
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2006

AC-Framework for Privacy-Preserving Collaboration AC-Framework for Privacy-Preserving Collaboration

Wei Jiang

Chris Clifton
Purdue University, clifton@cs.purdue.edu

Report Number:
06-015

Jiang, Wei and Clifton, Chris, "AC-Framework for Privacy-Preserving Collaboration" (2006). Department of
Computer Science Technical Reports. Paper 1658.
https://docs.lib.purdue.edu/cstech/1658

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AC-FRAMEWORK FOR PRIVACY-
PRESERVING COLLABORATION

Wei Jiang
Chris Clifton

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #06-015
August 2006

AC-FRAMEWORK FOR PRIVACY
PRESERVING COLLABORATION

Wei Jiang
Chris Clifton

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #06-015
August 2006

AC-Fra,mework for Privacy-Preserving Colla,boration

1Vei Jiang Chris Cliftoll
Dept . of Coillputer Science. Dept . of Coillputer Science.

Purdue Universit~r, 147. Lafayette. IN Purdue Universitj-. l IT. Laf;q.ettc. I S
w j i a n g @ c s . p u r d u e . e d u c l i f t o n @ c s . p u r d u e . e d u

Abstract

The secure mlllti-party compnt.ation (ShIC) illode1 provitles ineails for l~alailciilg the use
and confidentiality of distribut.ed data. Iilcreasiilg security coilcerils 11al.e led to a surge in
work oil practical secure 1nult.i-party coinputatioil protocols. However. inost are only proveil
secure under the semi-hoilest model, and security under this adversary illode1 is iils~~fici~iit for
illost applications. I11 this paper: we propose a no\rel frame~vork: accoui~tal~le coinputi~ig (XC)
framework. ~17llicll is sufficient or practical for man!- applic.ations \vitlioiit the coinplesit,y and
cost of a ShIC-protocol under the malicious model. F~lrtherinore. to s h o ~ tlie a~)plical~ilit~- of
t.1le AC-framework. we present an applicatioil under this framework regarding PI-i\-acy-preser\.iilg
illillillg frequent it,emset,s. .

1 Introduction

Privacj- and securit.y, particularly inaintaining confidentiality of data, have become a challenging
issue wit 11 advances in inforination and coininunicat.ion tec1~i~olog.y. The ability to coininunicat~e and
share dat,a has inany benefits. The idea of an oinniscient dat,a source ca.rries gfeat value t,o research
and data disseinination. Mjit.nessing t,lle cost of duplicat,ed medical tests or the darnage from errors
result.ing froin incoinp1et.e or incorrect informat,ion, such a data source could substantially reduce
waste and inefficiency.

On t.he ot.her hand: an omniscient. data source eases misuse: such as t.he gron-ing problein of
iclent.it.~i t,l~eft. To prevent inisuse of data; there is a recent surge in laws inanda.t.ing prot.ection of
confident.ia1 dat,a; such as t.he European Coinmunit,y privacy standards [5]. U.S. llealt hcare la.~vs [ll];
and California. SB1386. Ho\vever, t,llis prot.ect.ion coines wit.11 a real cost through bot.11 added securit.y
expendit.ure and penalties and c0st.s associat.ed wit.11 disclosure. For example, CardSyst.eins ~ 7 a s
terininat.ed by Visa and Ainerican Express aft.er having credit card infbrinat.ion st.olen. Cl~oicePoint
st,ock lost. 20% of it.s value in the inontl~ follo~ving t.lleir disclosure of inforination t.heft. Such public
relations costs can be enorinous and could poteilt,ially kill a company. Fi-om lessoils learned in
pract.ice, what. we need is the ability to coinpute the desired "beneficial out.coine" of data. sharing
without. having t.o act,ually share or disclose dat.a.. We can inaint,ain t.he security provided by
separation of cont.ro1 while st,ill obtaining the benefits of a global dat.a source.

Secure mu1t.i-part.y roinput,at,iorl (SAIC) [8: 19: 201 has recent,ly emerged as an ansm:er t.o t.his
problem. Informally, if a protocol ineets t,he Sh4C definitions, t,he part,icipat,ing part.ies learn inere
t.he final result and n:hat.ever can be iilferrcd froin t . 1 ~ final result and their o ~ c n inputs. A simple
example is Yao's millionaire problein [19]: t,wo inillionaires want to learn \vho is richer wit.hout

AC-Fran1ework for Privacy-Preserving Collaboration

vVei Jiang
Dept. of Computer Science,

Purdue University, VV. Lafayette, IN
wjiang©cs.purdue.edu

Chris Clifton
Dept. of Computer Science,

Purdue University, \'T. Lafayette. IN
clifton©cs.purdue.edu

Abstract

The secure multi-party computation (SJ\lC) model provides means for balancing the use
and confidentiality of distributed data. Increasing security concerns have led to a surge in
work on practical secure multi-party computation protocols. However, most are onl~' provell
secure ullder the semi-honest model, and security under this adversary model is insufficiellt for
most applications. In this paper, we propose a novel framework: accountable computillg (AC)
framework, which is sufficient or practical for many applications withOllt the complexity and
cost of a Sl\lC-protocol under the malicious model. Furthermore, to show the applicabilit~· of
the AC-framework, we present an application under this framework regarding pri\"ac~'-preserving

mining frequent itemsets..

1 Introduction

Privacy and security, particularly maintaining confidentiality of data, have become a challenging
issue with advances in information and communication technology. The ability to communicate and
share data has many benefits. The idea of an omniscient data source carries gteat value to research
and data dissemination. Witnessing the cost of duplicated medical tests or the damage from errors
resulting from incomplete or incorrect information, such a data source could substantially reduce
waste and inefficiency.

On the other hand, an omniscient data source eases misuse, such as the growing problem of
identity theft. To prevent misuse of data, there is a recent surge in lmvs mandating protection of
confidential data, such as the European Community privacy standards [5], U.S. healthcare laws [11],
and California SB1386. However, this protection comes with a real cost through both added security
expenditure and penalties and costs associated with disclosure. For example, CardSystems was
terminated by Visa and American Express after having credit card information stolen. ChoicePoint
stock lost 20% of its value in the month following their disclosure of information theft. Such public
relations costs can be enormous and could potentially kill a company. From lessons learned in
practice, what we need is the ability to compute the desired "beneficial outcome" of data sharing
without having to actually share or disclose data. \'Ve can maintain the security provided by
separation of control while still obtaining the benefits of a global data source.

Secure multi-party computation (Sl\IC) [8, 19, 20] has recently emerged as an answer to this
problem. Informally, if a protocol meets the Sl\IC definitions, the participating parties learn mere
the final result and whatever can be inferred from the final result and their own inputs. A simple
example is Yao's millionaire problem [19]: two millionaires want to learn who is richer without

1

disclosing their act,ual wealt.11 t.o each ot.l~er. Recognizing t,llis, the research community has developed
inally SMC prot.ocols, for applicat.ions as diverse as forecast.ing [3]. data anal!-sis [12] and auctions
[14].'

Forinal definit,ions of ShdC exist for two adversary models: semi-honest and malicious. I11 the
semi-honest, model, it, is assumed t.11at. each part,y follows t.he prot.0~01. Ho\ve\:cr. aft.er t.he prot.0~01
is complete, t , l~e adversary may att.einpt, t.o compute adclitional i~iforination from t , l~e inessages
received during execut,ion. I11 t.he inalicious model, a part?- can di\-crge arbit.rari1:. froin norinal
execution of t.he prot.0~01. It, has been proven that for aay pol!;nomial time algorithm, there exists
a polyilo~nial t i n e secure prot,ocol t,l~at. achieves t.he same funct.ionalit!. liilder eit,l~er the semi-1lonest
or t.he inalicious inodel [8]. Nevert.l~eless, most pract,ical algorit.l~ins developed have only been proveil
secure under the semi-honest model. While not a proof, this certainly gi\,es evidence that achieving
security against a inalicious adversary adds significailt complexity and expense.

A ShlC-protocol secure under the semi-honest inodel (or a SS31C-protocol) rarely pro\~ides
sufficient security for practical applications. For example. t\vo coinpeting trailsport at ion conipanies
want to know if they can collaborate to acllieve better cfficienc;\. and coiisequentl\~ reduce operational
costs. Assume there exists a SShJC-protocol that searches for possible overlap of the two companies'
trucking routes. It is difficult t.o convince the companies to utilize the prot,ocol because it is
uilacceptable to assume that, t.wo colnpet,ing companies t.rust, each other to follo~v t.he prot.0~01. On
t.he ot.ller hand, if one company can guarant,ee the other coinpan>s t.llat it llas behaved l lonestl~~
during each execution st.ep of t.he protocol, then a collaboration bet\~:een the two part.ies becomes
possible. A SMC-protocol secure under the inalicious model (or a AIShIC-prot,ocol) generally
provides such a guarantee, but t.he comp1exit.y of a h4SMC-protocol commonly prevents it froin
being adopted in pract,ice.

Iinagiile another scenario: multiple pa.rt.ies authorized t,o see each other's data \milt. t.o coinput,e
a shared result; nevert,heless, open disclosure of t.he dat.a to 11011-pal-ticipatillg part.ies is prol1ibit.ed.
I11 order to avoid the cost or liability from disclosiilg the data. every partv finds that its best interest
is to follow a protocol secure under the semi-honest inodd. \T-liat happens if data is disclosed?
Clearly it is the fault of the original owner of the data provided that other parties follo\ved the
protocol. On the other hand. since a party may have beha\-ed dishonestl;\~. the owner can accuse
others and claim that liability sholild be shared. At this point. the otllei party would like to prove
that they did follo~v the protocol and consequently sllo\v that the!- could not have seen the data
(unless the owner had behaved disllonestly). The scenario leads 11s to a new framework: accountable
coinputiilg (AC).

The idea behind the AC-framework is that a party ~ v h o correctly follo\ved the protocol call be
proven to have done so consequent,ly prove t.hat someone else inlist have improperly disclosed
dat,a. This provides subst,ailt,ial practical ut.ility over a semi-lionest protocol. I11 a.ddit,ion, although
a inalicious adversary part,icipat.ing in an AC-protocol may learn t.l~ings t.hat. they should not. and
damage the result, such a behavior could be detect.ed under t,he AC-framework. Furthermore,
since t,lle AC-fi-aine\voi-k does not need t.o prevent, disclosure t.o a inalicious a.dversary, prot.ocols
call be less complex. I11 part,icular, inucll of t.he cost, call be pushed t.o a verificat.ion phase \vhich
needs oilly be run t o expose the culprit \vhen disclosure is detect.ed. This enables prot.ocols t.hat
approach the efficiency of semi-honest protocols and leads t.o many practical applicatioils for which
t.he semi-honest protocols are insufficient..

The goal of this paper is to introduce and analyze the AC-fi-aine~vork as well as to deinonstrate

'\\'e hale only cited one ea~l \ - e x a m p l e of each

disclosing their actual wealth to each other. Recognizing this, the research community has developed
many Sl\/IC protocols, for applications as diverse as forecasting [3]. data analysis [12] and auctions
[14] .1

Formal definitions of SMC exist for two adversary models: semi-honest and malicious. In the
semi-honest model, it is assumed that each party follows the protocol. However. after the protocol
is complete, the adversary may attempt to compute additional information from the messages
received during execution. In the malicious model, a party can diverge arbitrarily from normal
execution of the protocol. It has been proven that for any polynomial time algorithm, there exists
a polynomial time secure protocol that achieves the same functionality under either the semi-honest
or the malicious model [8]. Nevertheless, most practical algorithms developed have only been proven
secure under the semi-honest model. \\Thile not a proof, this certainly gives evidence that achieving
security against a malicious adversary adds significant complexity and expense.

A SMC-protocol secure under the semi-honest model (or a SS~\IC-protocol) rarely provides
sufficient security for practical applications. For example, two competing transportation companies
want to know if they can collaborate to achieve better efficiency and consequentlv reduce operational
costs. Assume there exists a SSMC-protocol that searches for possible overlap of the two companies'
trucking routes. It is difficult to convince the companies to utilize the protocol because it is
unacceptable to assume that two competing companies trust each other to follow the protocol. On
the other hand, if one company can guarantee the other companv that it has behaved honestly
during each execution step of the protocol, then a collaboration between the two parties becomes
possible. A SMC-protocol secure under the malicious model (or a l\ISMC-protocol) generally
provides such a guarantee, but the complexity of a IVISI'vlC-protocol commonly prevents it from
being adopted in practice.

Imagine another scenario: multiple parties authorized to see each other's data want to compute
a shared result; nevertheless, open disclosure of the data to non-participating parties is prohibited.
In order to avoid the cost or liability from disclosing the data, every party finds that its best interest
is to follow a protocol secure under the semi-honest mode.J. \Vhat happens if data is disclosed?
Clearly it is the fault of the original owner of the data provided that other parties followed the
protocol. On the other hand, since a party may have behaved dishonestly, the owner can accuse
others and claim that liability should be shared. At this point, the other party would like to prove
that they did follow the protocol and consequently show that the~' could not have seen the data
(unless the owner had behaved dishonestly). The scenario leads us to a new framework: accountable
computing (AC).

The idea behind the AC-framework is that a party who correctly followed the protocol can be
proven to have done so and consequently prove that someone else must have improperly disclosed
data. This provides substantial practical utility over a semi-honest protocol. In addition, although
a malicious adversary participating in an AC-protocol may learn things that they should not and
damage the result, such a behavior could be detected under the AC-frame,vork. Furthermore,
since the AC-framework does not need to prevent disclosure to a malicious adversary, protocols
can be less complex. In particular, much of the cost can be pushed to a verification phase which
needs only be run to expose the culprit when disclosure is detected. This enables protocols that
approach the efficiency of semi-honest protocols and leads to many practical applications for which
the semi-honest protocols are insufficient.

The goal of this paper is to introduce and analyze the AC-framework as ,veIl as to demonstrate

I'We have only cited one early example of each.

2

its pract.ica,lity. Sectioil 2 preseilt,s current state of the art froin t,he lit.erat(u1.e of secure inulti-
part,? computat,ion. Sect.ion 3 int.roduces the framework and provides guidelines for designing an
AC-prot,ocol. Sect,ion 4 illust.rat,es t.lie feasil>ilit~- an(] applicability of the fra11ien:ol.k in tlle field of
privacy-preserving dat.a mining. Finall!.. section 5 concludes t.he paper.

2 Related Work / Background

We first give a descriptioil and defi~litions of Secure Xlultiparty Computation: these are necessary
to uilderstaild the rest of tlle paper. IYe then discuss two proposed ideas that appear similar to
our proposed AC-fraine\~ork. and highligllt the differences.

2.1 Secure Multi-party Computation

Yao first postulated t.lie t.uio- part.^^ comparison problem (Yao's hlillionaire Prot.0~01) and developed
a provably secure sollit ion [20]. This was est encied to multipa,rty coinput at i o ~ ~ s by Goldreich et

al. [8]. They developed a framework for secl~re 1nult.iparty computation, and in [9] proved t.hat.
coinput,iilg a function privat.ely is equi~alent to coinput,ing it securely.

We st.art. \vit,h the definit,ions for security in tlle semi-11onest inodel. A semi-honest, part.y (also
referred to as honest but. curious) follo~vs tllc rnles of t,he protocol using its correct, input.. but is
free t.o later use \vhat it. sees during execut.ion of the protocol t.o co~nproinise security.

A formal defiilitioil of privat,e t,n:o-party coinpl~tatioil in t.he semi-honest. inodel is given below.

Definition 1 Let f : (0; I}* x (0. I}* - (0. I}* x (0. I}* be a functionality, a.nd f l (x :y) (resp.,
f2(x: y)) denote the ,first (resp., second) element of f (x. y) . Let II be two-party protocol for com-
puting f . The view of the ,first (resp., second) party during an execution of II on (x. y), denoted
VIEW: (x . y) (resp.; VIEWY (x; y)): is (x. 1-; ml nrt) (resp., (y. 1-: nxl.. . . . n ~ ,)) , . where r repre-
sents the outcome of the .first (resp., second) party's in.terna1 coin tosses, and n x i represents th.e ith
message it has received. The O ~ J T P C T of the ,first (resp.. second) party during an, execution of II
on, (x: y), denoted OUTPUT: (x: y) (resp., o c ~ i > u ~ Y (x: y)) is implicit in the party's own view of the
execution: and O L T T P U T ~ (x; y) = OUTPUT:^ (:r, y) . OUTPUT^ (x. y)) .

(general case) We say that II privately computes f if there exist probabilistic polyn.omia1-time
algorithms: denoted S1 and S2, such that

C
{(SI (x. f I (x. 3)) . f (x. y))}, , = { (\~n.: (x. y) . OUTPUT^ (x. y))}

x Y
C

{ (S 2 (3. f 2 (2. Y)) . f (x. Y))} , .~ = ((v1~n-Y (x. 3) . 0uTpuTn (2. Y)) } ~

L
where = denotes computation,al indistin.gu.ishabl:lity by (n.on-un.iform) families of polynom.ia1-size
circuits.

The above definition says that a co~nputation is secure if tlle vie\?: of each partv during the
execution of the protocol can be effect~vely simulated given the input and the output of that party.
This inodel guarantees that parties 1~110 correctlv follo\v the protocol do not have to fear seeing
data they are not supposed to.

The malicious inodel (guaranteeing that a inalicious partv cannot obtain private infor~nation
froin an hoilest one. ainoilg other things) adds coilsiderable complexity due to the fact that the
consistency of every step of execution \i-ith previous coinputations generally needs to be verified.

its practicality. Section 2 presents current state of the art from the literature of secure multi
party computation. Section 3 introduces the framework and provides guidelines for designing an
AC-protocol. Section 4 illustrates the feasibility and applicability of the frame\vork in the field of
privacy-preserving data mining. Finally, section 5 concludes the paper.

2 Related Work / Background

VYe first give a description and definitions of Secure l'dultiparty Computation: these are necessary
to understand the rest of the paper. \Ve then discuss two proposed ideas that appear similar to
our proposed AC-framework, and highlight the differences.

2.1 Secure Multi-party Computation

Yao first postulated the two-party comparison problem (Yao's J\Iillionaire Protocol) and developed
a provably secure solution [20]. This was extended to multiparty computations by Goldreich et
al. [8]. They developed a framework for secure multiparty computation, and in [9] proved that
computing a function privately is equivalent to computing it securely.

\Ve start with the definitions for securi(v in the semi-honest model. A serni-honest party (also
referred to as honest but curious) follows the rules of the protocol using its correct input, but is
free to later use what it sees during execution of the protocol to compromise security.

A formal definition of private two-party computation in the semi-honest model is given below.

Definition 1 Let f: {O,l}* x {O,l}* f-------4 {O,l}* x {O,l}* be a functionality; and h(x,y) (resp.,
12(x,y)) denote the first (resp., second) element of f(x,y). Let II be two-party protocol for com
puting f. The view of the first (resp., second) party during an execution of II on (x,y); denoted

VIEW? (x,y) (resp., VIE\""~(x,y)); is (x.r,7TI1, Tnt) (resp., (y,r,7TI1, ... ,Tnt)); where r repre
sents the outcome of the first (resp., second) party's internal coin tosses; and rHi represents the ith

message it has received. The OUTPUT of the .first (resp., second) party during an execution of II
on (x,y); denoted OUTPUT? (x,y) (resp., OUTPUT~ (x,y)) is implicit in the party's own view of the
execution, and OUTPUTD (x, y) = (OUTPUT!l (T, y) ,OUTPUT~ (T. y)).

(general case) We say that II privately computes f if there exist probabilistic polynomial-time
algorithms; denoted 51 and 52; such that

c
{(51 (T. fr (T, V)) ,f (T, y))} x,y == {(VIEW? (x. y) . OUTPUT

D (T, y))} x.y

C
{(52 (y, 12 (T, y)) , f (x, y))} x,y == {(VIEW~ (T, y) , OUTPUT

D (T, y)) }x.y

c
where denotes computational indistinguishability by (non-uniform) families of polynomial-size

circuits.

The above definition says that a computation is secure if the view of each party during the
execution of the protocol can be effectively simulated given the input and the output of that party.
This model guarantees that parties who correctly follow the protocol do not have to fear seeing
data they are not supposed to.

The malicious model (guaranteeing that a malicious party cannot obtain private information
from an honest one, among other things) adds considerable complexity due to the fact that the
consistency of every step of execution with previous computations generally needs to be verified.

3

\171iile we do not give the full definition here. we note that there are three tlliilgs the inodel cannot
llandle [9]:

1. Parties refusing t.o participate in t,he prot,ocol;

2. Parties using other (valid) input in place of their actual data, and

3. Partics aborting the protocol prematurely.

\?;hile inany of t,he exist.ing pract.ica1 SMC-st.yle protocols do provide guarantees beyond that
of t.lie semi-honest, inodel (snch as guaranteeiilg t.l~at, individual data items are not disclosed to a
n~alicious part.^^), few meet all t.he rcquire1nent.s of the inalicious inodel.

2.2 Other Verification-based Methods

Ideas proposed in 12; 61 appear similar to what we have present.ed in this paper. However, both of
them focus on the sit.ua.t ion wllcre \rerifications are inandatory and performed on the fly. This will
become clear after we det,ail t.hc AC-fraine\vork. Anot.her key dist.inct,ion is that our AC-framework
call achieve a practical efficiency (in cases where t,llere is no reasoil t.o suspect. inalicious behavior)
not achievable by previous methods.

In addition, t.he framework prescntcd in [2] ad0pt.s a game-t.11eoretic approach in that participates
arc rat,ional, and using an audit.ing device periodically are expected to provide t,rut,l~ful information.

3 The AC-Framework

I11 this sect.ion, we int.roduce the accouiltable coinput.ing (AC) franie\vork. Before presenting details,
we first, clarify the followiilg t.erminologies:

SSAlC-prot.0~01: a prot.0~01 secure under t.he semi-honest. inodel in the literat,ure of secure
mu1t.i-party coinputat ion (ShlC);

AlShlC-prot.0~01: a prot.0~01 secure under t,he inalicious inodel under t.he cont.ext. of SMC;

AC-protocol: represe11t.s a prot.0~01 secure in the proposed AC-framework.

I11 addit.ion to t.he above t.erininologies, the t.erins honest and semi-hon,est are interchangeable for
the rest of the paper.

Suppose @ is a protocol sat,isfyiilg all the requireillents under the AC-framework. I11 general, the
AC-framework provides a participat.iiig part.y ineails t.o prove what it has done during the executioil
of @ is consist,ent. with honest bel~aviors (expect.ed under t.he semi-llonest inodel). For inst.ance,
whet.11er or not. a party has followed the prescribed executioil procedures of a protocol could be
proved in the inodel. For the rest of the chapter; we first. present essential definitions related t.o
the AC-framework. We conclude the sect.ion by differentiat.ing the AC-framework from the SMC
inodel.

Definition 2 (Accountable Behavior) Given a protocol @ under the AC-framework, an ac-
coun,table behavior rOxo specifies how participatin,g parties should behave, and it has two related
com.pon,en,ts a , P :

'Vhile we do not give the full definition here, we note t.hat there are three things the model cannot
handle [9]:

1. Parties refusing to participate in the protocol,

2. Parties using other (valid) input in place of their act.ual data, and

3. Part.ies aborting t.he protocol prematurely.

"'hile many of the existing practical S:MC-style protocols do provide guarantees beyond that
of the semi-honest model (such as guaranteeing that individual data it.ems are not disclosed to a
malicious party), few meet all the requirements of the malicious model.

2.2 Other Verification-based Methods

Ideas proposed in [2, 6] appear similar to what we have presented in this paper. However, both of
them focus on the sit.uat.ion where verifications are mandat.ory and performed on the fly. This will
become clear after we detail t.he AC-framework. Another key distinction is that. our AC-framework
can achieve a pmctical efficiency (in cases where there is no reason to suspect malicious behavior)
not achievable by previous methods.

In addition, the framework presented in [2] adopts a game-t.heoretic approach in that participates
are rational, and using an auditing device periodically are expected to provide truthful information.

3 The AC-Framework

In this section, we int.roduce the accountable computing (AC) framework. Before presenting details,
we first clarify the following terminologies:

• SSJ\lC-prot.ocol: a protocol secure under the semi-honest model 111 the literature of secure
multi-party computation (S~lC):

• J\lSI\lC-protocol: a protocol secure under the malicious model under the context of SMC:

• AC-protocol: represents a protocol secure in the proposed AC-framework.

In addition to t.he above terminologies, the terms honest and semi-honest are interchangeable for
the rest of the paper.

Suppose <I> is a protocol satisfying all the requirements under t.he AC-framework. In general, t.he
AC-framework provides a participatin·g party means to prove what it has done during the execution
of <I> is consistent. with honest behaviors (expected under the semi-honest model). For inst.ance,
whet.her or not a party has followed t.he prescribed execution procedures of a protocol could be
proved in the model. FOl' the rest of the chapter, we first present essent.ial definitions related t.o
the AC-framework. We conclude the section by differentiating t.he AC-framework from t.he SMC
model.

Definition 2 (Accountable Behavior) Given a protocol <I> under the AC-fmmework, an ac
countable behavior r ox [3 specifies how participating parties should behave, and it has two related
components Q, (3:

4

Veri f ier cr E {Participating-party. Third-party): on en,tity who oversees and vulidates the
veri,fication process, where participatin.g-party indicate.^ the ~:ulidation of the zlerlficution pro-
cess is supervised by a participating party or parties: and tliird-purty i7adicates the va,lidation,
is supervised by a third party (i.e.: a court, a govern,m.en.t a.,qency: etc).

Degree of disclosure P: speci,fies what inform,ution can be disclosed during the veri,fication
process.

According to the above definit,ion, if cr = Pal-ticipat,ing-part,?. T O x 3 can he int.erpreted as: an
expected (or account,able) behavior call be verified among part,icipating part,ies, and t.he information
disclosed during the verificat,ion process must be consistent \vit,ll d.

For practical purpose. we have classified t,he verifiers iiito two categories: part,icipating-party
and third-party. The AC-frainework allo~vs a part,icipating]?art.!? to he the verifier so that a well
established or reput.ahle party has t,lle opport.unit,y t.o evaluate if its first-time collaborator is t.rust,-
wort,hy. On the obher hand. a relat,ively unkno\vn part,? can 11ave the cllance to prove its credibility
to the other collaboratiilg partry under t,lie proviso that tlie othei part.!? call be t,rusted based on its
well-known image or ot,ller reputations. Thus: t.he verification pi.occss could serve as a mechanism
in building trust, ainoilg participat,ing parties and reduce costs in establishing well-purposed col-
laboration. I11 case t.here is a disput.e among part.icipating pai.t,ies: tlie verificat.ion process must he
coilduct,ed under the supervision of a third ei1t.it.y so t,hat any malicious part.y can be held account-
able. I11 addition, a raildoin verificat.ion can be performed as a spot check t.o audit t,lle integrit,y of
participating part.ies.

Degree of disclosure only applies to the verificatioil process. The benefibs of proviilg iilnoceilce
may outweigh privacy concerns, or only take place in a t.rust.ed en\7iroinnent (e.g., a court,i-oom.)
This component. allo\vs part,icipat.ing part,ies to decide what. is more iinport.ant,. If t.he verifier is
trusted, such as a court,, disclosure of privat,e inforinat.ion to the court may not be a problenl during
the verification process. Also, what. call be disclosed during tlie verificat,ion process must be agreed
on by all relevant participat,ing parties before t,he execution of any AC-prot.oco1.

Next we define condit,ions that. a protocol needs t,o gnarantee in the AC-frainexvork.

Definition 3 (AC-protocol) An AC-protocol must sa.tisfy the follo~uin,,q three requirements:

1. Bas ic Security: Without consideration of the verification, process, Q, satis,fies the secu.rity
requirements of a SSMC-protocol (a SMC-protocol secure under the semi-hon,est m,odel).

2. Bas ic Structure: The execution, of Q, consists of ~ W O phases:

C o m p u t a t i o n phase: Com.pute the prescribed function.ality and store injorn,ation needed
for the verz'fication process.

Veri f icat ion phase: An hon.est party (we name such a pnrty as a prover thereafter)
can succeed in verifying an accoun.table behavior.

3. Sound Verif ication: Q, is soun,d providin,g that the veri.fica.tion phase cannot be fabricated
by a malicious pnrty.

Note tliat unlike the computation phase. thc verification pliase stated in Definition 3 is optioilal
for each run of an AC-protocol. Details follo\v later in the section.

• Verifier 0' E {Participating-party, Third-party}: an entity who oversees and validates the
verification process, where participating-party indicates the validation of the verification pro
cess is supervised by a participating party or parties, and third-party ind'icates the validation
is supervised by a third party (i.e., a court, a government agency, etc) .

• Degree of disclosure (3: specifies what information can be disclosed during the verification
process.

According to the above definition, if 0' = Participating-party, r 0 x3 can be interpreted as: an
expected (or accountable) behavior can be verified among participating parties, and the information
disclosed during the verification process must be consistent with 8.

For practical purpose, we have classified the verifiers into two categories: participating-party
and third-party. The AC-framework allows a participating party to be the verifier so that a well
established or reputable party has the opportunity to evaluate if its first-time collaborator is trust
worthy. On the other hand, a relatively unknown party can have the chance to prove its credibility
to the other collaborating party under the proviso that the other party can be trusted based on its
well-known image or other reputations. Thus, the verification PI"OCCSS could serve as a mechanism
in building trust among participating parties and reduce costs in establishing well-purposed col
laboration. In case there is a dispute among participating parties, the verification process must be
conducted under the supervision of a third entity so that any niaJicious party can be held account
able. In addition, a random verification can be performed as a spot check to audit the integrity of
participating parties.

Degree of disclosure only applies to the verification process. The benefits of proving innocence
may outweigh privacy concerns, or only take place in a trusted environment (e.g., a courtl"Oom.)
This component allows participating parties to decide what is more important. If the verifier is
trusted, such as a court, disclosure of private information to the court may not be a problem during
the verification process. Also, what can be disclosed during the verification process must be agreed
on by all relevant participating parties before the exe'cution of any AC-protocol.

Next we define conditions that a protocol needs to guarantee in the AC-framework.

Definition 3 (AC-protocol) An AC-protocol <P must satisfy the following three requirements:

1. Basic Security: Without consideration of the verification process, <P satisfies the security
requirements of a SSMC-pro tacol (a SMC-protocol seC1lre under the semi-honest model).

2. Basic Structure: The execution of <P consists of two phases:

• Computation phase: Compute the prescribed functionality and store infoT'mation needed
for the ver~fication process.

• Verification phase: A n honest party (we name such a party as a prover thereafter)
can succeed in verifying an accountable behavior.

3. Sound Verification: <P is sound providing that the veri.fication phase cannot be fabricated
by a malicious party.

Note that unlike the computation phase, the verification phase stated in Definition 3 is optional
for each run of an AC-protocol. Details follow later in the section.

5

3.1 General Assumptions

I11 this sub-section. we clarifv t ~ v o key assuinptions adopted tllroughout the framenork: one is
related to the nature of involving entities. and the other concerns the number of inalicious parties
allowed.

3.1.1 Nature of Involving Entities

In the AC-framcn-ork. the involving entities coilsist of both t,he verifier and participating parties,
and nature ~neans a party behaves either semi-honestly or maliciously u~lder the context of t.his
paper.

Nature of Verifier: I11 general, we assume that there is one or a group of verifier(s) and that
the verifier all\-ays behaves llo~lestly during the verification process. I t would not make sense to
have a malicious verifier betause if the inalicious verifier does not want to be convinced. no one call
succeed in the verification process.

Nature of Participating Parties: If a participating party is the verifier, we assume it is always
an honest entit).. Other participating parties can be either semi-honest or malicious.

3.1.2 Bounds on the Number of Malicious Parties

For cert.ain nlodels. SMC-protocols only exist. when inajorit,jr of participating parties are l~onest ,~
2 aad some sit,uat.ions require a inajorit,y of 3. For this paper, we inerely consider two-part.y prot.ocols

under t,he AC framework, and we require at least, one of t,he t.1~0 participating parties is honest. (or
semi-honest).

3.2 AC-framework vs. SMC

Here we lay out the esseiltlal differences bet~veen the AC-framework and the ShIC model. In general,
AC-protocols should be coinpared with SSMC and hIShIC protocols on the followiilg criteria: basic
structure. securitj definitions and coinput at ion complexity.

3.2.1 Basic Structure

According t.o Defiilit,ion 3, t,he verificat,ion phase along wit,h the accouiltable behavior are t,he key
feat,ures t , l~at distiilguish t,he AC-framework froin the Sh4C model. A protocol that. sat,isfies the AC-
framework needs to co1nput.e not oilly t,he correct. result,s but, also additional infor~nation needed
for a part,y t.o verify t,he account,able behavior.

In addit.ion, t,he verifica.t.ion phase is opt,ional for each execut.ion of an AC-protocol. The ver-
ificat,ion process is performed inerely when t,here is an accusa.t,ion that. a participat,ing part,y did
not. behave 1~onest . l~ regarding t,he account.able behavior and t,hus may have obtained or disclosed
inforinat.ion which should not. be leaked if it. behaved semi-honestly. Verifica,tion allows t,he accused
part,jr who is in fact semi-honest. to prove it,s innocence.

3.1 General Assumptions

In this sub-section, we clarifv two key assumptions adopted throughout the framework: one is
related to the nature of involving entities, and the other concerns the number of malicious parties
allowed.

3.1.1 Nature of Involving Entities

In the AC-framework the involving entities consist of both the verifier and participating parties,
and nature means a party behaves either semi-honestly or maliciously under the context of this
paper.

Nature of Verifier: In general, we assume that there is one or a group of verifier(s) and that
the verifier always behaves honestly during the verification process. It would not make sense to
have a malicious verifier because if the malicious verifier does not want to be convinced, no one can
succeed in the verification process.

Nature of Participating Parties: If a participating party is the verifier, we assume it is always
an honest entity. Other participating parties can be either semi-honest or malicious.

3.1.2 Bounds on the Number of Malicious Parties

For certain models, Sl\JC-protocols only exist when majority of participating parties are honest,
and some situations require a majority of l For this paper, we merely consider two-party protocols
under the AC framework and we require at least one of the 1.\vo participating parties is honest (or
semi-honest).

3.2 AC-framework vs. SMC

Here we layout the essential differences between the AC-framework and the SIVIC model. In general,
AC-protocols should be compared with SSMC and l\lSl\lC protocols on the following criteria: basic
structure, security definitions and computation complexity.

3.2.1 Basic Structure

According to Definition 3, the verification phase along with the accountable behavior are the key
features that distinguish the AC-framework from the SMC model. A protocol that satisfies the AC
framework needs to compute not only the correct results but also additional information needed
for a party to verify the accountable behavior.

In addition, the verification phase is optional for each execution of an AC-protocol. The ver
ification process is performed merely when there is an accusation that a participating party did
not behave honestly regarding the accountable behavior and thus may have obtained or disclosed
information which should not be leaked if it behaved semi-honestly. Verification allows the accused
party who is in fact semi-honest to prove its innocence.

6

3.2.2 Security Definitions

Uilder the ShlC model, t,lle securit,y definitions are generally based on t,~vo t,ypes of adversaries: semi-
honest and malicious. On the contrary, the two adversary models are no longer relevant at. least
from the stand point of a verifier since we assume a verifier always behave semi-honestly as stated
in section 3.1. Also, we do not enforce ally constraiilt on the behaviors of participating parties,
and t.hey call be eit,her semi-honest or malicious as long as they are not, verifiers. Furthermore; it,
is inaccurat,e to assume a party whose actioils need to be proved agaiilst t,he accouiltable behavior
is semi-honest,. Therefore; security defiilitioils under t.he AC-framework do not. dist.inguis11 between
a semi-honest adversary and a malicious adversary.

The AC-framen~ork is more flexible from its security point of view due to the r coinponeilt strated
in Defiilitioil 2. Since t.he accountable behavior call be anyt,hing, t,he AC-fi-amework is generally
more applicable t.han t,he SI\/IC model.

3.2.3 Computation Complexity

Regardless various accountable behaviors, the coinputatioil complexit,y under the AC-framework is
classified int.0 two phases: computation phase and verificatioil phase. Coinputatioil phase is required
for each run of the prot.0~01, and it, produces tlle expect.ed result and all necessary informat.ion
needed for verificat,ioil phase. Verificatioil process could be optioilal for each run uilless t,here is a
disput,e or an expect,ed (or accountable) behavior needs t,o be verified.

The runiliilg time or complexity of an AC-prot.0~01 call be as (or possibly even more) inefficient
as a hdSh4C-protocol; however, the computation phase of an AC-prot,ocol should be inore efficient
because the verificat,ion phase of the protocol is not. needed for every run. If the complexity of the
coinputat,ioil phase of an AC-protocol were comparable to h'ISMC-prot,ocol, t,he hlSh4C-protocol
would be sufficient and inore effective t,han the AC-prot,ocol for practica,l purposes. Therefore: a
challenge in desigiling an AC-protocol is t,o ensure t,llat t,he colnputatioll phase is efficient..

3.3 Guideline for Designing AC-Protocol

Based on Definit,ion 3: we outline basic procedures t,hat. can be used to implement. a prot,ocol
under t . 1 ~ AC-framework. The key procedures highlight,ed in Figure 1 consist. of t,hree part,s:
behavior specification, computation phase and verificat,ioil phase.

Behavior specificat,ioil defines what. an expected or account,able behavior is and it.s related
coinpone11t.s. The ililplement,ation of the computat.ioa phase is t,he same as that of a SSh4C-protocol;
except that. addibional illformatioil needs t.o be computed for t.he verificatioil phase. St,eps provided
in t,he verificat.ion phase serve as guidance for a verifier. It needs t,o be proven that a malicious
part.icipat.ing party cannot convince t,lle verifier t,hat it behaved honestly during the computat,ioil
phase of the prot,ocol.

According t,o t,he definit,ions and the guideline presented in t,llis sect,ion, we proceed to present
a case study that shows 110~; 811 actual dat.a mining talc call be impleinent,ed under t,he AC-
framework.

3.2.2 Security Definitions

Under the SI\lC model, the security definitions are generally based on two types of adversaries: semi
honest and malicious. On the contrary, the two adversary models are no longer relevant at least
from the stand point of a verifier since we assume a verifier always behave semi-honestly as stated
in section 3.1. Also, we do not enforce any constraint on the behaviors of participating parties,
and they can be either semi-honest or malicious as long as they are not verifiers. Furthermore, it
is inaccurate to assume a party whose actions need to be proved against the accountable behavior
is semi-honest. Therefore, security definitions under the AC-framework do not distinguish between
a semi-honest adversary and a malicious adversary.

The AC-framework is more flexible from its security point of view due to the r component stated
in Definition 2. Since the accountable behavior can be anything, the AC-framework is generally
more applicable than the SIVIC model.

3.2.3 Computation Complexity

Regardless various accountable behaviors, the computation complexity under the AC-framework is
classified into two phases: computation phase and verification phase. Computation phase is required
for each run of the protocol, and it produces the expected result and all necessary information
needed for verification phase. Verification process could be optional for each run unless there is a
dispute or an expected (or accountable) behavior needs to be verified.

The running time or complexity of an AC-protocol can be as (or possibly even more) inefficient
as a MSIVIC-protocol; however, the computation phase of an AC-protocol should be more efficient
because the verification phase of the protocol is not needed for every run. If the complexity of the
computation phase of an AC-protocol were comparable to IVISlVIC-protocol, the l\lSMC-protocol
would be sufficient and more effective than the AC-protocol for practical purposes. Therefore, a
challenge in designing an AC-protocol is to ensure that the computation phase is efficient.

3.3 Guideline for Designing AC-Protocol

Based on Definition 3, we outline basic procedures that can be used to implement a protocol
under the AC-framework. The key procedures highlighted in Figure 1 consist of three parts:
behavior specification, computation phase and verification phase.

Behavior specification defines what an expected or accountable behavior is and its related
components. The implementation of the computation phase is the same as that of a SSIVIC-protocol,
except that additional information needs to be computed for the verification phase. Steps provided
in the verification phase serve as guidance for a verifier. It needs to be proven that a malicious
participating party cannot convince the verifier that it behaved honestly during the computation
phase of the protocol.

According to the definitions and the guideline presented in this section, we proceed to present
a case study that shows how an actual data mining task can be implemented under the AC
framework.

7

I : Behavior Specification:

Define a \:erifinble behavior:

Specif:. its related coinponent.~.

2: Comput at.ion Phase:

Design a protocol secure under the semi-lionest model:

Compute all necessarv inforinatioil t o support a sound verification process. and ~nodify
accordingly.

3: Verificatioil Phase:

St.at,e verificat.ion procedures including \vho should do what, during t.he verificat.ion process;

Prove that tlie verification procetlures along with additional inforinatio~~ co~nputed in the
computation phase constitute a sound \~crification process under Definition 3.

Figure 1: Guideline for Designing an AC-prot.0~01

4 Case Study: Finding Frequent Itemsets (FFI)

Several algorit~hnls have been developed for privacy-preserving associat,ioil rule mining using the
secure inultipart,y comput.a.t.ion framenrork. hIost are based on the Apriori algorithin [I]; the key
step is to securely co1nput.e freqnency of a set, of candidate it,einsets \vit,hout. disclosing each party's
privat.e dat,aset,. One approach, suggest.ed in 17: 211: is t,o use a secure dot product. prot,ocol. I11 t,his
section, t.o derqonst,rat.e the usefulness and app1icabilit.y of t.he AC-framework, we first int.roduce
a secure t,\vo-pal-t.g prot,ocol t.o comput,e frequent it,einset.s under the seini-lionest inodel proposed
in 17, 211. \;lie t.hen sho117 ho~7 t,o modify such protocol into one t,llat sat.isfies t,he AC-framework,
allowiilg t,he semi-honest behavior to be verified.

4.1 FFI under the semi-honest model (SSMC-FFI)

The prot,ocols presented in [7, 2:l.l are basically a secure dot. product prot,ocol bet.ween t,wo vectors
whose ent,ries are eit.her 0 or 1 values. Let Cl. t$ be t,wo vectors wit.h size nz of parties P1 and P 2
respect,ively, and v'j [i] dei1ot.e~ t,lie i"' bit of Cj. Forinally, define F F I (G I : 52) --t 6, where S = GI ti2.

Let E : R x X --t Y be a probabilistic public key encryption scheme, such as t,hose proposed
in 14, 13. 161; where R , X and Y are fii1it.e doinains ident,ified \vit,h an initial subset. of inbegers
and D : Y --t X be a privat,e decrypt,ion algorit,hin, such t,l~at. V(r. x) E R x X : D(E(r . x)) = x.
Furthermore. t,he sclleine has t,he follo\ving propert,ies:

The encrypt ion fuilct~ioii is inject,ive with respect t,o t.he second parameter, i.e., b'(r 1. X I) , (1-2 , x2)
E R x X , E (r l . x l) = E (r 2 , x 2) * X I = x2

Tlle encryption function is additive hoinomorphic. i.e.. V(?-1 . X I) . (1 . 2 . 2 2) E R x X.
n (E (r l . x2) . E(r2 . x 2)) = E(r3 X I + x2) . where 1.3 call be co~nputed froin 1-1. 7-2. 2 1 and 2 2

1: Behavior Specification:

• Define a verifiable behavior:

• Specify its related components.

2: Computation Phase:

• Design a protocol <P secure under the semi-honest model:

• Compute all necessary information to support a sound verification process, and modify
<P accordingly.

3: Verification Phase:

• State verification procedures including who should do what during the verification process;

• Prove that the verification procedures along with additional information computed in the
computation phase constitute a sound vcrification process under Definition 3.

Figure 1: Guidelinc for Designing an AC-protocol

4 Case Study: Finding Frequent Itemsets (FFI)

Several algorithms have been developed for privacy-preserving association rule mining using the
secure multiparty computation framework. Most are based on the Apriori algorithm [1]: the key
step is to securely compute frequency of a set of candidate itemsets \'lithout disclosing each party's
private dataset. One approach, suggested in [7,21], is to use a secure dot product protocol. In this
section, to deillonstrate the usefulness and applicability of the AC-framework, we first introduce
a secure two-party protocol to compute frequent itemsets under the semi-honest model proposed
in [7, 21]. V,Te then show how to modify such protocol into one that satisfies the AC-framework,
allowing the semi-honest behavior to be verified.

4.1 FFI under the semi-honest model (SSMC-FFI)

The protocols presented in [7, 21] are basically a secure dot product protocol between two vectors
whose entries are either 0 or 1 values. Let VI, V2 be two vectors with size TTl of parties PI and P2
respectively, and Vj [i] denotes the i lh bit of 0. Formally, define FFI(VI, V2) -----t 0, where 0 = VI • V2.

Let E : R x X -----t Y be a probabilistic public key encryption scheme, such as those proposed
in [4, 13, 16], where R, X and Yare finite domains identified with an initial subset of integers
and D: Y -----t X be a private decryption algorithm, such that \7(1', x) E R X X,D(E(1',X)) = x.
Furthermore, the scheme has the following properties:

• The encryption function is injective with respect to the second parameter, i.e., \7(1'1, Xl). (1'2. X2)
E R x X, E(1'I •.xd = E(T2,X2) =} Xl = X2

• The encryption function is additive homomorphic, i.e., \7(1'1, Xl), (1'2, X2) E R x X,
I1(E(1'I.X2).E(1'2,X2)) = E(1'3.XI + X2), where 1'3 can be computed from 1'1,1'2, .xI and X2

8

in polynolnial time. (n is the funct.ion t.o "add" two encrypted values; mult,iplicat.ion in the
svstems lisbed above.)

The encryption function has semantic security as defined in [lo]. Inforlnally speaking, a set
of ciphertexts do not provide additional inforlnation about the plaintext to an adversary with
polynomial-bounded colnputing power.

The dolllaill and the range of t.he encrypt,ion syst,em is suitable.

Key st,eps of t,he FFI protocol are highlighted in Algorithm 1. P I ; at step 1; encrypt,~ individual

Algorithm 1 FFI Protocol
Require: GI. C2. E. \vhere Ii& I = IC21 = m and E has certified public key paralnet.ers

I : P I :

(a). Encrypt, GI: xi t E(r: GI [i]), for i = 1 ; . . . : m;
T is randomly chosen for each 6 [i];

(b). Send X I ; x,,, t.o P2.

(a). Compute b + n,,,,,il=l xi;

(b). Send 8 to P I .

3: P I :

(a). Compute b t ~ (8)

(b). Send b t,o P2.

value in it,s private vect,or and sends them to P2. At step 2(a), the symbol n indicat,es t.hat tlle
encrypt,ed 6 [i] values are colnbined to produce the encrypted dot product. value denot.ed by 8 ; t,he
colnlnon charact,erist,ics among all these values is that their corresponding G2[i] values must. be 1.
At st,ep 3(a), P1 co1nput.e~ tlle actual dot. product value 6; and P1 sends b t,o P2 at the end.

Refer t,o t,able 1 \vl~ere a dat,aset is vertically part,it,ioned between P1 and P2, and it. can be
reconstructed via one-t.0-one join on tlle global ident.ifier at.tribute Tr#. Assunle P1 and P2 want
t,o know if {abc) is a frequent. itemset. P1 first. crea.t,es t.he vector G1 = a'/\ g = (1 1 0 0 1 1 0 1 1) /\
(0 0 0 1 1 1 0 1 1) = (0 0 0 0 1 1 0 1 I) , where a', g are t,he column vectors related t,o at,tribut,e a , b
of P l ' s dataset and A indicates the logic AND operat,or. P2 creates i& = c'= (1 1 0 0 1 0 0 1 1).
Aft,er applying the FFI protocol, both parties get GI G2 = 3 wit,l~out disclosing the privat,e vectors
Gl and G2 tto ea,ch ot.her. If t.he lninilnuln support is 2; t,hen {abc) is one of the frequent. itemsets.
Details regarding t,lle correct,ness and security analyses of the FFI protocol can be found in [7, 211.

4.2 Attacks on SSMC-FFI

Since the FFI prot,ocol presented in Algoritlun 1 is secure under the semi-honest. adversary model,
it has t,wo vulnerabilit,ies under tlle lnalicious adversary model:

in polynomial time. (TI is the function to "add" two encrypted values: multiplication in the
systems listed above.)

• The encryption function has semantic security as defined in [10]. Informally speaking, a set
of ciphertexts do not provide additional information about the plaintext to an adversary with
polynomial-bounded computing power .

• The domain and the range of the encryption system is suitable.

Key steps of the FFI protocol are highlighted in Algorithm 1. PI, at step 1, encrypts individual

Algorithm 1 FFI Protocol

Require: il],ih,E, where IVll = IV21 = m and E has certified public key parameters
1: PI:

(a). Encrypt Vl: Xi ~ E(1', Vl liD, for i = 1, ... ,m;
l' is randomly chosen for each Vl [i];

(b). Sendxl,·.·,xmtoP2.

2: P2:

(a) . Compute S~ TIViAV2[i]=l Xi;

(b). Send Sto PI.

3: PI:

(a) . Compute 0 ~ D(S)

(b). Send 0 to P2.

value in its private vector Vl and sends them to P2. At step 2(a), the symbol TI indicates that the
encrypted vdi] values are combined to produce the encrypted dot product value denoted by S; the
common characteristics among all these values is that their corresponding V2 [i] values must be 1.
At step 3(a), PI computes the actual dot product value 0, and PI sends 0 to P2 at the end.

Refer to table 1 where a dataset is vertically partitioned between PI and P2, and it can be
reconstructed via one-to-one join on the global identifier attribute Tr#. Assume PI and P2 want
to know if {abc} is a frequent itemset. PI first creates the vector Vl = a1\ b= (1 1 0 0 1 1 0 1 1) 1\

(000 1 1 1 0 1 1) = (0 0 0 0 1 1 0 1 1), where a, bare the column vectors related to attribute a, b
of PI's dataset and 1\ indicates the logic AND operator. P2 creates V2 = 15 = (1 1 0 0 1 0 0 1 1).
After applying the FFI protocol, both parties get Vl • V2 = 3 without disclosing the private vectors
VI and V2 to each other. If the minimum support is 2, then {abc} is one of the frequent itemsets.
Details regarding the correctness and security analyses of the FFI protocol can be found in [7, 21].

4.2 Attacks on SSMC-FFI

Since the FFI protocol presented in Algorithm 1 is secure under the semi-honest adversary model,
it has two vulnerabilities under the malicious adversary model:

9

Tablc 1: P1 and P2 's Data (left and riglit rcspcctively)

1. Input ~nodificatio~l after the FFI protocol is initiated:

2. P 1 sends P 2 incorrect, final result,.

Although under the malicious model, input. modific.ation cannot be prevented: t,lle input. should not,
be modified furt.ller once t,he prot.0~01 js jnjt.iated. Any iilt~cilt,ioilally iniscalculatioils at st,ep 1 and
step 2 are related t,o this issue. Therefore, u~lder the AC-fraine~vork, ally illcoilsist~eilcies at. these
two streps sholild be det,ect.ed during t.he verificat.io11 phase.

In addition: even if P 1 receives t,he right. 8 \ralue at. step 3(b), P 1 can seild P 2 any value instead
of t.he actual b value. As a result; this malicious behavior should be detected under t,he frainework
whenever it happelis. Next. sect,ioil shows 110117 to chailge t.lle SSAIIC-FFI protocol illto an AC-FFI
protocol whose ~lerificat~ion phase is capa.ble of det,ect,iilg the t.wo malicious behaviors stat,ed above
if they have ever occurred during t.he coillput,at,ioil phase.

4.3 FFI under the AC-Framework (AC-FFI)

Before illtroduciilg the AC-FFI protocol, we first define the accouiltable behavior rOx3 associated
with AC-FFI:

Prevent. input inodificatioil a.fter the iilit,iat,ioil of SSAIC-FFI protocol;

Prevent P1 froin seildiilg an illcorrect reslilt t,o P 2 at t,he final st,ep;

p: a random perinut.at.ion of each private input vect,or and t,he final result, of AC-FFI call be
disclosed t.o t,he t.hird part.y verifier.

Note t,llat raXo implies t,he prevent.ion of an;r malicious behavior in t,he comput,a,tioil phase of
AC-FFI. Thus, t,he verification phase of AC-FFI needs to verify every st,ep in t,he comput.at.ion
phase.

Key steps of AC-FFI's coinput.at.ion pllasc arc providcd in Algorithin 2. The prot,ocol ad0pt.s
a secure signat,ure scheme deiloted by Sign (e.g.. RSA [17]) which is used during t,he verification
process. I11 order t.o fit. t.he domaill of a digital signa.ture scheine, we also use a has11 fuilct,ioil (e.g.,
SHA 1151; AID5 [18]) t.o co1nput.e the hash value of an illtended message and t,heil sign the hash

Table 1: PI and P2 's Data (left aml right respectively)

Tr# a b
1 1 0
2 1 0
3 0 0
4 0 1

5 1 1

6 1 1

7 0 0
8 1 1

9 1 1

Tr# c d e

1 1 0 1
2 1 0 0
3 0 0 0
1 0 1 1

5 1 1 1

6 0 1 0
7 0 0 0
8 1 1 1

9 1 1 1

1. Input modification after the FFI protocol is initiated:

2. PI sends P2 incorrect final result.

Although under the malicious model, input modification cannot be prevented, the input should not
be modified further once the protocol is initiated. Any intentionally miscalculations at step 1 and
step 2 are related to this issue. Therefore, under the AC-framework, any inconsistencies at these
two steps should be detected during the verification phase.

In addition, even if PI receives the right J value at step 3(b), PI can send P2 any value instead
of the actual 0 value. As a result, this malicious behavior should be detected under the framework
whenever it happens. Next section shows how to change the SSrvIC-FFI protocol into an AC-FFI
protocol whose verification phase is capable of detecting the two malicious behaviors stated above
if they have ever occurred during the computation phase.

4.3 FFI under the AC-Franiework (AC-FFI)

Before introducing the AC-FFI protocol, we first define the accountable behavior r ax3 associated
with AC-FFI:

• Prevent input modification after the initiation of SSl\IC-FFI protocol:

• Prevent PI from sending an incorrect result to P2 at the final step:

• a = Third-party;

• f3: a random permutation of each private input vector and the final result of AC-FFI can be
disclosed to the third party verifier.

Note that r axe implies the prevention of any malicious behavior in the computation phase of
AC-FFI. Thus, the verification phase of AC-FFI needs to verify every step in the computation
phase.

Key steps of AC-FFI's computation phase arc provided in Algorithm 2. The protocol adopts
a secure signature scheme denoted by Sign (e.g., RSA [17]) which is used during the verification
process. In order to fit the domain of a digital signature scheme, we also use a hash function (e.g.,
SHA [15], I\ID5 [18]) to compute the hash value of an intended message and then sign the hash

10

value instead. We also assume that both parties agree on a randoin permutation .ir to prevent
the verifier 1' in Algorithi~i 3 froin seeing the private inputs of both parties. Other parts of the
computatioii phase are identical to SSLlC-FFI.

A l g o r i t h m 2 AC-FFI Prot.0~01 - Coinput~at.ion phase -

Requi re : GI. ,C2. E: Sign. H , where 113 1 = 117~1 = m,: E has cert,ified public key parameters, Sign is
a scc.111-e signature sclleine and H is a has11 fuilct~ion

I : P I : Gi t .ir(G): send [H (q) : Signpl (H(f$))] t.o P2;
2: P2:

(a). A b o r t if H(r ' j) and S i g n p l (H (q)) cannot be verified:

(a). A b o r t if H($) and Signp2(H($)) canilot be verified:

(b) . Enciypt q : x, - E(r, q [i]). for 7 = 1.. . . . nz:
?- is randomlv choseil for each Ci [i] :

(c) . Set X = T I :I,, and send [X. Signpl (H (X))] to P2.

(a) . A b o r t if X and Signpl (H(X)) cannot be verified

(b). Coinpute 6 + JJVzA?';[tl=l x1 1

(c) . Send [8. ~ i g n p 2 (H (8))] t.o P I .

5: P l :

(a) . A b o r t if 8 and s i g n p 2 (~ (8)) canilot be verified

(b). Con1put.e 6 +- ~ (8)

(c). Send [6. Signpl (H (G))] to P2.

6: P2: A b o r t if 6 and Signpl (H(6)) cannot, be verified

Tlle \7erification pliase of AC-FFI is presented in a,lgorithm 3. The verificatioil phase is basically
a reconstruct,ioil of what. act.ually occurred during t,he comput.at.ion phase by using the permuted
i11put.s and inessages sent during t,he coinputation phase. Steps 1 and 2 in algoritllin 3 require P1
and P2 t,o send t,he messages they received during the computation phase.

At st,ep 3. t.he verifier exainines (via (a) , (c) and (e)) if every message P 1 sent is valid and
exainines (via (b) and (d)) if P 1 correct,ly performed every required computat.ion. Because P 1 is
required t.o seild hhree inessages aad t.o perform t.wo coinputat.ioi~s, t.he t.asks conducted by the
verifier at st.ep 3 is complete in validat,ing P l ' s behavior. The iinpleineilt,atioil of step 4 follows the
same reasoniilg in validating P2's behavior, and consequent,ly, we say that the verification phase is

value instead. \Ve also assume that both parties agree on a random permutation 7r to prevent
the wrifier V in Algorithm 3 from seeing the private inputs of both parties. Other parts of the
computation phase are identical to SSl\lC-FFI.

Algorithm 2 AC-FFl Protocol - Computation phase

Require: f'l.lh, E, Sign, H, where 111'11 = IV21 = m, E has certified public key parameters, Sign is
a secure signature scheme and H is a hash function

1: PI: v~ t- 7r(VI), send [H(v~),SignpdH(v;.))]to P2:
2: P2:

(a). Abort if H(v~) and SignpdH(v;.)) cannot be verified:

(b). ~ t- 7r(V2), send [H(v~), Signp2(H(v~))] to PI:

3: PI:

(a).

(b).

(c) .

4: P2:

Abort if H(~) and SignP2(H(~)) cannot be verified:

Encrypt v;.: Xi t- E(r, v;. [i]), for i = I, ... ,m:
)' is randomly chosen for each v~ [i]:

Set X = Xl, . .. ,Tm and send [X, Signp] (H(X))] to P2.

(a). Abort if X and SignpI (H(X)) cannot be verified

(b). Compute S t- n\]'iI\V~[i]=l Xi;

(c). Send [S. SignP2(H(S))] to PI,

5: PI:

(a). Abort if Sand SignP2(H(S)) cannot be verified

(b). Compute 0 t- D(S)

(c). Send [0, Signp] (H(o))] to P2.

6: P2: Abort if 0 and SignpI (H(o)) cannot be verified

The verification phase of AC-FFI is presented in algorithm 3. The verification phase is basically
a reconstruction of what actually occurred during the computation phase by using the permuted
inputs and messages sent during the computation phase. Steps 1 and 2 in algorithm 3 require PI
and P2 to send the messages they received during the computation phase.

At step 3, the verifier examines (via (a), (c) and (e)) if every message PI sent is valid and
examines (via (b) and (d)) if PI correctly performed every required computation. Because PI is
required to send three messages and to perform two computations, the tasks conducted by the
verifier at step 3 is complete in validating PI's behavior. The implementation of step 4 follows the
same reasoning in validating P2's behavior, and consequently, we say that the verification phase is

11

Algorithm 3 AC-FFI protocol: Verification phase
Require: H: E: where H aad E a.re used in t.he cornput.at.ion phase

1: P1: send Ipl = [$; SignP2(H (4)) : 9; s ~ ~ I z ~ ~ (H (~))] and D (decrypt,ion key) t.o t,he verifier V:
2: P2: send Ip2 = [4. Signpl (~ (4)) : X , Signpl (H (X)) ; 6; Signpl (H(b))] to V;
3: When P2 is honest,, V can catch P1 cheating if:

(a). q and Signpl (H (q)) are not. consist.ent;

(b). D (X) # i7;;

(c). X and Sign.pl (H (X)) are not consistent;

(d). ~ (8) # b:

(e). b and Sign.pl(H(6)) are not consistent..

4: IVhen P1 is honest,, V can cat,ch P2 cheat,iilg if:

(a). i$ and SignP2(H(i&)) are not consistent^;

(c). 8 and signp2(H (8)) are not consistent.

comp1et.e regarding I?,, 3 .

4.3.1 Security and Soundness of AC-FFI

The key difference between SSI\/IC-FFI and AC-FFI's coinputatioil phase is that the inessages P1
and P2 receive in AC-FFI coiltain additional signat,ures, but. t,he signatures do not convey any more
information than the messages t.hemselves. Therefore; t.he securit,y ailalysis of AC-FFI is the same
as that. of SSIVIC-FFI, refer t,o [7; 211 for more details. Next., we show t,hat t,he verificatioil phase of
AC-FFI is sound.

Claim 1 The veri.fication phase of AC-FFI is sound (defin.ition 3) provided that one of the two
parties is honest and the verzfication phase is complete in verifying the accountable behavior
associated with A C-FFI.

PROOF. Since we have showed that the verification phase is complete, to prove this claim, we only
need to sho~v ally inalicious behavior ca,n be detected as long as one party is honest. First., suppose
P2 is honest.. Then t.he verifier is cert,ain that Ip2 is legitimat,e. Based on the three signat.ures
coiltailled in IP2; the verifier can determine (through st.eps 3(a),3(c) and 3(e) in algoritllin 3) the
valic1it.y of in Ipl and two inessages t,hat P1 sent. a t st.eps 3(c) and 5(c) in the colnputat.ioil phase
(algorit,hm 2).

Once t,he verifier coilfirins 'lti ill Ipl is 1egitiinat.e: t,he verifier (using the decryption key D at st.ep
3(c) in algorit,hin 3) can det,eriniile if X ~ v a s computed correctly at. step 3(b) in the computation
phase. If anything is inconsist.ent,, eit.her D is the incorrect. key or P1 did not. encrypt. GIl properly.
Either way, t,he verifier call cat,cll P1 cheating. After this, t,lle verifier call confirm whether or not

Algorithm 3 AC-FFI protocol: Verification phase
Require: H, E, where Hand E are used in the computation phase

1: PI: send 11"1 = IV;, Sign1"2(H(t;)), J, Sign1"2(H(J))] and D (decryption key) to the verifier V:
2: P2: send 11"2 = [t;, Sign1"1 (H(V;)), X, Sign1"1 (H(X)), b, Sign1"1 (H(b))] to V:
3: When P2 is honest, V can catch PI cheating if:

(a). V; and SignpdH(V;)) are not consistent:

(b). D(X) =1= vi;
(c). X and Signp1 (H(X)) are not consistent;

(d). D(J) =1= 6:

(e). band Signp1 (H(b)) are not consistent.

4: \iVhen PI is honest, V can catch P2 cheating if:

(a). t; and Signp2(H(~)) are not consistent;

(b). D(J) =1= V; .~:

(c). J and Sign1"2(H(J)) are not consistent.

complete regarding r ox3.

4.3.1 Security and Soundness of AC-FFI

The key difference between SSMC-FFI and AC-FFl's computation phase is that the messages PI
and P2 receive in AC-FFI contain additional signatures, but the signatures do not convey any more
information than the messages themselves. Therefore, the security analysis of AC-FFI is the same
as that of SSMC-FFI, refer to [7, 21] for more details. Next, we show that the verification phase of
AC-FFI is sound.

Claim 1 The verification phase of A C-FFI is sound (definition 3) provided that one of the two
parties is honest and the ver~fication phase is complete in verifying the accountable behavior r 0 x 3

associated with AC-FFI.

PROOF. Since we have showed that the verification phase is complete, to prove this claim, we only
need to show any malicious behavior can be detected as long as one party is honest. First, suppose
P2 is honest. Then the verifier is certain that 11"2 is legitimate. Based on the three signatures
contained in 11"2, the verifier can determine (through steps 3(a),3(c) and 3(e) in algorithm 3) the
validity of V; in 11"1 and two messages that PI sent at steps 3(c) and 5(c) in the computation phase
(algorithm 2).

Once the verifier confirms vi in 11"1 is legitimate, the verifier (using the decryption key D at step
3(c) in algorithm 3) can determine if X was computed correctly at step 3(b) in the computation
phase. If anything is inconsistent, either D is the incorrect key or PI did not encrypt vi properly.
Either way, the verifier can catch PI cheating. After this, the verifier can confirm whether or not

12

D is valid, and consequent.lj~, the verifier can coilfirin t,he validit*y of the calculation at step 5(b) in
algorit.hin 2.

Tlle above analyses sho\v a comp1et.e reconstruction of xvhat P1 act.ual1y did in t.he comput.ation
phase. Since P2 is honest., any iilcoilsisteilcy in t.he reconst.ruction process leads to the fact t,hat P2
did behave maliciously during t,he coinputatioil phase. Therefore, P1 cannot mislead t,he verifier
in the verifica.tion phase as long as P2 is honest,. On t,he other hand, if P1 is honest, based on the
same reasoning: P2 cannot, mislead t,he verifier either. TVe can conclude that t,he verificat.ion phase
of AC-FFI is sound. [7

Note t,llat for t.he verificat,ion phase, we did not coilsider t,he sit,uation where the protocol
t.er1ninat.e~ preinat.urely. The abort.ing of a prot,ocol is a very complex issue because inany fa.ct,ors
could be involved. It would be very int.erest,ing t.o design a verification process that handles such
sit,uat,ions.

4.3.2 Advantages of AC-FFI

So far, we have provided a real-life applicat,ioil t.hat. shoxvs the promise of the AC-framework.
Coinpariilg to the SSi\;IC-FFI protocol, the coillput,at,ioil phase of the AC-FFI protocol addit,ioilally
needs t,o coillput,e 5 hash values and 5 digital signat.ures, but these calculat,ioils a.re negligible. The
has11 cost, is based on t,he size of the vector, but. it is a very small cost compared t,o t.l~e cost. of
hoinoinorphic encrypt,ion (xvhich must. also be applied t,o each item in the vector). The cost. of a.
sigilat.ure is coinparable t.o the cost of an iildividual eilcryptioil because it. is applied to the hash
value whose size is constant.. Thus the tot.al cost of the protocol remains doininat.ed by the cost
of l~oinoinorpl~ically encrypt.ing the vect,ors, and it is not appreciably greater than that. of SSA/lC-
FFI. I11 addition, because of a sound verificat.ion phase: t.he AC-FFI prot.0~01 in11erit.s significailt
advant,age over t.he SSAJC-FFI prot,ocol in enforciilg honest. behaviors.

The AC-FFI prot,ocol furt.her confirins our int.uit,ion: the coinputatioil phase of an AC-prot.0~01
call be as efficient. as a SSA?C-prot,ocol. Furthermore: since inalicious behavior call be detected by
the verificatioil process, t.he verificat,ioil phase provides part.icipating parties t,he incentive to follow
t.he prot,ocol correct,ly; in ot,her words, part.icipat.ing partries are inore likely t,o out,put t,he correct
result, under t,he AC-fra.ine\vork t,llan does a SAsIC-prot.0~01 secure under the semi-honest inodel.

5 Conclusion / Future Work

Confident.ialit;v is an extremely iinport.ant issue in data security. Even when different. data holders
are alloxved t,o see each ot,her's data, they inay not choose to do so when t,hey collaborat,e to achieve
a coininon goal because t.hey do not. want to get, accused that t,hey are t,he ones t.o disclose certain
confident,ial inforinat,ion. I11 this paper, we present. the accountable computing (AC) framework
that alloxvs a,n honest. party to prove innoceilce t.o a. third independent entitry wheil it. llas followed
a prot,ocol correctly. Such a framework has much pot,eilt,ial in practice since it. provides more
iilceiltives for a, part.y to behave honestly.

A SSA!IC-prot,ocol, if follo\ved, prevents inforinat.ion disclosure. However, it. inay be possible
for a dishonest. part,y t,o undet,ectably cause disclosure by not. following the protocol correct.1~. At.
t.he ot,her end of t,he spectrum, a protocol secure under t,he malicious inodel definit,ely erases t,hese
securit.y concerns. Nevert,heless, efficient inalicious prot,ocols appear to be difficult, t,o design. The
AC-framework provides a party verifiability, and it,s general st,ruct,ure allows possible design of inore

D is valid, and consequently, the verifier can confirm the validity of the calculation at step 5(b) in
algorithm 2.

The above analyses show a complete reconstruction of what PI actually did in the computation
phase. Since P2 is honest, any inconsistency in the reconstruction process leads to the fact that P2
did behave maliciously during the computation phase. Therefore, PI cannot mislead the verifier
in the verification phase as long as P2 is honest. On the other hand, if PI is honest, based on the
same reasoning, P2 cannot mislead the verifier either. \Ve can conclude that the verification phase
of AC-FFI is sound. 0

Note that for the verification phase, we did not consider the situation where the protocol
terminates prematurely. The aborting of a protocol is a very complex issue because many factors
could be involved. It would be very interesting to design a verification process that handles such
situations.

4.3.2 Advantages of AC-FFI

So far, \ve have provided a real-life application that shows the promise of the AC-framework.
Comparing to the SSrvIC-FFI protocol, the computation phase of the AC-FFI protocol additionally
needs to compute 5 hash values and 5 digital signatures, but these calculations are negligible. The
hash cost is based on the size of the vector, but it is a very small cost compared to the cost of
homomorphic encryption (which must also be applied to each item in the vector). The cost of a
signature is comparable to the cost of an individual encryption because it is applied to the hash
value whose size is constant. Thus the total cost of the protocol remains dominated by the cost
of homomorphically encrypting the vectors, and it is not appreciably greater than that of SSI'vIC
FFI. In addition, because of a sound verification phase, the AC-FFI protocol inherits significant
advantage over the SSlVIC-FFI protocol in enforcing honest behaviors.

The AC-FFI protocol further confirms our intuition: the computation phase of an AC-protocol
can be as efficient as a SSl\lC-protocol. Furthermore, since malicious behavior can be detected by
the verification process, the verification phase provides participating parties the incentive to follow
the protocol correctly: in other words, participating parties are more likely to output the correct
result under the AC-framework than does a SMC-protocol secure under the semi-honest model.

5 Conclusion / Future Work

Confidentiality is an extremely important issue in data security. Even when different data holders
are allowed to see each other's data, they may not choose to do so when they collaborate to achieve
a common goal because they do not want to get accused that they are the ones to disclose certain
confidential information. In this paper, we present the accountable computing (AC) framework
that allows an honest party to prove innocence to a third independent entity when it has followed
a protocol correctly. Such a framework has much potential in practice since it provides more
incentives for a party to behave honestly.

A SSMC-protocol, if followed, prevents information disclosure. However, it may be possible
for a dishonest party to undetectably cause disclosure by not following the protocol correctly. At
the other end of the spectrum, a protocol secure under the malicious model definitely erases these
security concerns. Nevertheless, efficient malicious protocols appear to be difficult to design. The
AC-framework provides a party verifiability, and its general structure allows possible design of more

13

efficient prot,ocols than t,he inalicious model because the verificatioil process does not need to be
carried out during the execut,ioil of an AC-protocol.

Under the AC-framework, we do not explicitly st.ate the penalty relat,ed to t.lle detectioil of
malicious behaviors in t,he verification phase. I11 practice, t.his can be addressed througli con-
tract. signing: and before using any AC-protocol, both part,ies should agree on the penalty should
inalicious behavior be detected.

I11 t,he paper, we also presented a secure finding frequent. iteinsets protocol tliat nleet,s the
defiilitioils of the AC-frame- work. The protocol is nearly as efficient as it,s coui~terpart in t,he
semi-honest model. Ail honest. participating party call verify it,s honesty to a t,l~ird ent,it,y. The
disclosure in the verificatioil process is very limited t,o t , l~e fact t,l~at. the verifier only sees the
perinut,ed inputs and all the coinputat,ions performed are based on t.he permuted input,s as n~ell.
Future work iilcludes prot,ocols supporting zero-knowledge proofs t , l~at are efficient at coinputat~ion
time (alt.houg11 perhaps expensive to verify). I11 addit,ioil, a.s ineilt,ioned previously, better dealing
1vit11 preina,ture t,erinina,t,ion of an AC-protocol would be also very int.erest.iilg for fut,ure research.

References

[:I.] Rakesh Agrawal and Rainakrishnan Srikant. Fast algorithms for milling associat.ion rules. I11
Proceedings of the 20th International Conference on Very Large Data Bases, pages 487-499:
Sant,iago, Chile, Sept,einber 12-15 1994. VLDB.

[2] Rakesh Agrawal and Eviinaria Terzi. On honesty in sovereign inforinat,ion sharing. In Pro-
ceedings of the 10th International Conference on Extending Databa.se Technology (EDBT),
2006.

[3] h;likhail J. Atallah: h!larina Bykova, Jiailgtao Li, and klei-ca,n Karahan. Privat,e collaborat,ive
forecastiilg and benchmarking. 111 Proc. 2d. ACM Workshop on Privacy in, the Electronic
Society (WPES), Wasl~ingt,on: DC, Oct,ober 28 2004.

[4] Josh Coheil Benaloh. Secret. sharing l~oinoinorpl~isms: Keeping shares of a secret secret. In
A.M. Odlyzko, editor, Advances in Cryptography, CRYPTO8G: Proceedings, volume 263. pages
251-260. Springer-Verlag, Lecture Notes in Computer Science. 1986.

[5] Directive 95/46/EC of t.he Europeail Parliaineat. and of t.he Couilcil of 24 Oct,ober 1995 on
t.he prot.ection of iildividuals with regard to the processing of personal dat.a and on t.he free
movement. of such data. Oficial Journal of the Europea,n Communitiesj No I. (281) :31--50;
October 24 1995.

[GI Rosario Gennaro, I\/licl~ael 0. Rabin, and Tal RabinG. Simplified vss and fast-track inult,iparty
coinputat,ioils wit.h applicat,ioils t,o threshold crypt,ography. In Proceedings of the 17th Annual
ACM Symposium on Principles of Distributed Computing, pages 101-111, September 21 1998.

[7] Bast Goet,l~als: Sveil Laur, Helger Lipinaa., and Taneli hlielikainen. On secure scalar product
coillputation for privacy-preserving data ininiilg. 111 Choonsik Pa.rk and Seongtaek Chee,
edit,ors, The 7th Annual International Conference in Information, Secu,rity and Cryptology
(ICISC 2004); Seoul, Korea, December 2-3 2004.

efficient protocols than the malicious model because the verification process does not need to be
carried out during the execution of an AC-protocol.

Under the AC-framework, we do not explicitly state the penalty related to the detection of
malicious behaviors in the verification phase. In practice, this can be addressed through con
tract signing, and before using any AC-protocol, both parties should agree on the penalty should
malicious behavior be detected.

In the paper, we also presented a secure finding frequent itemsets protocol that meets the
definitions of the AC-frame- work. The protocol is nearly as efficient as its counterpart in the
semi-honest model. An honest participating party can verify its honesty to a third entity. The
disclosure in the verification process is very limited to the fact that the verifier only sees the
permuted inputs and all the computations performed arc based on the perrnuted inputs as well.
Future work includes protocols supporting zero-knowledge proofs that are efficient at computation
time (although perhaps expensive to verify). In addition, as mentioned previously, better dealing
with premature termination of an AC-protocol would be also very interesting for future research.

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules. In
Proceedings of the 20th International Conference on Very Large Data Bases, pages 487-499,
Santiago, Chile, September 12-15 1994. VLDB.

[2] Rakesh Agrawal and Evimaria Terzi. On honesty in sovereign information sharing. In Pro
ceedings of the 10th International Conference on Extending Database Technology (EDBT),
2006.

[3] l'vIikhail J. Atallah, l'vIarina Bykova, Jiangtao Li, and l'vlercan Karahan. Private collaborative
forecasting and benchmarking. In Proc. 2d. A CM Workshop on .Privacy in the Electronic
Society (WPES), Washington, DC, October 28 2004.

[4] Josh Cohen Benaloh. Secret sharing homomorphisms: Keeping shares of a secret secret. In
A.M. Odlyzko, editor, Advances in Cryptography, CRYPT086: Proceedings, volume 263, pages
251-260. Springer-Verlag, Lecture Notes in Computer Science, 1986.

[5] Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on
the protection of individuals with regard to the processing of personal data and on the free
movement of such data. Official Journal of the European Communities, No 1.(281):31--50,
October 24 1995.

[6] Rosario Gennaro, Michael O. Rabin, and Tal RabinG. Simplified vss and fast-track multiparty
computations with applications to threshold cryptography. In Proceedings of the 17th Annual
A CM Symposium on Principles of Distributed Computing, pages 101-111, September 21 1998.

[7] Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli l\lielikainen. On secure scalar product
computation for privacy-preserving data mining. In Choonsik Park and Seongtaek Chee,
editors, The 7th Annual International Conference in Information Security and Cryptology
(ICISC 2004), Seoul, Korea, December 2-3 2004.

14

[8] 0. Goldreich, S. I\,licali, and A. 14~igderson. How t,o play any rrieilt,al game - a coinplet,e-
iless theorein for protocols with l~oi~est majorit,!.. In 19th ACM Sym.posiun~ on the Theory of
Computing, pages 218-229, 1987.

[9] Oded Goldreich. The Foundations of Cryptography, volume 2. cllapt,er General Crypt,ographic
Prot,ocols. Cambridge Universitj7 Press, 2004.

[lo] Shafi Goldwasser, Silvio I\Iica.li, and C. Rackoff. Tlle knoxvledge coinplexitv of int,eractive
proof systems. I11 Proceedings of the 17th An,iaual A CM Sym.posi.unz on Theory of Computing
(STOCi85), pages 291-304, Providence, Rhode Island, U.S.A., May 6-8 1985.

[ll] Standard for privacy of individually identifiable health information. Federal Regzster.
67(157):53181-53273, August 14 2002.

[12] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. Journal of C~yptology,
15(3):177-206. 2002.

[13] David Naccaclle and Jacques St.ern. A new public k e ~ ~ crypt.osyst~enl based on higher residues.
In Proceedings of the 5th ACM conference on Com,puter and com.m.unications security, pages
59-66, San Francisco, United St,at.es, 1998. ACAI Press.

[14] hloni Naor, Benny Pinkas, and R. Sumner. Privacy prese~,ving auctions and inechanis~n design.
In Proceedings of the 1st ACM Con.feren.ce on E1ectron.i~ Conamerce. ACM Press, 1999.

[15] Secure hash st,andard. Technical Report. FIPS PUB 180-1. National Instit,ut,es of Standards
and Technology, April 17 1995.

[16] T . Okainot,~ and S. Uchiyama. A new public-key cryptosysteln as secure as factoring. I11
Advances in Cryptology - Euroc~ypt '98: LNCS 1403, pages 308--318. Springer-Verlag, 1998.

[17] R. L. Rivest,, A. Shamir, and L. Adleman. A nlethod for obtaining digital signat.ures and
public-key crypt,osyst.ems. Com,m.un,ications of the A CM, 21(2):120-126, 1978.

[18] Ronald L. Rivest,. The ind5 message-digest, algorit.hm. Tecl~nical Report RFC 1321, Net.work
Working Group, AfIT Laborat.ory for Conlput,er Science and RSA Dat.a Securit,~, Inc., April
1992.

[19] Andrew c. Yao. Prot,ocols for secure coinput~ation. I11 Proceedings of the 23rd IEEE Symposium.
on Foundations of Com,puter Science, pages 160-164. IEEE, 1982.

[20] Andrew C. Yao. How to generat,e and exchange secret,^. I11 Proceedings of the 27th IEEE
Symposium on foundation.^ of Computer Science: pages 162-167. IEEE, 1986.

[21] Just,in Zhan, Matwin, and LilVu Chang. Privacy-preserving colla.borat.ive associat.ion rule
mining. I11 Proceedings of the 19th Annual IFIP WG 11.3 Working Conference on Database
and Applications Security, St.01-rs: Connect,icut, August 7-10 2005.

[8] O. Goldreich, S. lvli cali , and A. \iVigderson. How to play an~' mental game - a complete
ness theorem for protocols with honest majority. In 19th A Cllf Symposium on the Theory oj
Computing, pages 218-229, 1987.

[9] Oded Goldreich. The Foundations oj Cryptography, volume 2, chapter General Cryptographic
Protocols. Cambridge University Press, 2004.

[10] Shafi Goldwasser, Silvio J\licali, and C. Rackoff. The knO\vledge complexity of interactive
proof systems. In Proceedings of the 17th Annual ACM Symposium on Theory oj Computing
(STOC'85), pages 291-304, Providence, Rhode Island, U.S.A., l\lay 6-8 1985.

[11] Standard for privacy of individually identifiable health information. Federal Register,
67(157):53181-53273, August 14 2002.

[12] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. Journal of Cryptology,
15(3):177-206, 2002.

[13] David Naccache and Jacques Stern. A new public key cryptosystem based on higher residues.
In Proceedings of the 5th A CM conference on Computer and communications security, pages
59-66, San Francisco, California. United States, 1998. ACl\l Press.

[14] Moni Naor, Benny Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design.
In Proceedings of the 1st A CM Conference on Electronic Commerce. ACM Press, 1999.

[15] Secure hash standard. Technical Report FIPS PUB 180-1, National Institutes of Standards
and Technology, April 17 1995.

[16] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. In
Advances in Cryptology - Eurocrypt'98; LNCS 1403, pages 308--318. Springer-Verlag, 1998.

[17] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.

[18] Ronald L. Rivest. The md5 message-digest algorithm. Technical Report RFC 1321, Network
\iVorking Group, I\IIT Laboratory for Computer Science and RSA Data Security, Inc., April
1992.

[19] Andrew C. Yao. Protocols for secure computation. In Proceedings of the 23rd IEEE Symposium
on Foundations of Computer Science, pages 160-164. IEEE, 1982.

[20] Andrew C. Yao. How to generate and exchange secrets. In Proceedings of the 27th IEEE
Symposium on Foundations of Computer Science, pages 162-167. IEEE, 1986.

[21] Justin Zhan, Stan Matwin, and Li\iVu Chang. Privacy-preserving collaborative association rule
mining. In Proceedings of the 19th Annual IFIP we 11.3 Working Conference on Database
and Applications Security, Storrs; Connecticut, August 7-10 2005.

15

	AC-Framework for Privacy-Preserving Collaboration
	Report Number:
	

	tmp.1307986960.pdf.l5eM_

