in the database. For an attribute value: hash is 
simply the hash of bytes representing that value. For bigger 
units like a tuple or (ordered) set of attributes, lz is defined 
as hash of concatenation of all the attributes making up that 
tuple or set respectively. 

In some solutions we assume that each tuple is identi- 
fied uniquely. This can be achieved by using RIDS. or for 
simplicity, generating an explicit ID within the database. 

Solution 1 Proof of integrity: Bob computes the hash of 
the entire database and sends it to Alice. 
Verification: If challenged by Alice to pi-ove the authentic- 
ity of the results of a query, Bob ships the entire contents of 
the database to her. Alice can easily i) verify that the result 
values are indeed part of this database; and ii) compute the 
hash of this database and verify if the overall hash match the 
earlierproof. If these two values match, then Bob must have 
sent the same database that was used to generate the earlier 

proof (given the difficulty of finding two numbers that hash 
to the same value) and has not modified it since. 

This approach has the advantage that the database owner 
needs to send only one number (the hash value) to Alice. 
However, this is obviously a very bad solution since it vi- 
olates the privacy of Bob's database as he has to reveal the 
entire database when challenged. The bandwidth required 
for verification is also huge as the entire database needs to 
be shipped for verification. 

Solution 2 Proof of integrity: We consider a strong hash 
function h such as SHA-256. For each tuple ri in the 
database, Bob generates hi = lz(ri) and ships ( i ,  hi) 'di 
to Alice. 
Verification: As the result of a query, Alice gets back ( i ;  r i )  
for i in the result set. She can easily hash the result tuples 
and verify their integrity. In other words, no extra data is 
needed for Alice to verify a result. 

The i used in this solution can be something which 
uniquely identifies a tuple in a database table such as RID. 
We can use other approaches which do not use RIDS such as 
sending the individual hashes in sorted order of hash value, 
but using RIDS makes the exposition easier. This approach 
respects the privacy of Bob's database. There is no com- 
munication between Bob and Alice during the verification 
phase as she has all the information needed to verify the 
results. This approach can very easily be implemented by 
maintaining a separate field for the hash along with each tu- 
ple. The hash is updated whenever a tuple is inserted or 
modified. Although this increases privacy, it is not very 
practical as the size of the proof is proportional to the size 
of database. The size of the proof, rather than the size of 
the verificationt is the major concern as verification may be 
rare (only when challenged by the querier) as compared to 
sending the proof of integrity (which may be periodic). 

Solution 3 Proof of integrity: Let the tuples to be frozen 
be r1, r z ; .  . . ; r,. Bob computes the hash of individual tu- 
ples rl . . .?-, with hash function lz to generate a1 . . .a,, 
where ai = Iz(ri). Next, he computes the hash of al . . .a,  
to generate the final proof which he ships to the querier. 
Thus the proof is lz(lz(rl)/ l h ( ~ ~ ) ( I  . . . IIh(r,)). 
Verification: Let the result set S be set of all tuple numbers 
returned by the query. i.e.? the result of the query is a set 
{ ( j :  s j ) )  j E S .  In order to verify this result, Alice asks 
Bob for ( i l a i )?  'di $ S. She computes the hash of each 
result Lj = lz (s j ) ,  j E S .  Finally, she computes the hash 
over bj and aj hash values received from Bob. 1.e. Alice 
computes: lz(cl IIc2l1 . . . IIc,) where ci = bi if i E S, and 
ci = ai, otherwise. If this overall hash value equals the 
proof sent earlier by Bob, then Alice is convinced that the 
result values were indeed part of the frozen database. 

to provide the value of x (the hash function for the tree is
well known), and the labels of the sibling nodes on the path
from x to the root. These nodes are shown as black circles
in the figure. This path is called the authentication path for
x. To verify the claim, one computes the labels of the nodes
along the path using the definition of cI> for internal nodes.
If the computed label for the root matches the previously
published value then the value of x is authenticated.

To see why this is so, consider what happens if the value
of x has indeed been modified. Given the new value of x,
one would have to create labels for each sibling such that af
ter repeated computations of the parent labels, the final hash
value is the same as the one that was generated earlier. By
the very nature of one-way hash functions, this is extremely
difficult to do, thus the labels cannot have been modified.

5 Simple Model Solution

In this section, we discuss several solutions with vari
ous degrees of privacy, computational complexity and data
bandwidth. For the moment, we assume that the query con
tains only select operators and we are only verifying the (l

correctness of the query results in each of these solutions.
We will discuss the general case later. For each solution, we
discuss the Proof of integrity that must be shipped by Bob
whenever he freezes the data, and the Verification steps that
Alice must carry out in order to establish the authenticity of
data in case she suspects foul play. We begin with a very
simple solution to illustrate the nature of the problem. In
the rest of the paper, the term database refers to the part of
Bob's private database that is frozen.

In all of these solutions, the hash function h is assumed
to be public. The hash function implementations normally
take a sequence of bytes as input and returns an output of
fixed length. Using this, we can define the function h on any
chunk of data in the database. For an attribute value, hash is
simply the hash of bytes representing that value. For bigger
units like a tuple or (ordered) set of attributes, h is defined
as hash of concatenation of all the attributes making up that
tuple or set respectively.

In some solutions we assume that each tuple is identi
fied uniquely. This can be achieved by using RIDs, or for
simplicity, generating an explicit ID within the database.

Solution 1 Proof of integrity: Bob computes the hash of
the entire database and sends it to Alice.
Verification: If challenged by Alice to prove the authentic
ity of the results of a query, Bob ships the entire contents of
the database to her. Alice can easily i) verify that the result
values are indeed part of this database; and ii) compute the
hash of this database and verify if the overall hash match the
earlier proof. If these two values match, then Bob must have
sent the same database that was used to generate the earlier

proof (given the difficulty of finding two numbers that hash
to the same value) and has not modified it since.

This approach has the advantage that the database owner
needs to send only one number (the hash value) to Alice.
However, this is obviously a very bad solution since it vi
olates the privacy of Bob's database as he has to reveal the
entire database when challenged. The bandwidth required
for verification is also huge as the entire database needs to
be shipped for verification.

Solution 2 Proof of integrity: We consider a strong hash
function h such as SHA-256. For each tuple Ti in the
database, Bob generates hi = h(Ti) and ships (i, hi) Vi
to Alice.
Verification: As the result of a query, Alice gets back (i, 1'.;)
for i in the result set. She can easily hash the result tuples
and verify their integrity. In other words, no extra data is
needed for Alice to verify a result.

The i used in this solution can be something which
uniquely identifies a tuple in a database table such as RID.
We can use other approaches which do not use RIDs such as
sending the individual hashes in sorted order of hash value,
but using RIDs makes the exposition easier. This approach
respects the privacy of Bob's database. There is no com
munication between Bob and Alice during the verification
phase as she has all the information needed to verify the
results. This approach can very easily be implemented by
maintaining a separate field for the hash along with each tu
ple. The hash is updated whenever a tuple is inserted or
modified. Although this increases privacy, it is not very
practical as the size of the proof is proportional to the size
of database. The size of the proof, rather than the size of
the verification, is the major concern as verification may be
rare (only when challenged by the querier) as compared to
sending the proof of integrity (which may be periodic).

Solution 3 Proof of integrity: Let the tuples to be frozen
be 1'1,1'2, , 1·n. Bob computes the hash of individual tu-
ples 1'1 Tn with hash function h to generate a1 an,
where ai = h(Ti)' Next, he computes the hash of a1 an
to generate the final proof which he ships to the querier.
Thus the proof is h(h(Tdllh(T2)11·· .llh(Tn )).

Verification: Let the result set S be set of all tuple numbers
returned by the query. i.e., the result of the query is a set
{(j, Sj)} j E S. In order to verify this result, Alice asks
Bob for (i, ai), Vi tf- S. She computes the hash of each
result bj = h(sj), j E S. Finally, she computes the hash
over bj and aj hash values received from Bob. I.e. Alice
computes: h(c11Ic211 ... llcn ) where Ci =bi if i E S, and
Ci = ai, otherwise. If this overall hash value equals the
proof sent earlier by Bob, then Alice is convinced that the
result values were indeed part of the frozen database.



As in the previous approach, this approach also respects 
the privacy of the database. But now, the proof size is re- 
duced to just one number (the final hash) at the cost of a 
greatly increased verification size. This overhead associated 
with hashing is similar to that in the previous approach. As- 
suming the result set is small, the size of the verification is 
proportional to the size of the database. Unless verification 
phases are rare and bandwidth for verification is not a con- 
cern, this approach is not practical. However, this approach 
may be useful in situations in which the result set is large. 

Solution 4 Proof of integrity: 
This approach uses merkle trees to reduce the size of the 
verification from O ( N )  to O(1og N ) ,  where N is the size of 
the database. The database owner computes a merkle tree 
as described in Section 4. The definition of merkle trees 
gives the assignment of @ for internal nodes. For leaf node 
li, @(li) = Iz(ri), where ri is the ith tuple in the database. 
Bob sends @(root) as proof of integrity to Alice. 
Verification: For verification, Bob sends authentication 
path for result tuples that need to be verified to Alice. The 
length of such a path is equal to the height of tree which 
is proportional to O(1og N ) .  Alice computes the hash over 
the result that she has received and the hash values along 
the authentication path supplied by Bob. If the overall hash 
generated by Alice using the result values and the authenti- 
cation path hashes matches the proof sent earlier, all result 
tuples are authenticated. 

This approach preserves database privacy as it reveals 
only the hashes of tuples that are not part of the result. Thus 
Alice learns nothing about the values of the other data items. 
While the size of the proof is the same as in Solution 3 (one 
single hash), the size of the verification is greatly reduced 
from O ( N )  to O(1og N) .  The computational complexity is 
proportional to number of nodes (both leaf and internal) of 
the merkle tree. For a binary tree with N leaves, the total 
number of nodes is 2 N  - 1. Therefore, the computational 
complexity of this approach is only twice as much as the 
previous approach. 

Table I summarizes the various solutions and their prop- 
erties. These solutions were developed for ensuring a- 
correctness only with the assumption that no projects are 
performed. However, as explained below, they can be 
extended to more general queries and also to prove P- 
correctness (with small modifications). 

5.1 a-Correctness of General Queries 

As discussed above, Solution 4 is superior to the others 
for verifying the a-correctness assuming that the number of 
tuples in the result set is small. We next describe this ap- 
proach in detail for verifying the a-correctness in the gen- 
eral case. 

5.1.1 Granularity of Hashing 

In all of the above solutions, we have assumed that the tu- 
ples are hashed at the granularity level of individual tuples. 
This granularity determines how much information must be 
reveaIed during verification. Consider a table has attributes 
A = {al ,  a z , .  . . ,a,) and the query returns B c A as 
the result. During verification, for each result tuple, the 
values of all A - B attributes must be revealed for the 
querier to verify the a-correctness of the results (by trac- 
ing the authentication path). This increases the data band- 
width required for verification and reduces the privacy of 
the database. 

To overcome this problem, the granularity of hashing 
can be adjusted so that no additional information is re- 
vealed during verification. For the above example query, 
Bob would hash B and A - B separately, i.e. @(tuple) = 
Izash(@(B) 11 @(A - B)) ,  where @(S)  = Iz(S) for any 
S c A. Now, in order to verify a result tuple which has 
only R attributes, we do not need to reveal A - B attributes 
-only the hash of the A-B attributes for that tuple is sent to 
Alice. This enables the database to mask private attributes 
that are not accessible to Alice or not part of the result. 

Working with a finer granularity of hashing, we can 
avoid violating the privacy of the database when the query 
result does not include all attributes of the table. However, 
at the same time, the finer granularity has a price associated 
with it. A finer granularity of hashing will increase the au- 
thentication data needed for verifying a data item. It should 
be noted that switching to a much finer granularity will in- 
crease the time needed to generate the proof and verify the 
results as described in Section 7. 

Consequently, a judicious choice of the granularity for 
hashing needs to be made in order to balance the cost of 
generating a proof and the degree of exposure of private 
data during verification. Given a set of queries that will be 
allowed to execute over a relation, let Ri C T be the set of 
attributes queried by query i. The granularity of hashing for 
Relation T, GT = {A1; Az;.  . .Am) :  A j  T ,  is decided 
such that 

2. Vi: 3Ji (1: 2; . . . in), such that Ri = UjEJi A j  

The first condition ensures that we do not include an at- 
tribute in more than one hash. which would incur costs in 
terms of efficiency and space. The second condition im- 
plies that we always have a subset of hashed attributes that 
will cover all the attributes projected by any query. This 
avoids the need to reveal any more information than what is 
already revealed during the verification phase. 

Solution 5 a  We now present the final solution for proving 
a-correctness for arbitrary SPJ queries, and also address an 

As in the previous approach, this approach also respects
the privacy of the database. But now, the proof size is re
duced to just one number (the final hash) at the cost of a
greatly increased verification size. This overhead associated
with hashing is similar to that in the previous approach. As
suming the result set is small, the size of the verification is
proportional to the size of the database. Unless verification
phases are rare and bandwidth for verification is not a con
cern, this approach is not practical. However, this approach
may be useful in situations in which the result set is large.

Solution 4 Proof of integrity:
This approach uses merkle trees to reduce the size of the
verification from O(N) to O(Jog N), where N is the size of
the database. The database owner computes a merkle tree
as described in Section 4. The definition of merkle trees
gives the assignment of ([> for internal nodes. For leaf node
ii, ([>(li) = h('ri), where 'ri is the i th tuple in the database.
Bob sends ([>( 'root) as proof of integrity to Alice.
Verification: For verification, Bob sends authentication
path for result tuples that need to be verified to Alice. The
length of such a path is equal to the height of tree which
is proportional to O(log N). Alice computes the hash over
the result that she has received and the hash values along
the authentication path supplied by Bob. If the overall hash
generated by Alice using the result values and the authenti
cation path hashes matches the proof sent earlier, all result
tuples are authenticated.

This approach preserves database privacy as it reveals
only the hashes of tuples that are not part of the result. Thus
Alice learns nothing about the values of the other data items.
While the size of the proof is the same as in Solution 3 (one
single hash), the size of the verification is greatly reduced
from O(N) to O(log N). The computational complexity is
proportional to number of nodes (both leaf and internal) of
the merkle tree. For a binary tree with N leaves, the total
number of nodes is 2N - 1. Therefore, the computational
complexity of this approach is only twice as much as the
previous approach.

Table I summarizes the various solutions and their prop
erties. These solutions were developed for ensuring a
correctness only with the assumption that no projects are
performed. However, as explained below, they can be
extended to more general queries and also to prove (3
COITectness (with small modifications).

5.1 a-Correctness of General Queries

As discussed above, Solution 4 is superior to the others
for verifying the a-correctness assuming that the number of
tuples in the result set is small. We next describe this ap
proach in detail for verifying the a-correctness in the gen
eral case.

5.1.1 Granularity of Hashing

In all of the above solutions, we have assumed that the tu
ples are hashed at the granularity level of individual tuples.
This granularity determines how much information must be
revealed during verification. Consider a table has attributes
A = {al,az, ... ,an } and the query returns B c A as
the result. During verification, for each result tuple, the
values of all A - B attributes must be revealed for the
querier to verify the a-correctness of the results (by trac
ing the authentication path). This increases the data band
width required for verification and reduces the privacy of
the database.

To overcome this problem, the granularity of hashing
can be adjusted so that no additional information is re
vealed during verification. For the above example query,
Bob would hash B and A - B separately, i.e. ([>(tuple) =
hash([>(B) II ([>(A - B)), where ([>(S) = h(S) for any
SeA. Now, in order to verify a result tuple which has
only R attributes, we do not need to reveal A - B attributes
- only the hash of the A - B attributes for that tuple is sent to
Alice. This enables the database to mask private attributes
that are not accessible to Alice or not part of the result.

Working with a finer granularity of hashing, we can
avoid violating the privacy of the database when the query
result does not include all attributes of the table. However,
at the same time, the finer granularity has a price associated
with it. A finer granularity of hashing will increase the au
thentication data needed for verifying a data item. It should
be noted that switching to a much finer granularity will in
crease the time needed to generate the proof and verify the
results as described in Section 7.

Consequently, a judicious choice of the granularity for
hashing needs to be made in order to balance the cost of
generating a proof and the degree of exposure of pdvate
data during verification. Given a set of queries that will be
allowed to execute over a relation, let R; <;;: T be the set of
attributes queried by query i. The granularity of hashing for
RelationT,Gr = {A1,Az, ... Am},Aj <;;: T,isdecided
such that

1. AinAj=¢,'Vi,jE{1,2, ... m},i#j;and

2. 'Vi,3Ji <;;: {I, 2, ... m}, such that R i = UjEJ; A j

The first condition ensures that we do not include an at
tribute in more than one hash, which would incur costs in
terms of efficiency and space. The second condition im
plies that we always have a subset of hashed attributes that
will cover all the attributes projected by any query. This
avoids the need to reveal any more information than what is
already revealed during the verification phase.

Solution Sa We now present the final solution for proving
a-correctness for arbitrary SP] queries, and also address an



Size of Proof 

Table 1. Summary of various approaches ( N  is the database size and S is the size of result set), 
assuming no projections and small result set S. 

Cost of Proof 
Size of Verification 
Cost of Verification 
Exposure of Data 

important attack for domains with small cardinality. With 
these definitions, we can redefine @(li) for a leaf node li as 

where A: refers to the value of attribute(s) A j  for itIL tuple 
and @(A:.) = hash(Ai).  Including tuple id, the unique 
identifier for a tuple, in (and thus in the authentication 
path of all attributes) allows the querier to verify if the data 
for which a-correctness is being tested, does indeed belong 
to tuples which are verified by the P-correctness verification 
algorithm as belonging to the result set. It should be noted 
that in the absence of knowledge about which subsets of 
attributes are likely to be queried, we can treat each attribute 
as one of the Ai sets. This allows us to provide maximal 
privacy for all the attributes. 

With this definition, the leaf nodes of the merkle tree are 
no longer labeled h(l-i) corresponding to tuple ri. Instead, 
the hash values of the various sets of attributes values h(A:) 
form the new leaf level. The next level up contains one 
node for each tuple ri of the database. Its label is the hash 
of the concatenation of labels for the m leaves of tuple ri:  
h(A:.); j = 1 ..m and the tuple-id for ri. This grouping 
together of the hashes of attribute of one tuple simplifies the 
implementation and allows Alice to easily verify whether 
two attributes reported (by query results) as part of one tuple 
of the table are in fact part of one tuple and not two different 
tuples. 

Solution 1 

O(1) 
O(N) 

complete exposure 

5.1.2 Handling attributes with small domains 

Solution 2 Solution 3 

O(I) 

The security of hash functions depends on the assumption 
that the domain of the hash function is large. If the do- 
main is small (e.g. age) a simple dictionary attack will allow 
the querier to deduce the attribute values from their hashes. 
The querier simply hashes each possible value (e.g. every 
age from 1 to 120, say) to produce the corresponding hash. 
Comparing these hash values with the hash values of private 
fields allows the querier to determine the value of the field. 
We solve this problem by generating the hash of the data 
value concatenated with another value not known to Alice. 
This secret value is called "salt". 

Solution 4 

O( 1) 
O(N) 

0 
o ( s )  

no exposure 

We redefine @(A;) for attributes with small domain car- 
dinality to be: 

where Si,j is the salt for attribute j of tuple i, and hk is a 
cryptographically secure keyed hash function. The key k is 
kept secret by the database owner. 

O m )  
O(N) 

no exposure 

Figure 4. Hash tree for a-correctness. The 
shaded nodes forms the authentication path 
of data item A; 

~ O(log N )  
O(log N )  

no exposure 

The size of the salt must be large enough to make 
dictionary attacks computationally very difficult for Alice. 
Si: j  must be revealed to Alice for verification of Ai. Figure 

J. .  
4 shows a hash tree and the complete authenticat~on path 
for a data item A:. In order to verify an attribute value, 

Solution I I Solution 2 I Solution 3 I Solution 4 ~

Size of Proof 0(1) O(N) 0(1) 0(1)
Cost of Proof O(N) O(N) O(N) O(N)
Size of Verification O(N) 0 O(N) O(logN)
Cost of Verification O(N) O(S) O(N) O(logN)
Exposure of Data complete exposure no exposure no exposure no exposure

Table 1. Summary of various approaches (N is the database size and S is the size of result set),
assuming no projections and small result set S.

important attack for domains with small cardinality. With
these definitions, we can redefine <I>(li) for a leaf node Ii as

We redefine <I>(Aj) for attributes with small domain car
dinality to be:

<I>(Aj) = hash(A~IISi.j)

Si.j = hdtable idllill.j)
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Figure 4. Hash tree for a-correctness. The
shaded nodes forms the authentication path
of data item Aj

where Si.j is the salt for attribute j of tuple i, and hk is a
cryptographically secure keyed hash function. The key k is
kept secret by the database owner.

The size of the salt Sij must be large enough to make
dictionary attacks computationally very difficult for Alice.
Si,) must be revealed to Alice for verification of Aj. Figure
4 shows a hash tree and the complete authentication path
for a data item A). In order to verify an attribute value,
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where Aj refers to the value of attribute(s) Aj for i th tuple

and <I>(Aj) = hash(Aj). Including tuple id, the unique
identifier for a tuple, in <I>(li) (and thus in the authentication
path of all attributes) allows the querier to verify if the data
for which a-correctness is being tested, does indeed belong
to tuples which are verified by the ,8-correctness verification
algorithm as belonging to the result set. It should be noted
that in the absence of knowledge about which subsets of
attributes are likely to be queried, we can treat each attribute
as one of the Ai sets. This allows us to provide maximal
privacy for all the attributes.

With this definition, the leaf nodes of the merkle tree are
no longer labeled h(Ti) corresponding to tuple Ti. Instead,
the hash values of the various sets of attributes values h(Aj)
form the new leaf level. The next level up contains one
node for each tuple Ti of the database. Its label is the hash
of the concatenation of labels for the m leaves of tuple Ti:
h(Aj),j = l..m and the tuplejd for Ti. This grouping
together of the hashes of attribute of one tuple simplifies the
implementation and allows Alice to easily verify whether
two attributes reported (by query results) as part of one tuple
ofthe table are in fact part of one tuple and not two different
tuples.

5.1.2 Handling attributes with small domains

The security of hash functions depends on the assumption
that the domain of the hash function is large. If the do
main is small (e.g. age) a simple dictionary attack will allow
the querier to deduce the attribute values from their hashes.
The querier simply hashes each possible value (e.g. every
age from I to 120, say) to produce the corresponding hash.
Comparing these hash values with the hash values of private
fields allows the querier to determine the value of the field.
We solve this problem by generating the hash of the data
value concatenated with another value not known to Alice.
This secret value is called "salt".



Alice will be given both the value of the data (A:) and the 
value of the corresponding salt (Si>j) used to generate the 
proof. Since the salt is released for verification, we cannot 
use a single value for all data items. Managing different salt 
values for each data item can be quite cumbersome (and 
consume storage) for Bob. To avoid both these problems, 
we defining the salt such that it can be derived from the 
value of the data item through a different hash function hk. 
Thus Bob can easily "remember" the hash for any data value 
rc to be simply hk(x)  - no need to save the salt. 

As described in Section 3, the a-correctness of results 
alone does not establish the correctness of results. In some 
special cases, however, verifying only the cr-correctness 
suffices. For example, if the total number of tuples that must 
be retuned by a query is known and all join and selection 
attributes are retained in the result, then the correctness of 
query results is completely determined by its a-correctness. 

Note that we can verify the a-col-rectness of the results 
for any general query. The restriction on queries given in 
Section 3 is necessary only for verifying @-correctness. 

5.2 Verifying @-correctness 

In the previous section, we discussed how we can mod- 
ify merkle trees to establish the a-correctness of the results 
which ensures that all values returned by the query were in- 
deed frozen by the database. In this section we suggest so- 
lutions for establishing p-correctness which ensures that all 
results for a query are sent to the querier. For this, we need 
to make sure that the query engine performs all the joins 
and selects correctly. This is challenging because Bob. the 
database owner, is not willing to reveal the entire database 
due to privacy concerns. Merkle trees can be very band- 
width efficient for a-correctness as discussed previously, 
but they cannot be used for p-correctness. This is due to 
the fact that we need information about the entire database 
for verifying the p-correctness. 

As discussed earlier (Section 3), for p-correctness we 
will assume that the queries only contain equality joins. We 
use a modified version of the hash tree described in Solution 
3. First, we need to define the granularity of hashing to 
prevent violation of privacy similar to what was proposed 
above for a-correctness in Solution 5 a .  

Without loss of generality, let us assume that the query 
is 

47 = TP" i ~ s ,  (T,, W J ~  TT2 ))  

where P, T,, UT,, are projected attributes, S, c T,, UT,, 
are selection attributes and J, c T,, (and J, C T,,) are 
join attributes. Note that the selections and joins are both 
based on equality (Section 3). To prove the p-correctness 
of results without revealing any additional information we 
enforce the following conditions on the granularity GT = 

{A1,A2, . . . .Am},A3 C T ,  

2. 'di, 3Ki c (1: 2 ; .  . .in} and 3L; C {1,2 , .  . .m}, such 

In other words, we identify maximal; disjoint subsets of at- 
tributes of each relation T such that we can obtain each 
of the sets required for selections and joins over this rela- 
tion for every query. Note that we can always satisfy these 
conditions by picking each set A? consisting of a single at- 
tribute. We now propose a solution for @-col~ectness. 

F igure  5. H a s h  t r e e  fo r  p -co r rec tness  

Solution 5@ 
The hash tree over one database table for P-col~ectness is 
defined as follows: 

where, Sd(Aj)  is the digital signature of Bob on value AS 
with the private key d. The corresponding public key e is 
known to Alice. As described later, using a simple keyed 
hash as the salt (similar to our solution for a-correctness) is 
not sufficient to ensure the 4 correctness. Figure 5 shows 
the hash tree described above. The nodes L1: 12, . . . : 1, cor- 
respond to each tuple of the table. 

We have included tup le  id in the definition of @(li)  sim- 
ilar to the definition of @ ( l i )  for a-correctness. Keeping 
this unique identifier along with the tuples in both (a  and 
p )  trees helps Alice to verify that the authentication paths 
provided by Bob for a and 0 proofs are for the same data 
item. If we remove tup le  id from the above definition, it is 

Figure 5. Hash tree for (3-correctness

J i = U Ak; Si = U Al
kEK; IEL;

Solution 5(J
The hash tree over one database table for (J-colTectness is
defined as follows:
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2. Vi,3Ki <;;;; {1,2, ... m}and3Li <;;;; {1,2, ... m},such
that

1\
I \

I \
I \

I \
I \

!.- J

<I>(7'Oot) = hash(<I>(ldll<I>(l2)II·· ·11<I>(ln))

cI>(li) = hash(tuple idll<I>(A;)II<I>(A;)II ... 11cI>(A~))

<I>(Aj) = hash(A;IISi,j)

Si,j = Sd(Aj)

where, Sd(A;) is the digital signature of Bob on value Aj
with the private key d. The corresponding public key e is
known to Alice. As described later, using a simple keyed
hash as the salt (similar to our solution for a-correctness) is
not sufficient to ensure the (J correctness. Figure S shows
the hash tree described above. The nodes l}, 12, ... , in cor
respond to each tuple of the table.

We have included tuple id in the definition of cI>( li) sim
ilar to the definition of <I>(li) for a-correctness. Keeping
this unique identifier along with the tuples in both (a and
!J) trees helps Alice to verify that the authentication paths
provided by Bob for a and ,3 proofs are for the same data
item. If we remove tuple id from the above definition, it is

In other words, we identify maximal, disjoint subsets of at
tributes of each relation T such that we can obtain each
of the sets required for selections and joins over this rela
tion for every query. Note that we can always satisfy these
conditions by picking each set Ai consisting of a single at
tribute. We now propose a solution for (J-colTectness.

is

5.2 Verifying (J-correctness

qi = 7fP;(O"S,(Ti, IXl J , Ti2 ))

where Pi <;;;; Til UTi2 are projected attributes, Si <;;;; Til UTi2

are selection attributes and J i <;;;; Til (and J i <;;;; Ti ,) are
join attributes. Note that the selections and joins are both
based on equality (Section 3). To prove the (J-correctness
of results without revealing any additional information we
enforce the following conditions on the granularity GT

{A},A2, ... ,Am },A j <;;;;T,

In the previous section, we discussed how we can mod
ify merkle trees to establish the a-correctness of the results
which ensures that all values returned by the query were in
deed frozen by the database. In this section we suggest so
lutions for establishing (J-correctness which ensures that all
results for a query are sent to the querier. For this, we need
to make sure that the query engine performs all the joins
and selects correctly. This is challenging because Bob, the
database owner, is not willing to reveal the entire database
due to privacy concerns. Merkle trees can be very band
width efficient for a-correctness as discussed previously,
but they cannot be used for (J-correctness. This is due to
the fact that we need information about the entire database
for verifying the (J-correctness.

As discussed earlier (Section 3), for (J-correctness we
will assume that the queries only contain equality joins. We
use a modified version of the hash tree described in Solution
3. First, we need to define the granularity of hashing to
prevent violation of privacy similar to what was proposed
above for a-conectness in Solution Sa.

Without loss of generality, let us assume that the query

Alice will be given both the value of the data (Aj) and the
value of the corresponding salt (Si,j) used to generate the
proof. Since the salt is released for verification, we cannot
use a single value for all data items. Managing different salt
values for each data item can be quite cumbersome (and
consume storage) for Bob. To avoid both these problems,
we defining the salt such that it can be derived from the
value of the data item through a different hash function hk.
Thus Bob can easily "remember" the hash for any data value
x to be simply hdx) - no need to save the salt.

As described in Section 3, the a-correctness of results
alone does not establish the correctness of results. In some
special cases, however, verifying only the a-correctness
suffices. For example, if the total number of tuples that must
be returned by a query is known and all join and selection
attributes are retained in the result, then the correctness of
query results is completely determined by its a-correctness.

Note that we can verify the a-COITectness of the results
for any general query. The restriction on queries given in
Section 3 is necessary only for verifying (J-correctness.



possible for Bob to fool Alice, by providing an authentica- 
tion path for one tuple for a-proof verification and path for a 
different tuple for 0-proof verification (possibly having one 
or more attribute values equal to the first tuple). Without the 
unique tuple ids, Alice will have no way to verify if the two 
proofs point to the same tuples. Thus, tuple ids serve to link 
the two proofs together. 

During the proof sending phase, the database owner, 
Bob, only sends @(root) for each table to Alice. If Alice 
requests verification after executing a query, Bob sends (for 
all tables involved in the query) @(A$), Vi, j and Si,; for all 
the A j  attributes that are involved in a selection. 

Alice checks if the value of @(root) sent for each table 
matches the value calculated by using hash of all @(A:) sent 
by Bob. If that succeeds, she only needs to prove that the 
joins and selections are pelformed correctly by the database 
to prove ,&correctness. 

To check the correctness of selection, Alice checks the 
following condition for all selections (of the form A; = aj :  
where a j  is a constant) performed by the query: Vi: if 
@ ( A ) ) =  hash(a j  IISiZj) then tuple i is present in the result 
set. Additionally, she needs to verify that for the tuples re- 
turned in response to the query, the signature SiZj matches 
the signature of Bob. This can be verified by using Bob's 
public key e. 

If the value of salt Si,j is chosen to be hk(A$) (similar to 
a-correctness), it is possible for Bob to actually return two 
(or more) different sets of answers in response to a single 
selection query and provide a correctness proof for each of 
them. This is against our assumptions where we want Bob 
to commit to exactly one state of the database. This attack 
is possible because Bob may choose to use different keys 
for the hash function instead of using just one key for all 
the tuples in the database (as required by the the protocol). 
Defining Sif as Bob's digital signature on attribute value 
and later verifying it at Alice's end prevents this problem. 

To verify if the join was performed correctly, Alice 
checks the following for attributes (say Aj)  of joined ta- 
bles: Vil, ia = 1 , 2 , .  . . , n if @(A>) = @(A:) then tuples 
il and iz are included in the result. 

Our solution for a and p correctness requires Bob to 
send 21 Dl (root nodes of two trees per table) hashes during 
the proof sending phase, where ID1 is the number of tables 
in the database. These hashes can be easily combined into 
one hash to reduce the proof size at the cost of one extra 
level in all authentication paths. 

6 Implementation 

We have implemented our proposed solution in Post- 
greSQL [12]. The algorithms for generating hash trees over 
the database were implemented in PLIpgSQL. We used the 
implementation of the hash function SHA-1 from OpenSSL 

crypto library [14] for our experiments. The database has 
been extended to allow the owner to freeze data values 
by generating proofs, and also supporting authentication 
of query results. In our implementation, the timing of the 
freezing can also be controlled by the querier. Whenever 
the querier wants the database to freeze its values, it is- 
sues a send-proof command to the database. On receiving 
the sendproof  command the database sends a single hash 
value to the querier. If the querier wants to verify the results, 
it issues a send-verify command to the database. On receipt 
of send-verify the database returns the authentication paths 
for all tuples in the query result being verified. For simplic- 
ity, we have implemented an append-only database. But its 
relatively easy to extend it for general databases. In partic- 
ular, we have to write an update trigger to update the hash 
tree whenever data in a node is modified. We implement 
Solution 5 (a  and p). 

The hash trees can be generated over the tuples to be 
frozen when the sendproof  command is received by the 
database. However, this approach will have a large over- 
head on receipt of send-proof. A better alternative will be 
to generate the tree as tuples are added to the database. This 
approach distributes the load evenly during the database up- 
dates. 

For generating and storing the tree, we add the following 
tables to the database. We create a new table - haslz-tree 
(node-id. phi: pal-e~rt)  to store the generated hash tree. In 
this tree representation, the ordering of the child nodes is 
not explicit. For a given parent node, the child nodes are 
implicitly ordered by increasing node ids. For example, the 
child with lowest node id is considered as the leftmost child. 
A global counter (count) is used to obtain new node-id val- 
ues. The schema of each original table in the database is 
modified to add a new attribute called ~rode-id. A tempo- 
rary table, heiglzt-table(height, node-id) is also created. 

Upon insertion of a new tuple into the database, the 
add-node algorithm (refer Figure 6) is executed (by means 
of a trigger). By means of the add-node algorithm, a 
forest of partial merkle trees over the current rows of the 
database is constantly maintained. The roots of such trees 
are stored in a temporary table, height-table. On receipt of 
a send-proof (Figure 7) request, the database merges these 
partial trees into one tree and returns the root of this tree as 
the proof. 

After the send-proof algorithm is executed, the database 
has a complete merkle tree over the database. Given this 
merkle tree, send-verify algorithm is easy. For each tu- 
ple in the result, the database returns an authentication path 
with the help of the hash-tree table. Note that the authen- 
tication paths of these tuples will overlap and this can be 
used to further reduce the size of verification data. The 
querier on receipt of this authentication path calculates the 
hashes and traces back the authentication path to the root 

possible for Bob to fool Alice, by providing an authentica
tion path for one tuple for a-proof verification and path for a
different tuple for ,8-proof verification (possibly having one
or more attribute values equal to the first tuple). Without the
unique tuple ids, Alice will have no way to verify if the two
proofs point to the same tuples. Thus, tuple ids serve to link
the two proofs together.

During the proof sending phase, the database owner,
Bob, only sends <I>(root) for each table to Alice. If Alice
requests verification after executing a query, Bob sends (for
all tables involved in the query) <I>(Aj), Vi, j and 8 i ,j for all
the Aj attributes that are involved in a selection.

Alice checks if the value of <I> (root) sent for each table
matches the value calculated by using hash of all <I>(A~) sent
by Bob. If that succeeds, she only needs to prove that the
joins and selections are peIformed correctly by the database
to prove ,8-correctness.

To check the COiTectness of selection, Alice checks the
following condition for all selections (of the form Aj = aj,
where aj is a constant) peIformed by the query: Vi, if
<I>(Aj) = hash(aj 118i ,j) then tuple i is present in the result
set. Additionally, she needs to verify that for the tuples re
turned in response to the query, the signature 8i ,j matches
the signature of Bob. This can be verified by using Bob's
public key e.

If the value of salt 8i ,j is chosen to be hdAj) (similar to
a-correctness), it is possible for Bob to actually return two
(or more) different sets of answers in response to a single
selection query and provide a correctness proof for each of
them. This is against our assumptions where we want Bob
to commit to exactly one state of the database. This attack
is possible because Bob may choose to use different keys
for the hash function instead of using just one key for all
the tuples in the database (as required by the the protocol).
Defining 8i ,j as Bob's digital signature on attribute value
and later verifying it at Alice's end prevents this problem.

To verify if the join was performed correctly, Alice
checks the following for attributes (say Aj ) of joined ta
bles: Vi1 ,i2 = 1,2, ... ,nif<I>(Aj') = <I>(A~2)thentuples

i 1 and i 2 are included in the result.
Our solution for a and ,8 correctness requires Bob to

send 21D[ (root nodes of two trees per table) hashes during
the proof sending phase, where IDI is the number of tables
in the database. These hashes can be easily combined into
one hash to reduce the proof size at the cost of one extra
level in all authentication paths.

6 Implementation

We have implemented our proposed solution in Post
greSQL [12). The algorithms for generating hash trees over
the database were implemented in PLlpgSQL. We used the
implementation of the hash function SHA-l from OpenSSL

crypto library [14] for our experiments. The database has
been extended to allow the owner to freeze data values
by generating proofs, and also supporting authentication
of query results. In our implementation, the timing of the
freezing can also be controlled by the querier. Whenever
the querier wants the database to freeze its values, it is
sues a send_proof command to the database. On receiving
the send_proof command the database sends a single hash
value to the querier. If the querier wants to verify the results,
it issues a send_verify command to the database. On receipt
of send_verify the database returns the authentication paths
for all tuples in the query result being verified. For simplic
ity, we have implemented an append-only database. But its
relatively easy to extend it for general databases. In partic
ular, we have to write an update trigger to update the hash
tree whenever data in a node is modified. We implement
Solution 5 (a and (3).

The hash trees can be generated over the tuples to be
frozen when the send_proof command is received by the
database. However, this approach will have a large over
head on receipt of send_proof. A better alternative will be
to generate the tree as tuples are added to the database. This
approach distributes the load evenly during the database up
dates.

For generating and storing the tree, we add the following
tables to the database. We create a new table - hash_tree
(node id,phi,parent) to store the generated hash tree. In
this tree representation, the ordering of the child nodes is
not explicit. For a given parent node, the child nodes are
implicitly ordered by increasing node ids. For example, the
child with lowest node id is considered as the leftmost child.
A global counter (count) is used to obtain new node_id val
ues. The schema of each original table in the database is
modified to add a new attribute called node_id. A tempo
rary table, heighuable(height, Ilode_id) is also created.

Upon insertion of a new tuple into the database, the
add_node algorithm (refer Figure 6) is executed (by means
of a trigger). By means of the add_node algorithm, a
forest of partial merkle trees over the current rows of the
database is constantly maintained. The roots of such trees
are stored in a temporary table, heighuable. On receipt of
a send_proof (Figure 7) request, the database merges these
partial trees into one tree and returns the root of this tree as
the proof.

After the send_proof algorithm is executed, the database
has a complete merkle tree over the database. Given this
merkle tree, send_verify algorithm is easy. For each tu
ple in the result, the database returns an authentication path
with the help of the hash_tree table. Note that the authen
tication paths of these tuples will overlap and this can be
used to further reduce the size of verification data. The
querier on receipt of this authentication path calculates the
hashes and traces back the authentication path to the root



1. Let h=hash(table(tupleid)) 

2. INSERT INTO hash-tree (count++, h, NULL) 

4. UPDATE table SET node-id = currentnode WHERE 
key=tupleid 

6. Let temp = SELECT node-id FROM height-table 
WHERE height = currentheight 

7. If  temp # NULL 

(a) h=hash(hash-tree(temp)II 
hash-tree(currentn0de)) 

(b) INSERT INTO hash-tree (count++, h, NULL) 

(c) UPDATE hash-tree SET parent-id = (count - 1) 
WHERE (nodeid = temp OR node-id = cur- 
rentaode) 

(d) DELETE FROM height-table WHERE height = 
currentheight 

(e) currentheight++; cull-entnode = count - 1 

(0 GOT0 6 

8. else INSERT INTO height-table (currentheight, cur- 
rentaode) 

Figure 6. Pseudo code for add-node(tupleid, 
table). tuple-id is the new tuple that is to be 
added to the tree and table is the database ta- 
ble in which tuple-id resides 

and checks if the final hash matches the value sent to it ear- 
lier by send-proof algorithm. 

The implementation of our solution to prove 0- 
correctness is simple because of the simplicity of the hash 
tree structure defined for it. 

6.1 Efficiency 

A number of optimizations are possible for the algo- 
rithm presented above to reduce the space overhead associ- 
ated with maintaining the merkle trees on the database side. 
These optimizations come at the cost of additional process- 
ing required by the database during the proof verification 
phase. This may be desirable if we assume that the verifica- 
tion phase is rare (i.e. only when the querier suspects foul 
play and asks the database to send authentication paths). To 
achieve this, we note that the entire trees are not required 

1. For  temp = SELECT node-id FROM height-table OR- 
DER BY height do 

(a) If this is the first iteration then set node=temp and 
jump to next iteration 

(b) Let h = hash(hash-tree(temp).phi 1 1  
hash-tree(node).phi) 

(c) INSERT INTO hash-tree (count++.h.NULL) 

(d) UPDATE hash-tree SET parent = count-1 
WHERE (node-id = node OR node-id = temp) 

(e) node = count- 1 

2. return hash-tree(node).phi 

Figure 7. Pseudo code for send-proof 

in the add-node and send-proof algorithms. We only need 
the root of the partial trees generated. We can easily ignore 
the haslz-tree table and store the hashes of trees at height h 
in the height-table (note that there can be only one tree at 
height lz). This reduces the space overhead tremendously. 
but the ready-made merkle tree over the database will not be 
available when executing the send-verification-data algo- 
rithm. Thus, before executing this algorithm the merkle tree 
that was used to generate the proof will need to be recreated. 
This increases the time complexity of the send verification 
algorithm. 

Further, we did not consider the situation when the 
querier asks for proof more then once (or maybe periodi- 
cally). In this case, we can introduce optimizations with 
various space-time tradeoffs on both the database side and 
the querier side. Assume that the querier asks for the proofs 
periodically, say once a day. The database now has two 
choices: (1) Bob can maintain one large merkle tree over 
the entire database and send the root of this tree whenever 
he needs to send the proof. In this approach, the size of 
the merkle tree will gradually increase. This will increase 
the amount of data that is exchanged between the two par- 
ties for proof sending and verification; or (2) The other ap- 
proach is to maintain many merkle trees - one merkle tree 
for each proof that Bob sends to Alice. Each merkle tree 
only covers the data that is added after the last proof was 
sent. This keeps the size of the merkle trees very small. 
The disadvantage is that Alice has to keep all the previous 
hashes corresponding to data on which she can possibly run 
a query at any future time. 

7 Experimental Results 

The experiments were performed on a SUN SPARC 
workstation with I GB of RAM. Data from a Walmart data 

1. Let h=hash(table(tuplejd))

2. INSERT INTO hash_tree (count++, h, NULL)

3. currenLnode=count-l

4. UPDATE table SET nodejd = currentJlode WHERE
key=tuplejd

5. current..height=O

6. Let temp = SELECT nodejd FROM heighuable
WHERE height = current..height

7. If temp -=I- NULL

(a) h=hash(hash_tree(temp) II
hash_tree(currentJlode))

(b) INSERT INTO hash_tree (count++, h, NULL)

(c) UPDATE hash_tree SET parenLid = (count - 1)
WHERE (nodejd = temp OR nodejd = cur
rentJlode)

(d) DELETE FROM heighUable WHERE height =
current..height

(e) current..height++; cunentJlode = count-I

(t) GOTO 6

8. else INSERT INTO heighUable (current..height, cur
rentJlode)

Figure 6. Pseudo code for add_node(tuple-jd,
table). tuple_id is the new tuple that is to be
added to the tree and table is the database ta
ble in which tupleJd resides

and checks if the final hash matches the value sent to it ear
lier by send_proof algorithm.

The implementation of our solution to prove 13
conectness is simple because of the simplicity of the hash
tree structure defined for it.

6.1 Efficiency

A number of optimizations are possible for the algo
rithm presented above to reduce the space overhead associ
ated with maintaining the merkle trees on the database side.
These optimizations come at the cost of additional process
ing required by the database during the proof verification
phase. This may be desirable if we assume that the verifica
tion phase is rare (i.e. only when the querier suspects foul
play and asks the database to send authentication paths). To
achieve this, we note that the entire trees are not required

1. For temp = SELECT nodejd FROM heighuable OR
DER BY height do

(a) If this is the first iteration then set node=temp and
jump to next iteration

(b) Let h hash(hash_tree(temp).phi
hash_tree(node).phi)

(c) INSERT INTO hash_tree (count++,h,NULL)

(d) UPDATE hash_tree SET parent = count-l
WHERE (nodejd = node OR nodejd = temp)

(e) node = count-l

2. return hash_tree(node).phi

Figure 7. Pseudo code for send_proof

in the add_node and send_proof algorithms. We only need
the root of the partial trees generated. We can easily ignore
the hash_tree table and store the hashes of trees at height h
in the heighuable (note that there can be only one tree at
height h). This reduces the space overhead tremendously,
but the ready-made merkle tree over the database will not be
available when executing the send_verification_data algo
rithm. Thus, before executing this algorithm the merkle tree
that was used to generate the proof will need to be recreated.
This increases the time complexity of the send verification
algorithm.

Further, we did not consider the situation when the
querier asks for proof more then once (or maybe periodi
cally). In this case, we can introduce optimizations with
various space-time tradeoffs on both the database side and
the querier side. Assume that the querier asks for the proofs
periodically, say once a day. The database now has two
choices: (l) Bob can maintain one large merkle tree over
the entire database and send the root of this tree whenever
he needs to send the proof. In this approach, the size of
the merkle tree will gradually increase. This will increase
the amount of data that is exchanged between the two par
ties for proof sending and verification; or (2) The other ap
proach is to maintain many merkle trees - one merkle tree
for each proof that Bob sends to Alice. Each merkle tree
only covers the data that is added after the last proof was
sent. This keeps the size of the merkle trees very small.
The disadvantage is that Alice has to keep all the previous
hashes conesponding to data on which she can possibly run
a query at any future time.

7 Experimental Results

The experiments were performed on a SUN SPARC
workstation with IGB of RAM. Data from a Walmart data



warehouse was used for all experiments. 

7.1 Overhead of proof generation 

In this experiment, the overhead caused by proof 
generation was studied. We generated a hash-tree 
for a-correctness verification over different table sizes. 
The schema of the table used for this experiment is 
sales(itemid, unitssold). First, tuples were inserted into 
the database. Then a hash tree over these tuples was gener- 
ated. Tuple level granularity was used while generating the 
hash tree. For comparison, the time taken by the database 
in inserting the tuples is also plotted along with the cost of 
a-proof generation. Figure 8 show the results of this exper- 
iment for different table sizes. The x-axis gives the number 
of tuples added to the relation, and the y-axis gives the ac- 
tual time taken for the insertions in seconds. This time was 
measured using the UNIX time utility. The graph shows the 
time required to insert a tuple and also the time required to 
make necessary changes to the trees. Note that this imple- 
mentation uses triggers for tree creation which may not be 
the most efficient implementation. However, the cost of tree 
maintenance is on the same order of magnitude as the cost 
of a single tuple insertion. 
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The results establish that the cost of generating the a- 
proof hash tree increases linearly with the size of database. 
For small table sizes, this cost is roughly equal to the cost 
incurred in inserting the tuples in the database. Both these 
costs increase linearly and the tree generation cost slope is 
roughly twice of that of insertion cost. 

For p-correctness, the experiment was run on the same 
table used in the above experiment. We expect the over- 
head of generating this hash tree to be low. This is because 
the hash of the data tuples is already available to us (as 
they are calculated during a-correctness proof generation). 

Secondly, because of the single level structure of this hash 
tree, we only need to compute one additional hash (over all 
leaves) to obtain the root hash. Figure 8 presents the results 
of this experiment. 

Once again, we see an almost linear relationship between 
the number of tuples in the table and the time required to 
process the insertions. The overhead for this tree is indeed 
very small compared to the time required for generating the 
a-correctness tree. 

7.2 Amortizing proof generation cost 

In the previous experiments, the hash tree generation was 
done lazily - after inserting a large number of tuples. It re- 
sulted in a significant overhead whenever the database is 
frozen. As mentioned in Section 6, the hash tree genera- 
tion can also be done eagerly. This results in a cost penalty 
during insertions to the database, but the freezing of the 
database is quite fast. In a way, the eager approach amor- 
tizes the cost of hash tree generation over insertions. 

This experiment compares the two approaches in terms 
of a-correctness proof generation. The hashing was done 
at the granularity of tuples. The database was periodically 
frozen (after insertion of 2000 tuples). Figure 9 shows 
the time taken by the two approaches as tuples were in- 
serted into the table. In case of lazy computation, the flat 
lines show the insertion cost. After 2000 insertions, the 
send-proof command is sent to the database. After receiv- 
ing this command the database starts computing the hash 
tree. This results in a significant overhead as shown by the 
vertical lines. On the other hand, in case of eager evalu- 
ation, each tuple insertion triggers a function that partially 
computes the hash tree. This allows the database to quickly 
freeze itself, whenever a send-proof command is received. 

7.3 Granularity of hashing 

As explained earlier, the granularity of hashing deter- 
mines the data exposure. While keeping a finer granular- 
ity seems attractive, this has a performance cost associated 
with it. This experiment studies the tradeoff between perfor- 
mance and granularity. The table used for this experiment 
has 16 attributes and 1000 tuples. Different granularities 
of hashing were tested and the hash tree (for a-correctness) 
was generated to measure the performance cost. Figure 10 
shows that the proof generation cost increases linearly with 
the granularity. The x-axis represents the cardinality of GT 
for the table. 

8 Conclusions 

In this paper we addressed the problem of ensuring 
the con-ectness of query results received from a private 

Overhead for proof generation

warehouse was used for all experiments.

7.2 Amortizing proof generation cost

As explained earlier, the granularity of hashing deter
mines the data exposure. While keeping a finer granular
ity seems attractive, this has a performance cost associated
with it. This experiment studies the tradeoff between perfor
mance and granularity. The table used for this experiment
has 16 attributes and 1000 tuples. Different granularities
of hashing were tested and the hash tree (for a-correctness)
was generated to measure the performance cost. Figure 10
shows that the proof generation cost increases linearly with
the granularity. The x-axis represents the cardinality of GT

for the table.

Secondly, because of the single level structure of this hash
tree, we only need to compute one additional hash (over all
leaves) to obtain the root hash. Figure 8 presents the results
of this experiment.

Once again, we see an almost linear relationship between
the number of tuples in the table and the time required to
process the insertions. The overhead for this tree is indeed
very small compared to the time required for generating the
a-correctness tree.

In this paper we addressed the problem of ensuring
the conectness of query results received from a private

7.3 Granularity of hashing

8 Conclusions

In the previous experiments, the hash tree generation was
done lazily - after inserting a large number of tuples. It re
sulted in a significant overhead whenever the database is
frozen. As mentioned in Section 6, the hash tree genera
tion can also be done eagerly. This results in a cost penalty
during insertions to the database, but the freezing of the
database is quite fast. In a way, the eager approach amor
tizes the cost of hash tree generation over insertions.

This experiment compares the two approaches in terms
of a-correctness proof generation. The hashing was done
at the granularity of tuples. The database was periodically
frozen (after insertion of 2000 tuples). Figure 9 shows
the time taken by the two approaches as tuples were in
serted into the table. In case of lazy computation, the flat
lines show the insertion cost. After 2000 insertions, the
send.proof command is sent to the database. After receiv
ing this command the database starts computing the hash
tree. This results in a significant overhead as shown by the
vertical lines. On the other hand, in case of eager evalu
ation, each tuple insertion triggers a function that partially
computes the hash tree. This allows the database to quickly
freeze itself, whenever a send.proof command is received.
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The results establish that the cost of generating the a
proof hash tree increases linearly with the size of database.
For small table sizes, this cost is roughly equal to the cost
incurred in inserting the tuples in the database. Both these
costs increase linearly and the tree generation cost slope is
roughly twice of that of insertion cost.

For ,B-correctness, the experiment was run on the same
table used in the above experiment. We expect the over
head of generating this hash tree to be low. This is because
the hash of the data tuples is already available to us (as
they are calculated during a-correctness proof generation).

In this experiment, the overhead caused by proof
generation was studied. We generated a hash-tree
for a-correctness verification over different table sizes.
The schema of the table used for this experiment is
sales(item--id, units...sold). First, tuples were inserted into
the database. Then a hash tree over these tuples was gener
ated. Tuple level granularity was used while generating the
hash tree. For comparison, the time taken by the database
in inserting the tuples is also plotted along with the cost of
a-proof generation. Figure 8 show the results of this exper
iment for different table sizes. The x-axis gives the number
of tuples added to the relation, and the y-axis gives the ac
tual time taken for the insertions in seconds. This time was
measured using the UNIX time utility. The graph shows the
time required to insert a tuple and also the time required to
make necessary changes to the trees. Note that this imple
mentation uses triggers for tree creation which may not be
the most efficient implementation. However, the cost of tree
maintenance is on the same order of magnitude as the cost
of a single tuple insertion.

7.1 Overhead of proof generation
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database. This is a new problem that has not been addressed 
earlier. We proposed a number of solutions for this problem 
that differ in degree of exposure, and the cost the genera- 
tion of a proof and verification of the results. We defined 
two notions of correctness of results. Our solution is able to 
prove a-correctness for arbitrary select-project-join queries, 
and p-correctness for queries with equality joins. This rep- 
resents a very broad set of queries. The feasibility of our 
methods was established through an implementation using 
PostgreSQL, and tested with real data. The results show that 
the overhead of the proposed approach is on the same order 
as the cost of inserting data. While this work represents a 
significant step for solving this important problem, future 
work will address the more general (and more challenging) 
problem of general queries. 
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A Authentic Third Party database publica- 
tion 

The crucial difference between the model proposed in 
this paper and the model of authentic third-party database 
publication [6] is that we do not trust the database owner 
to follow the proof generation algorithm honestly. Simi- 
lar to our a-correctness solution, [6] uses merkle trees to 
generate proof of correctness. The algorithm presented in 
[6] assumes that the database is sorted on the attribute on 
which selection is performed. To ensure P-correctness it 
simply reveals one tuple before and after the result set. This 
ensures that no tuples are missing from the result. The so- 
lution works because the database owner is trusted with the 
task of properly sorting the database on the selection key 
before freezing it. While this is a reasonable assumption 
for third-party database publication, it does not hold for our 
problem model. If we remove the assumption of trust on the 
database owner, then the solutions presented in [6] will not 
work. This is explained in the following example. 

Figure 11. Example database 

Consider the example presented in Figure 1 1 .  Note that 
the database owner Bob has (maliciously) frozen two values 
for the number of units sold for item id 2 (along with correct 
values for items 1 and 3). This scenario is quite possible 
if Bob does not want tie down his hands completely and 
would like to change the quantity of item 2 sold based on 
some future information. Given the query: 

If we use the solutions presented in [6], Bob can either re- 
port 97 or 0 and provide a proof of correctness for the same! 
In our approach, this is not possible as Bob would not be 
able to prove P-correctness for this query. Hence, the pre- 
vious solutions based on the model of authentic third-party 
database publication is not applicable to the problem pse- 
sented in this paper. 
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A Authentic Third Party database publica
tion

The crucial difference between the model proposed in
this paper and the model of authentic third-party database
publication [6] is that we do not trust the database owner
to follow the proof generation algorithm honestly. Simi
lar to our a-correctness solution, [6] uses merkle trees to
generate proof of conectness. The algorithm presented in
[6] assumes that the database is sorted on the attribute on
which selection is performed. To ensure ;3-correctness it
simply reveals one tuple before and after the result set. This
ensures that no tuples are missing from the result. The so
lution works because the database owner is trusted with the
task of properly sorting the database on the selection key
before freezing it. While this is a reasonable assumption
for third-party database publication, it does not hold for our
problem model. If we remove the assumption of trust on the
database owner, then the solutions presented in [6] will not
work. This is explained in the following example.

~ itemjd I units sold 11

1 105
2 97
3 221
I 105
2 0
3 221

Figure 11. Example database

Consider the example presented in Figure II. Note that
the database owner Bob has (maliciously) frozen two values
for the number of units sold for item id 2 (along with correct
values for items 1 and 3). This scenario is quite possible
if Bob does not want tie down his hands completely and
would like to change the quantity of item 2 sold based on
some future information. Given the query:

If we use the solutions presented in [6], Bob can either re
port 97 or 0 and provide a proof of correctness for the same!
In our approach, this is not possible as Bob would not be
able to prove ;3-correctness for this query. Hence, the pre
vious solutions based on the model of authentic third-party
database publication is not applicable to the problem pre
sented in this paper.
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