
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

2007 

Compact Real-Time Modeling of Seated Humans by Video Sprite Compact Real-Time Modeling of Seated Humans by Video Sprite 

Sequence Quantization Sequence Quantization 

Chun Jia 

Voicu Popescu 
Purdue University, popescu@cs.purdue.edu 

Report Number: 
07-002 

Jia, Chun and Popescu, Voicu, "Compact Real-Time Modeling of Seated Humans by Video Sprite 
Sequence Quantization" (2007). Department of Computer Science Technical Reports. Paper 1667. 
https://docs.lib.purdue.edu/cstech/1667 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


COMPACT REAL-TIME MODELING OF SEATED HUMANS 
BY VIDEO SPRITE SEQUENCE QUANTIZATION 

Chun Jia 
Voicu Popescu 

Department of Computer Science 
Purdue University 

West Lafayette, IN 47907 

CSD TR #07-002 
January 2007 

COMPACT REAL-TIME MODELING OF SEATED HUMANS
BY VIDEO SPRITE SEQUENCE QUANTIZATION

Chun Jia
Voicu Popescu

Department of Computer Science
Purdue University

West Lafayette, IN 47907

CSD TR #07·002
January 2007



COMPACT REAL-TIME MODELING OF SEATED HUMANS 
BY VIDEO SPRITE SEQUENCE QUANTIZATION 

Chun Jia, Voicu Popescu 

Dept. of Computer Science, Purdue University 
West Lafayette, IN, USA 

ABSTRACT 

We propose an image-based method for real-time modeling 
of seated humans using upper-body video sprites, which is 
suitable for applications such as teleconferencing and 
distance learning. A database of representative video sprite 
sequences is ~ ~ ~ - ~ ~ q ~ ~ ~ ~ ~  and pre-~ploaded each Figure 1 .  Pairs of input and corresponding database video 
rendering site. At run time, for each input sprite, a closely sprites. The database sprites are superimposed onto a red 
matching sprite is located in the database. Only the index of silhouette of their input sprites to highlight the difference. 
the matching sprite is sent to the rendering site which 
drastically reduces the data rate. Unlike other data 
compression methods, our method takes advantage of the 
limited number of significant body positions a participant 
can assume. Exploiting the redundancy between frames with 
distant time stamps enables aggressive compression rates 
with high visual and semantic fidelity. 

Index Terms- video sprites, image-based modeling, 
distributed video communication, compression 

Distributed applications such as teleconferencing and 
distance learning imply acquiring, transmitting and 
rendering believable models of a large number of 
participants in real time. Current graphics algorithms and 
their hardware implementation allow rendering complex 
geometry and color models at interactive rates. However, 
acquiring and transmitting 3D models of each participant in 
real time is challenging due to the difficult problems of 
depth extraction and high bandwidth communication. 

An alternative is building 3D models off-line by 
scanning the participants or by customizing a generic 3D 
model. At run-time, motion and texture data is captured and 
sent to the remote site where it is applied to the 3D model 
[ l ,  21. However, the method requires trackers, cameras, 
andlor markers for robust motion estimation. Moreover, 3D 
acquisition implies considerable time and equipment 
expenses, and using generic models implies loss of fidelity. 
The modeling task is simplified if the participants are 
modeled in 2D, but the resulting avatars lack realism [3]. 

The modeling challenge is bypassed by modeling 
participants with a live video sprite acquired robustly at 
interactive rates with a single camera [4, 51. The remaining 

challenge is the large bandwidth required to transmit the 
video sprite. The data rate can be reduced by compression 
techniques that take advantage of intra- and inter-frame 
coherence. Despite great advances in video codec 
technology [6, 71, transmitting multiple high-quality video 
sprites remains challenging. Challenges include the 
encodingldecoding complexity which requires specialized 
hardware for real-time performance, and the large 
bandwidth required in the context of multiple participants, 
which exceeds the capabilities of commodity connectivity 
(e.g. DSL, cable modem). 

In this paper we describe a real time modeling method 
with a low data rate, making it suitable for distributed 
applications with limited bandwidth between the acquisition 
and rendering sites. The method takes advantage of the 
limited number of significant body positions a participant 
can assume in applications such as teleconferencing and 
distance learning. A database of video sprite sequences 
covering representative body poses is constructed off-line 
and pre-uploaded to the rendering site. During run time, for 
each input sprite, a closely matching sprite is located in the 
database and its index is sent to the rendering site. When a 
participant has to be rendered in detail, the head region is 
identified in the input sprite and sent to the rendering site. 
Since the sprite index can be encoded with as few as 16 bits, 
the method achieves a drastic reduction in data rate. Note 
that the required bandwidth does not depend on the 
resolution of the sprites. 

Conventional video compression does not take 
advantage of redundancy at sequence level since it only 
detects similarity between consecutive or nearly consecutive 
frames. Moreover, the various instances of the same body 
pose have considerable pixel differences which do not 

COMPACT REAL-TIME MODELING OF SEATED HUMANS
BY VIDEO SPRITE SEQUENCE QUANTIZATION

Chun Jia, Voicu Popescu

Dept. of Computer Science, Purdue University
West Lafayette, IN, USA

ABSTRACT

We propose an image-based method for real-time modeling
of seated humans using upper-body video sprites, which is
suitable for applications such as teleconferencing and
distance learning. A database of representative video sprite
sequences is pre-acquired and pre-uploaded to each remote
rendering site. At run time, for each input sprite, a closely
matching sprite is located in the database. Only the index of
the matching sprite is sent to the rendering site which
drastically reduces the data rate. Unlike other data
compression methods, our method takes advantage of the
limited number of significant body positions a participant
can assume. Exploiting the redundancy between frames with
distant time stamps enables aggressive compression rates
with high visual and semantic fidelity.

Index Terms- video sprites, image-based modeling,
distributed video communication, compression

1. INTRODUCTION

Distributed applications such as teleconferencing and
distance learning imply acquiring, transmitting and
rendering believable models of a large number of
participants in real time. Current graphics algorithms and
their hardware implementation allow rendering complex
geometry and color models at interactive rates. However,
acquiring and transmitting 3D models of each participant in
real time is challenging due to the difficult problems of
depth extraction and high bandwidth communication.

An altemative is building 3D models off-line by
scanning the participants or by customizing a generic 3D
model. At run-time, motion and texture data is captured and
sent to the remote site where it is applied to the 3D model
[1, 2]. However, the method requires trackers, cameras,
and/or markers for robust motion estimation. Moreover, 3D
acquisition implies considerable time and equipment
expenses, and using generic models implies loss of fidelity.
The modeling task is simplified if the participants are
modeled in 2D, but the resulting avatars lack realism [3].

The modeling challenge is bypassed by modeling
participants with a live video sprite acquired robustly at
interactive rates with a single camera [4, 5]. The remaining

Figure I. Pairs of input and corresponding database video
sprites. The database sprites are superimposed onto a red
silhouette of their input sprites to highlight the difference.

challenge is the large bandwidth required to transmit the
video sprite. The data rate can be reduced by compression
techniques that take advantage of intra- and inter-frame
coherence. Despite great advances in video codec
technology [6, 7], transmitting multiple high-quality video
sprites remains challenging. Challenges include the
encoding/decoding complexity which requires specialized
hardware for real-time performance, and the large
bandwidth required in the context of multiple participants,
which exceeds the capabilities of commodity connectivity
(e.g. DSL, cable modem).

In this paper we describe a real time modeling method
with a low data rate, making it suitable for distributed
applications with limited bandwidth between the acquisition
and rendering sites. The method takes advantage of the
limited number of significant body positions a participant
can assume in applications such as teleconferencing and
distance learning. A database of video sprite sequences
covering representative body poses is constructed off-line
and pre-uploaded to the rendering site. During run time, for
each input sprite, a closely matching sprite is located in the
database and its index is sent to the rendering site. When a
participant has to be rendered in detail, the head region is
identified in the input sprite and sent to the rendering site.
Since the sprite index can be encoded with as few as 16 bits,
the method achieves a drastic reduction in data rate. Note
that the required bandwidth does not depend on the
resolution of the sprites.

Conventional video compression does not take
advantage of redundancy at sequence level since it only
detects similarity between consecutive or nearly consecutive
frames. Moreover, the various instances of the same body
pose have considerable pixel differences which do not



All-pose raw Database Pre-upload 
footage construction to renderha 

I online 

4 Background ~ G t e  Database dg 1 frame subtraction matchina index 

Head region Co 
~rocessina head reaion 

Figure 2: Acquisition module 

compress well. However, the pixel-level difference between 
the two instances has little semantic significance. Consider 
for example the case of a participant that raises her hand 
twice during a session. Although the slight difference in 
motion produces large pixel-level errors between 
corresponding frames of the two sequences, the second 
sequence can be replaced using fiames from the first 
sequence with little negative impact on the application. 

Our method can also be described as a vector 
quantization approach where the database is a codebook and 
the sprite sequences are the codewords. The codebook 
enables taking advantage of semantic coherence between 
frames with distant time stamps, achieving aggressive 
compression ratios with high visual fidelity as seen in 
Figures 1, 6, 7, and in our illustrative video [8]. 

2. SYSTEM OVERVlEW 

Our methodsupports systems with one or more acquisition 
and one or more rendering modules. 

There is one acquisition module (Figure 2 )  for each 
participant. A database of video sprite sequences is created 
offline. The participant sits in front of the webcam at the 
location that will be used during the actual application 
session and assumes a series of representative body poses 
under the guidance of pre-recorded audio. Examples of such 
poses include neutral listeninglwatching (arms along upper 
body and hands in lap), raised left or right hand when 
requesting permission to interject, applause, crossed arms at 
chest height, crossed arms on desk, and chin resting in left 

Figure 3: Rendering module 

- 

m c .- 
L 

a, 
73 C 
a, 
[r 

- 

Figure 4: Shape classification. The 3 sprites are classified as no- 
left and no-right (NL-NR), NL-YR, and YL-YR, respectively. 

or right hand. The database is created from the raw footage 
automatically (Section 3). The database is pre-uploaded to 
all rendering sites interested in the participant. A database is 
created in 2-3 minutes. During run time, the current frame is 
converted into a sprite by background subtraction and then 
used to find a matching sprite in the database (Section 4). 
The index of the matching sprite is sent to all interested 
rendering sites. In the high-fidelity mode, the head region of 
the current sprite is also transmitted (Section 5). 

A rendering module (Figure 3) pre-downloads all 
needed databases. During the application session, the 
database sprite indices received from the acquisition sites 
are used to update the video textures that render each 
participant. In the high fidelity mode, the head region of the 
database sprite is replaced with the live head region. 

3. DATABASE CONSTRUCTlON 

- 

5 

% 
a, 
z 

- 

Sprite, 

Sprite" - 

The raw video footage is processed as follows. In a first 
step, each kame is transformed into a sprite by separating 
the foreground (participant) from the background (rest of 
the scene). Matting is not the focus of this work; we assume 
that each participant can be placed in front of a favorable 
background which allows constructing sprites in real time 
robustly and efficiently using a simple background 
subtraction algorithm. In a second step, the raw sprite 
footage is segmented into sequences by taking advantage of 
the pauses between poses. 

In a third step, the segmented 30-50 sprite sequences 
are arranged at the leaves of a binary tree. The tree is 
constructed based on sprite sequence shape. The shape of a 
sprite sequence is a bitrnap with a pixel equal to I if at least 
one of the sprites in the sequence covers that pixel, and 0 
otherwise. The frame is split into 3 regions using two 
shoulder lines (blue in Figure 4). The shoulder lines are 
placed symmetrically at a fixed distance from a central line 
(red). The central line is found as the column of the tallest 
uninterrupted foreground vertical segment that starts at the 
bottom of the frame. The binary tree is constructed 
recursively from the set of sprite sequences. A sprite 
sequence is assigned to the left or to the right of the child of 
an internal node according to whether its shape crosses into 
the left andfor right regions of the frame. This yields a tree 
of depth 3 with leaves that store arrays of sprite sequences. 

Figure 5 shows a sample tree built from 2,550 raw 
footage video frames, from which 32 sequences were 

Data Pre-downloadl 

t 
Data Pre-download, 

... A I Receive indexl 

~ece i i e  index, 
Texturel ' ' 

4 
composite 

Receive head regionl 

Receive head region, 
4 

Figure 4: Shape classification. The 3 sprites are classified as no
left and no-right (NL-NR), NL-YR, and YL-YR, respectively.

Database
index

online
-- --- - - - - - - - - - -- ------------- --------------- ------------------------- ..::.:::

o
~z

E
(lJ

U
.0

~ Current
frame

offline

Figure 2: Acquisition module

compress well. However, the pixel-level difference between
the two instances has little semantic significance. Consider
for example the case of a participant that raises her hand
twice during a session. Although the slight difference in
motion produces large pixel-level errors between
corresponding frames of the two sequences, the second
sequence can be replaced using frames from the first
sequence with little negative impact on the application.

Our method can also be described as a vector
quantization approach where the database is a codebook and
the sprite sequences are the codewords. The codebook
enables taking advantage of semantic coherence between
frames with distant time stamps, achieving aggressive
compression ratios with high visual fidelity as seen in
Figures 1,6, 7, and in our illustrative video [8].

or right hand. The database is created from the raw footage
automatically (Section 3). The database is pre-uploaded to
all rendering sites interested in the participant. A database is
created in 2-3 minutes. During run time, the current frame is
converted into a sprite by background subtraction and then
used to find a matching sprite in the database (Section 4).
The index of the matching sprite is sent to all interested
rendering sites. In the high-fidelity mode, the head region of
the current sprite is also transmitted (Section 5).

A rendering module (Figure 3) pre-downloads all
needed databases. During the application session, the
database sprite indices received from the acquisition sites
are used to update the video textures that render each
participant. In the high fidelity mode, the head region of the
database sprite is replaced with the live head region.

3. DATABASE CONSTRUCTION

2. SYSTEM OVERVIEW

Our method·supports systems with one or more acquisition
and one or more rendering modules.

There is one acquisition module (Figure 2) for each
participant. A database of video sprite sequences is created
offline. The participant sits in front of the webcam at the
location that will be used during the actual application
session and assumes a series of representative body poses
under the guidance of pre-recorded audio. Examples of such
poses include neutral listening/watching (arms along upper
body and hands in lap), raised left or right hand when
requesting permission to interject, applause, crossed arms at
chest height, crossed arms on desk, and chin resting in left

~ ~

Sprite, I D b l Pre-download
lata ase, I

t
Cl)

Sr1 Data~ase l Pre-download
£ n I -.=
Q; ... I Receive index,

0
"0 ~<:
Q)

0::: z
~Texture,

Receive indexn

Receive head region,

Texturen
Composite

Receive head regionn
'------J '------J

Figure 3: Rendering module

The raw video footage is processed as follows. In a first
step, each frame is transformed into a sprite by separating
the foreground (participant) from the background (rest of
the scene). Matting is not the focus of this work; we assume
that each participant can be placed in front of a favorable
background which allows constructing sprites in real time
robustly and efficiently using a simple background
subtraction algorithm. In a second step, the raw sprite
footage is segmented into sequences by taking advantage of
the pauses between poses.

In a third step, the segmented 30-50 sprite sequences
are arranged at the leaves of a binary tree. The tree is
constructed based on sprite sequence shape. The shape of a
sprite sequence is a bitmap with a pixel equal to I if at least
one of the sprites in the sequence covers that pixel, and 0
otherwise. The frame is split into 3 regions using two
shoulder lines (blue in Figure 4). The shoulder lines are
placed symmetrically at a fixed distance from a central line
(red). The central line is found as the column of the tallest
uninterrupted foreground vertical segment that starts at the
bottom of the frame. The binary tree is constructed
recursively from the set of sprite sequences. A sprite
sequence is assigned to the left or to the right of the child of
an internal node according to whether its shape crosses into
the left and/or right regions of the frame. This yields a tree
of depth 3 with leaves that store arrays of sprite sequences.

Figure 5 shows a sample tree built from 2,550 raw
footage video frames, from which 32 sequences were



Figure 5: Hierarchical structure of the database 

obtained, totaling 1,592 sprites. The internal nodes do not 
store data, the aggregate shape images are for illustration 
purposes. The leaves store 10,4, 10 and 8 sprite sequences. 

4. REAL-TIME SEARCH FOR MATHCHING SPRITE 

Given an input sprite, the best matching database sprite is 
found in 4 steps. 

Down-sample and blur input sprite for efficient and 
robust color comparisons. 
Find the appropriate tree leaf by descending from the 
root and classifying the sprite based on shape. 
Trivially reject leaf sprite sequences that do not match 
the input sprite using sprite sequence shape bitmaps. 
Linearly traverse the remaining leaf sprite sequences to 
find the best matching sprite. 
Two sprites are compared by first aligning them using a 

translation vector defined by the topmost central line pixels. 
The aligned sprites are compared in shape and color using a 
subset of their bounding boxes. The subset is defined by a 
regular grid of horizontal and vertical pixel segments. We 
take advantage of coherence in the stream of input sprites 
by starting the search in the previous sprite sequence. This 
also alleviates popping artifacts for input sprites close to the 
neutral pose for which there are several matching sprites. 

5. HEAD REGION PROCESSING 

In the high fidelity mode, the head region of the input sprite 
is detected, compressed and sent to the rendering sites 
where it is composited with the matching database sprite 
(Figure 6). The head region is an axis aligned bounding box 
of the head. The top of the head region is defined by the 
topmost central line pixel. The bottom of the head region is 

Figure 6: Database, input, and composited sprite. 

found by walking on the central line downwards until the 
narrowest horizontal foreground segment is found. The left 
and right extents of the head region are defined by the 
widest horizontal segment intersecting the center line. 

The head region is MPEG compressed and sent to the 
renderer, where it is decompressed and composited with the 
database sprite. The compositing uses a 2D mapping that 
matches the database sprite head region to the input sprite 
head region. The transition from the input head region to the 
database sprite is performed gradually over a blending area 
below the head region. Small, erratic frame to frame 
changes of the head region position are avoided using an 
average 2D mapping computed over k frames. For 10 fps, a 
typical k value is 10, which corresponds to 1s. 

6. RESULTS AND DISCUSSIONS 

We tested our method by modeling 4 different subjects, 
seen in the images throughout this paper video and in the 
video [8]. We first discuss database construction, then run- 
time, and then overall system performance. 

A database is constructed at each acquisition site from 
30fps 640x480 raw video footage. In preparation for 
searching, the sprites are down-sampled to 160x120 and 
blurred, which produces an acquisition site database of 
lOOMB on average. A 2,000 sprite database is constructed 
in 2-3 minutes (Pentium 4, 3GHz, 2GB). The 640x480 
sprite sequences are H.264 [7] encoded into video 
sequences with an average total size of 6MB. The video 
sequences are uploaded to the interested rendering sites in 
about 2 minutes total time (DSL upload speed of 360kbps), 
for a total database construction time of 5 minutes. At the 
rendering site, the sprites are recovered from the video 
sequences and stored as JPEGs that total on average 60MB 
(2,000 640x480 sprites, 95% compression quality factor). 

At run-time, for each input sprite, the acquisition site 
module searches for the matching database sprite. A brute 
force linear search on all sprites takes on average 500ms. 
The binary tree reduces the search time to 250ms, with the 
speedup being limited by the tree imbalance. Coherence 
further reduces the average search time to 120ms. The 
rendering module receives the sprite index, decompresses 
the JPEG sprite, and updates the texture of the participant. 
The dominant factor is decompression time, which for our 
640x480 sprites is 12ms. Therefore, a rendering site can 
keep up with about 10 acquisition sites, at 8fps. 

The required sprite resolution depends on rendering 
resolution. Ten 640x480 sprites that are seen at full 
resolution cover 3Mpixels, which exceeds HDTV 
resolution. For lower rendering resolution and a large 
number of participants, the sprite resolution can be reduced. 
A sprite of 160x120 is decompressed in only lms, which 
means that the rendering module could keep up with 120 
acquisition modules. Figure 7 shows the output image of a 
rendering module with 30 160x120 database sprites (total of 

Figure 5: Hierarchical structure of the database.

obtained, totaling 1,592 sprites. The internal nodes do not
store data, the aggregate shape images are for illustration
purposes. The leaves store 10,4, 10 and 8 sprite sequences.

4. REAL-TIME SEARCH FOR MATHCHING SPRITE

Given an input sprite, the best matching database sprite is
found in 4 steps.
• Down-sample and blur input sprite for efficient and

robust color comparisons.
• Find the appropriate tree leaf by descending from the

root and classifying the sprite based on shape.
• Trivially reject leaf sprite sequences that do not match

the input sprite using sprite sequence shape bitmaps.
• Linearly traverse the remaining leaf sprite sequences to

find the best matching sprite.
Two sprites are compared by first aligning them using a

translation vector defined by the topmost central line pixels.
The aligned sprites are compared in shape and color using a
subset of their bounding boxes. The subset is defined by a
regular grid of horizontal and vertical pixel segments. We
take advantage of coherence in the stream of input sprites
by starting the search in the previous sprite sequence. This
also alleviates popping artifacts for input sprites close to the
neutral pose for which there are several matching sprites.

5. HEAD REGION PROCESSING

In the high fidelity mode, the head region of the input sprite
is detected, compressed and sent to the rendering sites
where it is composited with the matching database sprite
(Figure 6). The head region is an axis aligned bounding box
of the head. The top of the head region is defined by the
topmost central line pixel. The bottom of the head region is

Figure 6: Database, input, and composited sprite.

found by walking on the central line downwards until the
narrowest horizontal foreground segment is found. The left
and right extents of the head region are defined by the
widest horizontal segment intersecting the center line.

The head region is MPEG compressed and sent to the
renderer, where it is decompressed and composited with the
database sprite. The compositing uses a 2D mapping that
matches the database sprite head region to the input sprite
head region. The transition from the input head region to the
database sprite is performed gradually over a blending area
below the head region. Small, erratic frame to frame
changes of the head region position are avoided using an
average 2D mapping computed over k frames. For 10 fps, a
typical k value is 10, which corresponds to 1s.

6. RESULTS AND DISCUSSiONS

We tested our method by modeling 4 different subjects,
seen in the images throughout this paper video and in the
video [8]. We first discuss database construction, then run
time, and then overall system performance.

A database is constructed at each acquisition site from
30fps 640x480 raw video footage. In preparation for
searching, the sprites are down-sampled to 160x 120 and
blurred, which produces an acquisition site database of
100MB on average. A 2,000 sprite database is constructed
in 2-3 minutes (Pentium 4, 3GHz, 2GB). The 640x480
sprite sequences are H.264 [7] encoded into video
sequences with an average total size of 6MB. The video
sequences are uploaded to the interested rendering sites in
about 2 minutes total time (DSL upload speed of 360kbps),
for a total database construction time of 5 minutes. At the
rendering site, the sprites are recovered from the video
sequences and stored as lPEGs that total on average 60MB
(2,000 640x480 sprites, 95% compression quality factor).

At run-time, for each input sprite, the acquisition site
module searches for the matching database sprite. A brute
force linear search on all sprites takes on average 500ms.
The binary tree reduces the search time to 250ms, with the
speedup being limited by the tree imbalance. Coherence
further reduces the average search time to l20ms. The
rendering module receives the sprite index, decompresses
the lPEG sprite, and updates the texture of the participant.
The dominant factor is decompression time, which for our
640x480 sprites is 12ms. Therefore, a rendering site can
keep up with about 10 acquisition sites, at 8fps.

The required sprite resolution depends on rendering
resolution. Ten 640x480 sprites that are seen at full
resolution cover 3Mpixels, which exceeds HDTV
resolution. For lower rendering resolution and a large
number of participants, the sprite resolution can be reduced.
A sprite of 160x120 is decompressed in only Ims, which
means that the rendering module could keep up with 120
acquisition modules. Figure 7 shows the output image of a
rendering module with 30 160x120 database sprites (total of



Figure 8: Output image fragments: high & low MPEG-4 quality. 

Figure 7: Rendering module output image. 

540MB). The image is refreshed at 25fps, which enables 
posting with little delay individual sprite updates that arrive 
from various acquisition sites at an average 8fps. 

Table 1 gives a comparison between the average data 
rate achieved by our method and that of state of the art 
codecs (QuickTime Pro 7 implementation of H.264 [7] and 
DivX 6.4.0 implementation of MPEG-4 [6]), on an input 
sequence of 1,000 frames. The high quality setting produced 
an image quality comparable to our method. The low quality 
setting produced a far inferior image (Figure 8). 

When no head region is transmitted, our method 
achieves a data rate that is approximately two orders of 
magnitude smaller than the low quality, low resolution 
setting of the video codecs. In a distance learning 
application with 30 remote students that have to be sent to 
the classroom at lOfps to be seen by the instructor, the 
required bandwidth for each student is a negligible 0.16 
kbps, which leaves ample room for receiving classroom 
video, and for sending and receiving audio. Since there is no 
benefit in reducing the communication packet below the 
Maximum Transmissible Unit which (1,500 bytes for TCP), 
the index should be added to audio packets. The classroom 
bandwidth is also insignificant: 30 x 0.16 = 4.8kbps. 

When the 320x240 head region is transmitted, it is 
encoded using the same codecs. Our method outperforms 
the codecs for the comparable setting on average by a factor 

Table 1 : Video data rates in kbps for various settings. 

of 3. Although current sprite searching performance at the 
acquisition module cannot operate at 30fps, the more 
important head region which is simply cropped out of the 
input frame can and should be sent to the rendering site. In 
the context of a teleconferencing application with one active 
(speaking) participant modeled with head region and several 
passive participants, an activelpassive participant can 
uploadldownload the head region using DSL connectivity. 

7. CONCLUSIONS 

We have presented a method for compact real-time 
modeling of seated humans that drastically reduces the data 
rate by replacing the bulk of the input sprite with a two-byte 
index. As future work we will use the method in the context 
of an actual distance learning system. In addition to 
enabling students to attend class remotely with commodity 
level hardware and connectivity, our method promises to be 
useful during the validation phase as an analysis tool for the 
vast amount of video footage that will be collected. The 
databases and the traces of matched sprite indices are 
equivalent to output of powerful video abstraction and 
summarization tools. 

8. REFERENCES 

[I] F. Remondino and A. Roditakis, "Human Figure 
Reconstruction and Modeling from Single Image or Monocular 
Video Sequence," Proceedings of 3DIM, pp. 1 16-123,2003. 

[2] J. Carranza, C. Theobalt, M. Magnor and H. Seidel, "Free- 
Viewpoint Video of Human Actors," Proceedings of SIGGRAPH 
2003, pp. 569-577,2003, 

[3] C. Wren et al. "Pfinder: Real-Time Tracking of the Human 
Body," IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 19, no. 7, pp 780-785, July 1997. 

[4] J. Shade et al. "Hierarchical Image Caching for Accelerated 
Walkthroughs of Complex Environments," Proceedings of 
SIGGRAPH 1996, pp. 75-82, 1996. 

[5] J. Lengyel and J. Snyder, "Rendering with Coherent Layers," 
Proceedings of SIGGRAPH 1997, pp. 233-242, 1997. 

[6] "Coding of Audio-Visual Objects", ISO/IEC 14496-2, 1999. 

[7] "Draft ITU-T Recommendation and Final Draft International 
Standard of Joint Video Specification (ITU-T Rec. H.264/ISO/IEC 
14 496-10 AVC)," Joint Video Team (JVC), JVT-GOSO, 2003. 
[8] Paper video URL: http://www.cs.purdue.edu/cgvlab/ICIP07. 

Figure 7: Rendering module output image.

540MB). The image is refreshed at 25fps, which enables
posting with little delay individual sprite updates that arrive
from various acquisition sites at an average Sfps.

Table I gives a comparison between the average data
rate achieved by our method and that of state of the art
codecs (QuickTime Pro 7 implementation of H.264 [7] and
DivX 6.4.0 implementation of MPEG-4 [6]), on an input
sequence of 1,000 frames. The high quality setting produced
an image quality comparable to our method. The low quality
setting produced a far inferior image (Figure 8).

When no head region is transmitted, our method
achieves a data rate that is approximately two orders of
magnitude smaller than the low quality, low resolution
setting of the video codecs. In a distance learning
application with 30 remote students that have to be sent to
the classroom at 10fps to be seen by the instructor, the
required bandwidth for each student is a negligible 0.16
kbps, which leaves ample room for receiving classroom
video, and for sending and receiving audio. Since there is no
benefit in reducing the communication packet below the
Maximum Transmissible Unit which (1,500 bytes for TCP),
the index should be added to audio packets. The classroom
bandwidth is also insignificant: 30 x 0.16 = 4.8kbps.

When the 320x240 head region is transmitted, it is
encoded using the same codecs. Our method outperforms
the codecs for the comparable setting on average by a factor

eli Resolution Our method.....
<:.> ~ 640x480
eli ""- 640x480 160x120
"0 eli '"
0 S.E- Quality Quality Head regionU ~-

""~ Low High Low High No Yes

"'" 10 27 338 6 65 0.16 113
'&>
N

::C 30 62 853 16 152 0.47 267

"'" 10 59 330 12 66 0.16 113.
~
~

~ 30 131 842 27 151 0.47 269

Table 1: Video data rates in kbps for various settings.

Figure 8: Output image fragments: high & low MPEG-4 quality.

of 3. Although current sprite searching performance at the
acquisition module cannot operate at 30fps, the more
important head region which is simply cropped out of the
input frame can and should be sent to the rendering site. In
the context of a teleconferencing application with one active
(speaking) participant modeled with head region and several
passive participants, an active/passive participant can
upload/download the head region using DSL connectivity.

7. CONCLUSIONS

We have presented a method for compact real-time
modeling of seated humans that drastically reduces the data
rate by replacing the bulk of the input sprite with a two-byte
index. As future work we will use the method in the context
of an actual distance learning system. In addition to
enabling students to attend class remotely with commodity
level hardware and connectivity, our method promises to be
useful during the validation phase as an analysis tool for the
vast amount of video footage that will be collected. The
databases and the traces of matched sprite indices are
equivalent to output of powerful video abstraction and
summarization tools.

8. REFERENCES

[I] F. Remondino and A. Roditakis, "Human Figure
Reconstruction and Modeling from Single Image or Monocular
Video Sequence," Proceedings of3DIM, pp. 116-123,2003.

[2] 1. Carranza, C. Theobalt, M. Magnor and H. Seidel, "Free
Viewpoint Video of Human Actors," Proceedings of SIGGRAPH
2003,pp.569-577,2003.

[3] C. Wren et al. "Pfinder: Real-Time Tracking of the Human
Body," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 7, pp 780-785, July 1997.

[4] J. Shade et al. "Hierarchical Image Caching for Accelerated
Walkthroughs of Complex Environments," Proceedings of
SIGGRAPH 1996, pp. 75-82, 1996.

[5] 1. Lengyel and J. Snyder, "Rendering with Coherent Layers,"
Proceedings ofSIGGRAPH 1997, pp. 233-242,1997.

[6] "Coding of Audio-Visual Objects", ISO/IEC 14496-2, 1999.

[7] "Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification (ITU-T Rec. H.264/ISO/IEC
14496-10 AVC)," Joint Video Team (JVC), JVT-G050, 2003.
[8] Paper video URL: http://www.cs.purdue.edu/cgvlab/ICIP07.


	Compact Real-Time Modeling of Seated Humans by Video Sprite Sequence Quantization
	Report Number:
	

	tmp.1307986960.pdf.hrw8k

