
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2007

Cost Effective Forward Tracing Data Lineage Cost Effective Forward Tracing Data Lineage

Mingwu Zhang

Xiangyu Zhang
Purdue University, xyzhang@cs.purdue.edu

Sunil Prabhakar
Purdue University, sunil@cs.purdue.edu

Report Number:
07-004

Zhang, Mingwu; Zhang, Xiangyu; and Prabhakar, Sunil, "Cost Effective Forward Tracing Data Lineage"
(2007). Department of Computer Science Technical Reports. Paper 1669.
https://docs.lib.purdue.edu/cstech/1669

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Cost Effective Forward Tracing

Data Lineage

Mingwu Zhang

Xiangyu Zhang

Sunil Prabhakar

CSD TR #07-004

March 2007

Cost Effective Forward Data Lineage Tracing

Mingwu Zhang Xiangyu Zhang and Sunil Prabhakar

Department of Computer Science, Purdue University

West Lafayette, IN 47907-1398, USA

{mzhang2, xyzhang, sunil}@cs.purdue.edu

Abstract

Data lineage plays a critical role in verifying data
correctness in scientific databases and data warehous-
ing. In this paper, we clearly define forward data lin-
eage in bag semantics and show its properties. We
propose a tracing method that piggybacks normal query
evaluation. Our method effectively supports aggrega-
tion and variable granularity lineage. More impor-
tantly, it features cost effective tracing through sophis-
ticated implementation. The implementation, based on
roBDDs, exploits the clustering and overlapping char-
acteristics of data lineage to significantly reduce the
overhead. Prior lineage tracing techniques compute lin-
eage backward. More specifically, given a query that
produces a view, the lineage is computed by executing
the reverse query. While such techniques are believed
to be very efficient due to the lazy computation, they
are indeed inferior to the proposed forward method in
most aspects.

1 Introduction

Data lineage provides a mapping from the view data
to the base data and thus plays a critical role in many
database applications.

In scientific databases, with the advance of high-
throughput experimental technology, scientists are
tackling large scale experiments which produce enor-
mous amounts of data. Consequently, the need to au-
tomatically process and validate data becomes more
and more pressing. Data lineage, or data provenance
[12, 10] greatly simplifies such a procedure. For ex-
ample in biochemistry computing, the post-experiment
data processing is often quite complicated. Data lin-
eage tracing can faithfully record such a complicated
procedure. An abnormal data lineage usually implies
the result data is not trustworthy, thus expensive wet-
bench experiments should not be planned based upon

these unreliable data.

In data warehousing, views over source data are
often computed and materialized in order to answer
queries about the source data. More sophisticated
analysis such as data mining can be applied to make
predictions. In the construction of a data warehouse,
the data cleaning procedure often takes more than half
of the total time. In this procedure, a key problem is
to handle inconsistent or missing values in the data,
which is usually resolved by replacing those values
with the most likely values or values derived from a
model. These substituted values are not as reliable as
the normal data, but they are nonetheless consumed
to produce analytic results. Without data lineage, we
lose the capability of tracing back to these unreliable
sources. Other applications include view maintenance
such as the well known incremental view update prob-
lem [13, 9].

As data reliability is becoming a prominent issue
in databases, the need of developing efficient lineage
tracing techniques surfaces. The existing works can
be divided into two categories. The first category is
backward, or lazy, approaches [5, 6]. In this category,
reverse queries are constructed to compute a subset
of the base tuples with respect to a result tuple and
the base table themselves. The computed base tuples
contribute to the result tuple. Since the lineage is com-
puted on demand and by a reverse method, it is called
the lazy or backward approach. The lineage computed
by these techniques are also called backward lineage in
this paper. The second category is forward, or eager,
approaches [3]. The lineage computed by these ap-
proaches is called forward lineage. In this category, lin-
eage is computed during the query evaluation such that
the lineage for each result tuple is computed, stored
and ready to be queried.

Backward techniques have the advantage of com-
puting lineage on demand so that lineage is not explic-
itly computed and stored, and thus requires less space.
However, there are several drawbacks of this approach.

1

Firstly, backward techniques cannot handle bag seman-
tics which arise naturally in these applications. Sec-
ondly, if aggregation operations or nested queries are
involved, backward computation often requires recom-
puting or materializing intermediate views, even for
computing the lineage of a single result tuple. Thus,
this may entail a reverse query that is as expensive as
the original query itself. Thirdly, revisions cannot be
handled efficiently. A revision is a correction of a base
tuple discovered after the base data has been used to
generate derived data. Revisions are common in many
applications (e.g. if some equipment is discovered to be
faulty, or there is an error in the cleansed data). Data
lineage is often motivated by the need to discover the
impact of an incorrect data item in order to invalidate
these results. In such cases, the backward approach is
forced to compute the lineage for each and every tu-
ple that could potentially be related to the invalidated
base data. More details on these limitations can be
found in Section 2.

Forward lineage tracing has the potential to address
each of these limitations and drawbacks. Compared
to backward approaches, forward techniques trace lin-
eage for all tuples including intermediate tuples dur-
ing query evaluation. Therefore, no additional query
is needed. Handling revisions is straight-forward since
the lineage is pre-computed and available to query. Bag
semantics and aggregation can be correctly handled by
a forward method. Our technique falls in the forward
computation category. The state-of-the-art of forward
methods is the work by Bhagwat et al. [3]. They
propose an efficient annotation propagation technique
which propagates attribute annotations from base ta-
bles to the result view. Theoretically, such an anno-
tation management system can be extended to trace
data lineage. However, the limitations of their tech-
nique, such as inability to handle aggregation and bag
semantics, make it unsuitable for our purpose of gen-
eral lineage tracing. Nonetheless, many of our query
rewriting rules are inspired by their work.

This paper presents a cost-effective general forward
lineage tracing technique. The contributions are:

• A formal definition of forward lineage that cov-
ers both set and bag semantics. The properties of
forward lineage. A set of query rewriting rules for
computing the forward lineage. These rules are ca-
pable of handling general views such as subqueries
in the where clauses and aggregations.

• As pointed out by [3], the storage scheme is the
challenge for forward methods. Based on the
characteristics of lineage sets, we propose two
schemes: set based and Reduced Ordered Binary

Decision Diagram (RoBDD) based. In our tech-
nique, RoBDDs are used as a compact representa-
tion of sparse sets.

• Propose and implement variable-granularity lin-
eage that is more meaningful for data with large
lineage sets.

• An experimental evaluation (with implementa-
tion in PostgreSQL, TPC-H dataset and Walmart
dataset) against backward approaches that vali-
dates the advantages of our approach.

The rest of the paper is organized as follows. Sec-
tion 2 motivates our technique. Section 3 presents the
formal definition of forward lineage, its properties, and
the query rewriting rules. Section 4 discusses the stor-
age scheme based on RoBDD. Section 5 presents the
experimental results. Related work is discussed in sec-
tion 6. Conclusions are given in section 7.

2 Motivation

This section discusses the limitations of the existing
lineage tracing techniques. As we mentioned earlier,
they can be divided into forward and backward meth-
ods. The methods discussed in [5, 6] belong to the
backward category. The technique in [3] belongs to the
forward category. The goal of the forward technique
in [3] is essentially to propagate attribute annotations,
which is not exactly general lineage tracing although it
can be extended for that purpose. As a consequence,
their solution is more tuned to the attribute level anno-
tation propagation. In this sense, the backward meth-
ods are more closely related to our technique since they
tackled the same problem as we do. Therefore, in this
section and also the rest of our paper, the comparison
with backward methods is the focus. Readers that are
interested in the comparison with the existing forward
methods are referred to the related work section.

The motivation examples are based upon a database
that has three relations: store, item, and sales as
shown in Table 1 2 3. They list the department stores,
the items that are sold by these stores, and the sales
records, respectively.

s id s name city state

01 Target Palo Alto CA

02 Target Albany NY

03 Macy’s San Francisco CA

04 Macy’s New York City NY

Table 1. Store

2

i id i name category

01 binder stationery

02 pencil stationery

03 shirt clothing

04 pants clothing

05 pot kitchenware

Table 2. Item

t id s id i id price num

01 01 01 4 1000

02 01 02 1 3000

03 01 04 30 600

04 02 01 5 800

05 02 02 2 2000

06 02 04 35 800

07 03 03 45 1500

08 03 04 60 600

09 04 03 50 2100

10 04 04 70 1200

11 04 05 30 200

Table 3. Sales

2.1 Bag Semantics

The first example is about bag semantics. Many
queries employ bag semantics for the sake of efficiency.
Therefore, it is important to be able to trace lineage for
bag semantics. Consider the query below, it produces
the view in Table 4, in which there are duplicate tuples.

Q1:

create table view

select d.s name, i.i name

from store d, item i, sales s

where d.s id = s.s id and i.i id = s.i id and

i.category = ‘stationery’

s name i name

Target binder

Target pencil

Target binder

Target pencil

Table 4. The Result Of Q1

According to [6], the reverse query is constructed
as Q2. The execution of this query results in the lin-
eage table in Table 5. We can see that the reverse
query is not able to distinguish where the first tuple
< Target, binder > in Table 4 comes from. Therefore,
it has to assume that the tuple originates from a pool of

tuples in the three base tables with s id as {01,02} and
i id as {01}, which can be seen from the tuples with
s name = Target and i name = binder in Table 5.
According to relational semantics, we know the two
< Target, binder > tuples must actually result from
two unique base tuple subsets, respectively. Knowing
exactly where does each tuple come from could be very
helpful in data verification because that saves the an-
alyst from inspecting the entire lineage pool if she can
localize the problematic tuple, which is often feasible
in practice by looking at information such as the order
of the result tuples.

Q2 (reversing Q1):

select v.s name, v.i id, d.s id, i.id

from store d, item i, sales s, view v

where d.s id = s.s id and i.i id = s.i id and

i.category = ‘stationery’ and

v.s name = d.s name and

v.i name = i.i name

s name i name s id i id

Target binder 01 01

Target binder 02 01

Target pencil 01 02

Target pencil 02 02

Target binder 01 01

Target binder 02 01

Target pencil 01 02

Target pencil 02 02

Table 5. The Result Of Q2

In our system, the query Q1 is rewritten as Q3 be-
low. The instrumentation is highlighted.

Q3 (translated from Q1):

select d.s name, i.i name,

{d.s id} U {i.i id} U {s.t id} As DL
from store d, item i, sales s

where d.s id = s.s id and i.i id = s.i id and

i.category = ‘stationery’

The result view becomes Table 6. The DL column
presents the lineage of each tuple. For example, the two
< Target, binder > tuples have the lineage of {d.01,
i.01, s.01} and {d.02, i.01, s.04}, respectively. Note
that we use the key as the lineage for each tuple in the
base tables. A more general implementation scheme is
to use a global id(t) function to assign unique ids to
base tuples.

3

s name i name DL

Target binder {d.01, i.01, s.01}

Target pencil {d.01, i.02, s.02}

Target binder {d.02, i.01, s.04}

Target pencil {d.02, i.02, s.05}

Table 6. The Result Of Q3

2.2 Materializing Intermediate Views

Another limitation of backward approaches is that
they require recomputing or materializing intermedi-
ate views for ASPJ subqueries. For example, the be-
low query Q4 retrieves the stores and their sums of
sales records for the items that are sold more than
5000 units. A reverse query can not be constructed to
directly compute the lineage on the base tables with-
out the intermediate table. According to [6], the sub-
query is first materialized by the query Q5 to a table
intermediate tab. The query Q6 is executed to re-
verse the result tuples to the base tuples using the table
intermediate tab.

Q4:
create table my tab as
select temp_tab.s name, sum(temp tab.total) from (

select store.s_name, item.category,

sum(item.num) as total

from item, store, sales

where sales.s id = store.s id and

item.i id = sales.i id

group by store.s_name, item.category

having total > 5000) as temp tab

group by temp tab.s_name

Q5 (materialization):
create table intermediate tab as
select store.s name, item.category,

sum(item.num) as total

from item, store, sales

where sales.s id = store.s id

and item.i id = sales.i id

group by store.s name, item.category

having total > 5000

Q6 (reverse query of Q4):
create table reverse as
select item.*, store.*, sales.*

from my tab t1, intermediate tab t2,

item, store, sales

where t1.s name = t2.s name

and t2.category = item.category

and item.i id = sales.i id

and store.s id = sales.s id

and t2.s name = store.s name

Based on our technique, the query Q4 is translated
to Q7, in which DLUNION is a new aggregation operator
that aggregates the lineage sets of all tuples that satisfy
the grouping condition. Note that in the sub-query, be-
cause the tuples are first joined and then aggregated,
the corresponding lineage operation is the composition
of union and aggregation. One may raise the question
that although our forward method avoids recomputa-
tion or materialization, it computes the lineage for all
tuples including the intermediate ones, which may be
expensive as well. As shown in later sections, our so-
phisticated design nicely addresses this concern.

Q7 (translated Q4):

select temp_tab.s name, sum(total),

DLUNION((temp tab.DL)
from (

select d.s_name, i.category, sum(i.num) as total,

DLUNION ({d.s id}U{i.i id}U{s.t id}) As DL
from item i, store d, sales s

where s.s id = d.s id and i.i id = s.i id

group by d.s_name, i.category

having total > 5000

) as temp tab

group by temp tab.s_name

In scientific databases, it happens that a base tuple
is consumed and propagated to derived tables or views
before it is eventually identified as being unreliable or
even wrong by experiments. In such a case, a very de-
sirable service would be to recognize the set of tuples in
the derived tables/views that are affected by a partic-
ular source tuple. Backward approaches, by their na-
ture, are inefficient for such a demand. The only solu-
tion is to compute the backward lineage for each result
tuple and then check if the problematic base tuple is in
the lineage. Our forward technique can naturally meet
such a requirement by only assigning a lineage id to
the problematic tuple. In other words, all other base
tuples have null lineage. After evaluating the query,
the result tuples with non-empty lineage are the ones
affected by the problematic tuple. If such a query re-
evaluation is infeasible due to the cost, one can still
choose to compute the lineage for all tuples during the
original query evaluation with our forward method.

3 Forward Data Lineage

Informally, the lineage we are interested in is the
tuple subsets in the base tables which a result tuple is

4

derived from. Assume each tuple in the base tables is
identified by a unique number, the lineage of a result
tuple is essentially a set of these id numbers. If a base
tuple is updated, a new id is assigned to it.

The formal definition of data lineage with regard
to relational operators is given as follows. The
definition for each operator follows the format of
DL(t, Op(V1, ..., VM)), meaning the data lineage of the
result tuple t in the view defined by Op(V1, ..., VM).

Here we consider only ASPJ queries, more general
queries will be discussed in the last subsection.

Definition 1 (Forward Data Lineage)

• Base case: DL(t, R) = {id(t)}, in which t ∈ R
and R is a base table.

• Selection: DL(t, σC(V)) = DL(t, V), in which
σC(V) = {t | t ∈
V and t satisfies condition C}.

• Projection: DL(t, πA(V)) = DL(t′, V), in which
πA(V) = {t′.A | t′ ∈ V }.

• Join: DL(t, 1θ (V1, ..., Vm)) = DL(t1, V1) ∪
DL(t2, V2) ∪ ... ∪ DL(tm, Vm),
in which 1θ (V1, ..., Vm) = {<
t1, ..., tm > | ti ∈ Vi for i =
1...m, and the t′i s satisfy condition θ}.

• Aggregation: DL(t, αG,aggr(B)(V) =⋃
t′∈T DL(t′, V), in which αG,aggr(B)(V) =

{< T.G, aggr(T.B) > | T ⊆ V, ∀tt, tt′ ∈
T, ∀tt′′ /∈ T : tt′.G = tt.G ∧ tt′′.G 6= tt.G}, G
is a group-by attribute list from V , and aggr(B)
abbreviates a list of aggregation functions applied
to attributes of V.

The base case states that the lineage of a tuple t in
a base table R contains a unique id assigned to this
tuple by the global function id(t). One may think that
we actually turn bag semantics into set semantics by
using the id() function. It is true that using this func-
tion distinguishes all the duplicate tuples in the base
table, but duplicates may occur in intermediate views,
in which we no longer assign unique ids to tuples.

For select operations, the lineage of t in a view of
σC(V) is essentially the lineage of t in V because the
fact that t satisfying C does not affect the lineage of t.
In a later subsection, we will discuss how we handle the
case that C is a query such that t’s lineage is affected.

Similarly, for project operations, the lineage of t in
a view of πA(V) is the lineage of t′ in V , in which t is
produced by projecting the attribute list A of t′.

For join operations, t ∈1θ (V1, ..., Vm) has the form
of < t1, ..., tm > and ti is the part of t from Vi, i ∈

������������������	
��������
����
��

�����
���������
��

����� ���� �
���
���� ���
�� ���
�� �
��� ���

���� ���
�� ���
�� ������ ���

���� ���
�� ���

�� �
��� ��� �� ������ ��� �� ���

���� ���
�� ��� ���� ���
�� ��� ���� ���

��� ��� ��� ��� ��� ��� ��� ���

�� �
��� ��� �� ������ ��� �� ���

���� ���
�� ��� ���� ���
�� ��� ���� ���

�
���

�����
��

������

�����
��
�

��

����������������	
�

Figure 1. The Derivation of The First Tuple in
Table 4

1, ...m. The lineage of t in the joined view is essentially
the union of the lineages of ti in Vi.

For aggregation operations, t is a tuple in the result
view that is aggregated on an attribute list B with the
group-by condition G. The lineage of t in the aggre-
gated view is the union of the lineages of all the tuples
that fall in the same group.

Note that the definition is recursive. More precisely,
forward lineage is recursively defined based on the view
derivation.

For example in Table 1, the first tuple
t =< Target, pencil > in Table 4 is de-
rived by the query v(store, item, sales) =
πd.s name,i.i name(σd.sid=...=category(store d 1

item i 1 sales s). Let us assume t is
projected by the π operation from the tuple
t′ =< d.s id = 01, d.s name = Target, ..., i.i id =
01, ..., s.s id = 01, ..., s.sum = 1000 > in the in-
termediate view v′ = σd.sid=...=category(store d 1

item i 1 sales s). According to the relational
semantics, t′ =< t′1 =< d.s id = 01, ... >, t′2 =<
i.i id = 01, ... >, t′3 =< s.s id = 01, ... >> is a tuple in
v′′ = store d 1 item i 1 sales s.

Based on the definition, DL(t, v) = DL(t′, v′) =
DL(t′, v′′) = DL(t′1, d) ∪ DL(t′2, i) ∪ DL(t′3, s) =
{id(d.01), id(i.01), id(s.01)}.

Since Definition 1 is based on the view derivation,
which may be altered by semantic preserving transfor-
mations. It is critical for us to understand the algebraic
properties of forward data lineage, which will be dis-
cussed by the following subsections.

3.1 SPJ Queries

We first consider SPJ (Select-Project-Join) queries,
In order to simplify the formalization, we assume the

5

view definition is a tree. In other words, if a relation is
referenced more than once, such as self joins, we con-
sider the two relation instances as different relations.
The same simplification was adopted by Cui et al. in
their backward tracing paper [6]. The generalization
to graph definition is discussed at the end of this sub-
section.

Let D̃L(t, v(R1, ..., Rk)) =< R∗
1, ..., R

∗
k > be

DL(t, v(...)) represented as subsets of the base tables
R1,..., Rk, in which v is the view and tt ∈ R∗

x if and
only if id(tt) ∈ DL(t, v(...)).

Theorem 1 (Completeness)

v(D̃L(t, v(R1, ..., Rk)) = {t}

This theorem says that the data lineage of t derives
exactly t itself. This matches our intuition about what
lineage is – a subset of base tuples that produce the re-
sult tuple. It can be proved by induction on the height
of the view definition tree assuming the view being the
root and the base tables being the leaves.

Let h be the height of the definition tree. Proof
:
(1) For h = 1, meaning the view is produced by
applying a relational operator on the base table(s):
(a) v(R) = σC(R)

DL(t, v) = DL(t, R) = {id(t)} according to Defi-
nition 1

⇒ D̃L(t, v) = {t} – (i)
t ∈ v(R) ⇒ t satisfies C according to relational
semantics – (ii)

σC(D̃L(t, v)) = σC({t}) = {t} according to (i)
and (ii).

(b) v(R) = πA(R). The proof is similar to case (a).

(c) v(R1, ..., Rm) =1θ (R1, ..., Rm)
DL(t, v) = DL(t1, R1) ∪ ... ∪ DL(tm, Rm) =
{id(t1), ..., id(tm)} according to Definition 1

⇒ D̃L(t, v) =< {t1}, ..., {tm} > – (i)
⇒ t ∈ v(R1, ..., Rm) ⇒ ti’s satisfy θ according to re-

lational semantics – (ii)

⇒ 1θ (D̃L(t, v)) =1θ ({t1}, ..., {tm}) =<
t1, ...tm >= {t} according to (i) and (ii).

(2) For h = k, we denote a view definition v(...)
with height x as vx(...).

(a) vk(R1, ..., Rm) = σC(w<k(R1, ..., Rm)
DL(t, vk) = DL(t, w<k) according to Definition 1

⇒ D̃L(t, vk) = D̃L(t, w<k) – (i)
⇒ t ∈ vk(R1, ..., Rm) ⇒ t satisfies C according to

relational semantics – (ii)

⇒ w<k(D̃L(t, w<k)) = {t} by induction assumption
– (iii)

⇒ vk(D̃L(t, vk)) = σC(w<k(D̃L(t, v<k)))

= σC(w<k(D̃L(t, w<k))) according to (i)
= σC({t}) according to (iii)
= {t}

The remaining cases can be proved similarly.

Deriving t does not precisely describe the property
of lineage since tables that subsume the lineage of t
may derive t as well. The second theorem says that
the lineage sets are the smallest sets that produce the
result tuple. In other words, all the base tuples in the
lineage sets contribute to the result tuple.

Theorem 2 (Minimality)

∀X ⊂ D̃L(t, v(R1, ..., Rk) : v(X) = φ

Similarly, it can be proved by induction on the
height of the view definition tree. Proof :
(1) For h = 1,
(a) v(R) = σC(R)

D̃L(t, v) = {t}
⇒ X = φ
⇒ v(X) = φ

(b) v(R) = πA(R). The proof is similar to case (a).

(c) v(R1, ..., Rm) =1θ (R1, ..., Rm)

D̃L(t, v) =< {t1}, ..., {tm} > according to Defini-
tion 1

⇒ X has the form of < {t1}, ..., φ, ..., {tm} >
⇒ v(X) =1θ (X) = φ

(2) For h = k:

6

(a),(b) The proofs for these two cases are trivial.

(c) vk(R1, ..., Rm) =1θ (w<k
1 (R1, ..., Rm),

..., w<k
n

(R1, ..., Rm))
DL(t, vk) = DL(t1, w

<k
1) ∪ ... ∪ DL(tn, w<k

n)
according to Definition 1

⇒ D̃L(t, vk) = D̃L(t1, w
<k
1) ∪ ... ∪ D̃L(tn, w<k

n)
= < R∗

1, ..., R
∗
n >

⇒ X has the form of < R∗
1, ..., Y ⊂ R∗

i , ..., R
∗
n >,

let tt ∈ Y and tt /∈ R∗
i

⇒ tt must belong to some D̃L(tj , w
<k
j) – (i)

Since the view definition is a tree, meaning
no relations or intermediate views are
referenced more than once, there is no overlap
between the lineage sets of different wx

views. Therefore,

w<k
j (X) =1θ (D̃L(tj , w

<k
j) − {tt}) = φ

by (i) and the induction assumption.
⇒ vk(X) =1θ (w<k

1 (X), ..., w<k
n (X))

=1θ (..., φ, ...) = φ

During query evaluation, various plans may be cho-
sen for a query by the optimizer which results in dif-
ferent view derivations. Since our definition is based
on the structure of the view definition, it is important
to understand the effect of query transformations on
lineage tracing. The next theorem states that query
optimizations do not change the forward lineage for
SPJ queries if the definition has a tree structure.

Theorem 3 (Equivalence With Tree Definition)

Given two equivalent SPJ views v1 and v2 s.t.
∀D : v1(D) = v2(D), let
v′1(D) = {<t, DL(t, v1(D))>|t ∈ v1(D)} and
v′2(D) = {< t, DL(t, v2(D)) > |t ∈ v2(D)} in

v′1(D) = v′2(D)

In order to prove Theorem 3, we first prove the fol-
lowing lemmas.

Lemma 1 Given two tuples t1 and t2 in the result view
v, DL(t1, v) 6= DL(t2, v).

This lemma says different tuples, even though they
may have the same value, always have distinct lin-
eage sets. For example, the two duplicate tuples
< Target, pencil > have different lineage according to
Table 6. The proof is trivially done through the con-
tradiction to Theorem 1.

Lemma 2 Let v(R1, ..., Rm) be the view, tuples
t1, ..., tn ⊆ v have the same value t due to the bag se-
mantics, ∀D̃Lx ⊂< R1, ..., Rm >: v(D̃Lx) = t → ∃i :

D̃L(ti, v) ⊆ D̃Lx)

This lemma says any lineage set that produces a tu-
ple with the value t must be the superset of the lineage
set of some existing tuple with the same value.

It can be proved by induction on the height of the
definition tree. Proof :
(1) For h = 1,
(a) v(R) = σC(R).

Let t1, ..., tn be the set of result tuples that have
value t

⇒ D̃L(tj , v) = {tj}, j ∈ {1, ..., n} according to the
lineage definition

⇒ Any lineage set that produces value t must con-
tains one of the D̃L(tj , v) according to the rela-
tional semantics.

(b) v(R) = πA(R). The proof is similar to case (a).
(c) v(R1, ..., Rm) =1θ (R1, ..., Rm).

Let t1, ..., tn be the set of result tuples that have
value t

⇒ D̃L(tj , v) =< {tj1}, ..., {tjm} >, j ∈ {1, ..., n}
⇒ Any lineage set that produces value t must be the

superset of one of the D̃L(tj , v) according to the
relational semantics.

(2) For h = k,
(a) vk(R1, ..., Rm) = σC(w<k(R1, ..., Rm)

Let t1, ..., tn be the set of result tuples that have
value t

⇒ D̃L(tj , v
k) = D̃L(tj , w

<k), j ∈ {1, ..., n} – (i)

⇒ Assume there is a D̃Lx that does not subsume any
D̃L(tj , v

k) but vk(D̃Lx) = {t}

⇒ D̃Lx does not subsume any D̃L(t{1,...,n}, w
<k) and

w<k(D̃Lx) = {t}
⇒ Contradiction to the induction assumption.
The remaining cases can be proved similarly.

Proof : [of Theorem 3]

Assume v′1(D) 6= v′2(D), therefore,
∃{t11, ..., t1n} ⊂ v1(D) and {t21, ..., t2n} ⊂ v2(D)
s.t. t11, ..., t1n, t21, ..., t2n all have the value of t,
recall that we consider bag semantics, but T1 = {<
t11, DL(t11, v1) >, ..., < t1n, DL(t1n, v1) >} 6= T2 =
{< t21, DL(t21, v2) >, ..., < t2n, DL(t2n, v2) >}

According to Lemma 1, DL(t1x)’s and DL(t2x)’s are
unique, x ∈ {1, ..., n}. Therefore, there must exist a
< t1i, DL(t1i, v1) >, which is in T1 but not in T2.

According to the definition of view equivalence,
v2(D̃L(t1i, v1)) produces a tuple with value t. This
is contradictory to Lemma 2.

View Definition As A Graph. Next we gen-
eralize the previous discussion to the case that
the view definition is a graph. Theorem 1 does

7

not hold in presence of a graph definition such
as self joins. For example, query v(store) =
πR1.sid,R1.sname,R2.sid,R2.sname(store as R1 1

store as R2) produces the table below.

R1.s id R1.s name R2.s id R2.s name

001 Target 001 Target

001 Target 002 Target

... ...

The lineage of the second result tuple is DL(<
001, T arget
, 002, T arget >, v) = {1, 2}, and thus the correspond-

ing D̃L has the first two tuples in the store table. We
can see that v(D̃L) = {< 001, T arget, 001, T arget >
, < 001,Target,002,
Target >, ...}.

Similarly, Theorem 2 does not hold in presence of a
graph definition. Theorem 3 remains true.

Theorem 4 (Equivalence With Graph Definition)
Theorem 3 is true for all SPJ queries.

In the previous discussion, we treat different rela-
tion instances as different relations and thus unique
ids are assigned to their tuples. In the case of a graph
derivation, a relation is referenced multiple times, and
thus the same set of id numbers are assigned to the
multiple instances of the same relation. From the fact
that Theorem 3 is true in the previous instance based
id assignment, we can infer that it remains true in the
relation based assignment because multiple old ids are
mapped to one new id. For example, let us assume re-
lations R1 and R2 are the base tables, R1 is referenced
twice such that the derivation is a graph. Let us first
treat the two instances of R1 as two relations, denoted
by R1

1 and R2
1. Let us further assume the two equiv-

alent lineage sets before and after transformations are
{R1

1.3, R2.7, R2
1.3} and {R2

1.3, R2.7, R1
1.3}. R1

1.3, R2
1.3,

R2.7 represent unique tuple ids. Now let us consider
the original graph structure. It has the effect of map-
ping previous multiple unique ids to the same id. In
our example, it maps both R1

1.3 and R2
1.3 to R1.3. The

two lineage sets become {R1.3, R2.7} and {R1.3, R2.7},
which remains equivalent.

3.2 ASPJ Queries

In this subsection, we discuss the properties of for-
ward lineage for ASPJ queries with aggregation opera-
tors.

If we assume that the view definition is a tree, the-
orem 1 holds.

Theorem 5 (ASPJ Completeness)
Assuming a tree definition,

v(D̃L(t, v(R1, ..., Rk)) = {t} for ASPJ queries.

The proof is elided for brevity.
Theorems 2 and 3 do not hold even the definition is

a tree .For example, queries v1(R) = αG,avg(x)(R) and
v2(R) = αG.avg(x)(σx6=0(R)) are equivalent. However,
they produce different lineages if R has some tuples
whose x fields have the value of 0. Note that although
the two queries are equivalent, it is unclear how a query
planner can exploit this type of equivalence and per-
form automatic transformation. In order to prove it,
we need to know exactly the set of transformation rules
in a DBMS.

Comparison With Backward Lineage In [6], Cui
et al. used reverse queries to trace backward lineage.
Their definition covers general queries including ASPJ
subqueries in both bag and set semantics. Their tech-
nique has been shown to be especially effective in trac-
ing data lineage for SPJ queries with set semantics in
[6]. Next we compare their definition with ours. Ex-
perimental comparison is performed in Section 5.

Backward lineage (set semantic) is defined as fol-
lowing according to [6]. Let v(R1, ..., Rm) be the view,

D̃Lb(t, v) represents the backward lineage of tuple t.

Definition 2

• if v = Ri, D̃Lb(t, v) = {t};

• if v = Op(R1, ..., Rm), in other words, the view is
produced by applying a relational operation on the
base tables, D̃Lb(t, v) =< R∗

1, ..., R
∗
m > s.t.

(i). v(D̃Lb(t, v)) = Op(R∗
1, ..., R

∗
m) = {t}

(ii). ∀R∗
i : ∀t′ ∈ R∗

i :

v(D̃Lb(t, v)) = Op(R∗
1, ..., {t

′}, ..., R∗
m) 6= φ

• if v = Op(v1, ..., vk), which means the view is pro-
duced by applying a relational operation on in-
termediate views, D̃Lb(t, v) = D̃Lb(t, v1) ∪ ... ∪

D̃L
b
(t, vk)

The following theorem states the relationship be-
tween forward lineage and backward lineage.

Theorem 6 Assuming ASPJ queries and set seman-
tics, forward lineage and backward lineage are equiva-
lent.

Proof Sketch: assuming every tuple can be identified
by its global id assigned by function id(t), then if

v = Ri, D̃Lb(t, v) = {t} = {id(t)}. if the view is
produced by applying a relational operation on the

8

base tables, equation (i) is theorem 1 and equation
(ii) is theorem 2. If v = Op(v1, ..., vk), which means
the view is produced by applying a relational opera-
tion on intermediate views, we can show D̃Lb(t, v) =

D̃Lb(t, v1) ∪ ... ∪ D̃L
b
(t, vk) for forward lineage by in-

duction. The proof is elided for brevity.
Note that even though the two definitions are equiv-

alent, the different realization techniques cause differ-
ent efficiency in different scenarios.

3.3 Query Rewriting

In the previous subsections, we discuss the definition
and the properties of forward lineage. In this subsec-
tion, we discuss how to rewrite SQL queries to trace
forward lineage.

Let R be a base table, T be its schema, and V1,...,Vm

be base tables or intermediate views with their schemas
being T1, ..., Tm. The set of rewriting rules are given as
follows.
3 Base Tables:

T−→ T’=<T, DL >; ∀t ∈ R : t.DL = {id(t)}.
3 Selection & Projection:

select ... from V where C −→ select

...,V.DL as DL from V where C.
3 Join:

select ... from V1, ..., Vm where C −→
select ...,V1.DL ∪ ... ∪ Vm.DL as DL from

V1, ..., Vm where C.
3 Aggregation:

select ... from V group-by G having C −→
select ..., DLUNION(V.DL) as DL from V
group-by G having C

The instrumentation is highlighted in the above
rules. We can see that a new field DL is added to
the base tables in order to facilitate lineage tracing.
Function id(t) assigns a unique id to a tuple. One can
choose to create separate lineage tables if altering the
base tables is not desirable. If the query is a simple
select, the DL field is added to the selection list. In
case of join, the query is instrumented to union the DL
fields of the tables being joined. Finally, to handle ag-
gregation queries, a new aggregation operator DLUNION
is introduced to aggregate the DL sets by union. Ex-
amples of the rewriting rules have been given in the
motivation section.

Query Optimization In general, queries are opti-
mized by estimating the cost of operations and then
reordering the operations accordingly based upon a set
of equivalence laws. The aforementioned query rewrit-
ings do not affect the numbers of tuples in any circum-
stance. As a consequence, it is very likely the query

optimizer will not take a different plan. However, the
cost of lineage processing operations such as DLUNION

highly depends on the cardinality of the lineage set,
which may be affected by the order of the relational
operations. We would leave this problem to our future
work.

3.4 Handling More General Queries

In this section, we discuss how we handle more gen-
eral views such as subqueries in where clauses.

One type of relational operations that we have not
covered are the union, intersection, and difference op-
erations. The union operation is trivial because it does
not change the lineage of tuples. In other words, after
union, each tuple has the same lineage as it had before
the operation.

The intersection and difference are more intriguing.
Let us assume two views v1 and v2 and we are inter-
ested in the lineage of a tuple t ∈ (v1 − v2). It is
apparent that t ∈ v1. Now we have two different def-
initions of the lineage of t. The first definition says
that DL(t, v1 − v2) = DL(t, v1) since the data value of
t is copied from v1. Such a definition is close to the
where lineage in [5], but not exactly the same, because
the where lineage does not consider aggregation while
we do. Therefore, we call this type of lineage as data
lineage. The forward lineage we have discussed so far
belongs to this category.

In contrast, the second definition says DL(t, v1 −
v2) = DL(t, v1) ∪ (

⋃
t′∈v2

DL(t′, v2)). In other words,
the lineage of t is the union of the lineage of t in v1 and
the lineage of all tuples in v2. The logic behind this is
that the appearance of t in (v1 − v2) is controlled by
the fact that each t′ ∈ v2 does not equal to t. We call
it control lineage. It is similar to the why lineage in
[5] but more restrictive. If data definition is assumed,
our technique trivially handles the intersection and dif-
ference operations. If control definition is assumed, a
small extension to the rewriting rules suffices. The ex-
tension is elided for brevity. The idea is to aggregate
the lineage of v2 tuples and then union with DL(t, v1).

We have considered the case that subqueries appear
in the from clauses. However, in general subqueries can
appear in the where clauses as conditions. Consider
the example of Q8, which selects the items that sell for
more than 1500 units in store 01. If the data definition
is considered, the rewriting is trivial. If the control
lineage is requested, Q8 is rewritten to Q9, in which the
sub-query is hoisted to the from clause and its lineage
is aggregated. The aggregated lineage is unioned with
the lineage of a tuple t in the main query if t satisfies
the condition.

9

Q8:

select i name from item

where item.i id IN

(select i id from Sales s

where s.s id=1 and s.num > 1500);

Q9 (translated from Q8:

select i.i name, i.i id U temp.DL from item i,

(select DLUNION({s.t id}) As DL from Sales s
where s.s id=1 and s.num > 1500) as temp

where item.i id IN

(select i id from Sales s

where s.s id=1 and s.num > 1500);

Such a rewriting rule can be applied to any un-
correlated sub-query that appears in the where clause
if control lineage is desired.

Handling correlated queries is much more challeng-
ing. It seems to us that query rewriting is not sufficient
in this case. We would leave it to our future research.

4 Tracing Forward Lineage Efficiently

In the previous section, forward lineage has been for-
mally studied. This section discusses how to implement
forward lineage tracing in practice.

4.1 Characteristics of Data Lineage

In order to achieve efficient implementation, we first
discuss the characteristics of lineage sets.

Table 7 shows the characteristics of the lineage sets
for the queries in the TPC-H benchmark. The results
for all the queries are not presented because some of
them are correlated queries or queries with syntax that
are not handled by our current implementation. Note
that all the listed queries are ASPJ queries. From the
table, we observe the following:

• For some queries, such as Q3, Q10 and Q16, the
lineage size is small and the cardinality is very
large. For the remaining queries, the lineage size
is very large and the cardinality is very small. It
corresponds to queries that aggregate a large num-
ber of base tuples into a few result tuples. There
are no queries that have mid-sized lineage.

• As shown by the replication factor, the data lin-
eage of many queries tend to have significant over-
lap in their binary representation. In other words,
the binary representation of a base tuple often con-
tributes to multiple result tuples. This is usually
due to the join operations and the binary repre-
sentation itself.

• As shown by the clustering factor, tuple ids in a
data lineage set are often clustered. More specifi-
cally, if a tuple id x appears in the lineage, the tu-
ple id x + δ is likely to appear in the same lineage
as well. Note that we assign ids in chronological
order such as shipdate or orderdate. If such an
order is not available, we assign based on the key.

Our experience with a real Wal-mart transaction
data set is similar. Note that both the TPC-H and the
Wal-mart data sets belong to data warehousing, other
workload may display different characteristics. We will
leave this to our future study.

4.2 Representation Sets Using Binary Decision Di-
agrams (BDDs)

The first implication from the above observations is
that a practical implementation needs to handle large
lineage sets. A simple set based implementation may
entail substantial runtime overhead because each op-
eration may involve handling sets with the cardinality
of hundreds or thousands. It is known that reduced
ordered BDDs can efficiently implement set operations
[11]. In this section we show that the characteristics of
data lineage can be exploited by roBDDs.

We begin by describing how ordered BDDs are used
to represent sets and how they are reduced. Given
π, the total order on a set of variables v0, ..., vn, an
ordered BDD is a directed acyclic graph that satisfies
the following properties:

• There are exactly two nodes without outgoing
edges, labeled by the constants 1 and 0 respec-
tively. They are called sinks.

• Each non-sink node is labeled by a variable vi, and
has two outgoing edges, called the 1-edge and the
0-edge. The 1-edges are drawn as solid arrows
while 0-edges are drawn as dashed arrows.

• The order in which the variables appear on a path
is consistent with the variable order π.

Let us assume that we are given a universal set which
contains integers 0 through 15. We show how any set
drawn from this universal set can be represented us-
ing an ordered BDD. Since each element of the set
can be uniquely represented using four bits, we rep-
resent it using an ordered BDD with four variables,
corresponding to the four bits, with v3, v2, v1, v0 as the
variable order. The ordered BDD representing the set
{0, 1, 2, 3, 4, 9, 10, 11, 12} is shown in Fig. 2(a). To de-
cide if 4 (i.e., 0100) is in the set, we follow the path
0100 to see if the 1-sink is reached.

An ordered BDD can be converted to a more com-
pact reduced ordered BDD (roBDD) using two rules:

10

Q3 Q5 Q6 Q7 Q9 Q10 Q11 Q15 Q16

cardinality 11620 5 1 4 175 37967 1048 1 18308

avg. lineage size 4.6 4285.8 114160 4397 6738.1 6.3 32077 225955 12.06

replication factor 5 5 6 5 14 11 6141 5 13

clustering factor 0 21.54 33.09 21.83 8.87 0 100 99.99 5.09
The replication factor of a query having the value x means that on average the binary representation of

a base tuple can appear in x result tuples. The larger the x value, the more overlap the result lineage sets

have.

Assume the tuples ids in the result lineage are ordered, the clustering factor shows how many percentage

of these ids have a < 3 id distance to their neighbors.

Table 7. Characteristics of Lineage

��

�

� �

�
�

�
�

�
�

�
�

	
��
��
��
��
��
�
���
���
���

� �

�������
��� �������
�������
���

��� ���

Figure 2. Reduced ordered BDD for a set.

the Elimination Rule and the Merging Rule. Accord-
ing to the elimination rule, if both edges of a node n
point to the same successor s (i.e., the value of the vari-
able corresponding to the current level in the BDD does
not effect path selection), then the node n is eliminated
by redirecting all incoming edges of n to its successor
s. According to the merging rule if two nodes n1 and
n2 are isomorphic, we can remove the redundancy by
merging the two nodes and redirecting the incoming
edges of these nodes to the merged node. The result-
ing BDD is called a reduced ordered BDD or roBDD.
For the example ordered BDD of Fig. 2(a), node a can
be removed using the elimination rule and nodes b and
c can be merged using the merging rule. The final
roBDD is shown in Fig. 2(b). These reduction rules
make roBDD a very efficient for representation of large
sets. For example, a universal set can be represented
by a single node in roBDD while the cardinality can be
any large.

Since we are interested in maintaining lineage, we
need to construct multiple roBDDs. These roBDDs
can also share nodes and thus we obtain a multiple
rooted roBDD where each root corresponds to a dis-
tinct lineage set. The example in Fig. 3 illustrates
how roBDDs of two sets {0, 1, 2, 3, 4, 9, 10, 11, 12} and

{0, 1, 2, 3, 4, 8, 9, 10}are represented. As we can see, the
two roBDDs share nodes. If two lineage sets overlap,
they share nodes in the graph. This is how roBDDs
exploit the overlapping characteristic.

� �

�
�

�
�

�
�

�
�

��������������	��
������������������������������������	�����
�����

� �

���

Figure 3. roBDDs for two sets.
More over, the clustering characteristic of lineage

gives rise to the opportunities of applying the elimina-
tion rule and the presence of multiple clusters create
isomorphic subgraphs, enabling the application of the
merging rule.

Due to the aforementioned reduction, set operations
with roBDDs can be performed efficiently because they
depend on the number of nodes in the involved roB-
DDs, which is often much smaller than the cardinali-
ties of the sets represented. For example, binary op-
erations (e.g., union) on two sets whose roBDD repre-
sentations contain n and m nodes can be performed in
time O(n × m) [11].

4.3 Variable Granularity Lineage

The second implication is that the support for vari-
able granularity lineage is desired. For data verifica-
tion, manually inspecting thousands or even millions
of lineage tuples is impractical.

11

Based on the query rewriting rules described earlier,
variable granularity lineage tracing can be easily sup-
ported by introducing a new lineage-on clause which
has similar syntax to the group-by clause. Thereby,
the following query traces lineage with respect to the
attribute setting of L.

select ... from V lineage-on L ...

For example, assume Q4 in Section 2 is added the
new clause ”lineage-on store.s name”, the result
lineage is computed with respect to store names in-
stead of base tuples. We need to slightly change the
first rewriting rule in section 3.3 so that a unique id is
assigned to a unique value in L through hash functions.
It is unclear how the reverse query method can achieve
this. With the new clause, the user can also turn off
forward lineage tracing by simply having an empty L.

5 Experimental Results

5.1 Implementation

The forward lineage tracing system is built on top
of PostgreSQL v7.4.5. We have two implementations.
The set implementation represents lineage as ordered
sets using PostgreSQL’s array data type. A union
of two ordered set is a simple merge. The bdd im-
plementation represents lineage as roBDDs using the
BuDDy [1] BDD package. We also implement the
reverse query algorithm for comparison. The exper-
iments are conducted on a Sun-Blade-1000 machine
with dual 1.2 GHz UltraSPARC-III+ and 2G memory
running SunOS 5.8. The benchmark is TPC-H.

5.2 TPC-H Dataset

In this experiment we use benchmark TPC-H. The
data is generated by setting the scale factor to 1 and the
size of the data is 1GB. The schema and the cardinality
of each tale can be found in [2].

5.3 Performance

The first set of experiments compare the perfor-
mance of different algorithms and implementations.
The results are presented in Figures 4 and 5 for ASPJ
and SPJ queries, respectively. The ASPJ queries are
the standard ones provided by TPC-H. All queries are
not evaluated. The missing queries are either corre-
lated or having syntax that is not handled by our cur-
rent implementation. Since TPC-H does not have SPJ
queries, we compose a number of SPJ queries based on
the same data set. These queries feature different num-
bers of join operations. The details of these queries can
be found in appendix A.

Four approaches are evaluated: i) the original query
without any lineage tracing; ii) forward tracing using
the set implementation; iii) forward tracing using bdd;
and iv) backward tracing using reverse queries [7]. In
order to achieve fair comparison, we collect two num-
bers for the backward approach. Reverse-one shows
the average time for querying the lineage of a single
result tuple. Reverse-all shows the time for querying
the lineage for all result tuples. Note that reverse-all
is not reverse-one times the number of result tuples.

BDD vs. Set Let us first compare the two forward
implementations. We can see from Figures 4 and 5, for
queries that produce small lineage sets (see Figure 7),
such as all the SPJ queries, and some ASPJ queries
like Q3, Q10, set is comparable to or better than bdd.
In other words, a simple set based implementation suf-
fices in this case because the union operations of small
sets are usually very efficient. For queries that produce
large lineage sets like Q5 and Q6, Bdd is consistently
substantially better than set. For ASPJ queries, the
overhead for set is 7.96 times larger than that of bdd
on average. The average overhead of bdd is 387%, if
Q11 is excluded, the average is only 74%. Note that
since roBDDs is memory resident, we only use roBDDs
to compute lineage, and the final results are translated
from roBDDs to sets for storage. The execution time of
bdd includes the translation overhead. The translation
time for Q11 is dominant. It clearly demonstrates the
great benefit of using roBDDs, which perfectly exploits
the regularity of data lineage.

Forward vs. Backward. Next, let us compare for-
ward tracing with the lazy backward tracing enabled
by reverse queries. As Figure 5 shows, for SPJ queries,
set incurs an almost negligible increase of execution
time (the average overhead is 1.7%) because the lin-
eage sets have very small cardinalities. In contrast, the
overhead is 325% for reverse-all and 82% for reverse-
one. The backward approach performs poorly because
of the need to perform an expensive reverse query for
which the execution time increases as the number of
joins increases.

For ASPJ queries, as shown in Figure 4, bdd is
consistently much better than reverse-all except Q10,
in which these two are comparable. Q10 is a query
whose result lineage has very little regularity. For
ASPJ queries, the overhead for reverse-all is 19.44
times larger than that of bdd on average. Note that
for Q7, Q9, and Q11, since reverse queries result in
huge joined tables, reverse-all fails to run due to the
out-of-memory errors.

Reverse-one is comparable to bdd, but we want to

12

�

�

�

�

�

�

�

�

	� 	� 	� 	� 	
 	�� 	�� 	�� 	�� ��

��������

���

���

���������

�����������

���� �
�
 �����

������� � ��!

Figure 4. Performance of ASPJ Queries.

�

���

�

���

�

���

�

���

�� �� �� �� �� �	 �
 �� ��

�
�
��
�

�������� ��� ��� ��������� �����������

���	
 	�� ����

Figure 5. Performance of SPJ Queries.

�

���

�

���

�

���

�

���

�

���

�� �	 �
 �� ��� ��

�
�
��
�

��������������� ���������� ����������

Figure 6. Performance of
Variable Granularity Lin-
eage Tracing.

emphasize that bdd produces the result lineage for all
result tuples at once and reverse-one can only generate
lineage for one result tuple. In other words, even if the
lineage for a single tuple is desired, the user may still
choose to use forward lineage tracing and yield much
abundant results with comparable performance.

This experiment clearly shows that the proposed for-
ward method is better than the reverse query method
in terms of performance.

5.4 Space

We have also carried out experiments to evaluate
the space overhead. Since we do not store any roB-
DDs, the required space is for storing the final lineage
sets. We use one 32-bit integer to represent one id.
Therefore, the space requirement for ASPJ queries is
4 × row one in Figure 7× row two in Figure 7 .
The results range from 70KB to 134MB. The space re-
quirement is smaller for SPJ queries because the lineage
for SPJ queries are often small fixed numbers.

5.5 Variable Granularity Forward Lineage

As mentioned earlier, ASPJ queries often produce
result tuples with the lineage of thousands of base

Q5 Q6 Q7 Q9 Q15
cardinality 5 1 4 175 1

avg. lineage size 394 364 334 402 91
space (byte) 7880 1456 5344 281400 364

Table 8. Space for Variable Granularity Tracing.

tuples. Thereby, the support of variable granular-
ity lineage provided by our method is highly desir-
able. We rewrite Q5, Q6, Q7, Q9, and Q15 by
adding the lineage on (year of shipdate, week

of shipdate, mode) clause so that lineage is com-
puted with respect to the combination of the three at-
tributes. The performance is shown in Figure 6. The
space requirement is shown in Table 8.

From Table 8, the lineage size has been significantly
reduced so that it becomes human manageable. The
space requirement is also reduced. From Figure 6, Bdd
still delivers better performance than set for these mid-
sized lineage. We were not able to construct the reverse
queries and hence the comparison with the backward
approach is not available here. To summarize,
• Forward methods have much better performance

than the backward approach;
• RoBDD implementation is good for mid-sized and

large lineage sets; Set implementation is good for
small lineage sets;

• Forward methods generate all lineage at once, and
the backward approach is able to generate lineage

13

� � �������
	���
��� � � � ������
��� ��� ��������
� � ����������

��� ��� ��� ��� � � � �

��� � � � ������
��� ��� �
������
����������� ������

� � �����������
	�� � � � � ��

� � ����������
	
��� �� ���� !
������
"�� � �#��� !�$�����	�� � � � � ��

��� ��� ��� � �% ��� ����� � ��

��� ��� ��������
��� ��� ��������#�

� ��� ��& � ��� � � � �����#�
� � ������'�(���
� � � !
� ��� ��& ����	���
�����#��(�
�
� � �������	�� � ���) $���� � � � ����
��	
� � ��*��$���� �

+�� � ��	���$��
	 � � !
�
� ��� �

,����������

�-���.����� ������
�-���.����� ��� ! � �
/
� � �$���� �
� �����01��$���� �

Figure 7. The Schema of Walmart Dataset

on demand. They have different application sce-
narios. However, the user can choose to discard
some of the lineage to save space.

• Variable grained lineage, which is supported by
the forward method, relieves users from inspecting
huge lineage sets, significantly reduces the space,
and thus makes the technique practical.

5.6 Walmart Dataset

The dataset is taken from a real Walmart transac-
tion databases corresponding to sales at a number of
stores. A subset of this data corresponding to a sin-
gle day’s transactions was used for our experiments.
The size of this data is 300 Megabytes. The schema is
shown in Figure 7.

5.6.1 Performance

We evaluate queries with 0, 1, 2, and 3 joins for SPJ
queries(denoted as Q1, Q2, Q3, Q4, respectively) and
0, 1, 1, and 2 joins for ASPJ queries (denoted as Q5,
Q6, Q7, Q8, respectively). These queries can be found
in appendix B. Note that for SPJ queries, as the num-
ber of joins increases, the size of the lineage sets in-
creases linearly. For ASPJ query, when the number of
joins increases, the intermediate lineage size before ag-
gregate increase linearly. The size of the lineage of the
resulting tuples depends on the group by clause.

Execution Time Calculating the lineage informa-
tion at execution incurs a performance overhead. We
measure the execution time to compute the fine-grained
lineage and compare it with the execution time with-
out the lineage. Four approaches were tested: i) the
original query without any lineage tracing (original;
ii) forward tracing using the set implementation set);

iii) forward tracing using roBDD bdd); and iv) back-
ward tracing using the approach of [6] (reverse). Fig-
ure 8 shows the performance of the various approaches
relative to that of the original query without lineage
tracing. Figure 8(a) shows the results for SPJ queries
and (b) shows the results for ASPJ queries.

As Figure 8 (a) shows, for SPJ query, our algorithm
incurs an almost negligible increase of execution time.
For Q3 and Q4, it is less than 0.5% and for Q2 it is
10%. In contrast, the overhead for the reverse query
approach is significantly higher (e.g it more than dou-
bles the time for Queries Q1 and Q2). This cost in-
crease is incurred even for the tracing of a single result
tuple. The reverse query performs poorly in this ex-
periment because of the need to perform an expensive
reverse query for which the execution time increases as
the number of joins increases.

Notice that the implementation using sets also per-
forms better than a reverse query. This is because
for SPJ queries, the lineage size of each resulting tu-
ple is the number of tables appearing in the from

clause of the query. Therefore, the lineage size is very
small. Both set and bdd implementations piggy-back
the query execution and incur very small overhead,
however, bdd performs slightly better than the set im-
plementation.

For ASPJ queries, as Figure 8 (b) shows, our bdd im-
plementation outperforms both set and reverse query
implementations. Since bdd computes all lineage at
query execution time, while reverse query only calcu-
lates the lineage on the fly, to achieve a fair comparison,
the reverse query consists of materializing all necessary
intermediate tables for lineage calculation and the re-
verse query for tracing one tuple. As expected, as the
number of joins increases, the reverse query time in-
creases accordingly. The execution times of our bdd
and set implementations depend heavily on the size of
the lineage. For Q5 and Q6, since the lineage size is
large, the set operations for the integer set implemen-
tation becomes very expensive and is 60% and 110%
more than reverse query for Q5 and Q6 respectively.
When the lineage size decreases, the set implementa-
tion may outperform reverse query as we have seen in
Q6. Whereas the execution time of bdd implemen-
tation stays low. The bdd implementation only has
less than 15% overhead over the original query. This
is due to the efficient set operations from bdd. In all
cases, bdd outperforms set and reverse query imple-
mentations.

We should point out that in this experiment, the
reverse query only calculates one tuple’s lineage. If we
need to calculate the lineage for multiple tuples the
reverse query will include an extra join which would

14

0

0.5

1

1.5

2

2.5

Q1 Q2 Q3 Q4

orignal set bdd reverse

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Q5 Q6 Q7 Q8

original set bdd reverse

(b)

Figure 8. Performance of the various approaches for (a) SPJ queries; and (b) ASPJ queries. The y-
axis shows the execution time ratio to that of the the same query without any lineage tracing (forward
or backward).

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

cardinality 14898 14898 12376 12376 130 121 3293 7608

avg lineage size 1 2 3 4 11248 2034 405 946

total lineage size 14898 29796 37128 49504 1462254 246156 1335824 1343557

space (bytes) 59592 119184 148512 198016 5849016 984624 5343296 5374228

Table 9. Space requirements for the various queries.

introduce a further slowdown. For the forward lineage
approaches, there is no extra cost for tracing multiple
tuples since the lineage of all tuples is computed all the
time. The execution time for the reverse query depends
heavily on the cardinality of intermediate table. If the
cardinality of reverse table is large, then the execution
time will increase. The execution time also depends on
the number of joins in the original query. The lineage
size has little effect on the execution time of reverse
query.

Space In order to investigate the storage overhead of
storing fine-grained lineage, we measure the space cost
in the number of bytes. The result is shown in Table
9. The first row (cardinality gives the number of tu-
ples in the result for each query. The second row avg
lineage size shows the average size of the lineage for
each result tuples. The third row total lineage size
gives the size of the lineage for the entire result and the
fourth row space gives the space overhead incurred by
storing fine-grained lineage. We use a 32 bit integer to
represent one id. The storage of lineage for SPJ queries
range from 39Kb to 198Kb and 984Kb to 5.8Mb. The

space requirement for SPJ queries is smaller because
the lineage size is proportional to the number of joins
and often small numbers. On the other hand, for ASPJ
queries, the storage could be very large due to the ag-
gregation.

Overall we see that the forward lineage tracing ap-
proach is very efficient in terms of execution time. It in-
curs only a negligible overhead during normal query ex-
ecution while providing the lineage for all the resulting
data. In contrast, a reverse lineage tracing approach
has to pay a high overhead for computing the lineage
of even a single result tuple. There is however, an over-
head for storage space that must be paid for using the
forward lineage tracing. However, given the increase in
efficiency of computing the lineage of all results tables,
we believe this is a very reasonable overhead. The im-
mediate availability of the lineage also have significant
benefits for many applications. For example, if a base
tuple is found to be incorrect, it is possible to easily
identify all result tuples that are affected by the given
base tuple if forward lineage is available. However, with
the reverse lineage approach it would be necessary to
compute the lineage for all result tuples and then test

15

which ones are affected by the given base tuple.

6 Related Work

The need for DBMS support for fine-grained lin-
eage tracing has been well known for new applications
such as scientific databases. Although the need is ur-
gent, it remains an unsolved problem. Recently, there
has been increasing interest in this area. Cui et al.
[6, 7, 8] propose fine-grained tracing in the context of
data warehousing. The notion of reverse queries that
are automatically generated is presented in order to
produce all tuples that participated in the computa-
tion of a given query. Woodruff and Stonebaker [14]
support fine-grained lineage using inverse or weak in-
verse functions. That is, the dependence of a given
result on base data is captured using a mathemati-
cal function. It is not clear if such functions can be
identified for a given application. The identification
task is highly non-trivial and makes the approach im-
practical. Both works adopt a lazy approach to com-
pute fine-grained lineage backward upon request from
the user. Although the reverse query approach usually
works well, if the lineage for a large number of tuples
needs to be generated, reverse queries may not be effi-
cient.

Forward lineage has been used by Bhagwat et al.[3]
where they propose three schemes to propagate where
lineage embedded in annotations attached to attributes
in relational data. The notion of where lineage is first
proposed in [5]. Where lineage specifies where the data
is copied from. In [3], the where lineage is a unique ad-
dress recorded in the annotation, along with other non-
lineage information. The paper propose a SQL exten-
sion, called pSQL to trace the where lineage for a frag-
ment of SQL that corresponds to conjunctive queries
with Union(also known as Select-Project-Join-Union)
in set semantics. Aggregation is briefly discussed in
the paper, only min, max could have a valid where lin-
eage definition, therefore, only min and max can be
traced. As where lineage only records where the data
is copied from, where lineage is not sufficient for many
database applications (e.g. scientific database).

The use of where lineage is limited since it can
not handle data processing (it only handles copying of
data). Furthermore, it is only applicable for set seman-
tics and does not handle bag semantics. The approach
presented in this paper is inspired by the forward lin-
eage approach proposed in [3]. It goes beyond the no-
tion of where lineage and is able to handle arbitrary
SPJ and ASPJ queries, and also bag semantics.

The intuition behind where lineage is rooted in the
classical view maintenance problem. Another limita-

tion of these approaches is that the lineage informa-
tion is stored as unstructured text which makes it very
difficult to analyze.

In scientific computation, provenance or lineage has
been extensively studied for datasets on the grid. Most
of attention has been given to coarse-grained lineage
and work-flow management problem. [4] surveys the
use of work-flows in scientific computation. In this pa-
per we are concerned with fine-grained lineage (i.e. lin-
eage for each tuple).

In this paper we present a novel technique for for-
ward computation of fine-grained lineage for arbitrary
SPJ and ASPJ queries with both set and bag seman-
tics. This is achieved by query rewriting techniques
that piggy-back the lineage computation with query
processing. The execution overhead introduced by this
lineage computation is found to be extremely low (es-
pecially in comparison to the reverse query methods).
While they do incur a significant space overhead, the
advantage of having pre-computed lineage is worth the
extra cost in storage for many scientific applications.

7 Conclusion

Data lineage plays a critical role in verifying data
correctness in scientific databases and data warehous-
ing. Prior lineage tracing techniques compute lineage
backward. While such techniques are quite efficient in
certain scenarios such as SPJ queries with set seman-
tics, their inherent limitations make them inapplicable
or inefficient in other scenarios, for example, queries
with bag semantics and nested queries. Following the
direction of forward annotation propagation [3], we
propose a cost effective forward lineage tracing tech-
nique. It efficiently handles bag semantics and non-
correlated subqueries for general views. Moreover, it
enables forward lineage inspection, namely, identifying
the set of results that rely on a particular base tuple,
which could be highly desirable in scientific databases.
For the first time, we define data lineage in bag seman-
tics and prove its properties. Reduced Ordered Binary
Decision Diagrams (RoBDDs) are used to exploit the
characteristics of data lineage, which results in a cost
effective implementation. The experimental validation
is based upon an implementation in PostgreSQL and
testing with real data warehouse data from Walmart.
The results establish the extremely low overhead of our
query rewriting techniques that compute lineage dur-
ing query execution. In particular, the overhead for
our technique was found to be lower than 15% for all
queries whereas the overhead for tracing the lineage for
a single tuple using the reverse query approach can be
as high as 220%. While this is not the first work deal-

16

ing with forward lineage tracing, it is the first to handle
arbitrary SPJ and ASPJ queries (beyond simple copy-
ing of data). In future work, we plan to address the
interesting and challenging problem of tracing lineage
for correlated nested queries.

References

[1] Buddy, a binary decision diagram package. De-
partment of Information Technology, Technical
University of Denmark.

[2] http://www.tpc.org/tpch/.

[3] D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vi-
jayvargiya. An annotation management system for
relational databases. In VLDB, 2004.

[4] R. Bose and J. Frew. Lineage retrieval for scientific
data processing: a survey. ACM Comput. Surv.,
37(1):1–28, 2005.

[5] P. Buneman, S. Khanna, and W. C. Tan. Why and
where: A characterization of data provenance. In
ICDT, pages 316–330, 2001.

[6] Y. Cui and J. Widom. Lineage tracing in a data
warehousing system. In ICDE, pages 683–684,
2000.

[7] Y. Cui and J. Widom. Lineage tracing for gen-
eral data warehouse transformations. VLDB J.,
12(1):41–58, 2003.

[8] Y. Cui, J. Widom, and J. L. Wiener. Tracing
the lineage of view data in a warehousing environ-
ment. ACM Trans. Database Syst., 25(2):179–227,
2000.

[9] T. Griffin and L. Libkin. Incremental maintenance
of views with duplicates. In SIGMOD, 1995.

[10] P. Groth, S. Miles, W. Fang, S. C. Wong, K. P. Za-
uner, and L. Moreau. Recording and using prove-
nance in a protein compressibility experiment. In
HPDC’05, July 2005.

[11] C. Meinel and T. Theobald. Algorithms and data
structures in VLSI design, 1998. Springer.

[12] S. Miles, P. Groth, M. Branco, and L. Moreau.
The requirements of recording and using prove-
nance in e-science experiments. Journal of Grid
Computing, 2006.

[13] X. Qian and G. Wiederhold. Incremental recom-
putation of active relational expressions. IEEE
Transactions on Knowledge and Data Engineer-
ing, 3(3):337–341, 1991.

[14] A. Woodruff and M. Stonebraker. Supporting fine-
grained data lineage in a database visualization
environment. In ICDE, pages 91–102, 1997.

APPENDIX

A SPJ Queries for TPC-H dataset

S1:

select o_orderdate, o_totalprice, l_quantity, l_shipdate

from lineitem, orders

where o_orderkey = l_orderkey

and o_orderdate >= date ’1994-01-01’

and o_orderdate <= date ’1994-01-01’ + interval ’3 day’;

S2:

select c_name, o_orderdate, o_totalprice,

l_quantity, l_shipdate

from lineitem, orders, customer

where o_orderkey = l_orderkey

and c_custkey = o_custkey

and o_orderdate >= date ’1994-01-01’

and o_orderdate <= date ’1994-01-01’ + interval ’3 day’;

S3:

select c_name, n_name, o_orderdate, o_totalprice,

l_quantity, l_shipdate

from lineitem, orders, customer, nation

where o_orderkey = l_orderkey

and c_custkey = o_custkey

and c_nationkey = n_nationkey

and o_orderdate >= date ’1994-01-01’

and o_orderdate <= date ’1994-01-01’ + interval ’3 day’;

S4:

select p_name, p_brand, p_type, s_name, ps_supplycost,

l_shipdate, o_orderdate

from part, partsupp, supplier, lineitem, orders

where p_partkey = ps_partkey

and ps_suppkey = s_suppkey

and l_partkey = ps_partkey

and l_suppkey = ps_suppkey

and o_orderkey = l_orderkey

and o_orderdate >=date ’1994-01-01’

and o_orderdate <= date ’1994-01-01’ + interval ’3 day’;

17

S5:

select c_name, o_orderdate, l_shipdate, p_name,

p_brand, p_type, s_name, ps_supplycost

from customer, part, partsupp, supplier, lineitem, orders

where p_partkey = ps_partkey

and ps_suppkey = s_suppkey

and l_partkey = ps_partkey

and l_suppkey = ps_suppkey

and o_orderkey = l_orderkey

and c_custkey = o_custkey

and o_orderdate >=date ’1994-01-01’

and o_orderdate <= date ’1994-01-01’

+ interval ’3 day;

S6:

select c_name, o_orderdate, l_shipdate, p_name,

p_brand, p_type, s_name,

n_name, ps_supplycost

from customer, part, partsupp, supplier,

lineitem, orders, nation

where p_partkey = ps_partkey

and ps_suppkey = s_suppkey

and l_partkey = ps_partkey

and l_suppkey = ps_suppkey

and o_orderkey = l_orderkey

and c_custkey = o_custkey

and s_nationkey = n_nationkey

and o_orderdate >=date ’1994-01-01’

and o_orderdate <= date ’1994-01-01’

+ interval ’3 day’;

S7:

select c_name, n2.n_name, o_orderdate,

l_shipdate, p_name, p_brand, p_type,

s_name, n1.n_name, ps_supplycost

from customer, part, partsupp, supplier,

lineitem, orders, nation n1, nation n2

where p_partkey = ps_partkey

and ps_suppkey = s_suppkey

and l_partkey = ps_partkey

and l_suppkey = ps_suppkey

and o_orderkey = l_orderkey

and c_custkey = o_custkey

and s_nationkey = n1.n_nationkey

and c_nationkey = n2.n_nationkey

and o_orderdate >=date ’1994-01-01’

and o_orderdate <= date ’1994-01-01’

+ interval ’3 day’;

S8:

select c_name, n2.n_name as cust_nation ,r_name,

o_orderdate, l_shipdate, p_name,

p_brand p_type, s_name,

n1.n_name as supp_nation, ps_supplycost

from customer, part, partsupp, supplier,

lineitem, orders, nation n1, nation n2, region

where p_partkey = ps_partkey

and ps_suppkey = s_suppkey

and l_partkey = ps_partkey

and l_suppkey = ps_suppkey

and o_orderkey = l_orderkey

and c_custkey = o_custkey

and s_nationkey = n1.n_nationkey

and c_nationkey = n2.n_nationkey

and n1.n_regionkey = r_regionkey

and o_orderdate >= date ’1994-01-01’

and o_orderdate <= date ’1994-01-01’ + interval ’3 day’;

B Queries for Walmart dataset

Q1:

select item.store nbr, item.item nbr,

item.total scan amount

from item scan item

where item.store_nbr =126;

Q2:

select visit.visit nbr, item.item nbr,

item.total scan amount

from Item scan item, store visits visit

where visit.visit nbr = item.visit nbr

and visit.store_nbr =126;

Q3:

select visit.visit_nbr, item_desc.primary_desc,

item.total_scan_amount

from item_scan item, store_visits visit, item_description item_desc

where visit.visit_nbr = item.visit_nbr

and item.item_nbr = item_desc.item_nbr

and visit.store_nbr =126;

Q4:

select visit.visit_nbr, info.store_name,

item_desc.primary_desc, item.total_scan_amount

from item_scan item, store_visits visit,

item_description item_desc, store_information info

where visit.visit_nbr = item.visit_nbr

18

and item.item_nbr = item_desc.item_nbr

and info.store_nbr = visit.store_nbr

and visit.store_nbr =126;

Q5:

select sum(item_quantity)

from item_scan

group by store_nbr;

Q6:

select sum(item.total_scan_amount)

from item_scan item, store_information info

where item.store_nbr = info.store_nbr

group by info.city;

Q7:

select item.store_nbr, sum(item.total_scan_amount)

from item_scan item, item_description item_desc

where item.item_nbr = item_desc.item_nbr

group by item.store_nbr, item_desc.category_nbr

having sum(item.total_scan_amount)>3000;

Q8:

select info.state, sum(item.total_scan_amount)

from item_scan item, item_description item_desc,

store_information info

where item.item_nbr = item_desc.item_nbr

and item.store_nbr = info.store_nbr

group by info.state, item_desc.category_nbr

having sum(item.total_scan_amount)>3000;

19

	Cost Effective Forward Tracing Data Lineage
	Report Number:
	

	tmp.1307986960.pdf._fVJL

