
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

2006 

Tracing Lineage in Multi-Version Scientific Databases Tracing Lineage in Multi-Version Scientific Databases 

Mingwu Zhang 

Daisuke Kihara 
Purdue University, dkihara@cs.purdue.edu 

Sunil Prabhakar 
Purdue University, sunil@cs.purdue.edu 

Report Number: 
06-013 

Zhang, Mingwu; Kihara, Daisuke; and Prabhakar, Sunil, "Tracing Lineage in Multi-Version Scientific 
Databases" (2006). Department of Computer Science Technical Reports. Paper 1656. 
https://docs.lib.purdue.edu/cstech/1656 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


 

 

 

 

 

 

 

Tracing Lineage in Multi-

Version Scientific Databases 

 

 

 

Mingwu Zhang 

Daisuke Kihara 

Sunil Prabhakar 

 

 

 

CSD TR #06-013 

July 2006 



Tracing Lineage in Multi-version Scientific Databases

Mingwu Zhang Daisuke Kihara and Sunil Prabhakar

Department of Computer Science, Purdue University

West Lafayette, IN 47907-1398, USA

{mzhang2, dkihara, sunil}@cs.purdue.edu

Abstract

The critical need for better tracing of lineage in sci-
entific databases is well known [6]. It is clear that per-
formance is not an issue for most domain scientists
– rather the functionality is more important. In this
paper, we highlight the importance of maintaining mul-
tiple versions of data and tracing fine-grained lineage
in support of these needs. We study alternatives for
managing versions, and propose a model for the ex-
ample application of protein annotations. We present
query rewriting algorithms for SPJ and ASPJ queries
that piggy-back lineage computation with query evalu-
ation. Our models are implemented using PostgreSQL
and tested using a large, real dataset from Uniprot. We
establish the validity of the approach in enabling rele-
vant queries and study the space and time overheads.
While these overheads can be high in some cases, the
real gain for scientists is the novel functionality that
can allow them to ascertain reliability of derived data,
and foster data-driven research. To the best of our
knowledge, this is the first work that can handle these
types of queries for lineage tracing.

1 Introduction
With the development of high-throughput exper-

imental technologies, scientists today are producing
large volumes of data and rely more and more on
Database Management Systems (DBMSs) to store and
manage scientific data. However, processing of sci-
entific data imposes challenges that are not well-
addressed in modern DBMSs, which are generally de-
signed to handle applications in the business world.

A salient example to showcase the lack of database
support for scientific data is data provenance. Data
provenance and lineage are almost synonymous in sci-
entific databases. Lineage means derivation and prove-
nance means origin or source. As their names suggest,
lineage is usually used to trace the derivation process
and the origin of the data. It also provides insights into
the reliability and in general, quality of the data. By

examining provenance, scientists may judge the data
quality based on their own experiences. Provenance is
also required in data dissemination and reproduction.

As a motivating example, we consider the well-
known problem of error propagation in protein an-
notations in Uniprot [9]. Uniprot is a core func-
tional annotation database which maintains informa-
tion about millions of proteins. There are two main
sources of functional annotations: experimental and
computational. The most reliable annotations are de-
termined experimentally. Unfortunately, only a small
fraction of proteins have experimentally verified anno-
tations due to the difficulty of this process. More often,
proteins are annotated based upon their similarity to
other annotated proteins in the database. There are a
number of different methods used to estimate protein
function. For example, based upon similarity of the
sequence (e.g., using BLAST [1]), and scores reported
by Hidden Markov Models. When a new protein is
identified, a biologist may first compare it against the
entire database of existing sequences using a tool such
as BLAST [1]. The functional annotations from the re-
sulting sequences with similarity beyond a user-defined
threshold (i.e., high homology) are used to generate an
annotation for the new sequence. The new sequence
and its annotation are now added to the database and
used in future BLAST searches.

A major problem with this approach is that com-
putational annotation can be wrong. Furthermore,
once a protein is annotated computationally, its an-
notation is treated the same way as an experimentally
verified protein. Thus, future annotations may propa-
gate and compound annotation errors through compu-
tational means. This leads to difficulties in assigning
confidence to protein annotations. This difficulty in
managing protein annotations is well recognized: Ac-
cording to a recent editorial in a leading Bioinformat-
ics journal [6]: “Each new sequence deposited in the
public database has been annotated with respect to
those same databases. Function annotations are prop-
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agated repeatedly from one sequence to the next, with
no record made of the source of a given annotation,
leading to a potential transitive catastrophe of erro-
neous annotations.”

In addition to the propagation of potential errors
in annotations, there is a challenge posed by updates
to data. Naturally, an important class of updates is
simply the addition of new data. There are also in-
stances where an annotation is found to be incorrect
based upon experiments. This requires an update to
the specific annotation, and also to all other derived
annotations. Without the availability of dependency
information, this is not possible to do. Furthermore,
even if such information were available, the updates
to derived data are not straight-forward to compute.
Computing updates requires expert intervention. In a
traditional database, derived data such as materialized
views are always maintained in a timely fashion. So
the lineage traced is always correct. But in scientific
databases, it may not always be feasible to propagate
the changes to the derived data immediately. This can
lead to incorrect (stale) or phantom lineage.

The above problems can be addressed by not delet-
ing old data, but maintaining multiple versions of data.
In scientific databases, historical data is as valuable as
the current data. A scientific discovery has to be re-
peatable before it is widely accepted. Other researchers
may depend on a specific version of the data to re-
produce the results. Without this data, the discovery
would be unverifiable. The decreasing cost of storage
allows scientific databases to store the historical data
economically. Shared databases such as Uniprot are
released periodically since it would be too cumbersome
to handle very frequent releases. However, this delays
the availability of new data. Also, older versions are
simply unavailable thus forcing researchers to copy and
maintain multiple versions in order to retain access to
current and historical data. The availability of a multi-
version system would alleviate these concerns and also
enable users to access any “version” – not just the cur-
rent release.

What is needed in this area is the development of a
system that i) retains multiple versions of data (e.g.,
multiple annotations of proteins over time); ii) allows
users to discover dependencies between data; iii) en-
ables the querying of these dependencies; and iv) en-
ables data-driven research through statistical analysis
of these dependencies. One of the goals of bioinformat-
ics is to help transform biology from a hypothesis-driven
to a data-driven mode. In other words, biologists would
like to be able to analyze data to identify promising
experiments that are likely to be fruitful, instead of
relying on hypotheses.

Although there has been some recent work on
database support for lineage in scientific databases, the
current approaches are unable to provide the types of
support discussed above. The broader goal of our re-
search is to develop a database management system
that provides the necessary support for managing sci-
entific data, as exemplified by the protein annotation
application. In this paper, we develop a solution for
data lineage that satisfies the above requirements. In
particular, we propose materialized, fine-grained lin-
eage for multi-version data. A prototype system has
been developed on top of PostgreSQL and populated
with multiple releases of Uniprot. Using this system,
we study the overhead of supporting this fine-grained
lineage and also demonstrate its ability to support
a wide range of queries of interest to scientists. To
the best of our knowledge, lineage tracing in a multi-
version database has not been addressed.

This paper proposes a novel system that supports
fine-grained lineage tracing for derived data. We in-
vestigate alternative designs for version management,
and propose query rewriting algorithms that enable ef-
ficient computation of lineage during query processing.
New types of lineage are defined and used in our model.
A prototype system is developed and used to validate
the claims with real protein annotation data. The al-
gorithms are shown to improve the query execution
times when tracing lineage. We also highlight some
of the queries that can be executed with our system.
Most importantly, this paper addresses the need for
improved tracing functionality in scientific databases.

2 Related Work

Provenance or lineage has been extensively studied
in the context of scientific computation such as datasets
on the grid. One form of the provenance is workflow or
coarse-grained provenance. In scientific computation,
coarse-grained (i.e., table or file level) lineage is suf-
ficient because typically all elements in the same file
or table have undergone the same computational pro-
cess. Also the lineage is used to trace the source of
abnormality in the data or for the data dissemination
(i.e., a description of the derivation process is dissemi-
nated along with the base data). [3] surveys the use of
workflows in scientific computation.

In scientific databases, for example biological
databases, keeping the coarse-grained lineage is insuf-
ficient since not all data values are processed simi-
larly. There is a great need for DBMS support for
fine-grained lineage tracing. Although the need is ur-
gent, it remains an unsolved problem. Recently, there
has been increasing interest in this area. Cui et al.
[5] propose fine-grained tracing in the context of data
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warehousing where all data is produced using relational
database queries. The notion of reverse queries that are
automatically generated is presented in order to pro-
duce all tuples that participated in the computation
of a given query. Woodruff and Stonebaker [10] sup-
port fine-grained lineage using inverse or weak inverse
functions. That is, the dependence of a given result on
base data is captured using a mathematical function.
They adopt a lazy approach to compute fine-grained
lineage upon request from the user. It is not clear if
such functions can be identified for a given applica-
tion. The identification task is highly non-trivial and
makes the approach impractical. Bhagwat et al.[2] pro-
posed three schemes to propagate annotations attached
to attributes in relational data. The where lineage is a
unique address recorded in the annotation, along with
other non-lineage information. As it only records where
the data is copied from, where lineage is not sufficient
for scientific databases where data go through com-
plex processing. The intuition behind where lineage is
rooted in the classical view maintenance problem. An-
other limitation of these approaches is that the lineage
information is stored as unstructured text which makes
it very difficult to analyze.

Overall we see that while tracing of fine-grained lin-
eage and storage of multi-version data is critical to sup-
porting meaningful tracing of scientific databases, cur-
rent solutions fall short of these requirements. To the
best of our knowledge, ours is the first work to pro-
pose such a system and the only one that can support
the types of queries discussed in Section 5 which are of
direct relevance to scientists.

3 Modeling Version

The new version of base data results from the inser-
tion, update and deletion. Reasons for such changes
include: invalidation of previous belief by a new dis-
covery; identification of an error; verification of com-
putational results by experiments. These changes have
to be propagated to the derived data resulting in new
versions of the derived data. A new version may also
be derived using a subset of the base data or an alter-
native data source. The method and the parameters
used may be changed to produce a new version of the
derived data.

In previous work, each release of the database is
considered to be a database version. This is stored
separately from other releases. In [4] redundancies be-
tween multiple versions are removed to achieve sav-
ings of storage. Such simple versioning is insufficient
for supporting effective lineage tracing. Our model
tracks versions at the database, table, and tuple lev-
els. Database version refers to a state of the database
(which could be the periodic release of the database as

in earlier work, or an intermediate snapshot at a given
time between releases); table version tracks multiple
versions of the same table; and tuple version tracks
multiple version of the same tuple within a table (e.g.,
updated versions of the same protein). This model for
versions is much richer and more flexible than earlier
notions of versions.

We consider two alternative models for representing
versions in scientific databases. In the rest of this sec-
tion, we discuss the advantages and disadvantages of
these models.

3.1 Version number

The obvious choice is to represent version as an extra
attribute. This easily captures tuple versions. How-
ever, in order to represent table and database versions,
it is necessary to define a separate table for each table
version and database version. This separate table(s)
list the tuple version numbers that make up the corre-
sponding table or database version.

Figure 1 shows a subset of the relations from the
Uniprot schema. There are over 65 tables in the
Uniprot schema. The Dbentry table contains an entry
for each protein along with its name and unique identi-
fier for Uniprot (the AC number). The Sequence ta-
ble stores the sequence information for a given protein.
It contains a foreign key into the Dbentry table and
a string describing the sequence of amino acids that
make up the protein. The Description table stores
the functional annotation for the protein. It contains
a foreign key into the Dbentry table, and a textual
description of the function of the protein. We augment
the Sequence and Description tables with a version
attribute. Note that only the relevant fields from each
table are shown here. The AC number for a protein
may change from one version to another. We do not
handle this situation as a new version of Dbentry and
instead treat the AC number change as lineage infor-
mation. Interested readers can find details in our tech-
nical report [7]. The version numbers are incremented
for each new version of the tuple inserted into the table.

The deletion of a tuple can be handled either as a
special value for the version or using an extra column
in the schema. We choose use a special value to mark
deletion. This model for version is straightforward, but
awkward when querying the table version. For exam-
ple, if the user wants to join the current version of two
tables, she can issue the following query:

select * from Sequence S1, Description D1

where S1.dbentry_id=D1.dbentry_id and

S1.version !=special_value and

S1.version in (select max(S2.version)

from Sequence S2

where S2.dbentry_id=S1.dbentry_id)
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and D1.version != special_value

and D1.version in (select max(D2.version)

from Description D2

where D1.dbentry_id=D2.dbentry_id)

This query contains a correlated sub-query. To
avoid the correlated sub-query, we may introduce
curr version table to keep track of the current ver-
sion number for each tuple. A similar table is needed
to represent each table and database version. It should
be noted that it is extremely difficult to represent the
database version. To represent a database version, one
needs to know the version number of each tuple in
that version of the database. This is impractical for
a database with a large number of versions.

3.2 Timestamp

In the second model,we use two timestamps to repre-
sent the tuple version explicitly and table version and
database version can be easily inferred from the tu-
ple version. For each tuple, two attributes of times-
tamp type, start time and end time, represent the
valid time period for the data item [8]. These times-
tamps are similar to valid time in temporal databases
but only the current data can be modified. Rep-
resenting the version in valid time is intuitive be-
cause users usually remember when the data is de-
rived rather than the individual version numbers of
the tuples used to derive the data. The schema and
part of the table are shown in Figure 1. The pri-
mary key of the sequence table is sequence id while
(dbentry id, start time, end time) is a unique key. The
primary key of the Description table is description id

while (dbentry id, start time, end time) is a unique
key. “Now” is defined by setting start time to the cur-
rent time and end time to “infinite”. This “infinite”
timestamp could be a special value which is very large,
for example “12-31-3000.” The join of the current ver-
sion of the two tables can be expressed as follows.

select * from sequence S, description D

where S.dbentry id = D.dbentry id and

S.start time<=current time and

S.end time>current time and

D.start time<=current time and

D.end time>current time

If a user wants to query for a specific version of the
data, she only needs to know the time when the specific
version is valid. The representation of deletion is nat-
ural in this model. If the data is deleted, the end time

of the current data which has a value of “infinite” will
be changed to the time of deletion.

Both the table and database versions can be simply
represented as timestamps. The table (database) ver-
sion for a given timestamp consists of the tuples in the
table (database) that are valid at that time. A user

only needs to remember the time for the specific ver-
sion. A simple selection query with this time value is
sufficient to access the corresponding version of the ta-
ble. This model also has the advantage of (efficiently)
representing a large number of versions.

In Section 5, we compare the performance of these
two alternatives. Our experiments suggest that times-
tamps give better performance than version numbers.
Given this performance advantage and the difficulties
of representing multiple versions (especially for table
and database) using version numbers, we limit the fol-
lowing discussion to timestamp based versions. This
model is also more intuitive and user friendly.

4 Lineage

In this section we discuss the types and granularity
of lineage necessary for effective lineage tracing. We
have defined new types of lineage and the details can
be found in our technical report[7]. We also discuss im-
plementation issues with respect to the efficient com-
putation of fine-grained lineage.

Granularity An important design decision is the
granularity of the lineage information. Some applica-
tions only need coarse-grained lineage (e.g., at the table
level only). For example, if all tuples are derived using
the same procedures. However, many applications need
much finer granularity lineage (e.g., tuple-level). Con-
sider for example, in Uniprot different annotations are
derived using different methods (experimental or com-
putational methods). Therefore it is difficult to assign
table-level lineage that is meaningful for all tuples.

In earlier work, fine-grained lineage is computed
upon user request and is not materialized on the
grounds that it is expensive to store this extra infor-
mation and also that computing fine-grained lineage is
infrequent [5, 10]. The only other work that proposes
to materialize fine-grained lineage is [2]. However, the
type of lineage stored is insufficient to support impor-
tant queries.

As the cost of storage decreases, it is both practical
and economical to store fine-grained lineage. We be-
lieve that fine-grained lineage should be stored because
it contains rich and interesting information. Material-
izing this information allows users to compute useful
ad hoc querying. For example, in Uniprot, fine-grained
lineage can be queried to reveal the dependency be-
tween protein annotations. A derived protein annota-
tion with a shorter dependency chain may reflect higher
reliability. Fine-grained dependency can help scientists
identify critical annotations – those on which a large
number of other annotations depend. Experimental
resources can then be targeted at verifying these criti-
cal annotations. In our framework, fine-grained lineage
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Figure 1. Representing version using timestamps

may or may not be materialized depending upon user
preference.

Tracing fine-grained internal lineage In a rela-
tional database, if data is derived using an SQL state-
ment, the lineage information is internal lineage. If the
data is not derived by an SQL statement, it is external
lineage. If fine-grained internal lineage is computed on
the fly, no fine-grained lineage will be stored. A reverse
query similar to the one defined in Cui et al. [5] can
easily be issued upon user’s request to trace the fine-
grained lineage on the fly. On the other hand, if fine-
grained lineage is materialized, we can avoid executing
reverse queries. The lineage can be piggy-backed with
the query execution itself.

In order to store fine-grained lineage, we could al-
ways run the query to get the result , then generate the
reverse query for each tuple in the result and store the
fine-grained lineage. A more efficient alternative is to
compute the lineage information as the query is being
executed. There are two cases to consider: Selection-
Projection-Join(SPJ) queries and Aggregate-Selection-
Projection-Join(ASPJ) queries.

SPJ queries. We assume the database, table and
tuples can be uniquely identified. For an ordinary SPJ
query, we need to retain the tuple id from the base
tables when the queries are being executed. Algorithm
1 transforms the original SPJ query to trace the lineage
at execution time.

Algorithm 1 Tracing internal lineage for SPJ query

1: for each table that appears in the from list do

2: add table.tuple id to the select list.

3: end for

4: create a view using the modified query

5: for each row in the view do

6: for each table.tuple id added do

7: insert one tuple in the where lineage table.

8: end for

9: end for

10: drop added table.tuple id columns

ASPJ query. For a typical ASPJ query, the ag-
gregate is based on the group by clause. Algorithm 2

transforms the original ASPJ query to trace the lineage
at query execution time. For example, the following

Algorithm 2 Tracing internal lineage for ASPJ query

1: remove the group by and aggregate clauses

2: for each attribute that appears in the group by clause

do

3: add the attribute to the select list

4: end for

5: for each table that appears in the from list do

6: add the table.tuple id to the select list

7: end for

8: create a temporary view using the modified query

9: create a view with aggregate and group by using tem-

porary view

10: join the temporary view and view with the group by

attributes

11: for each row in the result of the join do

12: for each table.tuple id added do

13: insert one tuple in the where lineage table.

14: end for

15: end for

16: drop the temporary view

query can be used to compute how many annotations
for each protein contains the keyword ‘hypothetical’
over all versions.
create table view

select dbentry id, count(*) from description d

where d.text like ‘hypothetical’

group by dbentry id
Algorithm 2 outlines the transformation steps that aug-
ment ASPJ queries with fine-grained lineage tracing.
First, the group by and aggregate clauses are re-
moved. The attributes in the group by and tuple id

of the base table are appended to the select list. The
aggregate is then calculated.
create table temp view as

select dbentry id, description id

from description d

where d.text like ‘hypothetical’;

create table view as

select v.dbentry, count (v.dbentry)

from temp view v group by v.dbentry_id

5



In order to find the lineage information, temp view

and view are joined on the attributes in the group

by clause.

create table depend view as

select r.tuple id, v.description_id

from view r, temp view v

where r.dbentry_id=v.dbentry_id

Next, for each tuple in depend view, for each col-
umn other than depend view.tuple id, insert a tuple
in the where lineage table. Finally, temp view and
depend view are dropped.

5 Experimental Results

In this section we describe the implementation of
our lineage tracing ideas in PostgreSQL, and present
the performance using a real data set.

We have created a database for storing both the
protein data (with annotations) and the necessary lin-
eage data for multiple versions of the publicly avail-
able Uniprot[9] protein database. In particular, we im-
ported versions 44, 45 and 46 of Swiss-Prot, and ver-
sions 29, 30 and 31 of the TREMBL database. Version
46 of Swiss-Prot contains 168,297 manually curated
protein annotations and version 31 of TREMBL con-
tains 2,144,471 computationally generated protein an-
notations. The schema of Swiss-Prot is obtained from
Uniprot and modified to include version information.
We use version 7.4.5 of PostgreSQL.

5.1 Functionality

In this section, we demonstrate the advantages of
our approach of storing fine-grained lineage and ver-
sions for the data. These two aspects enable a large
number of relevant and important queries that scien-
tists would like to be able to answer [6]. Each of the
queries presented below cannot be answered without
fine-grained lineage and multi-version data. To the
best of our knowledge, none of the existing work on
tracing lineage is able to answer these queries.

Query 1. Show the dependency graph of a tu-

ple. In the multi-version Swiss-Prot, queries of this
type are the most common. Biologists want to see the
dependency graph involving a particular protein to as-
sess the quality of the data. The global dependency
graph contains a node for each tuple and directed edges
between related tuples. An edge goes from a derived
data tuple to the data on which it depends. The de-
pendency graph of a given tuple refers to the connected
component containing that tuple. This query can not
be expressed in SQL because SQL lacks the capability
to express recursive queries. A C++ program based on
the BFS algorithm is implemented to find the depen-
dency graph of the tuples. The output of the program
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Figure 2. The dependency graph of (2, 25654)

is a graph in GML format and is read by GVF to dis-
play the dependency between the tuples1. Figure 2
shows the dependency graph for protein (2, 25654).2

This graph shows all the interrelated pieces of data
connected with the given tuple (shown in bold). The
directed edges points from derived data to base data.
Query 2. For a given piece of derived data, de-

termine if any of its base data has been changed.

Because the update to the base data may not be prop-
agated to the derived data, it is important to see if
the data on which the derived data depends has been
updated since the derivation. This query checks if any
item in the dependency graph is not the current ver-
sion.
Query 3. Show the data that more than n de-

rived data depend on. In the hypothesis-driven re-
search paradigm, scientists postulate a hypothesis and
conduct experiments to verify the hypothesis. Scien-
tists rely on their expertise to propose the hypothesis.
In the data-driven research paradigm, the data and the
result of experiment will suggest the next possible ex-
periment or critical experiments to be conducted. The
hypothesis in data-driven paradigm is guided by the
data and may be more thorough and systematic. For
example, in our multi-version Swiss-Prot database, if
many protein annotations depend on a particular pro-
tein annotation and it is derived from a computational
method, then it is important to verify its function by
wet bench experiments.
Query 4. Show the statistics of the dependency.

The statistics of the global dependency graph reveal

1Graph Modeling Language (GML) and Graph Visualization
Framework (GVF).

2The two numbers refer to the table id and tuple id vales
from the database. These are used in order to uniquely identify
a tuple. Details can be found in [7].
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Figure 3. Dependency graph size

information about the entire database. For example,
if many derived data have long derivation chains, the
probability that errors have propagated to derived data
is high. If fine-grained lineage is not stored, it is not
possible to calculate this statistic information. Figure
3 shows the distribution of the size of tuple dependency
graphs. Each point in the graph shows the total num-
ber of tuple dependency graphs with a given number
of nodes. The inset graph shows a detailed subsec-
tion of the larger graph. For example, 86% of depen-
dency graphs consist of less than 5 nodes. That is, the
number of interdependent annotations is usually small.
However, there are some cases where more than 80 an-
notations are related. We also calculate the longest
shortest path in these graphs. There are total 8389
dependency graphs in the database. 8073 dependency
graphs have longest shortest path of 1 and 316 graphs
have longest shortest path of 2. These statistics reveal
the reliability of the whole database. Because 99% of
the dependency graphs in the database has less than or
equal to 15 nodes and 96% of the dependency graphs
have longest shortest path of 1 and all of them have
a longest shortest path no more than 2, we have con-
fidence that the reliability of the database is high. If
there are many graphs have large number of nodes and
long shortest paths, then the reliability of the database
is in question. Wet bench experiments need to be done
to verify the prediction results.

5.2 Space and Performance

We conduct experiments using queries that have 0,
1, or 2 joins, denoted as Q1, Q2, Q3. The cardinality
of the result range from 10,000 to 1,000,000 rows. The
experiments are conducted on a Sun-Blade-1000 ma-
chine with dual 1.2 GHz UltraSPARC-III+ CPUs and
2G memory running SunOS 5.8.

Version Models In Figure 4, Q is run in times-
tamp model database and Q′ is run in a version number
model database with the correlated sub-query. Q′′ is
run in a version number model database with current
version table implemented. As can be seen from the
graph, the timestamp version outperforms both ver-
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Figure 4. Timestamps vs Version number

sion number alternatives. Therefore we do not consider
version numbers any further.

Space In order to investigate the storage overhead
of storing fine-grained lineage, we conduct experiments
to measure the space cost in the number of pages (each
page is 8K bytes). Figure 5 (a) shows the storage
cost for query results and lineage for a range of query
result sizes. It can be seen that the size of the lin-
eage is roughly 20% (Q1), 30% (Q2) and 40% (Q3) of
the result size. There is a direct relationship between
the number of joined relation and the overhead ratio
since for each result tuple, we need to save the join-
ing tuples as lineage information. The number of rows
of where lineage depends on the number of joins, so
the number of rows of where lineage is linear in the
number of rows returned by the query. In Figure 5
(b), we compare the space cost of ASPJ queries. The
where lineage used 120% of storage of the result. This
result is expected because every tuple contribute to the
aggregate should be recorded in the where lineage, the
cardinality of the where lineage should be the result
of query that does not have the aggregate, which could
be much larger than the cardinality with the aggregate.

Time Calculating the lineage information at exe-
cution will incur a performance cost, we measure the
execution time to compute the fine-grained lineage and
compare it with the execution time without the lineage.
We also implemented the reverse query algorithm. In
Figure 5 (c), Q is the execution time without lineage
tracing, Q′ is the execution time with tracing lineage
at execution time and Q′′ is the execution time using
a reverse query. As Figure 5 (c) shows, our algorithm
incurs an increase of execution time ranging from 20%
to 100%. In all cases, our algorithm outperforms the
reverse query algorithm by 15% to 40%. Figure 5 (d)
similarly shows the performance for an ASPJ query. As
the number of tuples returned by the query increases,
the execution time increases dramatically. Our algo-
rithm is 13% to 100% faster than the reverse query
algorithm. Overall, we see that while there is a space
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Figure 5. Space and Performance cost

and time overhead for fine-grained lineage, the benefits
for scientists are significant. From the scientific data
management perspective, a 20% or even 100% space
overhead is of less importance than added functional-
ity. The time overhead for most queries is tolerable
given that execution time is not the critical parameter
for domain scientists. For the case of ASPJ queries, it
is clear that tracing lineage can be a lot slower than ex-
ecuting the queries without lineage tracing. However,
it should be noted that even in this case, the execution
took only about 150 seconds to generate the results
with lineage for a dataset with over 500,000 tuples.

6 Conclusions

The critical need for better tracing of lineage in sci-
entific databases is well known [6]. It is clear that per-
formance is not an issue for most domain scientists –
rather the functionality is more important. In this pa-
per, we highlight the importance of maintaining mul-
tiple versions of data and tracing fine-grained lineage
in support of these needs. We study alternatives for
managing versions, and propose a model for the ex-
ample application of protein annotations. We present
query rewriting algorithms for SPJ and ASPJ queries
that piggy-back lineage computation with query evalu-
ation. Our models are implemented using PostgreSQL
and tested using a large, real dataset from Uniprot. We
establish the validity of the approach in enabling rele-
vant queries and study the space and time overheads.
While these overheads can be high in some cases, the

real gain for scientists is the novel functionality that
can allow them to ascertain reliability of derived data,
and foster data-driven research. To the best of our
knowledge, this is the first work that can handle these
types of queries for lineage tracing.
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